UMIVERSITE DU
LUXEMBOURG

PhD-FSTC-2016-63
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defense held on 06/12/2016 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITE DU LUXEMBOURG

EN INFORMATIQUE
by
Remus Alexandru DOBRICAN

Born on 13 November 1988 in Timisoara, (Romania)

COLLABORATIVE RULE-BASED PROACTIVE SYSTEMS:
MODEL, INFORMATION SHARING STRATEGY AND
CASE STUDIES

Dissertation defense committee

Dr Denis ZAMPUNIERIS, dissertation supervisor
Professor, Université du Luxembourg

Dr Michael Ignaz SCHUMACHER

Professor, University of Applied Sciences Western Switzerland

Dr Pascal BOUVRY, Chairman
Professor, Université du Luxembourg

Dr Steffen ROTHKUGEL
Professor, Université du Luxembourg

Dr Anthony CLEVE, Vice Chairman
Professor, University of Namur

Abstract

The Proactive Computing paradigm provides us with a new way to make
the multitude of computing systems, devices and sensors spread through
our modern environment, work for/pro the human beings and be active on
our behalf. In this paradigm, users are put on top of the interactive loop
and the underlying IT systems are automated for performing even the most
complex tasks in a more autonomous way.

This dissertation focuses on providing further means, at both theoretical
and applied levels, to design and implement Proactive Systems. It is shown
how smart mobile, wearable and/or server applications can be developed
with the proposed Rule-Based Middleware Model for computing pro-actively
and for operating on multiple platforms.

In order to represent and to reason about the information that the proac-
tive system needs to know about its environment where it performs its com-
putations, a new technique called Proactive Scenario is proposed. As an
extension of its scope and properties, and for achieving global reasoning
over inter-connected proactive systems, a new collaborative technique called
Global Proactive Scenario is then proposed.

Furthermore, to show their potential, three real world case studies of
(collaborative) proactive systems have been explored for validating the pro-
posed development methodology and its related technological framework in
various domains like e-Learning, e-Business and e-Health.

Results from these experiments confirm that software applications de-
signed along the lines of the proposed rule-based proactive system model
together with the concepts of local and global proactive scenarios, are capa-
ble of actively searching for the information they need, of automating tasks
and procedures that do not require the user’s input, of detecting various
changes in their context and of taking measures to adapt to it for address-
ing the needs of the people which use these systems, and of performing
collaboration and global reasoning over multiple proactive engines spread
across different networks.

ii

iii

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor,
Professor Dr. Denis Zampunieris, for his support, for his patience, for his
professionalism and for giving me the opportunity to do research inside a
very nice team. Without his help, this PhD would have been a much more
difficult road to take. I appreciate a lot the liberty which was offered to me
to do research by exploring many different directions that I was not aware of.

I would also like to thank the members of my CET committee for their
advices, guidance and encouragements since the beginning of this work.

Moreover, I would like to thank Dr. Daniel Theisen, head of the research
unit ”Sports & Health at the Public Research Centre for Health” (CRP-
Santé) in Luxembourg, and to his team, and to Dr. Patrick Feiereisen, part
of the physiotherapy group at the CHL (Centre Hospitalier de Luxembourg)
for helping me with the e-Health application.

A special thanks goes to my parents, Alexandru and Elena Dobrican, and
to my entire family, which offered me moral support during the whole time
of my PhD. Also, I would like to thank Victoria for her continuous effort to
support me and her permanent smile, which brought joy and inspiration.

Also, a special thanks to my colleagues, Gilles Neyens and Sandro Reis,
for their help, especially with the technical side, i.e., with the development

of the server-side and mobile applications.

Finally, I would like to thank God.

v

Abbreviations

AT Artificial intelligence. 13, 16, 19, 22, 23, 25, 28
API Application Programming Interface. 32, 41
AT Anaerobic Threshold. 104, 105

BC Backwards Chaining. 24, 60

BPM Beats Per Minute. 101

CE Communication Engine. 37, 41
CoPs Communities of Practice. 65
CQ Current Queue. 36, 61

CR Cardiac Rehabilitation. 92-97, 99, 100, 102-104, 106-108

ECA Event Condition Action. 17, 18
ECG Electrocardiogram. 94-96
ES Expert System. 25-27

ET Exercise Training. 92, 97

FC Forward Chaining. 24, 25, 60

FIFO First-in, First-Out. 36

GCM Google Cloud Messaging. xiii, 43, 44, 46, 50

GPaS Global Proactive Scenario. 9, 10, 54-57, 59, 64, 78, 81, 83-85, 87,
89-92, 100, 111

GPS Global Positioning System. 51, 83

GUI Graphical User Interface. xii, xiv, 34, 37, 58, 72, 81, 82, 97, 98

vi

HR Heart Rate. xiv, 92, 94-99, 101, 102, 104, 105, 107
IT Information Technology. 65

Jess Java Expert System Shell. 26, 27, 62

JSON JavaScript Object Notation. xiii, xiv, 41, 42, 44, 45, 55, 57, 88, 89

KE Knowledge Engineering. 23

KR Knowledge Representation. 13-15, 18, 19, 25, 26

LMS Learning Management System. xi, xiv, 9, 65—69, 72-77

LPaS Local Proactive Scenario. 9, 10, 54, 55, 59, 64, 65, 68-71, 76, 77, 92,
100

NM Notification Manager. 37, 41

NQ Next Queue. 36, 61

O-0O Object-Oriented. 14, 15, 18, 22, 27, 31, 32, 34, 40
OCoP Online Community of Practice. 66, 68, 70, 71, 73
OCoPs Online Communities of Practice. i, 65, 66, 68, 72-77
ORMLite Object Relational Mapping Lite. 42

