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Abstract

We study oidi�cation of Leibniz algebras and introduce two subclasses of classical Leib-

niz algebroids, Loday algebroids and symmetric Leibniz algebroids. The algebroids of the

�rst subclass have true di�erential geometric brackets and the ones of the second are the

main ingredients of generalized Courant algebroids, a broader category that we de�ne and

investigate, proving in particular that it admits free objects. Regarding homotopy�cation

of Leibniz algebras, we review and introduce �ve concepts of homotopy between Leibniz

in�nity morphisms � in particular an explicit notion of operadic homotopy � and show that

they are all equivalent. Further, we prove that the category of Leibniz in�nity algebras

carries an ∞-category structure. The latter projects onto the strict 2-category structure

obtained on 2-term Leibniz in�nity algebras via transport of the canonical 2-category

structure on categori�ed Leibniz algebras.
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1 Introduction

This paper is based on talks given by the author at the conference `Glances@Manifolds

II', held from 8 to 13 August 2016 at the Jagiellonian University of Krakow, Poland, at the

conference ` 50th Seminar �Sophus Lie� ', organized from 25 September to 1st October 2016 at

the Bedlewo Mathematical Research and Conference Center of the Institute of Mathematics

of the Polish Academy of Sciences, as well as at the workshop `Leibniz Algebras and Higher

Structures', which took place at the University of Luxembourg from 13-16 December 2016.

Both, the present text and the underlying lectures, report on the joint works [5], [10], [11], [13]

with Vladimir Dotsenko, Janusz Grabowski, Benoit Jubin, David Khudaverdian, Jian Qiu,

and Kyosuke Uchino.

We start considering the horizontal categori�cation (oidi�cation) of Leibniz algebras and

de�ne two subclasses of classical Leibniz algebroids: Loday algebroids and symmetric Leibniz

algebroids. Whereas standard Leibniz algebroids carry only a left anchor, Loday algebroids
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are equipped with a standard left and a generalized right anchor, so that their brackets satisfy

a di�erential operator condition on both arguments. Symmetric Leibniz algebroids are char-

acterized by two weak locality conditions that a�ect both arguments and are formulated in

terms of the symmetrized Leibniz bracket. These two subclasses contain most of the Leibniz

brackets that appear in the literature, but no one of these classes is included in the other.

Loday algebroids admit a supergeometric interpretation. Such interpretations are known for

Lie algebroids, homotopy Lie algebroids, and homotopy algebras over any quadratic Koszul

operad P . Symmetric Leibniz algebroids are the underlying object of generalized Courant al-

gebroids, a new category that contains standard Courant algebroids and has free objects over

anchored vector bundles. The construction of a free generalized Courant algebroid allows to

show that not only derived brackets are Leibniz brackets, but that, conversely, symmetric Leib-

niz algebroid brackets can be (universally) represented by derived brackets. Finally we pass to

the vertical categori�cation (homotopy�cation) of P -algebras and investigate the categorical

structure of homotopy P -algebras. Whereas the objects and morphisms of this category are

well-understood, their homotopies are not. At least 5 candidates do exist. We explain that

they are all equivalent, de�ne higher homotopies and show that homotopy P -algebras form,

not a 2-, but an ∞-category. This holds in particular for homotopy Leibniz algebras. A con-

crete application of Getzler's integration technique for nilpotent Lie in�nity algebras allows

to prove that the known (but quite mysterious) 2-categorical structure on 2-term homotopy

Leibniz algebras is in fact the shadow of the ∞-categorical structure on all homotopy Leibniz

algebras.

2 The supergeometry of Loday algebroids

2.1 De�nition and examples of Loday algebroids

Let us start with the observation that the double g ⊕ g? of a Lie bialgebra g is of course

a Lie algebra, but that the double of a Lie bialgebroid is not a Lie algebroid � but a Courant

algebroid. Courant brackets are Leibniz brackets, i.e., Lie brackets without the antisymmetry

property. Leibniz brackets often appear as derived brackets (to which we will come back later

on). On the other hand, most Leibniz brackets that one meets in the literature are de�ned on

sections of a vector bundle, so that it is natural to ask about Leibniz algebroids.

Classical Leibniz algebroids are, again, de�ned just as Lie algebroids, except that their

bracket is not skew-symmetric. This has an important consequence. In fact, if E → M is

a vector bundle equipped with a classical Leibniz algebroid structure ([−,−], λ), the anchor

property

[X, fY ] = f [X,Y ] + λ(X)f Y

(X,Y ∈ Γ(E), f ∈ C∞(M)) should be thought of as a �rst order di�erential operator condition

for the action of the left argument X. However, since the bracket [−,−] is no longer antisym-

metric, there is no similar locality condition for the action of the right argument. However,

Di�erential Geometry, which is actually sheaf theoretic, can be presented, as usual, via global
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sections, exactly because most di�erential geometric operators are local or are di�erential op-

erators in all their arguments, so that they can be restricted. Hence, the fact that a classical

Leibniz algebroid bracket is a priori not local in both arguments, is clearly suboptimal.

