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Abstract—Knowledge of interacting channels is essential for
characterizing the performance of a cognitive radio system in
terms of interference power received by a primary receiver and
throughput at a secondary receiver. Baseline models considered
for the performance characterization assume perfect knowledge
of the interacting channels. Recently, an analytical framework
has been proposed that incorporates channel estimation and
subsequently characterizes the performance of cognitive Inter-
weave Systems (ISs). However, the analysis was pertained to the
deterministic behaviour of the interacting channels. In this paper,
we extend the characterization of the aforementioned framework
to investigate the influence of channel fading on the performance
of the IS. Our analysis indicate that an inappropriate choice of
estimation time can severely degrade the performance of the IS
in terms of achievable secondary throughput.

I. INTRODUCTION

The static allocation of the existing spectrum is largely
responsible for causing scarcity in the spectrum. Cognitive
Radio (CR) communication is foreseen as one of the potential
contenders that could resolve this scarcity by utilizing the
allocated spectrum efficiently. The widely investigated CR
paradigms can be classified as follows: interweave, underlay
and overlay systems [1]. Among these, Interweave Systems
(ISs) are mostly preferred for theoretical analysis as well
as for hardware implementations [2], [3]. The ISs depend
on spectrum sensing to detect the presence of Primary User
(PU) signals. Several techniques such as energy detection,
matched filtering, cyclostationary and feature detection exist
for detecting the PU signal [4]. Due to low complexity and
versatility towards unknown PU signals, energy detection has
been extensively employed for characterizing the performance
of the IS [5]—[8]. In this regard, this paper focuses on the per-
formance analysis of the cognitive ISs that employ estimation
of the interacting channels, where the channels are subject to
channel fading.

A. Motivation and Related Work

The performance of the IS can be characterized jointly in
terms of interference (power) received at the Primary Receiver
(PR) from the Secondary Transmitter (ST) and throughput
achieved at the Secondary Receiver (SR). The interference
at the PR depends on the detector’s performance (depicted

in terms of detection probability) employed at the ST. On
the other side, false alarm probability largely contributes to
the secondary throughput. Due to the employment of periodic
sensing at the ST, the achievable secondary throughput is
related to the sensing time. By operating at a desired detection
probability, the interference at the PR can be regulated below a
tolerance limit. Along with the secondary throughput, the false
alarm and the detection probabilities depend on the sensing
time. This relationship between the sensing time and the
secondary throughput subject to a target detection probability
has been investigated by Liang et. al [6] as a sensing-
throughput tradeoff. More specifically, the sensing-throughput
tradeoff can be utilized for determining a suitable sensing time
at which the maximum secondary throughput is achieved by
the IS.

It is worth noticing the fact that the detector employed
for carrying out sensing is sensitive to the variations that
arise due to presence of thermal noise in the system and
fading in the channel. In this context, the characterization
of the detection probability that captures the aforementioned
variations has been carried out in the literature [9]-[11].
Furthermore, Cardenas-Juarez et. al. [12] investigated the per-
formance of the IS in terms of a sensing-throughput tradeoff.
However, it is important to note that the performance analysis
according to [10]-[12] assumes the perfect knowledge of the
following interacting channels: sensing channel for the link
PT-ST, access channel for the link ST-SR and interference
channel for the link PT-ST, refer to Fig. 1. From a deployment
perspective, this knowledge is not available at the ST. In
this context, an analytical framework that employs channel
estimation at the secondary system has been recently proposed
in [13]. However, the performance analysis was confined to
the deterministic behavior of the interacting channels. In this
paper, we extend the performance analysis to study the effect
of channel fading on the performance of the IS.

B. Contributions

In this paper, we provide the following contributions:

1) Analytical framework: We complement the analytical
framework proposed in [13] by considering a random be-
haviour of the interacting channels (or channel fading). Based
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Fig. 1. A cognitive small cell scenario demonstrating: (i) the inter-
weave paradigm, (i) the associated network elements, which constitute
cognitive small cell-base station/secondary transmitter (CSC-BS/ST), mobile
station/secondary receiver (MS/SR), macro cell-base station (MC-BS) and
primary transmitter (PT), (iii) the interacting channels: sensing channel (hp,1),
access channel (hs) and interference channel (hp2).

on the expressions derived in this paper, we evaluate the
performance of the IS that employs channel estimation, where
the interacting channels are subject to Nakagami-m fading.
Nakagami-m fading model, being a generalized fading model,
facilitates in understanding the performance behaviour of ISs
under different fading scenarios.

