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Abstract

We study oidification of Leibniz algebras and introduce two subclasses of classical Leib-
niz algebroids, Loday algebroids and symmetric Leibniz algebroids. The algebroids of the
first subclass have true differential geometric brackets and the ones of the second are the
main ingredients of generalized Courant algebroids, a broader category that we define and
investigate, proving in particular that it admits free objects. Regarding homotopyfication
of Leibniz algebras, we review and introduce five concepts of homotopy between Leibniz
infinity morphisms — in particular an explicit notion of operadic homotopy — and show that
they are all equivalent. Further, we prove that the category of Leibniz infinity algebras
carries an oco-category structure. The latter projects onto the strict 2-category structure
obtained on 2-term Leibniz infinity algebras via transport of the canonical 2-category
structure on categorified Leibniz algebras.
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1 Introduction

This paper is based on talks given by the author at the conference ‘Glances@Manifolds
IT’, held from 8 to 13 August 2016 at the Jagiellonian University of Krakow, Poland, at the
conference ‘50th Seminar “Sophus Lie”’, organized from 25 September to 1st October 2016 at
the Bedlewo Mathematical Research and Conference Center of the Institute of Mathematics
of the Polish Academy of Sciences, as well as at the workshop ‘Leibniz Algebras and Higher
Structures’, which took place at the University of Luxembourg from 13-16 December 2016.
Both, the present text and the underlying lectures, report on the joint works [5], [10], [11], [13]
with Vladimir Dotsenko, Janusz Grabowski, Benoit Jubin, David Khudaverdian, Jian Qiu,
and Kyosuke Uchino.

We start considering the horizontal categorification (oidification) of Leibniz algebras and
define two subclasses of classical Leibniz algebroids: Loday algebroids and symmetric Leibniz
algebroids. Whereas standard Leibniz algebroids carry only a left anchor, Loday algebroids
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are equipped with a standard left and a generalized right anchor, so that their brackets satisfy
a differential operator condition on both arguments. Symmetric Leibniz algebroids are char-
acterized by two weak locality conditions that affect both arguments and are formulated in
terms of the symmetrized Leibniz bracket. These two subclasses contain most of the Leibniz
brackets that appear in the literature, but no one of these classes is included in the other.
Loday algebroids admit a supergeometric interpretation. Such interpretations are known for
Lie algebroids, homotopy Lie algebroids, and homotopy algebras over any quadratic Koszul
operad P. Symmetric Leibniz algebroids are the underlying object of generalized Courant al-
gebroids, a new category that contains standard Courant algebroids and has free objects over
anchored vector bundles. The construction of a free generalized Courant algebroid allows to
show that not only derived brackets are Leibniz brackets, but that, conversely, symmetric Leib-
niz algebroid brackets can be (universally) represented by derived brackets. Finally we pass to
the vertical categorification (homotopyfication) of P-algebras and investigate the categorical
structure of homotopy P-algebras. Whereas the objects and morphisms of this category are
well-understood, their homotopies are not. At least 5 candidates do exist. We explain that
they are all equivalent, define higher homotopies and show that homotopy P-algebras form,
not a 2-, but an oco-category. This holds in particular for homotopy Leibniz algebras. A con-
crete application of Getzler’s integration technique for nilpotent Lie infinity algebras allows
to prove that the known (but quite mysterious) 2-categorical structure on 2-term homotopy
Leibniz algebras is in fact the shadow of the co-categorical structure on all homotopy Leibniz
algebras.

2 The supergeometry of Loday algebroids

2.1 Definition and examples of Loday algebroids

Let us start with the observation that the double g @ ¢g* of a Lie bialgebra g is of course
a Lie algebra, but that the double of a Lie bialgebroid is not a Lie algebroid — but a Courant
algebroid. Courant brackets are Leibniz brackets, i.e., Lie brackets without the antisymmetry
property. Leibniz brackets often appear as derived brackets (to which we will come back later
on). On the other hand, most Leibniz brackets that one meets in the literature are defined on
sections of a vector bundle, so that it is natural to ask about Leibniz algebroids.

Classical Leibniz algebroids are, again, defined just as Lie algebroids, except that their
bracket is not skew-symmetric. This has an important consequence. In fact, if £ — M is
a vector bundle equipped with a classical Leibniz algebroid structure ([—, —], ), the anchor
property

X, FY] = FIX. Y]+ A(X)f Y

(X,Y eT(E), f € C>°(M)) should be thought of as a first order differential operator condition
for the action of the left argument X. However, since the bracket [—, —] is no longer antisym-

metric, there is no similar locality condition for the action of the right argument. However,
Differential Geometry, which is actually sheaf theoretic, can be presented, as usual, via global



sections, exactly because most differential geometric operators are local or are differential op-
erators in all their arguments, so that they can be restricted. Hence, the fact that a classical
Leibniz algebroid bracket is a priori not local in both arguments, is clearly suboptimal.