This motivates our quest for a better concept of Leibniz algebroid � we will refer to it as

Loday algebroid, to distinguish it from the preceding notion of classical Leibniz algebroid

� that includes a locality condition, di�erential operator condition, or an anchor condition,

for both arguments, and that contains � the, maybe most important Leibniz algebroid � the

Courant algebroid, as a special case.

The �rst idea is of course to de�ne a Loday algebroid as being a Leibniz bracket [−,−] on

the sections of a vector bundle E, together with a left and a right anchor. However, it can

be seen [8] that, if rank(E) = 1, then the Leibniz bracket [−,−] is necessarily antisymmetric

and of 1st order, and that, if rank(E) > 1, the Leibniz bracket [−,−] is at least `locally' a Lie

algebroid bracket. In other words, the preceding de�nition essentially leads to Lie algebroids

and not to interesting new examples. This motivates the need for an improved de�nition of

Loday algebroids.

Let us �rst have a look at the local form of an anchor λ. If we denote the local basis of

sections of E by ei, we get

λ(X)f Y = Xiλai ∂af Y
jej ,

with self-explaining notation. This means that the considered anchor term λ(X)f Y is a

derivation in f , is C∞-linear in X, and identity in Y . However, why not accept more general

anchors ρ, for which the anchor term is given by

Xiλakij ∂af Y
jek ,

i.e., why not accept anchors that are a derivation in f , that are C∞-linear in X and in Y ( but

no longer the identity in Y ), and that are valued in sections (∗) ? We will refer to such an

anchor ρ as a generalized anchor.

It is quite easily understood that when equipped with a generalized left anchor, the new

algebroids cannot have a satisfactory cohomology theory. Hence,

De�nition 1. [11] A Loday algebroid is a Leibniz bracket on sections of a vector bundle,

which is endowed with a standard left and a generalized right anchor.

Of course, Loday algebroids form a subclass of classical Leibniz algebroids. Even bet-

ter, most classical Leibniz algebroids are Loday algebroids: in particular, Leibniz alge-

bras, (twisted) Courant-Dorfman brackets (TM ⊕ T∗M), Grassmann-Dorfman brackets

(TM ⊕∧T∗M or E ⊕∧E∗), classical Leibniz algebroids associated to Nambu-Poisson struc-

tures [9], Courant algebroids... are Loday brackets or algebroids. A precise de�nition of

Courant algebroids will be given below. Let us at the moment just mention that a Courant

algebroid is a classical Leibniz algebroid (E → M, [−,−], λ) together with a non-degenerate
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inner product (−|−), such that some axioms hold. Further, it is indeed well-known that, for

any Courant algebroid, one can de�ne a derivation

D ∈ Der(C∞(M),Γ(E)) .

When exploiting now the Courant axioms, one sees that

D(fX|Y ) = [fX, Y ] + [Y, fX]

(f ∈ C∞(M), X, Y ∈ Γ(E)) � an equation that allows visibly to understand the action of Y on

the product fX. One thus obtains a right anchor D(f)(X|Y ), which is obviously a derivation

in f , C∞-linear in X and Y , and valued in sections, i.e., that is obviously a generalized right

anchor (see (∗) above).

2.2 Supergeometric interpretation of Loday algebroids

Recall now the Vaintrop 1:1 correspondence that mentions that Lie algebroids (E, [−,−], λ)

are the same as de Rham complexes (Γ(∧E∗),d) of vector bundle forms, or, still, the same as

square 0, degree 1 derivations

d ∈ Der1(Γ(∧E∗),∧),d2 = 0

of the algebra (Γ(∧E∗),∧) of superfunctions of the supermanifold ΠE with shifted parity in

the �bers. In other words, Lie algebroids are 1:1 with cohomological vector �elds d on split

supermanifolds ΠE.

It is natural to ask wether Loday algebroids (E, [•, •], λ, ρ) admit a similar supergeometric

interpretation.

Notice �rst that the de Rham di�erential d is nothing but the Chevalley-Eilenberg or Lie

algebra cohomology operator, but restricted, from the cochain space A(Γ(E), C∞(M)) of all

antisymmetric multilinear maps on the Lie algebra (Γ(E), [−,−]) represented by λ on C∞(M),

to the stable subspace

AC∞(M)(Γ(E), C∞(M)) = Γ(∧E∗)

of the antisymmetric C∞(M)-multilinear maps, i.e., to the stable subspace Γ(∧E∗) of skew-

symmetric covariant tensor �elds or vector bundle forms � so that d actually acts on those

forms or superfunctions.

In our Loday algebroid case, we should therefore consider the Leibniz cohomology operator

restricted to the same space

LinC∞(M)(Γ(E), C∞(M)) = Γ(⊗E∗) ,

just omitting the antisymmetry condition. This space of C∞(M)-multilinear maps is of course

the space of 0-order multidi�erential operators. The Leibniz cohomology operator raises how-

ever the total degree of a multidi�erential operator by 1, so that the considered space Γ(⊗E∗) is
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not closed under the Leibniz operator. Hence, the idea to replace the `superfunctions' Γ(⊗E∗)
made of the 0-order multidi�erential operators by the `superfunctions'

Dploy(Γ(E), C∞(M)) =: Dpoly(E)

made of all multidi�erential operators from Γ(E) × . . . × Γ(E) to C∞(M). It turns out

that the associative multiplication of these `superfunctions' can be chosen to be the shu�e

multiplication t, which is de�ned on multidi�erential operators ∆′,∆′′ by the same formula

(∆′t∆′′)(X1, . . . , Xp+q) =
∑

σ∈Sh(p,q)

sign(σ)∆′(Xσ1 , . . . , Xσp) ∆′′(Xσp+1 , . . . , Xσp+q)

than the wedge product ∧ on di�erential forms.

