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SLy(Z) is a discrete subgroup that acts on Ho, the full modular group.
For N € Z, we define the principal congruence subgroup of level N:

F(N):=={(25) =(§9) mod N} C SLy(Z).

Y(N) :=T(N)/Ho Riemann surface, noncompact.

Adding a finite number of points we can compactify it, we denote it by
X(N). This curve can be regarded, in a natural way, as an algebraic
curve defined by some homogeneous polynomial(s) with coefficients in
Q(¢n). We call this the modular curve of level N.

1/36



Modular curves

Fundamental domain for the action of SLy(Z) on Ho
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Modular curves and elliptic curves

A lattice in C is a subset of the form A := Zw; + Zw, with wy,w, € C
linearly independent over R. We can always normalise our latices:
N=N7):=Z-14+Z-7, for some T € H

N7)=N(") & 3(25) € SLo(Z) such that 7/ = 22+5.

The quotient C/A is topologically a torus. We define
1
7+ % (oo %)
0£XEN
This is a meromorphic function on C, invariant under A, and the map

C/N — P%(C)
zZ ~ (P(z2): 2 (2):1)

defines an isomorphism of Riemann surfaces from C/A to E(C), where E
is the elliptic curve

Y2Z = 4X3 — goXZ?% — g3 78,

with g> and g3 are determined from the lattice A.

3/36



Modular curves and elliptic curves

A=N7) | / /
— /{\\\\\\\\\/ /
- o/
PN
fMﬁ/
Moo P

4/36



Modular curves and elliptic ¢
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means of coordinate functions. The algebraic relations that these
coordinate functions satisfy will give some equations that define the curve
and that allow us to compute its points.
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(1) CAut(C), 7: z+— z+ 2T, for some T € C.

Then there exist homolorphic functions F, G : U C C — C invariant
under the group (7) such that there is a bijection

(MH\C — SYC)cP(C)
t — (F(t):G(t):1)

e coordinate functions: F(t) = cos(t) and G(t) = sin(t)
e F and G are invariant under multiples of 2T = 27
e they satisfy the algebraic equation F(t)? + G(t)?> =1
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To uniformise (intuitively)

2. Elliptic curves: E : y2 = x3 + ax? + bx + c elliptic curve over C,

A= (Ty, Tr)z C C lattice. There is a bijection

C/A — E(C)
z = (P(z):P2(2):1)

e coordinate functions: &2 and &’
e 2 and &’ are doubly periodic functions, invariant under
translations on the lattice

e they satisfy the algebraic equation y? = x3 + ax?> + bx + ¢

3. Modular curves: We have the following uniformisation:
SLo(Z)\ Hoeo —  Y(1)(C)
z = j(2)

where

j(z) == q~! + 744 + 196884q + 21493760q° + ..., q=e>"*

is the Klein j-function.
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Quaternion algebras over Q

SL,(Q) is a matrix algebra over Q; it is a particular case indefinite

quaternion algebra over Q.

Definition. Let a, b € Q*. A quaternion algebra over Q is a simple and

central algebra over Q of dimension 4

b
B= (a@ ) ={x+yi+zi+tk|x,y,zteQ}

such that 2 = a, j2=b, k= ij = —ji.
e Hamilton quaternions: H = (‘Tfl) definite

e matrices: My(Q) = (161) indefinite

B is indefinite when B ®g R ~ M5(R) and definite when B ®g R ~ H.
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Quaternion algebras over Q

B quaternion algebra
discriminant of B

O order, non-commutative
discriminant of O

integral quaternion
conjugate quaternion

trace, norm of a quaternion

B = (71(@71)

Dg =2

O = Z[1,i,j, B

Do = 2, so © maximal order
h=3/243/2i4+3/2j+1/2k € O
h=3/2-3/2i —3/2j —1/2k

Tr(h) = h+h=3, Nm(h) = hh =7
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Quaternion algebras over Q

B quaternion algebra
discriminant of B

O order, non-commutative
discriminant of O

integral quaternion
conjugate quaternion

trace, norm of a quaternion

normic form of B

B=(=%")