2) Estimation-sensing-throughput tradeoff: In order to cap-
ture the variations due to the channel estimation and the
channel fading, we employ an outage constraint on the de-
tection probability. Subsequently, we obtain an expression of
the sensing-throughput tradeoff subject to the aforementioned
constraint. We further exploit the tradeoff between the esti-
mation time, the sensing time and the secondary throughput
to determine a suitable estimation time and a suitable sens-
ing time. In this regard, we adapt the estimation-sensing-
throughput tradeoff proposed in [13] to the scenarios with
channel fading.

II. SYSTEM MODEL
A. Deployment scenario and Medium access

The Cognitive Small Cell (CSC), a CR application, char-
acterizes a small cell deployment that fulfills the spectral
requirements for Mobile Stations (MSs) operating indoor, refer
to Fig. 1. For the disposition of the CSC in the network,
the following key elements are essential: a CSC-Base Station
(CSC-BS), a Macro Cell-Base Station (MC-BS) and MS, refer
to Fig. 1. Considering the fact that the IS is employed at the
CSC-BS, the CSC-BS and the MS represent a ST and a SR,
respectively.

Complementing the analysis depicted in [6], a slotted
medium access for the IS is considered, according to which,
the time axis is segmented into frames of length 7". In order
to incorporate channel estimation inside the frame, a frame
structure that constitutes an estimation 7., a sensing Teen and
data transmission 7" — 7y, is employed, where 7.y and Tgep
correspond to time intervals and 0 < 7oy < Teen < 17, refer
to Fig. 2 [13]. From a deployment perspective, the estimated
values of the interacting channels are required for determining

Frame 1 Frame 2 Frame K
Tsen T- Tsen
Fig. 2. An illustration of the frame structure for an interweave system

depicting the estimation phase and the sensing phase for the sensing channel.

the suitable sensing time (the duration of the sensing phase).
In this regard, the sequence (estimation followed by sensing)
depicted in Fig. 2 is followed. As shown in the frame structure
in Fig. 2, the samples (particularly for the sensing channel)
used for estimation can be used for sensing such that the time
resources within the frame duration can be utilized efficiently.
It is important to note that the estimates for the interference
and access channels at the ST are acquired by means of a
low-rate feedback channel from the SR to the ST.

B. Signal model

Based on the underlying hypothesis that depicts the presence
(H1) or absence (Ho) of a PU signal, the discrete and real
signal received at the ST is given by

-~ |wln]
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where zpr[n] corresponds to a discrete and real sample
transmitted by the PT, |h,:|* represents the power gain of
the sensing channel for a given frame and w[n] is additive
white Gaussian noise at the ST. According to [6], the signal
apr[n] transmitted by the PUs can be modelled as: (i) a
phase shift keying modulated signal, or (ii) a Gaussian signal.
In this paper, we focus our analysis on the latter case. As
a result, the mean and the variance for the signal and the
noise are determined as E [zpr[n]] = 0, E[w[n]] = 0,
E [|lzpr[n]?] = 02 and E[|w[n]|*] = oZ. The channel hy,
is considered to be independent of zpr[n] and w[n], thus,
yst 1S also an independent and identically distributed (i.i.d.)
random process.

Similar to (1), during data transmission, the discrete and
real received signal at the SR conditioned on the detection
probability (P4) and false alarm probability (Pg,) is given by

Il—Pd
ysr[n] = 1-Pg’
N a

hg - xst[n] + hpp - zpr[n] +wln]
@)
hs - zst[n] +w[n]
where xsr[n] corresponds to discrete and real sample trans-
mitted by the ST. Further, |hs|? and |k, »|? represent the power
gains for the access and the interference channels, refer to
Fig. 1.

C. Channel fading

Here, we characterize the channel gains |hy1|?, |hy2/* and
|hs|? according to Nakagami-m fading model. As a conse-
quence, the power gains |hp|?, |hpol?> and |hs|* follow a
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Gamma distribution [14], whose corresponding cumulative
distribution functions are defined as

Mp 1
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where my, 1, mp > and m; represent the Nakagami-m parameter
for |hp1|?, |hp2|* and |hs|?, respectively, and I'(-,-) is a
regularized upper-incomplete Gamma function [15].

III. THEORETICAL ANALYSIS
A. Perfect Channel Knowledge (Conventional Approach)

We first consider a scenario (also represented as ideal
model) that precludes channel estimation, in other words, the
ST assumes the perfect knowledge of the interacting channels.
In this context, the ST encounters variations caused due to the
channel fading only. These variations translate to the variations
in the detection probability, more specifically those variations
that do not meet the desired detection probability (Pg) results
in harmful interference at the PR. To overcome this issue, [12]
proposed to employ an outage constraint over Py, given as

]P’(Pd < Pd) <K, (6)

where x represents the outage constraint. Using (6), the ST is
able to regulate harmful interference at the PR. As a result, a
decision threshold (u) on the Pgryst is obtained such that it
satisfies the constraint defined (6) for a certain value of 7.