This motivates our quest for a better concept of Leibniz algebroid — we will refer to it as
Loday algebroid, to distinguish it from the preceding notion of classical Leibniz algebroid
— that includes a locality condition, differential operator condition, or an anchor condition,
for both arguments, and that contains — the, maybe most important Leibniz algebroid — the
Courant algebroid, as a special case.

The first idea is of course to define a Loday algebroid as being a Leibniz bracket [—, —] on
the sections of a vector bundle F, together with a left and a right anchor. However, it can
be seen [8] that, if rank(E) = 1, then the Leibniz bracket [—, —] is necessarily antisymmetric
and of 1st order, and that, if rank(E) > 1, the Leibniz bracket [—, —] is at least ‘locally’ a Lie
algebroid bracket. In other words, the preceding definition essentially leads to Lie algebroids
and not to interesting new examples. This motivates the need for an improved definition of
Loday algebroids.

Let us first have a look at the local form of an anchor A. If we denote the local basis of
sections of F by e;, we get
MX)fY = XNO,f Yej

with self-explaining notation. This means that the considered anchor term A(X)fY is a
derivation in f, is C°°-linear in X, and identity in Y. However, why not accept more general
anchors p, for which the anchor term is given by

X'NFOof Yey

i.e., why not accept anchors that are a derivation in f, that are C°-linear in X and in' Y (‘but
no longer the identity in Y '), and that are valued in sections (x)7 We will refer to such an
anchor p as a generalized anchor.

It is quite easily understood that when equipped with a generalized left anchor, the new
algebroids cannot have a satisfactory cohomology theory. Hence,

Definition 1. [11] A Loday algebroid is a Leibniz bracket on sections of a vector bundle,
which is endowed with a standard left and a generalized right anchor.

Of course, Loday algebroids form a subclass of classical Leibniz algebroids. Even bet-
ter, most classical Leibniz algebroids are Loday algebroids: in particular, Leibniz alge-
bras, (twisted) Courant-Dorfman brackets (T M & T* M), Grassmann-Dorfman brackets
(TM&AT*M or E & AE™), classical Leibniz algebroids associated to Nambu-Poisson struc-
tures [9], Courant algebroids... are Loday brackets or algebroids. A precise definition of
Courant algebroids will be given below. Let us at the moment just mention that a Courant
algebroid is a classical Leibniz algebroid (E — M, [—, —], \) together with a non-degenerate



inner product (—|—), such that some axioms hold. Further, it is indeed well-known that, for
any Courant algebroid, one can define a derivation

D € Der(C*(M),T'(E)) .
When exploiting now the Courant axioms, one sees that
D(fX|Y) =[fX,Y]+[Y, fX]

(feC>®(M),X,Y e T'(E)) — an equation that allows visibly to understand the action of Y on
the product fX. One thus obtains a right anchor D(f)(X|Y), which is obviously a derivation
in f, C*-linear in X and Y, and valued in sections, i.e., that is obviously a generalized right
anchor (see () above).

2.2 Supergeometric interpretation of Loday algebroids

Recall now the Vaintrop 1:1 correspondence that mentions that Lie algebroids (E, [—, —], A)
are the same as de Rham complexes (I'(AE*),d) of vector bundle forms, or, still, the same as
square 0, degree 1 derivations

d € Der (I'(AE*),A),d* =0

of the algebra (I'(AE*), A) of superfunctions of the supermanifold IIE with shifted parity in
the fibers. In other words, Lie algebroids are 1:1 with cohomological vector fields d on split
supermanifolds I1E.

It is natural to ask wether Loday algebroids (E, [e, ], A, p) admit a similar supergeometric
interpretation.

Notice first that the de Rham differential d is nothing but the Chevalley-Eilenberg or Lie
algebra cohomology operator, but restricted, from the cochain space A(I'(E), C*>(M)) of all
antisymmetric multilinear maps on the Lie algebra (I'(E), [—, —]) represented by A on C*°(M),
to the stable subspace

Ac () (T(E), C=(M)) = D(AE")

of the antisymmetric C°°(M)-multilinear maps, i.e., to the stable subspace I'(AE*) of skew-
symmetric covariant tensor fields or vector bundle forms — so that d actually acts on those

forms or superfunctions.