OS Operating System. 29, 32, 33, 37, 3941, 81

P2P Peer-to-peer. 62

PaC Proactive Computing. 2, 4, 5, 7, 8, 32, 64-66, 68, 73, 77, 79, 81, 91,
107

PaS Proactive Scenario. 7-9, 30, 36-38, 41, 46, 49, 51, 53-55, 5861, 64,
65, 70, 88, 92, 100-102, 107

PC Personal Computer. 40

PE Proactive Engine. 29, 30, 32-42, 45-47, 49-56, 60, 61, 68, 83, 85-88,
99, 101, 104, 106, 111

PPG Photoplethysmogram. 94, 97, 101, 107

PR Proactive Rule. 33-39, 4547, 49-51, 53-61, 70, 85, 86, 91, 101, 103

vil

PS Proactive System. 5-7, 9, 30, 32, 34, 3641, 43, 55-61, 64, 68-70, 92,
104, 110

QM Queue Manager. 32, 34, 36, 41

RBES Rule-based Expert System. 27
RBPS Rule-based Proactive System. 7, 9, 43-46, 58, 64, 111
RBS Rule-based System. 5, 23-25, 31, 36, 42, 60, 110

RE Rule Engine. 32-34, 36, 41, 46, 47, 49

SMS Short Message Service. 96
SNS Social Networking System. xi, 67

SQL Structured Query Language. 17, 24, 42

XML Extensible Markup Language. 16, 18, 27, 43

viii

ix

Contents

Introduction

1.1 Motivation
1.2 Objectives of the thesis,
1.3 Methodology
1.4 Contributions
1.5 Dissertation outline

Theoretical foundations

Background information

2.1 Knowledge Representation
2.1.1 Knowledge Representation Approaches
2.1.2 Additional Challenges in Knowledge Representation .

2.2 Reasoning o
2.2.1 Rule-based Systems
2.2.2 Expert Systems oL
223 Agents.

The Proposed Computing Model

3.1 The Proactive Engine

3.2 The Modular Architecture of the Proactive Engine
3.2.1 The Rule Engine
3.22 Proactive Rules
3.2.3 The Queue Manager
3.2.4 The Local Database
3.2.5 The Communication Engine
3.2.6 The Notification Manager

3.3 Properties of Proactive Systems
3.3.1 Anticipation oL
3.3.2 Context-Awareness
3.3.3 Adaptiveness
3.3.4 Collaboration

11

12
13
14
18
22
23
25
27

11

3.4 Implementing the Proposed Model
3.4.1 Middleware Model for Server Platforms
3.4.2 Middleware Model for Mobile Platforms
3.4.3 Communication architecture for Proactive Engines . .
3.4.4 Performance analysis of Proactive Engines
3.4.5 Conclusion and Discussions

Proactive Scenarios

4.1 Linking and Grouping Rules
4.1.1 Local Proactive Scenarios
4.1.2 Global Proactive Scenarios
4.1.3 Negotiation protocol of Global Proactive Scenarios . .

4.2 Rule-based Proactive Systems Design.
4.2.1 The Conceptual Design Phase
4.2.2 The Logical Design Phase
4.2.3 The Physical Design Phase

4.3 Distributed knowledge
4.3.1 Parallel Rule-based Systems
4.3.2 Distributed Rule-based Systems

Application Development and Case Studies

Application 1 - Online Social Communities
5.1 Related Background Information
5.1.1 Social Awareness Systems
5.1.2 Social Networking Systems (SNSs) and Learning Man-
agement Systems (LMSs)
5.2 Research Hypotheses and Objectives
5.3 The Proactive System
5.3.1 Local Proactive Scenarios
5.4 The Experiment
5.4.1 Participants Lo oL
5.4.2 Data Collection and Analysis
5.4.3 Measurements
5.4.4 Results and Discussions
5.4.5 Conclusion,

Application 2 - SilentMeet

6.1 Related Background Information
6.1.1 Context-Aware Mobile Collaborative Systems
6.1.2 Collaborative Mobile Middleware Architectures
6.1.3 Collaborative Mobile Applications
6.1.4 Applications for silencing the Smartphone

xi

53
53
o4
95
o7
58
58
99
60
60
60
62

63

65
66
66

67
68
68
70
71
72
72
73
73
76

6.2 Domain-Specific Problem Statement
6.3 A Rule-Based Solution - SilentMeet
6.3.1 The Graphical User Interface (GUI) of SilentMeet

6.3.2 Grouping the participants for a meeting
6.3.3 Global Proactive Scenarios for SilentMeet
6.3.4 Collaboration Process
6.3.5 Message Exchange between Proactive Engines
6.4 Tests e
6.4.1 Measurements
6.4.2 Results and discussions
6.5 Conclusion

Application 3 - e-Health System

7.1 Related Background Information
7.1.1 Cardiac Rehabilitation
7.1.2 Wearable devices
7.1.3 Risk factors and challenges for home-based exercise

trainingo

7.1.4 Wrist-worn devices for Cardiac Rehabilitation

7.2 The Architecture of the e-Health System
7.2.1 The Prototype Application on the Smartwatch
7.2.2 The Prototype Application on the Smartphone
7.2.3 The Server-side Layer
7.2.4 Multiple Levels of Feedback and Monitoring
7.2.5 Dynamic Patient Profiles

7.3 System Testing and Evaluation

74 Conclusion

Conclusions
8.1 Future Perspectives.

xii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
2.9

3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8

3.9

4.1
4.2

4.3
4.4

4.5

5.1

Data, Information, Knowledge, Wisdom - DIKW Pyramid.
The main familiesof rules [1].
A simplified version of the taxonomy of RuleML rules [2] . . .
Rules of the RuleML family.
Conceptual and design challenges in rule representation. . . .
The mapping between functions and rules.
A rule written in Drools language and its corresponding Java
Class Model.
A side-by-side representation of two related software entities.
The architecture of a Proactive System.