We can now prove [11] the following Vaintrop-type result:

Theorem 1. There is a 1-to-1 correspondence between Loday algebroid structures (E, [•, •], λ, ρ)

and equivalence classes of cohomological vector �elds

d ∈ Der1(Dpoly(E),t), d2 = 0

of the `noncommutative space' (Dpoly(E),t).

Remark 1. Note that, as notation Der1 and Dpoly(E) suggests, the precise result is signif-

icantly subtler than just d ∈ Der1(Dpoly(E),t). We will not describe it here in more detail.

Further, as indicated above, the noncommutative associative algebra (Dpoly(E),t) can be inter-

preted as the `superfunction' algebra of some noncommutative space. For these spaces, Cartan

calculus can be developed.

3 Free Courant and derived Leibniz algebroids

As mentioned in Remark 1, Vaintrop-type results are far from being simple in the algebroid

context, except, of course, for Lie algebroids. In the algebraic setting however, there exists

a well-understood correspondence, based on Koszul duality for operads and due to Ginzburg

and Kapranov [7]:

If P denotes a quadratic Koszul operad, a P∞-algebra structure on a (�nite dimensional)

graded vector space V (over a �eld of characteristic 0, say, over R) is the same as a cohomo-

logical vector �eld

d ∈ Der1 (FP !(sV ∗)) , d2 = 0

acting on the free Koszul P -dual algebra over the suspended linear dual of V .

• In the case P = Lie, we recover the maybe better known result stating that L∞-algebras

on V are 1:1 with cohomological vector �elds acting on ∧(sV ∗), i.e., are 1:1 with coho-

mological vector �elds of the formal supermanifold V .
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• This particular case admits a geometric extension that allows to identify split L∞-

algebroids with cohomological vector �elds of split N-graded manifolds [3].

• The previously mentioned Vaintrop-realization of Lie algebroids as cohomological vector

�elds of split supermanifolds is then a special case of the preceding generalization.

• Moreover, we just added to this list the interpretation of Loday algebroids as cohomo-

logical vector �elds of (some) noncommutative spaces.

We already understood that the considered cohomological vector �elds are in fact cohomology

operators. Conversely, the brackets of the LHS-s of these correspondences are derived brackets

implemented by the relevant cohomological vector �eld.

The above catalogue highlights inter alia the importance of free objects and of derived

brackets (although such evidence is not really needed). In the sequel, we will focus on both,

free objects and derived brackets.

3.1 Free Courant algebroids

We start investigating the concept of free Courant algebroid. Let us �rst recall that a

Courant algebroid is a classical Leibniz algebroid (E →M, [−,−], λ), endowed with a non-

degenerate inner product (−|−), called scalar product, such that the two invariance relations

λ(X)(Y |Z) = ([X,Y ]|Z) + (Y |[X,Z])

and

λ(X)(Y |Z) = (X|[Y,Z] + [Z, Y ])

(X,Y, Z ∈ Γ(E)), as well as the (here trivial) compatibility condition

([X,Y ]|Z) + (Y |[X,Z]) = (X|[Y,Z] + [Z, Y ]) ,

are satis�ed.

In the following, we do not consider a module Γ(E) over a commutative algebra C∞(M)

over the (commutative) �eld R of real numbers, but our basic object will be, more generally,

a module E over a commutative algebra A over a commutative ring R. Even more, our

fundamental ingredient is as from now an anchored A-module (E , λ) and we ask for the free

Courant algebroid over this anchored module.

At this point a more detailed discussion is indispensable to convince the reader that the

subsequent constructions and de�nitions are after all quite natural.

To discover the free Courant algebroid over the anchored module (E , λ), note �rst that

a Courant algebroid contains a Leibniz bracket and that the free Leibniz algebra over the

R-module E is the algebra (F(E), [−,−]ULB), whose bracket is the universal Leibniz bracket

and which has been detailed by Loday and Pirashvili. Since this description will not be really

important here, it will not be recalled. Being interested in the free Courant algebroid, it is
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natural to consider now the free Leibniz algebroid over the anchored A-module (E , λ), which is

(�nally) given by (F(E), [−,−]ULB,F(λ)), where the anchor F(λ) on F(E) can be built from

the `ingredient-anchor' λ on E . However, what about the inner product of the free Courant

algebroid � what about the universal inner product (−|−)UIP? Universal means of course that,

for any `another' Courant algebroid (E0, [−,−]0, λ0, (−|−)0), any map f : E → E0 from `the

basis' E to the new algebroid E0, uniquely factors through a Courant algebroid morphism

f1 : F(E) → E0. Whatever this Courant algebroid morphism (or even generalized Courant

algebroid morphism) will be, it should respect the inner products, i.e., for any X,Y ∈ F(E),

we should have

`(X|Y )UIP = ' (f1(X)|f1(Y ))0 .