In our Loday algebroid case, we should therefore consider the Leibniz cohomology operator
restricted to the same space

Linge (1) (D(E), C®(M)) = T(RE™) ,

just omitting the antisymmetry condition. This space of C°°(M)-multilinear maps is of course
the space of 0-order multidifferential operators. The Leibniz cohomology operator raises how-
ever the total degree of a multidifferential operator by 1, so that the considered space I'(Q E*) is



not closed under the Leibniz operator. Hence, the idea to replace the ‘superfunctions’ I'(Q E*)
made of the 0-order multidifferential operators by the ‘superfunctions’

Doy (T'(E), C*(M)) =: Dpoiy(E)

made of all multidifferential operators from I'(E) x ... x I'(E) to C*°(M). It turns out
that the associative multiplication of these ‘superfunctions’ can be chosen to be the shuffle
multiplication M, which is defined on multidifferential operators A’, A” by the same formula

(A'DA) (X1, Xprg) = Y sign(0)A (Xoy, .o, Xoy)) A (Ko Xoyyy)
o€ Sh(p,q)

than the wedge product A on differential forms.

We can now prove [11] the following Vaintrop-type result:

Theorem 1. There is a 1-to-1 correspondence between Loday algebroid structures (E, [, o], \, p)
and equivalence classes of cohomological vector fields

d € Dery(Dpoy(E), ), d*> =0
of the ‘noncommutative space’ (Dpory(E),M).

Remark 1. Note that, as notation Dery and Dyoy(E) suggests, the precise result is signif-
icantly subtler than just d € Dery(Dpory (E),M). We will not describe it here in more detail.
Further, as indicated above, the noncommutative associative algebra (D pory (E), M) can be inter-
preted as the ‘superfunction’ algebra of some noncommutative space. For these spaces, Cartan

calculus can be developed.

3 Free Courant and derived Leibniz algebroids

As mentioned in Remark 1, Vaintrop-type results are far from being simple in the algebroid
context, except, of course, for Lie algebroids. In the algebraic setting however, there exists
a well-understood correspondence, based on Koszul duality for operads and due to Ginzburg
and Kapranov [7]:

If P denotes a quadratic Koszul operad, a Py-algebra structure on a (finite dimensional)
graded vector space V (over a field of characteristic 0, say, over R) is the same as a cohomo-

logical vector field
d € Dery (Fpi(sV*)), d> =0

acting on the free Koszul P-dual algebra over the suspended linear dual of V.
e In the case P = Lie, we recover the maybe better known result stating that L,-algebras

on V are 1:1 with cohomological vector fields acting on A(sV*), i.e., are 1:1 with coho-
mological vector fields of the formal supermanifold V.



e This particular case admits a geometric extension that allows to identify split Loo-
algebroids with cohomological vector fields of split N-graded manifolds [3].

e The previously mentioned Vaintrop-realization of Lie algebroids as cohomological vector
fields of split supermanifolds is then a special case of the preceding generalization.

e Moreover, we just added to this list the interpretation of Loday algebroids as cohomo-
logical vector fields of (some) noncommutative spaces.

We already understood that the considered cohomological vector fields are in fact cohomology
operators. Conversely, the brackets of the LHS-s of these correspondences are derived brackets
implemented by the relevant cohomological vector field.

The above catalogue highlights inter alia the importance of free objects and of derived
brackets (although such evidence is not really needed). In the sequel, we will focus on both,
free objects and derived brackets.

3.1 Free Courant algebroids

We start investigating the concept of free Courant algebroid. Let us first recall that a
Courant algebroid is a classical Leibniz algebroid (E — M, [—, —], A), endowed with a non-
degenerate inner product (—|—), called scalar product, such that the two invariance relations

AX)(Y]2) = (X, Y]]2) + (Y][X, Z])

and
ANX)(Y|2) = (X|[Y, Z] + [2,Y])

(X,Y,Z € T'(E)), as well as the (here trivial) compatibility condition
(X, Y]l2) + (YI[X, Z]) = (X[[Y, 2] + [2,Y])

are satisfied.

In the following, we do not consider a module I'(E) over a commutative algebra C°°(M)
over the (commutative) field R of real numbers, but our basic object will be, more generally,
a module £ over a commutative algebra A over a commutative ring R. Even more, our
fundamental ingredient is as from now an anchored A-module (£, \) and we ask for the free
Courant algebroid over this anchored module.

At this point a more detailed discussion is indispensable to convince the reader that the
subsequent constructions and definitions are after all quite natural.

To discover the free Courant algebroid over the anchored module (£, ), note first that
a Courant algebroid contains a Leibniz bracket and that the free Leibniz algebra over the
R-module € is the algebra (F(E), [—, —]urs), whose bracket is the universal Leibniz bracket
and which has been detailed by Loday and Pirashvili. Since this description will not be really
important here, it will not be recalled. Being interested in the free Courant algebroid, it is



natural to consider now the free Leibniz algebroid over the anchored A-module (£, \), which is
(finally) given by (F(&),[—, —]uLs, F(A)), where the anchor F(A) on F(€) can be built from
the ‘ingredient-anchor’ A on £. However, what about the inner product of the free Courant
algebroid — what about the universal inner product (—|—)ywp? Universal means of course that,
for any ‘another’ Courant algebroid (&, [—, —]o, Ao, (—|—)0), any map f : &€ — & from ‘the
basis’ £ to the new algebroid &, uniquely factors through a Courant algebroid morphism
fi: F(€) — &. Whatever this Courant algebroid morphism (or even generalized Courant
algebroid morphism) will be, it should respect the inner products, i.e., for any X,Y € F(E),
we should have