The Modular Architecture of a Proactive Engine.
The 5 sections of a Proactive Rule and their execution.
Different layers of interaction [3].
The server-side architecture.
The registration process for one device, passing through Google
Cloud Messaging (GCM) Server.
The communication process between 2 registered devices.
Example of a JavaScript Object Notation (JSON) message
exchanged between 2 Proactive Engines, which contains a
command to activate a Proactive Rule.
Hardware and software specifications of the devices used in
the experiments.
Different iterations times on all 3 different devices.

The decision tree structure of a Proactive Scenario.
A sequence diagram with the collaboration mechanism of a

Global Proactive Scenario.
Designing Rule-based Proactive Systems.
The Conceptual Design Phase of the design process of Rule-

based Proactive Systems.
FIPA-Request responder and initiator behaviour [4].

Pop-up question box and Social Groups side-block on Moodle.

xiii

13
16
17
18
20
21

26
29
30

33
35
40
41

44
44

45

48
49

54

57
o8

99
61

69

5.2

5.3
5.4

6.1
6.2
6.3

6.4

7.1

7.2
7.3

7.4
7.5

7.6

Coaching Messages side-block and the detailed list of mes-
sageson Moodle. L.
Proactive Rule R0O01 in pseudo-code.
Comparing activities inside the LMS before and after the start
ofthestudy

SilentMeet’s GUL.
Proactive Rule R011 in pseudo-code.
A sequence diagram with the collaboration of 2 smartphones
of the members of the same group, during a meeting negoti-
ation Process. v v o i e e e e
An example of a JSON message that is passed between R011
and R021, when a meeting is created.

The GUI of the application on the smartwatch Gear S2 from
SamSUNE.o e e e
The GUI of the smartphone application
Sudden increase of the Heart Rate (HR) during a training
SESSIONo e e e e e e e
Proactive Rule R31 of Local Scenario LPaS1 in pseudo-code.
The architecture of the Proactive E-Health System with mul-
tiple levels of monitoring and expertise
A 25 minutes training session which was registered on the
server-side without any errors.

Xiv

69

List of Tables

3.1

3.2
4.1

5.1

5.2

5.3

Average time of an Iteration of the Proactive Engine on 3
different devices. oo
Average Battery Consumption.

A classical decision table with vertical rules [5, p. 110].

Results of Forum actions inside all the different categories of
Online Communities of Practice (OCoPs)
Results of Chat and Folder actions inside all the different
categories of OCoPs L.
Students who left their communities compared to those that
stayed

Chapter 1

Introduction

A couple of decades ago, in 1988, Mark Weiser introduced the idea of ubig-
uttous computing, which, at that time, was considered a revolutionary
paradigm [6]. The essence of this paradigm consisted of the vision of having
an environment where old and new networking and computing technolo-
gies will complement each other and will work together. Nowadays, this
dream has become a fact in certain computing environments. Embedded
devices capable of making advanced computation in everyday objects are
everywhere. These devices spread through various places, e.g., at home, at
school, at work and even when we are on the move, becoming pervasive.
As smart devices, computing systems and software systems become a bigger
part of our daily life and of our daily activities, it becomes highly significant
for these systems to perform and to provide stable, continuous and complex
services.

Shortly after, in 2000, David Tennenhouse proposed a new paradigm,
Proactive Computing (PaC), which gave computer scientists the oppor-
tunity to tackle a new research direction [7]. More precisely, this would lead
researchers beyond ubiquitous computing and pervasive computing, towards
a world full of networked devices capable of anticipating human users’ needs
and of acting on their behalf. This newly proposed concept would extend
and augment the realm of ubiquitous devices by giving them a purpose and
by providing a modern way of controlling all the devices around us.

Current computing challenges require advanced software systems capa-
ble of addressing the full needs of the users and of tackling new problems
in an efficient and flexible manner. And, by referring to advanced software
systems, it is meant to include those systems that satisfy multiple key prop-
erties. This work narrows down the scope of how to design such systems
by focusing on certain key properties such as context-awareness, adap-
tiveness and collaboration as a consequence of using proactive computing.
Furthermore, as each of these properties constitute separate broad research
fields of their own, it is aimed to show how better outcomes are achieved by

linking them together rather than by considering them as separated prop-
erties.

1.1 Motivation

Technology is evolving at an incredible speed and its impact on our society
is happening faster than it takes us to adapt to it. Recent discoveries such
as growing atomically thin circuits and transistors [8] are aiming at keeping
pace with Moore’s Law [9], which stated back in 1965 that the number of
transistors in integrated circuits will double almost every two years. Sensors
and actuators continue the trend of getting smaller and smaller, more power-
ful and cheaper than their previous generations. Small embedded computers
offer everyday objects, such as clothes, cans, mugs, mobile devices or wear-
able devices, new computing capabilities. Mobile phones, with a market of
8,2 billion devices in 2016 [10], and wearables, with an estimated number
of 110 million shipped devices in 2016 [11], are undoubtedly a major part
of a growing computing environment that not only includes other physical
objects, like smart screens, but also virtual objects.

Not only that computing objects increase their numbers but they aug-
ment their connectivity, thus creating an increasingly networked envi-
ronment. Some estimations indicated that, by 2020, an incredible number
of almost 50 billion devices will be connected to the Internet [12], with an
average of 6.5 connected devices per person. Thanks to the latest advances
in communication technologies such as wireless communication networks or
wireless sensor networks, enable objects that were normally considered as
passive physical objects with computing and communicating capabilities.
Short-range wireless communication technologies used intensively by smart-
phones and wearable devices such as Bluetooth, ZigBee or IEEE 802.15.6
offer low-energy communication for low data rate applications. Wireless
hotspots are so widely spread that people have access to the Internet almost
everywhere they are, e.g., in airplanes, in buses, in trains. Thus, informa-
tion is available from multiple sources and knowledge about the surrounding
environment is more accurate. This context creates great collaboration op-
portunities for all the interconnected devices and their applications, and this
can lead to solving more complex problems which could not be addressed
until now by single computing software systems [13].