Dg =2

O =2Z[1,i,j, B

Do = 2, so © maximal order
h=3/2+3/2i+3/2j+1/2k € O
h=3/2-3/2i—3/2j —1/2k

Tr(h) = h+h=3, Nm(h) = hh =7
Nmg(X,Y,Z, T)=X?+ Y2+ 22+ T2
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need some notation to define a Shimura curve:

B indefinite quaternion algebra over Q of discriminant Dg
Op C B order over Z of level N coprime to Dg
b 1 B = My(R)

Moo+ = P({a € Op | Nm(a) = 1})/Z* C PSLy(R) discrete
subgroup

Moo+ \ Hoo compact Riemann surface (< B # M(Q) < Dg > 1)
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Canonical model of a Shimura curve

Shimura: there exists a model defined over Q for the Riemann surface
roo,+ \ Hoo;
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Theorem. Let p{ NDg be a prime. Then X(Dg, N)g, is smooth.
If p| NDg, p is called a bad reduction prime of X(Dg, N).

Theorem. Let p | N. Then the special fibre X(Dg, N)z, has two
irreducible components, each isomorphic to X(Dg, N/p)r, -

Theorem. If p | Dg, the fibre X(Dg, N)|, has totally degenerate (each
component is isomorphic to P!) semistable (it is reduced, connected but
possibly reducible, and its only singularities are ordinary double points)
bad reduction.

We want to study the bad reduction of Shimura curves, i.e. its reduction
modulo some prime p | Dg.
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The algebraic closure of Q, is not complete. C, = completion of the
algebraic closure of Q.

We want to study the set of Cp,-points of X(Dp, N) and its structure as
rigid analytic variety (p-adic analog of Riemann surface). This knowledge

will allow us to study the reductions mod p of some integral models of
X(Dp, N).

The theorem of Cerednik-Drinfel'd of interchanging local invariants

tells us which is the group that uniformises the analytic variety

X(Dp, N)(C,). It is an arithmetic group I, + € PGL>(Qp) such that
rPHr \HP = X(Dp, N)(Cp)a

where H, := P}(C,)\P}(Q,) is the p-adic upper half-plane, the p-adic

analog the the complex upper half-plane.

This uniformisation is known as the p-adic uniformisation of the
Shimura curve X(Dp, N).
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Following Cerednik-Drinfel'd, we take the definite quaternion algebra H
of discriminant D obtained from B by interchanging the local invariants
p and oo.

e H definite quaternion algebra of discriminant D

b, H — Ma(Qp)

e O C H maximal order over Z

O[%] =0®g Z[%] maximal order over Z[%]
Mp:=®,(0[1/p]*)/Z[1/p]* < PGL(Qp) unit group

Mo+ ={y€l,:v,(Nm(e)) = 0mod 2} “positive” units

Mp(§) = ®p({a € O[1/p]" | a =1 mod £O})/Z[1/p]", § € O
elements congruent to 1 modulo &
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Two lattices M, M’ C Q,% are homothetic if 3\ € Q, with M = AM.

We define the graph 7, as follows:
- Ver(7T,) = homothety classes of lattices of Q2
- Ed(7,) = pairs of adjacent classes.

It is a (p+ 1)-regular tree known as the Bruhat-Tits tree associated to

PGL2(Qp).

The group PGL,(Q,) acts transitively on Ver(7,): if M = (u,v) C Q3
and v € GLy(Qp) then v - M := (yu,yv).
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The Bruhat-Tits tree

Bruhat-Tits tree 7, for p =2

Picture taken from: The Bruhat-Tits tree of SL(2), Bill Casselman

18 /36



4. BAD REDUCTION OF SHIMURA CURVES



Mumford theory

The theory of p-adic uniformisation of curves developed by Mumford tells
us that if [ C PGLy(Qp) is a Schottky group

19 /36



Mumford theory

The theory of p-adic uniformisation of curves developed by Mumford tells
us that if I C PGL>(Q)) is a Schottky group (=discrete, finitely
generated an torsion-free),

19 /36



Mumford theory

The theory of p-adic uniformisation of curves developed by Mumford tells
us that if I C PGL>(Q)) is a Schottky group (=discrete, finitely
generated an torsion-free), then there exists a curve Xr over Qp such
that