(XY )ore =" (A1(X)[f1(Y))o -

It is easily seen that the RHS — which can of course not be a definition for the universal inner
product (—|—)up — is a map on the cartesian product F(€) x F(&) that induces a map f2 on
the symmetric tensor product F(E€) ® F(E), so that

(AAX)]A(Y))o = f2(XOY).

This suggests to view X © Y as the universal inner product of X and Y, and to think that a
generalized Courant algebroid morphism will be made of two maps, f; and fa, which respect
the inner products (X|Y)yp = X ©Y and (X|Y) in the sense that

(fl(X)|f1(Y))0 = fQ(X‘Y)UIP .

More precisely, since a (generalized) Courant algebroid contains the afore-mentioned (and in
the generalized setting no longer trivial) compatibility condition, say ~, we force this condition
by eventually defining the universal inner product by

(== = F(E) X F(E) = F(E) © F(E)/~ =: Q(F(E)) -

Finally, the invariance conditions of a Courant algebroid require (in the generalized framework)
that F (&) acts on the left and on the right on the value-space Q(F(&)) of (—|—)uwp. It is not
very difficult to find such left and right actions u¢ and p”, so that, in principle, the tuple

(f(g)a [_7 _]ULBv}-()‘)a Q(}_(g))»//»/fa (_|_)UIP)

is a rather canonical candidate for the free generalized Courant algebroid over (£,)\). The
interesting point is that the actions p’ and u” are well-defined on the quotient Q(F(&))
provided the bracket [—, —]yLp satisfies two new conditions.

3.2 Symmetric Leibniz algebroids

We now open a parentheses to discuss these new conditions. They are called symmetry con-
ditions, can be written for any classical Leibniz algebroid, and the classical Leibniz algebroids
that satisfy them are referred to as symmetric Leibniz algebroids.



Definition 2. [10/ A symmetric Leibniz algebroid is a classical Leibniz algebroid (€ —

M, [—, =], X), whose bracket satisfies, for any f € C*°(M) and X,Y,Z € &,
XofY —(fX)oY =0 (1)
and
(fX Y] = fIX.Y])o Z+Y o ([fX,Z] - f[X,Z]) =0, (2)

where X oY := [X, Y] + [V, X].

The name ‘symmetric’ is of course due to the involved symmetrized Leibniz bracket o.
Furthermore, the new conditions are reminiscent (this is particularly obvious for the second
requirement) of the differential operator conditions or locality conditions, which were already
at the basis of a first subclass of classical Leibniz algebroids, Loday algebroids, which actually
encode a differential operator condition for each argument of the corresponding Leibniz bracket
— via a standard left and a generalized right anchor. We will think of the two preceding
conditions as being some weak locality conditions.

The natural question is now how the two subclasses of classical Leibniz algebroids, Loday
algebroids and symmetric Leibniz algebroids, are related. It turns out that they have quite
a number of common elements, for instance, Leibniz algebra brackets, (twisted) Courant-
Dorfman brackets, Grassmann-Dorfman brackets, Courant algebroid brackets, but, that no
one of these classes in included in the other. Indeed, we already mentioned that a classical
Leibniz algebroid associated to a Nambu-Poisson structure is Loday, but it can be checked that
it is NOT symmetric Leibniz. On the other hand, we are able to construct the free symmetric
Leibniz algebroid over any anchored module, which is of course symmetric Leibniz, but it can
be shown that it is NOT Loday.

3.3 Free Courant algebroids (continuation)

According to what we said above, the actions u¢ and u”, which are part of the candidate
free generalized Courant algebroid

(f(g)v [_v _]ULB)"T()‘)v Q(‘F(g))v//v /[7 (_|_)UIP) ’

are well-defined if the universal Leibniz bracket [—, —|y.g is symmetric in the sense of Definition
2. ‘Of course’, this bracket does not satisfy the symmetry conditions (1) and (2), however, it
is possible to ‘symmetrize the situation’ (what is denoted by S below) and to prove [10] the

Theorem 2. The above-described tuple
(SF(E),[= ~Juws F(N), QSF(E)), 1y 1", (=|=) urw)

is the free generalized Courant algebroid over (€, \).



The reader will have observed that we did not yet define generalized Courant algebroids.
This fact is due to ‘pedagogical reasons’: indeed, now this definition is natural, since it just
mimics the preceding naturally constructed free generalized Courant algebroid.