However, as almost everything comes at a cost, creating collaboration
mechanisms for applications inside these networks of smart devices is not
an easy task due to the increasing complexity of exchanging and han-
dling data between computing systems which come with different operating
systems, different communication protocols and different computing capa-
bilities. The key of addressing high complexity for collaborative systems is
to automate procedures, processes and tasks to reduce human interven-

tion only to the most important decision, keeping, nevertheless, humans in
a supervising role. This involves enhancing devices and their applications
with decision-making capabilities, also referred to as delegation of control.
Nowadays, examples where human judgement and control has been passed
to computing systems are present even in important industry sectors like
aviation or healthcare.

Society’s desire to be better informed and to make better decisions is
well-known since a long time ago. For example, people that are better
informed about traffic conditions can take alternative routes in order to
avoid being stuck for hours or people knowing important information about
public transportation could reduce significantly their travel time. In time
of crisis, when natural disasters or industrial accidents occur, it is crucial to
have accurate information from multiple trusted sources to be able to take
proper actions. If various devices and sensors are coordinated to work for
humans in such cases the benefits would be enormous, ending up with saved
time, money and even human lives.

Existing tools that are taking advantage of the current settings are often
inadequate. They are either too user-driven, meaning the full control is
given to the users, or too reactive, waiting for input, either from the user or
from an internal event, that will trigger some kind of action. Using software
tools that are supposed to be user-friendly has become difficult to use due
to the variety of user interfaces and numerous functions they offer. Users
are often overloaded with information and this might prevent them to take
the right action at the right time. In order to use them properly, users need
to become highly specialised by doing special training lessons to learn how
to handle such tools.

On the other hand, in rapidly changing ubiquitous environments, devices
and their applications, in order to achieve their goals, need to be capable of
noticing all the changes and of taking rapid measures in response to what
is happening. This requires the applications to be constantly monitoring
the environment and not just to wait for the user or for another process to
activate them. They should actively look for the information they need, for
the firing of a particular event and, even, for the lack of an event. Even
more, they need to anticipate and predict certain situations to better pro-
vide solutions to the people that use them. Gathering data only from local
sensors can lead to information that is not complete or to having partial
knowledge about a certain situation. By collaborating with other applica-
tions, the knowledge becomes more complete and the information easier to
be checked. These minimum set of requirements need a new generation of
innovative software systems that solve more complex computational prob-
lems. In order to reach their full potential, applications for smart devices
need to be remodelled.

One solution, in this case, can be offered by PaC, which can accurately
represent our needs and preferences. By using this particular computing

mode, software systems can be delegated to operate in our behalf, they can
be automated for performing even the most complex tasks and they can
collaborate and exchange information to offer the best solutions in foreseen
situations.

1.2 Objectives of the thesis

Conventional hard-coding methods for building modern applications tend
to become extremely complicated even for the most skilled programmers.
Rule-based Systems (RBSs) are an alternative for provide methods for ex-
pressing and reasoning about knowledge in a clear manner. However, this
approach presents several challenges and issues that need to be tackled. Be-
sides this, the importance of being able to use PaC needs to be addressed.
This raises the first research question (RQ1):

RQ1. What are the advantages of using rule-based reasoning when building
modern software applications and how will this approach be able to employ
Proactive Computing on different platforms?

Following the initial direction of developing a RBS for enhancing a software
system with proactive capabilities [14] and the availability of a multitude
of devices capable of conducting complex computations, presented in the
previous subsection, the second main objective of the thesis is to design a
rule-based model, capable of computing proactively, that could be used for
building proactive applications on various platforms and devices. The pur-
pose was not to create a universal model capable of operating at the same
time on different platforms but to develop an architecture that could be used
by different developers for implementing a Proactive System (PS) on top of
different operating systems.

Building such a system raises new questions in terms of its properties.
These properties or characteristics are important to determine if this sys-
tem is addressing most of the current concerns of ubiquitous applications.
Among these concerns are the ability of determining different contexts, or
being context-aware, the ability to anticipate multiple possible situations
that can happen in the future, or the ability of being able to adapt to mul-
tiple platforms, e.g., such as distinct operating systems of various devices.
Developing such a model is addressing the second research question (RQ2),
which focuses on establishing a set of common core components, on the ar-
chitecture of the model and on its properties:

RQ2. What are the key components necessary to build a functional rule-
based proactive system, what are their functions as part of the model, what
is the relationship between them, how to build the model and what are the

main properties of such a model?

Following the design guidelines to build multiple PSs will lead to a diversified
environment, where multiple proactive applications will operate. Apart from
opening new computational perspectives, the answers to RQ1 and RQ2 pro-
vide an additional opportunity and immediately fire a new question: what
if these PSs would be able to exchange information between them? This
leads to the third research question (RQ3), which states the following:

RQ@3. How should multiple operational rule-based proactive systems, dis-
persed over various networks, communicate and what kind of novel collabo-
rative mechanism should they use for exchanging information?

Establishing a communication protocol for PSs provides the possibility of
connecting multiple environments rich in information, thus extending the
perspectives of proactive applications. This brings many new challenges
and points that also need to be addressed, such as determining at what
level should the communication take part, how it should happen, e.g., in
the background, without the user’s involvement, or still asking the user’s
explicit permission in some essential steps, and what should actually be
exchanged during the communication process. This third objective of the
thesis is to find a method for a PS to take advantage of the diverse in-
formation available in ubiquitous environments that is normally accessible
only by the native applications and restricted to outside software systems.
The answer to RQ3 provides not only a technique for allowing collaborative
proactive applications to be developed but will also take into account other
common challenges in rule-based application design like correctness, termi-
nation and response time [15]. Correctness refers to the fact of producing
the correct output for a chain of rules for all the correct inputs, termination
to the idea of producing an output at the end of a chain of rules and response
time to the amount of time a chain of rules needs to finish its execution or,
in different words, to produce an output.