Besides the interference at the PR, the throughput at the
SR is given by (7), see top of the next page, where Cy and
C; correspond to the data rate at the SR with and without
interference from the PT. The signal to noise ratio for the

links PT-ST and ST-SR are defined as: v, = Pg@” -1 and
Ys = “l‘aﬂ respectively, and the interference to noise ratio
for the link PT-SR is given by 7, = Pg‘SR 1. Since the

detection probability and the secondary throughput are related
through the sensing time, this relationship is exploited to
determine a sensing-throughput tradeoff for the case with the
perfect channel estimation.

Theorem 1: Subject to an outage constraint on Py, the
sensing-throughput tradeoff that considers perfect channel
estimation and random behaviour of the interacting channels,
is given by

Rs(%esta%sen) = max ]Epd)lh 2, hpa|? [R (Tgen)] (8)

Testy Tsen
s.t. (6)
S.t. 0 < Tgen < T

Remark 1: 1t is worth noticing the fact the authors in [12]
applied channel fading only to the sensing channel. How-
ever, according to Theorem 1, we consider a more practical
approach, whereby, we exercise channel fading also over

the access and the interference channels. Since the perfect
channel knowledge scenario is employed to benchmark the
performance of those ISs that employ channel estimation
(discussed later in Section III-B), we evaluate the parameters
such as threshold (which is used for evaluating P4 and Py,)
and the expected secondary throughput numerically'.

B. Imperfect Channel Knowledge (Proposed Approach)

Here, we consider the estimation of the interacting channels,
where the interacting channels encounter channel fading. To
employ channel estimation, an estimation time is allocated
within the frame duration of the IS, cf. Fig. 2. With this,
the IS incorporates variations in the performance parameters
(P4 and R;) due to the channel estimation and the channel
fading. In order to facilitate the hardware complexity and the
versatility to unknown PU signals (as proposed by the energy
detector) requirements at the secondary system, we propose to
employ received power-based estimation (PRX ST,PRX sr) for
the sensing and the interference channels at the ST and the SR
and the pilot-based estimation |hg|? for the access channel.
The characterization of the estimated parameters PRx st and
PRx sr for the sensing and the interference channel, and |h |2
for the access channel in terms of their cumulative distribution
functions (cdfs), for the deterministic case, has been performed
in [13, cf. Section III-B]. The estimated parameters are used
to estimate the performance parameters lsd, Co and Cl, whose
cdfs Flgd, Féo and Fél are characterized in [13, cf. Lemma 1,
Lemma 2 and Lemma 3].

In order to protect the PR against harmful interference, we
employ an outage constraint that jointly captures the variations
due to the channel estimation and the channel fading, defined
as

Channel Estimation
—_—

Ejp 12 [P(Pg < Pa)] <5, )

p.l‘2

Channel fading
where Ey, 2 [-] represents the expectation over the sensing
channel. The variations due to the channel estimation only
(IP’(lsd < Pd)) are characterized in terms of cdf as [13]

F]S (.T) “1-T Tsenfs7 Tsen fs ’ (10)
‘ 2 APrestI ! (o, Tl

where I'"!(-) represents the inverse function of regularized
upper incomplete Gamma function. It is worth noticing that
Ejp,, 2 [] in (9) acts on Prysrt, as PrxstT incorporates the
variations due to fading in the sensing channel |h,;[?.

Next, we characterize the expression of the secondary
throughput

T — Tsen
—F——X

Rs(Testa Tsen) = Ef’d,éo,él’\hp,l [2, B2, | p2 ]2 [ T

(P(%)(l—Pfa)éo+P(H1)(1—f’d)él)] (11)

"In our future work, we plan to obtain analytical expressions of the
aforementioned parameters.
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included in the estimated system parameters Py, Cy and Cq, 3 sl
refer to (7). =
Theorem 2: Subject to an outage constraint on Py, the ‘;?
sensing-throughput tradeoff for the IS that considers imperfect E 15
channel estimation and random behaviour of the interacting " IM, Thm. 1
channels, is given by J_‘i().sg ——EM, Thm. 2
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Fig. 3. Sensing-throughput tradeoff for the ideal model (IM) and estimation

Proof: In order to solve the constrained optimization
problem, the following approach is considered. We first ex-
ploit the underlying constraint (9) to determine the decision
threshold p. Since it is complicated to obtain a closed form
expression of u, in this regard, we obtain its value numerically.

Using p to determine Eg [f’d] and Pg, and evaluating an
expectation over Py, Co,C1,|hp1]?, |hs|?, |hp2|?, we determine
the expected secondary throughput as function of estimation
and sensing time. Finally, this function is used to determine
the suitable estimation time (7.y) and sensing time (7s,). W

In contrast to the ideal model (refer to Theorem 1), the
sensing-throughput tradeoff investigated by the proposed ap-
proach (refer to Theorem 2) incorporates the imperfect channel
knowledge. In this context, the performance characterization
considered by the proposed framework is closer to the realistic
situations.