Definition 3. [10] A generalized Courant algebroid

(&1, [= =1 A, Eay i 1", ()

is made of a symmetric Leibniz algebroid (or, maybe better, pseudo-algebra) (E1,[—,—], N), a
module E with a left and a right 1-action p’ and u”, and of an inner product (—|—) on &
valued in &, such that, for any X,Y, Z € &1, the invariance relations

p(X)(Y]2) = (X, Y]|Z) + (Y][X, Z])
and
W (X)(Y[Z) = ([Y, 2]+ [2,Y]|X) ,

as well as the compatibility condition
(X, Y][2) + (Y[[X, 2]) = ([Y, 2] + [2,Y]|X) ,
are satisfied.

To understand the difference with standard Courant algebroids, it suffices to know that
a possible non-degeneracy of the inner product (—|—) implies the symmetry — in the sense
of Definition 2 — of the Leibniz bracket [—, —]. Hence, we simply substituted the weaker
symmetry conditions (1) and (2) to the usual non-degeneracy requirement, AND we replaced
the standard module C*° (M) with actions A and —\ by a more general module (&, uf, u").
These modifications then led to the broader category of generalized Courant algebroids, which
admits free objects.

3.4 Application

As we met in this text already twice derived brackets, we recall their definition. If
(K,{—,—},A) is a differential graded Lie algebra (DGLA for short), then the new bracket

{k/, k//}A — (_1)|k/|+1{Ak/7 k//} ,

where | — | denotes the degree in K, leads to a Leibniz algebra (K,{—, —}a) and is referred
to as the derived bracket implemented by the initial DGLA. Conversely, we may ask which
Leibniz algebra or classical Leibniz algebroid brackets are, or can at least be represented by,
derived brackets.

To understand the answer to this question, remember that above we built, for each anchored
module (€, \), the free generalized Courant algebroid

(Sf(5)7 [_v _]ULB)‘F()‘)v Q(S‘F(g))vufvurv (_|_)UIP) .



10

A similar construction allows to assign, to any symmetric Leibniz algebroid (&, [—, —], A), its
associated generalized Courant algebroid

(5, [75 7]) )‘a Q(g)v Hf’ MT’ (7|7)) .
It can be shown [10] that the latter provides a DGLA (K, {—,—}, A), whose induced derived
bracket algebra (K, {—,—}a) is a universal derived bracket representation of (&, [—, —]):

Theorem 3. Symmetric Leibniz algebroid brackets admit universal derived bracket represen-
tations.

3.5 Summary

We defined two subclasses of the class of classical Leibniz algebroids, Loday algebroids
(with a standard left and a generalized right anchor, hence, with a locality condition on
both arguments) and symmetric Leibniz algebroids (defined by two weak locality conditions).
The two subclasses have a number of common elements, but no subclass is contained in
the other one. Symmetric Leibniz algebroids are the basic ingredient of generalized Courant
algebroids — a broader class that admits free objects over anchored modules. A construction,
analogous to the free generalized Courant algebroid over an anchored module, associates a
generalized Courant algebroid to any symmetric Leibniz algebroid. This generalized Courant
algebroid allows to prove that any symmetric Leibniz algebroid bracket admits a universal
derived bracket representation.

4 Infinity category of homotopy P-algebras

After the preceding extensive discussion of Leibniz algebroids, i.e., of the horizontal cate-
gorification of Leibniz algebras, we now address their vertical categorification, i.e., we report
on homotopy or infinity Leibniz algebras, or, more generally, on homotopy algebras over an
operad P.!

The afore-mentioned Ginzburg-Kapranov characterization
d € Dery (Fpi(sV*)), d®> =0

of a homotopy algebra structure over a quadratic Koszul operad P on a finite-dimensional
graded vector space V', admits a coalgebraic variant, which does not require finite-dimensionality:
a P.o-algebra structure on a possibly infinite-dimensional graded vector space V is the same
as a codifferential

d € CoDery (Fpi(s~'V)), d> =0

!The result that homotopy P-algebras form an infinity category was proven in [13] for the operad P = Lei of
Leibniz algebras. In fact, it holds in whole generality, with a similar explanation. The authors did not publish
this extension. A possible reference is [4].
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on the free Koszul P-dual coalgebra on the desuspended space s~'V. Even better, there exist
equivalences of categories

P.-Alg ~ qfDGP'A and P.-Alg ~ qfDGPiC (3)

between the category of Py-algebras and the category of quasi-free differential graded Koszul
P-dual algebras or coalgebras. For the explicit construction of Leibniz infinity algebras and
their morphisms, via the second categorical equivalence (3), we refer the interested reader to

[1]-
4.1 Concordances, gauge homotopies, Quillen homotopies
Although the objects and morphisms of P,-Alg are well-understood in view of (3), the
corresponding homotopies are not.
4.1.1 Concordances

A first concept of homotopy between two Py,-morphisms between the same Py,-algebras —
due to Schlessinger and Stasheff [14] — is known under the name of concordances.