It is easily seen that the RHS � which can of course not be a de�nition for the universal inner

product (−|−)UIP � is a map on the cartesian product F(E)×F(E) that induces a map f2 on

the symmetric tensor product F(E)�F(E), so that

(f1(X)|f1(Y ))0 = f2(X � Y ) .

This suggests to view X � Y as the universal inner product of X and Y , and to think that a

generalized Courant algebroid morphism will be made of two maps, f1 and f2, which respect

the inner products (X|Y )UIP = X � Y and (X|Y )0 in the sense that

(f1(X)|f1(Y ))0 = f2(X|Y )UIP .

More precisely, since a (generalized) Courant algebroid contains the afore-mentioned (and in

the generalized setting no longer trivial) compatibility condition, say ∼, we force this condition
by eventually de�ning the universal inner product by

(−|−)UIP : F(E)×F(E)→ F(E)�F(E)/∼ =: Q(F(E)) .

Finally, the invariance conditions of a Courant algebroid require (in the generalized framework)

that F(E) acts on the left and on the right on the value-space Q(F(E)) of (−|−)UIP. It is not

very di�cult to �nd such left and right actions µ` and µr, so that, in principle, the tuple

(F(E), [−,−]ULB,F(λ),Q(F(E)), µ`, µr, (−|−)UIP)

is a rather canonical candidate for the free generalized Courant algebroid over (E , λ). The

interesting point is that the actions µ` and µr are well-de�ned on the quotient Q(F(E))

provided the bracket [−,−]ULB satis�es two new conditions.

3.2 Symmetric Leibniz algebroids

We now open a parentheses to discuss these new conditions. They are called symmetry con-

ditions, can be written for any classical Leibniz algebroid, and the classical Leibniz algebroids

that satisfy them are referred to as symmetric Leibniz algebroids.
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De�nition 2. [10] A symmetric Leibniz algebroid is a classical Leibniz algebroid (E →
M, [−,−], λ), whose bracket satis�es, for any f ∈ C∞(M) and X,Y, Z ∈ E,

X ◦ fY − (fX) ◦ Y = 0 (1)

and

([fX, Y ]− f [X,Y ]) ◦ Z + Y ◦ ([fX,Z]− f [X,Z]) = 0 , (2)

where X ◦ Y := [X,Y ] + [Y,X] .

The name `symmetric' is of course due to the involved symmetrized Leibniz bracket ◦.
Furthermore, the new conditions are reminiscent (this is particularly obvious for the second

requirement) of the di�erential operator conditions or locality conditions, which were already

at the basis of a �rst subclass of classical Leibniz algebroids, Loday algebroids, which actually

encode a di�erential operator condition for each argument of the corresponding Leibniz bracket

� via a standard left and a generalized right anchor. We will think of the two preceding

conditions as being some weak locality conditions.

The natural question is now how the two subclasses of classical Leibniz algebroids, Loday

algebroids and symmetric Leibniz algebroids, are related. It turns out that they have quite

a number of common elements, for instance, Leibniz algebra brackets, (twisted) Courant-

Dorfman brackets, Grassmann-Dorfman brackets, Courant algebroid brackets, but, that no

one of these classes in included in the other. Indeed, we already mentioned that a classical

Leibniz algebroid associated to a Nambu-Poisson structure is Loday, but it can be checked that

it is NOT symmetric Leibniz. On the other hand, we are able to construct the free symmetric

Leibniz algebroid over any anchored module, which is of course symmetric Leibniz, but it can

be shown that it is NOT Loday.

3.3 Free Courant algebroids (continuation)

According to what we said above, the actions µ` and µr, which are part of the candidate

free generalized Courant algebroid

(F(E), [−,−]ULB,F(λ),Q(F(E)), µ`, µr, (−|−)UIP) ,

are well-de�ned if the universal Leibniz bracket [−,−]ULB is symmetric in the sense of De�nition

2. `Of course', this bracket does not satisfy the symmetry conditions (1) and (2), however, it

is possible to `symmetrize the situation' (what is denoted by S below) and to prove [10] the

Theorem 2. The above-described tuple

(SF(E), [−,−]ULB,F(λ),Q(SF(E)), µ`, µr, (−|−)UIP)

is the free generalized Courant algebroid over (E , λ).
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The reader will have observed that we did not yet de�ne generalized Courant algebroids.

This fact is due to `pedagogical reasons': indeed, now this de�nition is natural, since it just

mimics the preceding naturally constructed free generalized Courant algebroid.