19 /36



Mumford theory

The theory of p-adic uniformisation of curves developed by Mumford tells
us that if I C PGL>(Q)) is a Schottky group (=discrete, finitely
generated an torsion-free), then there exists a curve Xr over Qp such
that

o Xr(Cp) =T\ Hyp,

19 /36



Mumford theory

The theory of p-adic uniformisation of curves developed by Mumford tells
us that if I C PGL>(Q)) is a Schottky group (=discrete, finitely
generated an torsion-free), then there exists a curve Xr over Qp such
that

[ ] Xr( ) = |'\7-lp,
e Redp(Xr) =T\ Tp,

19 /36



Mumford theory

The theory of p-adic uniformisation of curves developed by Mumford tells
us that if I C PGL>(Q)) is a Schottky group (=discrete, finitely
generated an torsion-free), then there exists a curve Xr over Qp such
that

[ ] Xr( ) = |'\7-lp,
e Redp(Xr) =T\ Tp,

where 7, is the Burhat-Tits tree attached to PGLy(Q)).

19 /36



Mumford theory

The theory of p-adic uniformisation of curves developed by Mumford tells
us that if I C PGL>(Q)) is a Schottky group (=discrete, finitely
generated an torsion-free), then there exists a curve Xr over Qp such
that

o Xr(Cp) =T\ Hp,
* Redp(Xr) =T\ Tp,

where 7, is the Burhat-Tits tree attached to PGLy(Q)).

Let I C PGL,(Q,) be a discontinuous and finitely generated
group. Then there exists a normal subgroup <" of finite index which is
torsion-free. In particular [ is a p-adic Schottky group.
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H definite quaternion algebra, @ C H order of level N with h(D,N) =1
O* unit group, finite
Take £ € O

a € O is &-primary with respect to {[1]} © a =1 mod £O
Sa—-1€£0.

¢ satisfies the right-unit property in O if
#O™ = #(0/£0); when 2 ¢ (O
#O* J7* = #(O/E0)) when 2 € £O.
p1 DN odd prime. Let
te(p) = #{a € O | Nm(a) = p, a = 1 mod €0, Tr(a) = 0}.

If te(p) = 0, we will say that p satisfies the null-trace condition with
respect to £O.
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Technical conditions

H N o #(O*/2¥) € Nm(¢)
CSIE Z[L0j, Y1+ i+ + k)] 12 2 4
3 Z(1,3i,-2i+j,3(1 — i+ j+ k)] 3 (=i + k) 2
9 Z[1,9i,—4i +j, 1(1 = 3i + j + k)] 1 1 1
11 Z[1,11i,-10i +j, 3(1 = 3i + j + k)] 1 1 1
(*1(@*3) 1 Z[1,0, 1+ ), 31 + k)] 6 2 4
2 Z(1,2i,5(=i+j), 5 — i+ 3k 2 H-1—i—j+k) 2
4 Z[1,4i,3(=5i +)), 5 — 3i + 3K] 1 1 1
(=) [ 1 Z[LA+i+)).J. 22+ +K) 3 H-1+i-)) 2
2 | Z[L1+i44,3(-1—i+])),3(—i—2j+k)] 1 1 1
(=2 |1 Z[L 3 +i+4)J. 2+ i+ k)] 1 1 1

Table : Definite orders O with & € O satisfying the right-unit property
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[, and [, 1 are discrete and cocompact subgroups of PGL,(Q,). BUT
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Schottky groups.

There exists a finite index normal subgroup I',(§) C I, which IS torsion
free, so it is Schottky.

We want to describe the group

Mp = 0p(O[1/p*)/Z[1/p]*
and find a subgroup of ', which is a Schottky group.
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Unique decomposition...