This notion of homotopy is, roughly, similar to homotopies between two smooth maps
p,q € C(V,W)

between the same smooth manifolds V' and W. Indeed, when considering the pullback chain
maps

p".q" € Ch(Q(W), Q(V))
between the de Rham complexes, a homotopy is a chain map
n* € Ch(Q(W), 21 @ Q(V)),

where the target is the complex obtained by left tensoring by the complex of differential forms
of the topological 1-simplex Aj.

Analogously, if
p,q € HomPoo—Alg(V7 W)

are two P,o-morphisms between the same P,-algebras V and W, the first categorical equiva-
lence (3) provides two DGA-morphisms

p*.q" € Hompea (Fp: (W), Fpi(V))
so that a homotopy is a DGA-morphism
77* € HOmDGA(FP!(W),Ql ®Fp'(V)) 5

where the target is the differential graded P'-algebra obtained by tensoring by the differential
graded commutative algebra 2.
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To deepen the understanding of the homotopies 1™, notice that, in both situations, this
homotopy is a differential form

M (t, dt) = du(t) + dtpu(t)

in €y, parametrized by w in the source space, with coefficients in the second tensor factor of
the target space. When translating, in whatever of the two considered cases, the chain map
property of n* in terms of ¢ and p, one finds

di ¢ =dv p(t) + p(t) dw , (4)

where dy and dy are the differentials of the complexes with underlying space V and W,
respectively.

In the C'*°-case, the integration of Equation (4) from 0 to 1 shows that h := fol dtp(t) is

a chain homotopy between p* and ¢*, provided we assume that

n*(0,0) = #(0) = p* and 7*(1,0) =¢(1) =q¢" .

In the Py-case, we need not integrate, but have still to express the fact that n* is an
algebra morphism. It is straightforwardly seen that, in terms of ¢ and p, this property means
that ¢ is a family

o(t) € Hompea (Fp1 (W), Fpi(V))  (t € Ay) (5)

of DGA-morphisms and that p is a family
p(t) € -Der(Fpi(W), Fpr(V)) (¢ € As) (6)

of ¢-derivations.

Eventually, it is natural to define a homotopy, or, better, a concordance between two
P.-morphisms p, ¢ as families ¢ and p of the type (5) and (6), respectively, which satisfy (4),
as well as ¢(0) = p* and ¢(1) = ¢*.

Remark 2. A priori one expects that homotopies or concordances can be composed horizon-
tally and vertically and that these compositions are associative. However, whereas horizontal
composition of concordances is quite obvious, vertical composition turns out to be problematic.
This can be viewed as a first hint towards the fact that Px-Alg is not a 2-category, but possibly
a higher one.

4.1.2 Gauge and Quillen homotopies
Due to the second categorical equivalence (3), we have
HOmPOO_Alg(‘/, W) ~ HOmpcc(FPi(V), .FPi (W)) . (7)

Since Fpi(W) is a free coalgebra, a differential graded coalgebra (DGC for short) morphism
is completely determined by its corestrictions C := Hompg(Fpi(V), W). It is known that C
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carries a Lie infinity structure and is referred to as the convolution Lie infinity algebra. One
can thus consider its Maurer-Cartan elements MC(C) and it is rather easily seen that these
elements are exactly the initially considered morphisms (7):

Homp,p1¢(V, W) ~ MC(C) (8)

(we omitted suspension and dependencies of C on P, V and W). Therefore, looking for homo-
topies between P,-morphisms means defining homotopies between Maurer-Cartan elements.
But: in the literature, one can find (even) several concepts of homotopy between Maurer-
Cartan elements of a Lie infinity algebra, e.g., gauge homotopies and Quillen homotopies.

As concerns gauge homotopies, consider a Lie infinity algebra (C, (¢;);) and fix any r € Cy.
It can be shown that, if we restrict the map

1 _
V} : Cfl S5 — Z 5€¢+1(a®l,’r) € Cfl

to the Maurer-Cartan quadric MC(C) inside the vector space C_1, we get a vector field V| yic(c)
of MC(C). Now, two Maurer-Cartan elements a, 5 € MC(C) are gauge homotopic, if they
are connected by an integral curve of V.|yc() for some r € Cp. On the other hand, two
Maurer-Cartan elements a, 8 € MC(C) are Quillen homotopic, if there exists a Maurer-
Cartan element v € MC(C ® 1) of the Lie infinity algebra obtained by tensoring C with the
differential graded commutative algebra q of differential forms of the l-simplex Ay, i.e., if
there is a Maurer-Cartan element

y(t,dt) =7(t) +dtya(t) (nm) €Ca),

such that v(0,0) = +1(0) = a and v(1,0) = ~1(1) = 5.

