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ABSTRACT

We investigate multiple fracture evolution under quasi-static conditions in an isotropic linear elastic solid based
on the principle of minimum potential elastic energy in the framework of the extended finite element method. The
technique enables a minimization of the potential energy with respect to all crack increment directions. Results
show that the maximum hoop stress criterion and the energy minimization approach converge to the same fracture
path. It is found that the converged solution lies in between the fracture paths obtained by each criterion for coarser
meshes. This presents an opportunity to estimate an upper and lower bound of the true fracture path as well as an
error on the crack path.
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1. Introduction

In computational fracture mechanics as applied, for example, to damage tolerance assessment, it has been
common practice to determine the onset of fracture growth and the growth direction by post-processing
the solution of the linear elastostatics problem, at a particular instance in time. For mixed mode loading
the available analytically derived criteria that can be used for determining the onset of crack growth
typically rely on the assumptions of an idealized geometry e.g. a single crack subjected to remote loading
[9, 5] and that the kink angle of the infinitesimal crack increment is small [7]. Moreover, the growth
direction given by a criterion that is based on an instantaneous local crack tip field can only be valid for
infinitesimally small crack growth increments. Consequently, the maximum hoop stress criterion [4] and
other similar criteria [2] disregard the changes in the solution that take place as fractures advance over a
finite size propagation. Hence, due to the error committed in time-integration, fractures may no longer
follow the most energetically favorable paths that theoretically could be achieved for a specific discrete
problem.

2. Method

In our approach, we investigate multiple fracture evolution under quasi-static conditions in an isotropic
linear elastic solid based on the principle of minimum potential elastic energy, which can help circumvent
the aforementioned difficulties. The technique enables a minimization of the potential energy with respect
to all crack increment directions taking into consideration their relative interactions. The directions are
optimized (in the energy sense) by considering virtual crack rotations to find the energy release rates and
its first derivatives in order to determine, via an iterative process, the directions that yield zero energy
release rates with respect to all virtual rotations [6]. We use the extended finite element method (XFEM)
[1, 8] for discretization of a 2D continuum in order to model an elaborate crack evolution over time,
similar in principle to [3], although here we would like to consider hundreds of propagating cracks.



3. Governing equations

The energy release rate with respect to a fracture growth direction ; can be obtained by differentiation

of the potential energy II of the system:
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Considering a general case of multiple fractures, the rate of the energy release rate can be obtained as:
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In a discrete setting, the potential energy of a static system can be written as:
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where u, K, and f are the displacement vector, the stiffness matrix, and the applied force vector. The
energy release rate with respect to an arbitrary crack incitement angle 6; is defined as the negative
variation of the potential energy:
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in which case the last term in (4) disappears due to assumed equilibrium of the discrete system i.e.
Ku = f. Hence, the expression for the energy release rate becomes:
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where ¢; f only needs to be accounted for if the applied loads influence the virtual crack rotation, e.g.
due to crack face tractions and body-type loads. The rates of the energy release rate, Hs;; are obtained
by differentiating Gs; in (5) with respect to 6;:
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The variations of displacements 6;u in (6) are global, and can be determined from the equilibrium
condition and that the variation must vanish, i.e. 6;(Ku — f) = 0 and thus:
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Substituting (7) in (6) gives:
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In (8) the second order mixed derivatives & %jK and 6 12] f capture the local interaction between the rotations
of different crack increments. However, if the crack tips are sufficiently far apart such that no geometrical
interactions exist between different rotations, then for i # j the interacting terms vanish, i.e. 6?1.1( =0

and 612]. f = 0. As such, it only becomes necessary to retain the non-zero self-interactions i.e. 6?1.1( and
6?1. f. Consequently, by leaving out the cross-interactions, equation (8) reads as:
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Equations (5) and (9) can be used to determine the energy release rates and the rates of the energy
release rates associated with the rotation of different crack increments. The problem of finding the most
energetically favorable growth directions for the candidate finite length crack increments, denoted by a
set Iinc, is one requiring that the corresponding energy release rates must vanish i.e. Gs; = 0, Vi € Ijy.
The solution procedure at every time step, ! can be cast as Newton-Raphson iterations:
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where k is the iteration count. The converged solution is attained when |0, — 0| < €, € being the
tolerance in the change in the angle of the finite crack increment, e.g. € = 0.1°.

4. Implementation

Although XFEM facilitates mesh independent fracture propagation the enrichment must be updated at
each time step. In the current implementation this is achieved by means of a systematic book-keeping of
the element enrichment data, addition and removal of enrichment only where necessary, and a consistent
updating of the global system of equations. Consequently, moderate computational times are obtained,
even in our Matlab implementation. In the problems we solve, the greatest cost, by far, is in the solution
of the linear system of equations rather than in the assembly/updating.

5. Results and discussion

We compare the fracture paths obtained by different criteria for problems consisting of multiple cracks
and verify that, with mesh refinement, both criteria converge to the same fracture path provided the
criterion for growth is the same. However, the convergence rate of the energy minimization technique
to the converged crack path is found to be only marginally superior to that of the maximum hoop stress
criterion. It is found that the converged fracture path lies in between the fracture paths obtained by each
criterion for coarser meshes. This presents an opportunity to estimate an upper and lower bound of the
true fracture path as well as an error on the crack path. It is found that a more accurate approximation
of the fracture path for coarser meshes can be obtained by averaging the directions determined by each
criteria individually at every time step. Some results are demonstrated in Appendix A. Although there is
no limitation on the number of cracks in the implementation, the example cases presented consider only
few cracks as it is sufficient to demonstrate the key idea clearly.

6. Conclusions

Convergence of the maximum hoop stress criterion and the energy minimization towards the true fracture
path is found to be similar. However, from numerical experiments it is found that the converged fracture
path lies in between the fracture paths obtained by each criterion for coarser meshes. Besides the
opportunity to estimate the error on the fracture path for a given mesh, a more accurate approximation of
the true fracture path can be obtained by taking the average of the propagation directions given by each
criterion separately at every time step.
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Appendix A. Figures

Fracture paths by different criteria
(double cantilever problem with an edge crack offset by 0.01 above the x—axis)
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Figure A.1: Fracture paths considering different growth criteria for the double cantilever problem with the initial
crack positioned 0.01 above the x-axis. The prying action is exerted by prescribed displacements on the left edge.



Fracture paths by different criteria
(simply supported cracked square plate with a pressure loaded center crack)
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Figure A.2: Fracture paths considering different growth criteria for a simply supported square plate with three
pre-existing cracks, where the center crack is subjected to a pressure load acting normal to the crack surface.

Fracture paths by different criteria
(simply supported square plate with two pressure loaded edge cracks: Ax=0.6, Ay=0.04)
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Figure A.3: Fracture paths considering different growth criteria for a simply supported square plate with two initial
edge cracks that are loaded by pressure acting normal to the crack surface.