(Amords, Milione)

Let O with h(D,N) =1, £ € O. Then every a € O[1/p]* can be
decomposed as a product

,
OZZPn'HBi'ﬁ,
i=1

for e € O™ unique (up to sign if 2 € £0),

unique n € Z

and for unique By, ..., B, € O primitive £-primary quaternions with
Nm(f;) = p, and such that no factor of the form ;- 8;11 = p appears in
the product.
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...as a consequence of the Zerlegungssatz

(Amordés, Milione)

H definite quaternion algebra of discriminant D, O order over Z of level
N with h(D, N) = 1.
Let £ € O such that O/£O contains a £-primary class set P.

Take a € O primitive, &-primary such that its norm has a decomposition
in prime factors
Nm(a)=p1- ... - ps.

Then o admits a decomposition in primitive irreducible and &-primary
quaternions:
Q=T7T1" ... "Ts

with Nm(7;) = p;.
Moreover, if 2 ¢ £O this decomposition is unique, and if 2 € £O, the
decomposition is unique up to sign.
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Take aq,...,as € O all quaternions with norm p and trace = 0 (up to
sign and conjugation) and
b1, ..., Bt all quaternions with norm p and trace # 0 (up to sign).

Take £ € O such that it satisfies the right-unit property and 2 € £0.
Then

S ={[®p(ar)], - [®p(as)] [®p(BL)], - [®p(Be)]} € PGLa(Qp)

is a system of generators of [',(§).

In particular, if p satisfies the null-trace condition with respect to £O,
then I',(€) C T, is a Schottky group of rank s.
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Theorem (Amords, Milione)

H definite quaternion algebra of discriminant D
O = Oy(N) C H order of level N
p1 DN odd prime

Conditions that we need:

(1) h(D,N) =1

(2) there exists a quaternion & € O which satisfies the right-unit
property in O with 2 € £O

(3) the prime p satisfies the null-trace condition with respect to £O
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First consequence

Then:

(a) the group I,(€) is a Schottky group of rank (p + 1)/2 generated by
the transformations in PGL,(Q,) represented by the matrices in

5= ¢,({a € O| Nm(a) = p,a = 1 mod £O}).

Example. (computations done with an algorithm that we have
implemented in Magma)

let D=3, N=2, £=%(-1—i—j+k).

Take p = 13 and check that it satisfies the null-trace condition.
Then ,(&) is a Schottky group with generators:

(11//22((&163)) 11//22((Eii116)))v (11//22((gii:3‘6)) 11//22((2iij61))>' (3% 1) (6 2,

(1/2(3,'—2) 1/2(2i—3) > (1/2(-3/-2) 1/2(2i+3)> (73,-,1 -1 )
1/2(6i49) 1/2(=3i—2) )' \ 1/2(6i—9) 1/2(3i—2) )’ 3 3i-1)-
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Second consequence

_(b) A good fundamental domain for the action of I',(£) with respect to S

is
Fp(€) == PHE(Cp) N U B~ (a,1/v/p) € Hp
ae{0,...,p—1,00}
(c) Let X,(&) Mumford curve associated to I'5(§).
Then the rigid analytic curve X,(£)" is obtained from the fundamental
domain F,(&) with the following pair-wise identifications: for every

v €S,
7 (PH(Cp) ~ B~ (G5,1/v/P)) = B*(d,1,1/v/P),

7 (BN(Cp) ~ B (&,,1//P)) = B~ (&, 1,1/ /P,

where @, and &, -1 are defined as the reduction in P*(F,) of the fixed
points of the transformations {v,y~'}.
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Our example

Fundamental domain for the action of ',(£) on H,p

30/36



Third consequence

(d) The stable reduction-graph of X, () is the open subtree

7;( \{v(l),. pll,voo)} of T,
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Third consequence

d) The stable reduction-graph of X,(§) is the open subtree
P
7;,(1) ~ {vél), ce véi)l, v&)} of 7, via the pair-wise identifications of
the p + 1 oriented edges given by vez = —€a ., for every v € S.

31/36



Our Example

@
| o

Reduction of the fundamental domain Fi3(¢)
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Our example

5 *6(71>

€4

1
3~ ’5(10)

Stable reduction-graph of the Mumford curve associated to N13(&)
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Our example

Reduction-graphs with lengths 13\ 713
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Our example

Reduction-graphs with lengths 134\ 713 for the Shimura curve X(3 - 13,2)
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Thank you!