Developing basic rules for single software systems is a classical task for
rule-based systems but developing sets of special rules for PSs, that activate
on different platforms and are able to exchange information, is a different
challenge. These special rules are describing more complex situations, which
are quite hard to address with a couple of basic rules. This requires a cer-
tain model, according to which rules need to be conceived. This leads to the
following research question:

RQ4. How should various distributed sequences of events be expressed under
the form of rules and sets of rules capable of computing dynamically complex
situations?

The idea is that breaking down a complex situation into multiple smaller,
manageable fractions helps the developers to reason easier and to design the
actions to be taken in each case. This leads to a logical, straightforward and
natural way of representing each situation.

The solution to the next and last research question (RQ5) is addressing
the last objective of this thesis, which is, to study the impact of collab-
oration in diverse networks where various proactive devices are connected
and to validate the theoretical models created as solutions for the previous
research questions. More precisely, the goal is to develop domain-specific
applications that are using the Rule-based Proactive System (RBPS) and
its collaboration technique to solve existing real-world issues, in multiple
domains. RQ5 is formulated as follows:

RQ5. How would rule-based collaborative PSs impact real-world actual sit-
uations and which domains would benefit from such an approach?

In many ways, this last research question is the most compelling of the
research questions discussed in this thesis as it shows, by using real exam-
ples, the potential of PSs. It also emphasizes, giving concrete examples, in
which domains would PSs be a suitable solution to solve existing issues and
to address current challenges.

The research questions that are addressed in this thesis contribute to
a better understanding of the concept of PaC and of the dynamics of an
environment where multiple PSs operate and collaborate. They also indicate
how this technology can be beneficial for both, the users and the developers,
at the same time.

1.3 Methodology

The research methodology conducted in this dissertation is following the
lines of constructive research [16]. Initially, based on previous theoreti-
cal studies, analysed and discussed in chapter 2, key practical challenges
and relevant problems are identified. This first part is designed to shed
some light on both explicit and implicit reasons for considering certain as-
pects as challenges. Then, a solution is designed to address these issues.
More specifically, the core components of a rule-based model are identified
and guidelines for building a functional rule-based proactive engine are pro-
vided. Following these guidelines a new middleware architecture for mobile
devices is implemented, a new principle for converting existing situations
into Proactive Scenarios (PaSs) and a collaboration protocol between PSs
are proposed. This part addresses the first four research questions. The
proposed model is then tested with standard quantitative and qualitative
approaches to show how it behaves in certain conditions and to establish

the performance boundaries under which it can easily operate without hav-
ing any issues. And finally, to demonstrate the solution’s feasibility and
usefulness, several real examples and prototype applications are developed
and tested. They are conceived and implemented in an iterative manner,
which starts with a basic example that is benefiting from the proposed solu-
tion and finish with a complex system, in the last case study, where all the
parts are working together. Adopting multiple applications addresses and
answers the last research question.

1.4 Contributions

The main aim of this dissertation is to contribute to the support of both
the end users, which are using advanced software applications to solve part
of their daily tasks, and the developers, which are building these applica-
tions, by employing PaC. This dissertation brings both a scientific and a
practical contribution. Through the rest of this section the most important
contributions are shortly described.

The first main contribution was to bring arguments in favour of using
rule-based system when dealing with software systems which involve many
decision-making procedures.

The second contribution was to design and conceive a generic rule-based
model that could compute proactively in an object-oriented environment
and to implement it on top of multiple platforms, e.g., as a middleware
architecture for Android-based mobile devices and for Linux-based servers.
This second step includes a prior phase dedicated for identifying the main
core components of such a generic proactive system.

The third important contribution was to plan and implement a com-
munication mechanism for the middleware model to be able to exchange
information with similar models functioning on different devices.

Another key contribution is the method of decomposing complex tasks
and situations, part of the overall set of situations that a developer needs
to address when creating a specific application, into multiple collections of
rules called PaS. This decomposition process allows the developer to be more
structured and to have a more logical format for analysing facts, for taking
a decision in each case and for taking appropriated actions. Furthermore,
a collaboration technique for proactive systems is proposed, which gives
the possibility to perform computations in a coordinated and distributed
manner.

Three cases studies, together with their prototype applications, are pro-
posed to test, evaluate and validate the proposed theoretical solutions. Each
case study can also be seen as a separate contribution as they also addresses
various objectives and challenges in domains like e-Learning, e-Business
management and e-Health or, more precisely, telemedicine.

1.5 Dissertation outline

This dissertation is composed of two main parts besides the introductory
chapter, which contains a brief introduction, the motivation for this work,
the research questions, the methodology used and the main contributions,
and the last chapter, where the main conclusions are drawn. Each part
consists of several chapters, closely related. Part I starts by offering back-
ground information relevant to this dissertation. It represents the theoretical
foundation on which this work relies. It focuses on the fundamental con-
cepts behind the design and development of RBPSs and it is comprised of
the following chapters:

Chapter 2 contains the relevant background information necessary to
understand the main concepts in this dissertation. Key challenges and miss-
ing links between existing problems are identified based on previous research
studies conducted in the related research domains.

Chapter 3 is dedicated to presenting a middleware model that would
address issues and challenges previously identified in chapter 2. The model
comes as a solution for static and passive systems, which need to become
proactive, a change of paradigm which was presented in [17] and awarded
with a best paper award [18]. The core components and the architecture
of the model are discussed, and, the properties of software systems imple-
menting the proposed model are outlined. Advantages and the downsides of
the proposed architecture are also discussed in this chapter and prior linked
research approaches are analysed.

Chapter 4 introduces a structured technique for breaking down and
organising the situations and the goals of a software application, i.e., PaSs.
Then, a collaborative technique, called Global Proactive Scenario (GPaS),
with which RBPSs, based on the model proposed in chapter 3, are extending
their local operations. Furthermore, in this chapter it is shown how this
collaborative technique is a novel method for computing proactively in a
distributed way. Additionally, other research studies that contain similar
approaches to exchange information are examined.