Remark 2: Based on the expression R(Test, Tsen) computed
by the estimation model (referred as the proposed approach),
we establish a fundamental relation between estimation time,
sensing time and achievable throughput, this relationship is
characterized as estimation-sensing-throughput tradeoff. Based
on this tradeoff, we determine a suitable estimation Tegt = Test
and a sensing time Ty, = Ten that attains a maximum
achievable throughput R(Test, 7sen) for the IS.

IV. NUMERICAL RESULTS

Here, we analyze the performance of the IS based on the
proposed approach. To accomplish this: (i) we perform simu-
lations to validate the expressions obtained in (9) and (11), (ii)
we consider the ideal model to benchmark and evaluate the
performance loss. Although the expressions derived using our
sensing-throughput analysis are general and applicable to all
CR systems, the parameters are selected in such a way that
they closely relate to the deployment scenario described in
Fig. 1. Unless stated explicitly, the choice of the parameters

model (EM), Yol = 0dB, 7est = 1 ms and s = 0.05.

fs = 1MHz, hy1,hp2 = -100dB, hy = -80dB, 17" = 100 ms,
Py = 0.9, k = 0.05, 02 = -100dBm, ~,; = 0dB, 7, = 0dB,
7 = 10dB, 02 = Prpr = 0dBm, Prst = -10dBm,
P(H1) = 1-P(Hp) = 0.2, Tese = 1 ms and N = 10 is considered
for the analysis. In addition, we investigate the performance of
the IS under the following fading scenarios : (i) severe fading
m =1 (Rayleigh fading), and (ii) mild fading m = 1.5.

First, we investigate the sensing-throughput tradeoff for a
certain value of estimation time 7. = 1ms, corresponding
to the Ideal Model (IM) and Estimation Model (EM) that
represent the perfect and the imperfect channel estimation,
respectively, refer to Fig. 3. It is observed that with the
inclusion of Ty in the frame structure, the EM procures no
throughput at the SR for the time interval 7.s. Furthermore,
it is noticed that the suitable sensing time increases with the
severity in the fading. To procure further insights, we consider
the variation of other parameters on the performance of the IS.

Upon maximizing the secondary throughput for a certain
Test, We consider the variation of Rg(Test, Tsen) along the
estimation time, refer to Fig. 4. It is noticed that R(Test, Tsen)
increases for low values of 7. and then decreases beyond
Test- This can explained as follows, low 7.y increases the
variations in Isd, shifting the threshold to lower values, which
subsequently increases Py, hence, degrading the achievable
secondary throughput. Beyond 7., the variations are largely
dominated by the channel fading, therefore, the IS observes
no improvement by increasing 7.i;. Moreover, it is observed
that the mild fading scenarios are more sensitive to the
performance degradation in terms of the secondary throughput.
Fig. 5 considers the variation of expected detection probability
against Teg. It is observed that, despite the variations due to
the channel estimation and the channel fading considered by
the EM, the outage constraint is satisfied for all values of 7.
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Fig. 4.  Estimation-sensing-throughput tradeoff for the outage constraint

with 41 = 0dB, where the secondary throughput is maximized over the
sensing time, R (7est, Tsen ). Estimation-sensing-throughput tradeoff is utilized
to determine a suitable estimation time 7ese that maximizes the secondary
throughput, Rs(Test, Tsen)-
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Fig. 6. Variation of the achievable throughput R(7est, 7sen) With Nakagami-
m parameter for v, = 0dB.

Finally, we investigate the performance degradation in terms
of achievable secondary throughput R(Test, Tsen) versus the
Nakagami-m parameter that accounts for severity in the fad-
ing, refer to Fig. 6. While comparing the IM and the EM, it

can be concluded that, for situations where the variations in
the system are largely dominated by the channel estimation, a
greater performance degradation is observed by the EM.

V. CONCLUSION

In this paper, we characterized the performance of the
interweave systems that incorporate imperfect knowledge of
the interacting channels, considerding these channels are sub-
ject to Nakagam-m fading. An outage constraint that jointly
captures the variations in the IS due to channel estimation and
channel fading has been employed. Subject to this constraint,
a sensing-throughput tradeoff that incorporates channel esti-
mation and channel fading has been characterized that yields
a maximum secondary throughput at a suitable estimation and
a sensing time. Finally, it has been concluded that the suitable
choice of the estimation time is essential for controlling the
performance degradation in terms of the achievable secondary
throughput, particularly for scenarios that encounter less se-
vere (mild) fading.
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