Energy Minimizing Multi-Crack Growth in Linear Elastic Fracture Using The Extended Finite Element Method

Danas Sutula Prof. Stéphane Bordas Dr. Pierre Kerfriden

01/04/2016

Content

- 1. Motivation
- 2. Problem statement
- 3. Crack growth
- 4. Discretization by XFEM
- 5. Implementation
- 6. Verification
- 7. Results
- 8. Summary

Problem statement

 Consider a cracked linear-elastic isotropic solid subject to an external load whose quasistatic behavior can be described by the following total Lagrangian form:

$$\mathcal{L}(\mathbf{u}, a) = \Pi(\mathbf{u}, a) + \sum_{i=1}^{n_{\text{tip}}} \int_{a_i} G_c^i \, \mathrm{d}a_i$$

• The solution for u(a) and a(t) are obtained by satisfying the stationarity of L(u,a) during the evolution of t, subject to $\Delta a_i \ge 0$:

$$\delta \mathcal{L}(\mathbf{u}, a) = \delta_{\mathbf{u}} \Pi(\mathbf{u}, a) + \sum_{i=1}^{n_{\text{tip}}} \left[\frac{\partial \Pi(\mathbf{u}, a)}{\partial a_i} + G_c^i \right] \, \delta a_i = 0$$

Problem statement

- The solution procedure at time *t*^k consists of
 - 1. solving the variational form for $u(a^k)$:

$$\delta_{\mathbf{u}}\Pi(\mathbf{u},a) = \delta_{\mathbf{u}}\mathcal{W}^{\text{int}}(\mathbf{u},a) - \delta_{\mathbf{u}}\mathcal{W}^{\text{ext}}(\mathbf{u}) = 0$$

2. advancing the fracture fronts, such that $\Pi(\mathbf{u}, a^k) \rightarrow \Pi(\mathbf{u}, a^{k+1})$ follows the path of steepest descent while satisfying Griffith's energy balance

$$\max_{\delta a_i \to 0} \left(-\frac{\partial \Pi(\mathbf{u}, a)}{\partial a_i} \right) = G_c^i$$

• Post processing of solution to evaluate SIF [Yau, 1980]

$$I^{(1+2)} = \int_{\Omega} \left(\sigma_{ij}^{(1)} \frac{\partial u_i^{(2)}}{\partial x_1} + \sigma_{ij}^{(2)} \frac{\partial u_i^{(1)}}{\partial x_1} - W^{(1+2)} \delta_{1j} \right) \frac{\partial q}{\partial x_j} \mathrm{d}\Omega = \frac{2}{E'} (K_I^{(1)} K_I^{(2)} + K_{II}^{(1)} K_{II}^{(2)})$$

• Crack growth direction [Erdogan & Shi, 1963]

$$\theta_c(K_I, K_{II}) = 2 \tan^{-1} \left[\frac{1}{4} \left(\frac{K_I}{K_{II}} - \operatorname{sign}(K_{II}) \sqrt{\left(\frac{K_I}{K_{II}} \right)^2 + 8} \right) \right]$$

• Growth criterion [Irwin, 1957; Hayashi & Nemat-Nasser, 1981]

$$\frac{k_I(K_I, K_{II}, \theta_c)^2 + k_{II}(K_I, K_{II}, \theta_c)^2}{E'} = G_c$$

• Energy release rate w.r.t. crack increment direction, θ_i :

$$G_i = -\frac{\partial \Pi(\mathbf{u}, \mathbf{a} + \Delta \mathbf{a})}{\partial \theta_i}$$

• The rates of energy release rates:

$$H_{ij} = \frac{\partial G_i}{\partial \theta_j}$$

• Updated directions (using Newton):

$$\boldsymbol{\theta}^{i+1} = \boldsymbol{\theta}^i - \mathbf{H}^{-1}\mathbf{G}$$

• The discrete potential energy is given by:

$$\Pi = \frac{1}{2} \mathbf{u}^{\mathrm{T}} \mathbf{K} \mathbf{u} - \mathbf{u}^{\mathrm{T}} \mathbf{f}$$

• Energy release rate w.r.t. crack increment direction θ_i :

$$G_i = -rac{1}{2} \mathbf{u}^{\mathrm{T}} \delta_i \mathbf{K} \mathbf{u} + \mathbf{u}^{\mathrm{T}} \delta_i \mathbf{f}$$
 , where: $\delta_i = rac{\partial}{\partial heta_i}$

• The rates of the energy release rate:

$$\begin{split} \mathrm{H}_{ij} &= -\frac{1}{2} \mathbf{u}^{\mathrm{T}} \delta_{ij}^{2} \mathbf{K} \mathbf{u} + \mathbf{u}^{\mathrm{T}} \delta_{ij}^{2} \mathbf{f} + (\delta_{j} \mathbf{K} \mathbf{u} - \delta_{j} \mathbf{f})^{\mathrm{T}} \mathbf{K}^{-1} (\delta_{i} \mathbf{K} \mathbf{u} - \delta_{i} \mathbf{f}) \\ \text{, where: } \delta_{ij} &= \frac{\partial^{2}}{\partial \theta_{i} \theta_{j}} \end{split}$$

Discretization XFEM

• Approximation function [Belytschko et al., 2001]

Danas Sutula

Implementation how to compute δK ?