Part II is focusing on the practical implementation of the solutions
proposed in the first part of this dissertation. Starting from a more basic
example of application of Proactive Scenarios, several case studies are given
to exemplify the applicability of PSs in different domains. Each of the case
study, presented in a separate chapter, has a corresponding paper published
in a peer-reviewed conference. Part 11 is divided into the following chapters:

Chapter 5 introduces an application which uses the first type of PaSs,
i.e., Local Proactive Scenarios (LPaSs), to enhance a static e-Learning soft-
ware platform with proactive functions. More specifically, a RBPS is de-
signed to create, maintain and support social communities of students inside
a LMS. This initial application is used next to a single system to transform
this system into a flexible environment. To prove the added value and to

check to role played by the proactive system in increasing the students’ on-
line engagement and in facilitating the learning process a quantitative study
and several observations are conducted.

In chapter 6, with the help of both LPaSs and GPaSs, a prototype
mobile application is developed and discussed. Using group-driven collab-
oration and location-based collaboration, computed proactively, the mobile
devices of several users are automatically switched into silent mode during a
meeting and/or an important event. It is shown how both types of Proactive
Scenarios run on top of the middleware model proposed in chapter 3.

In chapter 7, the implementation and evaluation of a complex e-Health
proactive system which encompasses all the proposed theoretical aspects
proposed in this dissertation is presented. Multiple aspects regarding the
cardiac rehabilitation of patients are discussed, including multiple layers of
feedback for patients provided by the Proactive System, and several appli-
cations for wearable devices, mobile devices and server side are presented.

And, finally, chapter 8 summarises the contributions of this work and
draws the main conclusions. In addition, several research perspectives are
suggested.

10

Part 1

Theoretical foundations

11

Chapter 2

Background information

In day to day life, happenings that have a meaning to somebody or in re-
lation with someone are generally referred to as events. Events are used
to describe certain things that happen in a particular situation. A student
receiving his/her assignment in school, the birth of a child or receiving a
postcard can be labelled as events because something has changed accord-
ing to the previous moment in time. There has been a huge amount of
studies in computer science over a long period of time on how to detect,
analyse, describe, process and react to events. Three important aspects
when speaking about events are data, information and knowledge. They
were initially characterised as a chain [19], where each element would repre-
sent the transition from the previous element. Typically, the starting point
is data, which is collected, classified, corrected and summarised. Then, af-
ter a transformation process, data becomes information. When context is
added to the information, knowledge is obtained. Knowledge is the hardest
of the three to handle as it normally applies to the minds of human beings,
being related to their experience, expertise and judgement. It can be simply
possessed by people as well as integrated and kept on a machine. Wisdom, a
fourth element of the DIKW pyramid [20], derived from knowledge, is added
on top of the first three elements. This pyramid represents one of the most
popular models for representing the structural and functional relationships
between data, information, knowledge and wisdom. Wisdom refers mainly
to knowing what to do, what action to perform and why to do it. However,
when dealing with computing systems, the difference between knowledge
and wisdom is quite subtle, many times authors preferring to stick to the
first three elements of the DIKW pyramid.

A basic example of the relationship between these elements, is illustrated
in figure 2.1. The data, in the given example, represents a set of symbols
or entities, i.e., names like X, Y, Z or course, assignment or student. In-
formation is actually data processed to be useful, e.g., X is a name which
belongs to a student. It also needs to provide answers to the questions

12

\',»\vrhy'? ! -m

‘Student X finished assignment Z‘

in Course Y
How?
X is a student, Y is a course, Z
Who? What? is an assignment
Where? How many?
Y X, Y, Z, course, assignment,
When? student

Figure 2.1: Data, Information, Knowledge, Wisdom - DIKW Pyramid.

"Who?”, "What?”, "Where?”, ?When?”. In the transition step between
data and information, raw data is upgraded to information by giving it rel-
evant meaning. Knowledge incorporates an extended mix of information
that has been assigned to certain contexts, values, expert understanding
and experiences. In the portrayed example, knowing that student X finished
assignment Z for course Y represents knowledge. Two additional levels of
abstraction exist on top of the basic form of the DIKW pyramid. They
apply to systems where it is important to understand why the accumulated
knowledge is justified, what does it mean and what to do with it or the
ability of applying this knowledge.

When speaking about computing systems, knowledge has to be repre-
sented and reasoned about. These two main requirements are essential
for any software system. They are strictly connected and would not work
one without the other.

2.1 Knowledge Representation

Knowledge Representation (KR) is a multidisciplinary field which covers
multiple disciplines such as Artificial intelligence (AI) in computer science
or cognitive representation in psychology and philosophy. If knowledge is
to be processed by software systems, it must contain an explicit and precise
model of representation, including its semantics. As knowledge is one of the
key aspects for building intelligent behaviour [21], it is imperative to have
a mechanism that would represent it in a well-defined formal manner. To
deduce and build knowledge, KR relies on various input events. The events
are also used the starting point for deriving complex states and high-level
systems.

There are several main types of knowledge, i.e., declarative and proce-
dural knowledge as pointed out in [22, p. 61-63], or, declarative, procedural
and metaknowledge knowledge as listed in [23, p. 182]. The difference be-
tween the two, in Al, for example, is better illustrated by the case of a robot
that has to navigate inside a building [24]. If the robot’s software system is

13

based on procedural knowledge, it will contain procedures or strategies to
execute an action like move to a certain floor. On the other hand, if it based
on declarative knowledge, the robot will know how to mowve, turn or stop.
It will need an additional algorithm to help it achieve its goals. Later on,
additional types of knowledge were mentioned by some authors, including
factual and meta-cognitive knowledge [25, p. 46] or tacit, implicit, a priori
and a posteriori knowledge [26]. Each type of knowledge has several repre-
sentations. Choosing a way of representing knowledge is still a big challenge
as each method has its own advantages like, for example, declarative repre-
sentations, which offer standardisation, optimisation and improved methods
of acquiring and reusing knowledge [27, p. 89].