4.2 Infinity category of infinity P-algebras

As explained above, we have at least three concepts of homotopy between P.-morphisms
at our disposal: concordances, gauge homotopies and Quillen homotopies. We proved [5]
that these notions are all equivalent (we will briefly come back to this fact later on). In the
sequel, we prefer Quillen homotopies, i.e., for any fixed VW € P-Alg, the homotopies or
2-morphisms are

00-2- Mor = MC(C ® €1) ,

and, clearly, see (8), the 1-morphisms are
oo-1- Mor = MC(C ® Q) ,

where )y are the differential forms of the O-simplex. Hence, it is natural to define co-n- Mor
as
oo-n- Mor := MC(C® Q,—1) (n>1).

The merging simplicial set
MC(C ® Q,) € SSet
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is actually well-known. Indeed, when integrating nilpotent Lie infinity algebras C, Getzler
found [6]

/c M © 04)

and he proved that this simplicial set is in fact a Kan complex. However, it is known that, in
the presence of an co-category, the morphisms and higher morphisms form a Kan complex,
for any two fixed objects. Hence, the preceding results and definitions allow to realize that
13]

Theorem 4. The category Pso-Alg of homotopy algebras over a quadratic Koszul operad P is

an oo-cateqory.

Let us mention that we consider the category SSet of simplicial sets together with its
standard cofibrantly generated model structure. This means that a simplicial map is a weak
equivalence if its geometric realization is a weak equivalence for the Quillen model structure of
the category Top of topological spaces, i.e., if this realization is a weak homotopy equivalence;
further, a simplicial map is a cofibration if it is a monomorphism; and finally, a simplicial map
is a fibration if it has the right lifting property (RLP for short) with respect to the generating
trivial cofibrations, i.e., with respect to all canonical inclusions A?[n] < A[n] of an (n,4)-horn
into the corresponding simplicial n-simplex (n € N and i € {0,...,n}).

Hence, a simplicial set S € SSet is fibrant if the map S — * from S to the terminal
simplicial set * is a fibration, i.e., has the RLP with respect to the inclusions A‘[n] — Al[n],
i.e., if any simplicial map Af[n] — S extends to a simplicial map A[n] — S, or, still, if any horn
in S = (So,S51,...) has a filler. It is this property that we translate saying that S is a Kan
complex. There are three other, similar properties: any inner horn in S has a unique filler,
any hornin S has a unique filler, and any inner hornin S = (S, S1,...) has a filler. The first
of these three properties means that S is the nerve of some category, the second means
that S is the nerve of some groupoid (it is easy to understand that fillers of outer horns
(i = 0 and i = n) correspond to inverse maps), and the last encodes correctly the idea that an
oo-category is made of objects Sy, morphisms S7, and higher morphisms S; (i > 2), such that
compositions of i-morphisms are well-defined and associative only up to higher morphisms > 4.
Hence, the last one of the three properties means that S is an co-category.

4.3 Application
If P is the Leibniz operad Lei, Theorem 4 allows to conclude that the category
Leioo-Alg

of Leibniz infinity algebras is an co-category. On the other hand, Baez and Crans initiated [2]
the study of the category 2Lies-Alg of Lie infinity algebras, whose underlying vector space V
has only two terms Vp and V;. Their results can be generalized [13] to the category 2Leiy-Alg
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of 2-term Leibniz infinity algebras and they show that this category carries actually a strict 2-
categorical structure. The latter is merely the pullback of the God-given 2-categorical structure
on the equivalent category

Lei2Alg ~ 2lei-Alg 9)

of Leibniz 2-algebras, i.e., of categorified Leibniz algebras. However, this pullback strict
2-categorical structure is rather mysterious in the homotopy algebra setting 2Leis- Alg.

The point is that it can be proven [13]| that this ‘artificial’ 2-categorical structure on
2Leiso-Alg is nothing but the shadow of the above-constructed quite natural oco-categorical
structure on Lei-Alg:

Theorem 5. The oco-categorical structure of Leis-Alg projects onto the strict 2-categorical
structure of 2leiso-Alg, which is obtained via transfer of the canonical strict 2-categorical
structure of Lei2Alg.

This insight answers questions by Baez-Crans and Schreiber-Stasheff [15].

Remark 3. A generalization of the correspondence (9) can be found in [12]: Lie 3-algebras
are defined and it is proven that these are in I1-to-1 correspondence with the 3-term Lie in-
finity algebras, whose bilinear and trilinear maps vanish in degree (1,1) and in total degree 1,
respectively.