Differentiation of the stiffness matrix w.r.t. crack increment direction

Danas Sutula

Implementation how to compute δK ?

Danas Sutula

Test case: square plate with an edge crack with a small kink loaded in vertical tension

Danas Sutula

0.5

0

-0.5^L

Danas Sutula

Test case: square plate with an edge crack with a loaded small kink in vertical tension

0.5

0

-0.5^L

Test case: square plate with an edge crack with a loaded small kink in vertical tension

0.5

0

-0.5^L

Verification energy min. VS. max-hoop

Test case: square plate

Verification energy min. VS. max-hoop

Test case: square plate with an inclined center crack in vertical tension

Danas Sutula

0

-1 -1

Fracture paths by different criteria (simply supported rectangular plate in vertical tension with 10 cracks in a narrow band) 0.3 Max hoop stress Global energy min. 0.2 0.1 0 -0.1-0.2 = 80×160, $\Delta a \propto h$ n_{nod} 0.2 0.4 0.6 0.8 0 Х

Danas Sutula

>

Energy minimizing multi-crack growth in linear elastic fracture using XFEM

20

Fracture paths by different criteria

Danas Sutula

Fracture paths by different criteria (simply supported rectangular plate in vertical tension with 10 cracks in a narrow band) 0.3 Max hoop stress Global energy min. 0.2 0.1 0 >-0.1-0.2 = 160×320, ∆a ∝ h n_{nod} 0.2 0.4 0.6 0.8 0 Х

Danas Sutula

Energy minimizing multi-crack growth in linear elastic fracture using XFEM

22

Fracture paths by different criteria

(simply supported rectangular plate in vertical tension with 10 cracks in a narrow band)

Fracture paths by different criteria (simply supported rectangular plate in vertical tension with 10 cracks in a narrow band) 0.3 Max hoop stress Global energy min. 0.2 0.1 0 -0.1-0.2 = 160×320, ∆a ∝ h n_{nod} 0.2 0.4 0.6 0.8 0

Х

Danas Sutula

>

Fracture paths by different criteria

Fracture paths by different criteria (simply supported rectangular plate in vertical tension with 10 cracks in a narrow band) 0.3 Max hoop stress Global energy min. 0.2 0.1 0 -0.1-0.2 = 160×320, ∆a ∝ h n_{nod} 0.2 0.4 0.6 0.8 0 Х

Danas Sutula

>

Fracture paths by different criteria

(simply supported rectangular plate in vertical tension with 10 cracks in a narrow band)

Danas Sutula

Danas Sutula

Fracture paths by different criteria

(double cantilever problem with an edge crack offset by 0.01 above the x-axis)

Results 2 edge cracks; internal pressure loading

Fracture paths by different criteria

(simply supported square plate with two pressure loaded edge cracks: $\Delta x=0.6$, $\Delta y=0.04$)

Danas Sutula

elastic fracture using XFEM

Danas Sutula

Results Edge crack in a PMMA beam with 3 holes

Danas Sutula

Results 2 edge cracks and 2 holes (Khoeil et al. 2008)

Fracture paths by different criteria (rectangular plate with two holes and two edge cracks subjected to vertical extension) 6 Max hoop stress Global energy min. 4 Averaged direction 2 >0 -2 -4 $n_{nod} = \{20k, 80k, 320k\}, \Delta a \propto h_{a}$ -6 -10 -5 5 10 0 Х

Danas Sutula

Results 2 edge cracks and 2 holes (Khoeil et al. 2008)

Fracture paths by different criteria (rectangular plate with two holes and two edge cracks subjected to vertical extension) 6 Max hoop stress Global energy min. 4 Averaged direction 2 >0 -2 -4 $n_{nod} = \{20k, 80k, 320k\}, \Delta a \propto h_{a}$ -6 -10 -5 5 10 0 Х

Danas Sutula

Results 2 edge cracks and 2 holes (Khoeil et al. 2008)

Fracture paths by different criteria

(rectangular plate with two holes and two edge cracks subjected to vertical extension)

Danas Sutula

Summary

- A robust approach to determining multiple crack growth based on the principle of minimum energy within XFEM;
- Limitations undermining the max. hoop-stress criterion are overcome, e.g. assumptions about geometry and loading;
- The energy minimization approach is characterized by mode-I field dominance at the crack tip (post-increment);
- Both criteria lead to fracture paths solutions that are in close agreement (strong correlation with local symmetry, i.e. K_{II}=0);
- Better accuracy and faster convergence of fracture path solutions can be obtained by taking a bi-section of the interval that is bounded by the respective criteria.