2.1.1 Knowledge Representation Approaches

The term of KR approaches or technologies refers to the set of common rep-
resentation tools like frames, semantic nets, rules, ontologies, logic, Object-
Oriented (O-O) or/and conceptual graphs. A KR approach should support
at least a couple of different kinds of activities. Selecting an appropriated
KR approach is an important step as an inadequate selection could lead to
problems later on, in the last stages of the system development.
Mylopoulos and Levesque classified knowledge representing techniques
into four main schemas: logical representation, procedural representation,
networked representation and structural representation [28]. The first cate-
gory of schemas, which includes first order logic or Prolog, uses mathematical
or orthographical symbols to express knowledge in formal logic. The sec-
ond category, which includes rules of productions systems, employs multiple
sets of instructions for solving domain-related problems. The third category,
which includes semantic networks and conceptual graphs, employs graphs
to represent knowledge. This category of schemas, however, is better suited
to model static knowledge in a particular domain. And, the last category
or the structural representation schemas, makes use of more complex data
structures like scripts, frames and objects to represent knowledge.

Object-Oriented Representation

To handle a bigger number of sentences or procedures in a growing knowl-
edge base a more efficient method of organising them is required. Marvin
Minsky came up with the idea of dealing with O-O sets of procedures to
handle new situations [29]. Frames became one of the first O-O technology
for representing knowledge. However, they were more concentrated on how
to organise and call procedures than on reasoning on objects and their prop-
erties. A more advanced approach to represent knowledge is through objects
and the relationship between them. O-O programming languages provide
both a declarative approach for specifying objects and a procedural approach

14

for defining what happens with the objects. In contrast with frames, mod-
ern programming languages, like Java, support extra features such as data
abstraction, inheritance or encapsulation, a method used to avoid direct
manipulation of private instance variables from outside the same class [30].
These languages have the advantage of making it quite straightforward to
add new functionalities or to craft new behaviour into existing programs.
Several limitations of O-O representation exist, e.g., negations like ‘the mo-
bile phone is not green’ cannot be expressed uniformly or disjunctions such
as ‘the mobile phone is either red or blue’ cannot be defined naturally. O-O
models can be sufficient for quite a few practical systems designed and used
nowadays.

Rules Representation

One of the most popular KR approaches is defined under the form of rules.
Very basic rules can be regarded as condition-action pairs or ‘if [condition],
then [action]” clauses which are used for expressing parts of a decision strat-
egy of a system. For example, the simple rule ‘IF it is sunny THEN I will
go for a walk’ consists of two parts: the antecedent, premise or the IF part
and the consequent, conclusion or the THEN part. It defines a condition
which, if satisfied, produces a certain action to be carried out.

Rules can be seen as simple forms of KR but they are powerful tools,
which encompass both procedural and declarative representations in a uni-
fied form. Rules are used to capture the information which is passed from
the observations and understanding of a developer. According to this view,
a rule is not just another mechanism for KR but a form of actual human
behaviour. Rules that are specifically created for a system do not make
sense when used in other rules systems [31]. Nevertheless, rules are being
used more and more to define a variety of situations and cases like business
requirements, conventional behaviour, policies and protocols. This leads to
an increasing popularity of rules engines as components of various software
systems [27, p. 327].

Rules are a good overall mechanism for representing knowledge because
they can express relations, e.g., IF there is no water in the tank THEN
the tank is empty, or recommendations, e.g., IF it is cloudy THEN take
an umbrella, or directives, e.g., IF the patient is training AND there is a
high risk for accidents THEN contact the doctor, or strategies, e.g., IF the
device is low on battery THEN activate low battery mode (stepl) IF stepl is
complete THEN check for minimum level of battery, or heuristic, e.g., IF a
liquid is spilled AND the liquid pH is smaller than 6 AND the it smells like
vinegar THEN the liquid is acetic acid.

Rules are divided into several distinguishable families of rules, as shown
in figure 2.2. The main families are integrity rules, derivation rules, reaction
rules, production rules and transformation rules. Figure 2.2 shows an im-

15

[Rule]

A
[Integrity rules] [Deliberation rules] [Reaction rules] [Production rules] [Transformation rules]
T T i A
sQL [Inference] [Procedural] [XSL]

Figure 2.2: The main families of rules [1].

portant subcategory of rules for each family, except for the derivation rules
and reaction rules, which are described in detail in figure 2.3.

Among the main families of rules, the most common are is the family of
production rules. In literature, different classifications of rules are portrayed
[23, p. 205], [32, p. 22|, [33], [34, p. 237]. In AI, the most common types
or rules are knowledge rules and inference rules [23, p. 205]. Knowledge
rules, known as declarative rules, are used for declaring all the facts and the
relations regarding a certain situation or a happening, while inference rules,
also referred to as procedural rules, are used for recommending approaches
for dealing with the situation or the happening. A concrete example of a
knowledge rule is ‘IF there is to much oil on the market, THEN the price of
the oil will go down.’, while ‘IF the required data is not available, THEN ask
the user for them’ is an example of an inference rule. In rule-based systems,
knowledge rules are designated for the knowledge base, while the inference
rules are integrated into the inference engine. More about rule-based systems
and their components in the next section. Meta-rules, another important
type of rules, are used to illustrate how to make use of the other rules. More
precisely, they describe the behaviour of other rules. For example, ‘IF the
patient cannot breathe AND his/her pulse is very low, THEN apply the set
of respiratory rules plus the alert rules’ is a classic example of a meta-rule.
Turban et al. [23, p. 205] considers meta-rules as inference rules, while
Matsatsinis et al. [34, p. 237] argues that meta-rules represent a different
type of rules containing knowledge on how to handle the other rules. In [32,
p. 22], rules applied in the business domain are divided into multiple types
such as facts, definition rules, integrity rules, production rules, reaction rules,
transformation rules, data processing rules, control rules or meta rules. They
are either used for defining terms and notions in current use or for defining
how to utilise other rules.