De�nition 3. [10] A generalized Courant algebroid

(E1, [−,−], λ, E2, µ
`, µr, (−|−))

is made of a symmetric Leibniz algebroid (or, maybe better, pseudo-algebra) (E1, [−,−], λ), a

module E2 with a left and a right E1-action µ` and µr, and of an inner product (−|−) on E1

valued in E2, such that, for any X,Y, Z ∈ E1, the invariance relations

µ`(X)(Y |Z) = ([X,Y ]|Z) + (Y |[X,Z])

and

−µr(X)(Y |Z) = ([Y,Z] + [Z, Y ]|X) ,

as well as the compatibility condition

([X,Y ]|Z) + (Y |[X,Z]) = ([Y,Z] + [Z, Y ]|X) ,

are satis�ed.

To understand the di�erence with standard Courant algebroids, it su�ces to know that

a possible non-degeneracy of the inner product (−|−) implies the symmetry � in the sense

of De�nition 2 � of the Leibniz bracket [−,−]. Hence, we simply substituted the weaker

symmetry conditions (1) and (2) to the usual non-degeneracy requirement, AND we replaced

the standard module C∞(M) with actions λ and −λ by a more general module (E2, µ
`, µr).

These modi�cations then led to the broader category of generalized Courant algebroids, which

admits free objects.

3.4 Application

As we met in this text already twice derived brackets, we recall their de�nition. If

(K, {−,−},∆) is a di�erential graded Lie algebra (DGLA for short), then the new bracket

{k′, k′′}∆ := (−1)|k
′|+1{∆k′, k′′} ,

where | − | denotes the degree in K, leads to a Leibniz algebra (K, {−,−}∆) and is referred

to as the derived bracket implemented by the initial DGLA. Conversely, we may ask which

Leibniz algebra or classical Leibniz algebroid brackets are, or can at least be represented by,

derived brackets.

To understand the answer to this question, remember that above we built, for each anchored

module (E , λ), the free generalized Courant algebroid

(SF(E), [−,−]ULB,F(λ),Q(SF(E)), µ`, µr, (−|−)UIP) .
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A similar construction allows to assign, to any symmetric Leibniz algebroid (E , [−, −], λ), its

associated generalized Courant algebroid

(E , [−,−], λ,Q(E), µ`, µr, (−|−)) .

It can be shown [10] that the latter provides a DGLA (K, {−,−},∆), whose induced derived

bracket algebra (K, {−,−}∆) is a universal derived bracket representation of (E , [−,−]):

Theorem 3. Symmetric Leibniz algebroid brackets admit universal derived bracket represen-

tations.

3.5 Summary

We de�ned two subclasses of the class of classical Leibniz algebroids, Loday algebroids

(with a standard left and a generalized right anchor, hence, with a locality condition on

both arguments) and symmetric Leibniz algebroids (de�ned by two weak locality conditions).

The two subclasses have a number of common elements, but no subclass is contained in

the other one. Symmetric Leibniz algebroids are the basic ingredient of generalized Courant

algebroids � a broader class that admits free objects over anchored modules. A construction,

analogous to the free generalized Courant algebroid over an anchored module, associates a

generalized Courant algebroid to any symmetric Leibniz algebroid. This generalized Courant

algebroid allows to prove that any symmetric Leibniz algebroid bracket admits a universal

derived bracket representation.

4 In�nity category of homotopy P -algebras

After the preceding extensive discussion of Leibniz algebroids, i.e., of the horizontal cate-

gori�cation of Leibniz algebras, we now address their vertical categori�cation, i.e., we report

on homotopy or in�nity Leibniz algebras, or, more generally, on homotopy algebras over an

operad P .1

The afore-mentioned Ginzburg-Kapranov characterization

d ∈ Der1(FP !(sV ∗)), d2 = 0

of a homotopy algebra structure over a quadratic Koszul operad P on a �nite-dimensional

graded vector space V , admits a coalgebraic variant, which does not require �nite-dimensionality:

a P∞-algebra structure on a possibly in�nite-dimensional graded vector space V is the same

as a codi�erential

d ∈ CoDer1(FP ½(s−1V )), d2 = 0

1The result that homotopy P -algebras form an in�nity category was proven in [13] for the operad P = Lei of

Leibniz algebras. In fact, it holds in whole generality, with a similar explanation. The authors did not publish

this extension. A possible reference is [4].
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on the free Koszul P -dual coalgebra on the desuspended space s−1V . Even better, there exist

equivalences of categories

P∞-Alg ' qfDGP!A and P∞-Alg ' qfDGP ½C (3)

between the category of P∞-algebras and the category of quasi-free di�erential graded Koszul

P -dual algebras or coalgebras. For the explicit construction of Leibniz in�nity algebras and

their morphisms, via the second categorical equivalence (3), we refer the interested reader to

[1].

4.1 Concordances, gauge homotopies, Quillen homotopies

Although the objects and morphisms of P∞-Alg are well-understood in view of (3), the

corresponding homotopies are not.

4.1.1 Concordances

A �rst concept of homotopy between two P∞-morphisms between the same P∞-algebras �

due to Schlessinger and Stashe� [14] � is known under the name of concordances.

This notion of homotopy is, roughly, similar to homotopies between two smooth maps

p, q ∈ C∞(V,W )

between the same smooth manifolds V and W . Indeed, when considering the pullback chain

maps

p∗, q∗ ∈ Ch(Ω(W ),Ω(V ))

between the de Rham complexes, a homotopy is a chain map

η∗ ∈ Ch(Ω(W ),Ω1 ⊗ Ω(V )) ,

where the target is the complex obtained by left tensoring by the complex of di�erential forms

of the topological 1-simplex ∆1.