We now further describe the preceding idea of projection. We start recalling the main
aspect of Getzler’s proof that MC(C ® ) is a Kan complex. Remember first the maps

B! : MC(C ® Q) — MC(C) x mc'(C® Q) € MC(C) x mc(C® Q) (n>0,0<i<n),

which send a higher morphism to an ordinary morphism and another component. Let us
mention, for the sake of completeness, that

mc'(C® Q) = {0 @id+id®d)e, e € (C® 2,)% e(eir1) =0},

where § (resp., d) is the differential of C (resp., of 2,,) and where (e;); is the standard basis of
R™*1 i.e., where the (e;); are the vertices of the standard topological n-simplex A,,. The main
insight is that these maps B! admit inverse maps B¢, which allow to prove the Kan property
for MC(C ® Q). Indeed, using the B and B,

SSet(Af[n], MC(C ® Q,)) >MC(C ® Q)

l T

SSet(A[n], MC(C) x mc(C ® Q,)) — MC(C) x mc*(C @ Q)
we obtain the dotted map
SSet(A’[n], MC(C ® Q)) — SSet(A[n], MC(C ® Q) ,

so that any horn of MC(C ® €2,) has actually a filler and MC(C ® Q) is Kan.
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We are now prepared for the announced more detailed description of the projection in
Theorem 5. Just as we referred to higher morphisms of the oco-category Leis-Alg as oco-n- Mor
(ne€{1,2,3,...}), we will refer to the morphisms and homotopies of the 2-category 2Lei-Alg
as 2-n-Mor (n € {1,2}). It is clear that any 2-1-morphism between two Leibniz infinity
algebras having just 2 terms, is a morphism between these two Leibniz infinity algebras, hence
an oo-1-morphism between fixed algebras, or, still, an element of MC(C).

Let now «, 8 be two 2-1-morphisms between the same two 2-term Leibniz infinity algebras,
i.e., two elements of MC(C), and let v € MC(C®£21) be a homotopy or oco-2-morphism between
them. Using the recalled correspondence

BY : MC(C ® Q) = MC(C) x mc®(C @ Q) : BY ,

we obtain
v = BBy = a+&(ae)

and
B=7(1)=a+E(ae(1)) (10)
(if we view € as defined, not on the interval [0, 1], but on the standard topological 1-simplex,

then (1) means e(ez); observe also that €(0) = e(e;) = 0). In [13], we revisited the con-

struction of the Bt

» , adopting our own approach, what allowed us to compute the expression

E(a,e(1)) very explicitly. It turned out that Equation (10) exactly means that (1) is a 2-2-
morphism between the 2-1-morphisms «, 3, i.e., a homotopy between «, 8 in the sense of the
2-category 2lei-Alg. In other words, for any 2-1-morphisms «, 8 between the same algebras,
we associated to every homotopy v € 0o-2- Mor(a, ) a homotopy (1) € 2-2- Mor(«, 8). It is
possible to show [13] that this assignment

(e, B) 1 00-2- Mor(a, 8) 3 v+ ¢(1) € 2-2- Mor(a, f)

is not only well-defined but also surjective (instead of BY, B}, we could have used just as well
Bi,B}).

Hence, for any vertically composable £(1),¢'(1), we can choose preimages 7, ~', set 4" :=
v o7, and project 7" to €”(1). The point is that, despite the ill-definedness of the preimages
7,7 and the ill-definedness of their composite 7", the resulting £”(1) is well-defined with
respect to £(1),€'(1), so that we can set ¢”(1) := €’(1) o ¢(1). Exactly as for concordances
(see Remark 2), the composition of horizontally composable £(1),’(1) is not problematic.
Eventually, the projection of the co-categorical structure on Leiy-Alg defines on 2Leio-Alg a
strict 2-categorical structure — which turns out to be exactly the a bit obscure 2-categorical
structure obtained on this category via the pullback of the 2-category structure on Lei2Alg.

5 A tale of five homotopies

We mentioned at the beginning of Subsection 4.2, that there exist at least three concepts
of homotopy for Ps-morphisms: concordances, gauge homotopies and Quillen homotopies. In
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[5], we describe a fourth and a fifth notion, cylinder homotopies and operadic homotopies, and
prove the

Theorem 6. The concepts of concordance, gauge homotopy, Quillen homotopy, cylinder ho-
motopy, and operadic homotopy are equivalent.

Remark 4. In fact, the notion of operadic homotopy is homotopically equivalent to the oth-
ers. To our knowledge, we give in [5] the first explicit recipe to write a definition of operadic
homotopy. This receipt is far from being simple. It involves nested trees in homotopy transfer
formulas. Indeed, the prime (non-trivial) tool used to establish the equivalences of the different
concepts is the homotopy transfer theorem for homotopy cooperads — which proves (of course)
that, if a differential graded S-module is a homotopy retract of a differential graded S-module
that carries a homotopy cooperad structure, then it is possible to transfer this homotopy coop-
erad structure to the retract.
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