Analogously, if

p, q ∈ HomP∞-Alg(V,W )

are two P∞-morphisms between the same P∞-algebras V and W , the �rst categorical equiva-

lence (3) provides two DGA-morphisms

p∗, q∗ ∈ HomDGA(FP !(W ),FP !(V )) ,

so that a homotopy is a DGA-morphism

η∗ ∈ HomDGA(FP !(W ),Ω1 ⊗FP !(V )) ,

where the target is the di�erential graded P !-algebra obtained by tensoring by the di�erential

graded commutative algebra Ω1.
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To deepen the understanding of the homotopies η∗, notice that, in both situations, this

homotopy is a di�erential form

η∗w(t,d t) = φw(t) + d t ρw(t)

in Ω1, parametrized by w in the source space, with coe�cients in the second tensor factor of

the target space. When translating, in whatever of the two considered cases, the chain map

property of η∗ in terms of φ and ρ, one �nds

dt φ = dV ρ(t) + ρ(t) dW , (4)

where dV and dW are the di�erentials of the complexes with underlying space V and W ,

respectively.

In the C∞-case, the integration of Equation (4) from 0 to 1 shows that h :=
∫ 1

0 d t ρ(t) is

a chain homotopy between p∗ and q∗, provided we assume that

η∗(0, 0) = φ(0) = p∗ and η∗(1, 0) = φ(1) = q∗ .

In the P∞-case, we need not integrate, but have still to express the fact that η∗ is an

algebra morphism. It is straightforwardly seen that, in terms of φ and ρ, this property means

that φ is a family

φ(t) ∈ HomDGA(FP !(W ),FP !(V )) (t ∈ ∆1) (5)

of DGA-morphisms and that ρ is a family

ρ(t) ∈ φ-Der(FP !(W ),FP !(V )) (t ∈ ∆1) (6)

of φ-derivations.

Eventually, it is natural to de�ne a homotopy, or, better, a concordance between two

P∞-morphisms p, q as families φ and ρ of the type (5) and (6), respectively, which satisfy (4),

as well as φ(0) = p∗ and φ(1) = q∗.

Remark 2. A priori one expects that homotopies or concordances can be composed horizon-

tally and vertically and that these compositions are associative. However, whereas horizontal

composition of concordances is quite obvious, vertical composition turns out to be problematic.

This can be viewed as a �rst hint towards the fact that P∞-Alg is not a 2-category, but possibly

a higher one.

4.1.2 Gauge and Quillen homotopies

Due to the second categorical equivalence (3), we have

HomP∞-Alg(V,W ) ' HomDGC(FP ½(V ),FP ½(W )) . (7)

Since FP ½(W ) is a free coalgebra, a di�erential graded coalgebra (DGC for short) morphism

is completely determined by its corestrictions C := HomR(FP ½(V ),W ). It is known that C
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carries a Lie in�nity structure and is referred to as the convolution Lie in�nity algebra. One

can thus consider its Maurer-Cartan elements MC(C) and it is rather easily seen that these

elements are exactly the initially considered morphisms (7):

HomP∞-Alg(V,W ) ' MC(C) (8)

(we omitted suspension and dependencies of C on P, V and W ). Therefore, looking for homo-

topies between P∞-morphisms means de�ning homotopies between Maurer-Cartan elements.

But: in the literature, one can �nd (even) several concepts of homotopy between Maurer-

Cartan elements of a Lie in�nity algebra, e.g., gauge homotopies and Quillen homotopies.

As concerns gauge homotopies, consider a Lie in�nity algebra (C, (`i)i) and �x any r ∈ C0.

It can be shown that, if we restrict the map

Vr : C−1 3 α 7→ −
∑
i

1

i!
`i+1(α⊗i, r) ∈ C−1

to the Maurer-Cartan quadric MC(C) inside the vector space C−1, we get a vector �eld Vr|MC(C)
of MC(C). Now, two Maurer-Cartan elements α, β ∈ MC(C) are gauge homotopic, if they

are connected by an integral curve of Vr|MC(C) for some r ∈ C0. On the other hand, two

Maurer-Cartan elements α, β ∈ MC(C) are Quillen homotopic, if there exists a Maurer-

Cartan element γ ∈ MC(C ⊗ Ω1) of the Lie in�nity algebra obtained by tensoring C with the

di�erential graded commutative algebra Ω1 of di�erential forms of the 1-simplex ∆1, i.e., if

there is a Maurer-Cartan element

γ(t,d t) = γ1(t) + d t γ2(t) (γ1(t) ∈ C−1) ,

such that γ(0, 0) = γ1(0) = α and γ(1, 0) = γ1(1) = β.

4.2 In�nity category of in�nity P -algebras

As explained above, we have at least three concepts of homotopy between P∞-morphisms

at our disposal: concordances, gauge homotopies and Quillen homotopies. We proved [5]

that these notions are all equivalent (we will brie�y come back to this fact later on). In the

sequel, we prefer Quillen homotopies, i.e., for any �xed V,W ∈ P∞-Alg, the homotopies or

2-morphisms are

∞-2-Mor = MC(C ⊗ Ω1) ,

and, clearly, see (8), the 1-morphisms are

∞-1-Mor = MC(C ⊗ Ω0) ,

where Ω0 are the di�erential forms of the 0-simplex. Hence, it is natural to de�ne ∞-n-Mor

as

∞-n-Mor := MC(C ⊗ Ωn−1) (n ≥ 1) .

The merging simplicial set

MC(C ⊗ Ω•) ∈ SSet
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is actually well-known. Indeed, when integrating nilpotent Lie in�nity algebras C, Getzler
found [6] ∫

C ∼−→ MC(C ⊗ Ω•)

and he proved that this simplicial set is in fact a Kan complex. However, it is known that, in

the presence of an∞-category, the morphisms and higher morphisms form a Kan complex,

for any two �xed objects. Hence, the preceding results and de�nitions allow to realize that

[13]

Theorem 4. The category P∞-Alg of homotopy algebras over a quadratic Koszul operad P is

an ∞-category.

Let us mention that we consider the category SSet of simplicial sets together with its

standard co�brantly generated model structure. This means that a simplicial map is a weak

equivalence if its geometric realization is a weak equivalence for the Quillen model structure of

the category Top of topological spaces, i.e., if this realization is a weak homotopy equivalence;

further, a simplicial map is a co�bration if it is a monomorphism; and �nally, a simplicial map

is a �bration if it has the right lifting property (RLP for short) with respect to the generating

trivial co�brations, i.e., with respect to all canonical inclusions Λi[n] ↪→ ∆[n] of an (n, i)-horn

into the corresponding simplicial n-simplex (n ∈ N and i ∈ {0, . . . , n}).

Hence, a simplicial set S ∈ SSet is �brant if the map S → ∗ from S to the terminal

simplicial set ∗ is a �bration, i.e., has the RLP with respect to the inclusions Λi[n] ↪→ ∆[n],

i.e., if any simplicial map Λi[n]→ S extends to a simplicial map ∆[n]→ S, or, still, if any horn

in S = (S0, S1, . . .) has a �ller. It is this property that we translate saying that S is a Kan

complex. There are three other, similar properties: any inner horn in S has a unique �ller,

any horn in S has a unique �ller, and any inner horn in S = (S0, S1, . . .) has a �ller. The �rst

of these three properties means that S is the nerve of some category, the second means

that S is the nerve of some groupoid (it is easy to understand that �llers of outer horns

(i = 0 and i = n) correspond to inverse maps), and the last encodes correctly the idea that an

∞-category is made of objects S0, morphisms S1, and higher morphisms Si (i ≥ 2), such that

compositions of i-morphisms are well-de�ned and associative only up to higher morphisms > i.

Hence, the last one of the three properties means that S is an ∞-category.

4.3 Application

If P is the Leibniz operad Lei, Theorem 4 allows to conclude that the category

Lei∞-Alg

of Leibniz in�nity algebras is an∞-category. On the other hand, Baez and Crans initiated [2]
the study of the category 2Lie∞-Alg of Lie in�nity algebras, whose underlying vector space V

has only two terms V0 and V1. Their results can be generalized [13] to the category 2Lei∞-Alg
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of 2-term Leibniz in�nity algebras and they show that this category carries actually a strict 2-

categorical structure. The latter is merely the pullback of the God-given 2-categorical structure

on the equivalent category

Lei2Alg ' 2Lei∞-Alg (9)

of Leibniz 2-algebras, i.e., of categori�ed Leibniz algebras. However, this pullback strict

2-categorical structure is rather mysterious in the homotopy algebra setting 2Lei∞- Alg.

The point is that it can be proven [13] that this `arti�cial' 2-categorical structure on

2Lei∞-Alg is nothing but the shadow of the above-constructed quite natural ∞-categorical

structure on Lei∞-Alg:

Theorem 5. The ∞-categorical structure of Lei∞-Alg projects onto the strict 2-categorical

structure of 2Lei∞-Alg, which is obtained via transfer of the canonical strict 2-categorical

structure of Lei2Alg.

This insight answers questions by Baez-Crans and Schreiber-Stashe� [15].

Remark 3. A generalization of the correspondence (9) can be found in [12]: Lie 3-algebras

are de�ned and it is proven that these are in 1-to-1 correspondence with the 3-term Lie in-

�nity algebras, whose bilinear and trilinear maps vanish in degree (1, 1) and in total degree 1,

respectively.

We now further describe the preceding idea of projection. We start recalling the main

aspect of Getzler's proof that MC(C ⊗ Ω•) is a Kan complex. Remember �rst the maps

Bi
n : MC(C ⊗ Ωn)→ MC(C)×mci(C ⊗ Ωn) ⊂ MC(C)×mc(C ⊗ Ωn) (n ≥ 0, 0 ≤ i ≤ n) ,

which send a higher morphism to an ordinary morphism and another component. Let us

mention, for the sake of completeness, that

mci(C ⊗ Ωn) = {(δ ⊗ id + id⊗d)ε, ε ∈ (C ⊗ Ωn)0, ε(ei+1) = 0} ,

where δ (resp., d) is the di�erential of C (resp., of Ωn) and where (ei)i is the standard basis of

Rn+1, i.e., where the (ei)i are the vertices of the standard topological n-simplex ∆n. The main

insight is that these maps Bi
n admit inverse maps Bin, which allow to prove the Kan property

for MC(C ⊗ Ω•). Indeed, using the Bi
n and Bin,

SSet(Λi[n],MC(C ⊗ Ω•)) //

��

MC(C ⊗ Ωn)

SSet(Λi[n],MC(C)×mc(C ⊗ Ω•)) //MC(C)×mci(C ⊗ Ωn) ,

OO

we obtain the dotted map

SSet(Λi[n],MC(C ⊗ Ω•)) −→ SSet(∆[n],MC(C ⊗ Ω•)) ,

so that any horn of MC(C ⊗ Ω•) has actually a �ller and MC(C ⊗ Ω•) is Kan.
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We are now prepared for the announced more detailed description of the projection in

Theorem 5. Just as we referred to higher morphisms of the∞-category Lei∞-Alg as∞-n-Mor

(n ∈ {1, 2, 3, . . .}), we will refer to the morphisms and homotopies of the 2-category 2Lei∞-Alg

as 2-n-Mor (n ∈ {1, 2}). It is clear that any 2-1-morphism between two Leibniz in�nity

algebras having just 2 terms, is a morphism between these two Leibniz in�nity algebras, hence

an ∞-1-morphism between �xed algebras, or, still, an element of MC(C).

Let now α, β be two 2-1-morphisms between the same two 2-term Leibniz in�nity algebras,

i.e., two elements of MC(C), and let γ ∈ MC(C⊗Ω1) be a homotopy or∞-2-morphism between

them. Using the recalled correspondence

B0
1 : MC(C ⊗ Ω1)� MC(C)×mc0(C ⊗ Ω1) : B0

1 ,

we obtain

γ = B0
1B

0
1γ = α+ E(α, ε)

and

β = γ(1) = α+ E(α, ε(1)) (10)

(if we view ε as de�ned, not on the interval [0, 1], but on the standard topological 1-simplex,

then ε(1) means ε(e2); observe also that ε(0) = ε(e1) = 0). In [13], we revisited the con-

struction of the Bin, adopting our own approach, what allowed us to compute the expression

E(α, ε(1)) very explicitly. It turned out that Equation (10) exactly means that ε(1) is a 2-2-

morphism between the 2-1-morphisms α, β, i.e., a homotopy between α, β in the sense of the

2-category 2Lei∞-Alg. In other words, for any 2-1-morphisms α, β between the same algebras,

we associated to every homotopy γ ∈ ∞-2-Mor(α, β) a homotopy ε(1) ∈ 2-2-Mor(α, β). It is

possible to show [13] that this assignment

π(α, β) :∞-2-Mor(α, β) 3 γ 7→ ε(1) ∈ 2-2-Mor(α, β)

is not only well-de�ned but also surjective (instead of B0
1 ,B0

1, we could have used just as well

B1
1 ,B1

1).

Hence, for any vertically composable ε(1), ε′(1), we can choose preimages γ, γ′, set γ′′ :=

γ′ ◦ γ, and project γ′′ to ε′′(1). The point is that, despite the ill-de�nedness of the preimages

γ, γ′ and the ill-de�nedness of their composite γ′′, the resulting ε′′(1) is well-de�ned with

respect to ε(1), ε′(1), so that we can set ε′′(1) := ε′(1) ◦ ε(1) . Exactly as for concordances

(see Remark 2), the composition of horizontally composable ε(1), ε′(1) is not problematic.

Eventually, the projection of the ∞-categorical structure on Lei∞-Alg de�nes on 2Lei∞-Alg a

strict 2-categorical structure � which turns out to be exactly the a bit obscure 2-categorical

structure obtained on this category via the pullback of the 2-category structure on Lei2Alg.

5 A tale of �ve homotopies

We mentioned at the beginning of Subsection 4.2, that there exist at least three concepts

of homotopy for P∞-morphisms: concordances, gauge homotopies and Quillen homotopies. In
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[5], we describe a fourth and a �fth notion, cylinder homotopies and operadic homotopies, and

prove the

Theorem 6. The concepts of concordance, gauge homotopy, Quillen homotopy, cylinder ho-

motopy, and operadic homotopy are equivalent.

Remark 4. In fact, the notion of operadic homotopy is homotopically equivalent to the oth-

ers. To our knowledge, we give in [5] the �rst explicit recipe to write a de�nition of operadic

homotopy. This receipt is far from being simple. It involves nested trees in homotopy transfer

formulas. Indeed, the prime (non-trivial) tool used to establish the equivalences of the di�erent

concepts is the homotopy transfer theorem for homotopy cooperads � which proves (of course)

that, if a di�erential graded S-module is a homotopy retract of a di�erential graded S-module

that carries a homotopy cooperad structure, then it is possible to transfer this homotopy coop-

erad structure to the retract.
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