Another particular type of rules, used by rule systems on the Web, is
represented by the rules of the Rule Markup Language (RuleML) family,
which comprises a taxonomy of languages, sublanguages and subfamilies
expressed in the Extensible Markup Language (XML). RuleML contains two
main types of rules, i.e., deliberation rules and action or reaction rules, with

16

RuleML]

A
(]
[Deliberation rules] [Reaction rules]
A
] (]
[Modal) [HigherOrderLogic(HOL)] [CEPrues | [ECAPrues] | kR |
A
[First Order Logic (FOL)]

A l ECA rules l

[Derivation rules]

{ * A
[Fact] [Hornlog] [Query]

Figure 2.3: A simplified version of the taxonomy of RuleML rules [2]

multiple other subtypes of rules used by different systems, as illustrated in
figure 2.3. For example, Event Condition Action (ECA) rules, a well-known
subtype of action rules, are used intensively in event driven architectures
like big data management and in active database systems. The ECA rule
shown in figure 2.4a specifies how, for the occurrence of an even, i.e., a
new customer registers for a flight, the desired output action is triggered,
i.e., a new promotion will be offered, if certain conditions are fulfilled, i.e.,
the flight is operated by the Luzair company, the destination is the city
of Luxembourg and the time travel is bigger than 7 hours. However, the
behaviour of the ECA rule in this example is reactive, meaning the action
of offering the promotion will only be triggered after a customer will buy
his/her plane ticket. A proactive behaviour would be offering this promotion
when a customer would be searching for a flight which would meet all the
requirements.

Another example of a rule of the RuleML family is presented in fig-
ure 2.4b. It represents a subtype of derivation rules, which are subtype
of deliberation rule. In the presented example, the rule is classified as a
business rule. It is a representation of the sentence expressed in English:
‘A seller is premium if his/her selling amount has been minimum 1000 euro
last month.’. Datalog, a markup language which combines Structured Query
Language (SQL) and Prolog, is the foundation for the kernel of RuleML. Be-
sides being able to define facts for each row of a relational table, it can be
used to define rules that correspond to tables. It contains similarities with
the Java languages, which defines classes with capital letters and methods
with lower letters. In Datalog, the upper-case tags are used for types and the
low-case tags for roles. The seller is a variable, represented by the mark-up

17

<Implies>
<head>
<Atom>
<Rel>premium</Rel>
<Var>seller</Var>
</Atom>
</head>
<body>
<Atom>
<Rel>selling amount</Rel>
<Var>customer</Var>
<Ind>min 1000 euro</Ind>
<Ind>previous month</Ind>
</Atom>
</body>
</Implies>

13

ON
AddFlight (Custid,
Airline,FromCity,
ToCity, Depart,

| IF

Arrival)

Airline = ’Luxair’
and

ToCity = ’Luxembourg’
and

Arrival-Depart >= 7
THEN
OfferPromotion
(CustId,
’ParfumePromotion’,
’LuxParfume’)

(a) A Datalog rule

(b) An ECA rule

Figure 2.4: Rules of the RuleML family.

‘<Var>seller< /Var>’, and is assigned a unary relation, i.e., ‘<Rel >pre-
mium< /Rel>". This is only one example which shows how RuleML Datalog
rule allow complex conditions and variables to be defined. Nevertheless, the
XML representation of rules is limited if compared to O-O representations,
being less natural and less flexible in representing complex situations and
the relations between them.

2.1.2 Additional Challenges in Knowledge Representation

KR involves a couple of particular challenges that are independent of any
particular representation or implementation. These challenges point out
more general issues in KR like choosing the granularity level [35], dealing
with uncertainty [36, p. 199], handling information overload [37] or choosing
the right method for representing set of objects, attributes and their relation-
ship [38, p. 65].

The central point of KR is to provide a method for a developer to ex-
press his/her knowledge in a formalised way. This basic definition contains
already one of the important challenge in KR, i.e., choosing the adequate
granularity level [35]. More precisely it refers to finding the correct balance
for expressing a situation between lightweight methods of KR and more
complex methods of formalism.

Situations can be expressed in terms of entities, i.e., variables, objects,
their attributes and their values, or in terms of sets of entities. Choosing the
right representation can be complicated, especially when dealing with sets

18

of objects [38, p. 65]. For example, certain properties of objects are valid
or true as components of a set or a collection of objects but are not valid if
taken as individual entities.

The rapid growth of information available in ubiquitous environments
has led to an information overload problem. This is an issue for developers
that want to integrate their knowledge into software systems as they are
faced with an increasing number of complex situations they have to anal-
yse. Developers have to design advanced structures that will allow them
to represent all the entities and their relations related to their applications.
This challenge is not particular to KR and is mostly related to software
engineering.

Humans have the tendency to apply familiar methods to solve a problem,
even if the problem is new. When a new area of knowledge or a new situation
in a particular area is involved, people opt to apply common knowledge
they already have to deal with them. But, inevitable, there will always be
additional impediments, so it is necessary to come up with new approaches
to address modern requirements. The representation of new requirements is
a major challenge in multiple fields in computer science like Al

Challenges for Rules Representation

Apart from the more general challenges and issues in KR, there are several
challenges specific for each particular approach of KR. For example, choos-
ing to express the knowledge of a systems in terms of rules brings a couple
of difficulties [27, p. 327] [39, p. 142] [40, p. 3-20] such as overcoming the
traditional thinking model of using algorithms that are defined monolithi-
cally, splitting different situations into multiple sets of rules, finding a good
mechanism for grouping and classifying rules or finding a balance of which
attributes, relations and actions to put inside a rule. These are mainly con-
ceptual problems that have to be solved manually by the developer, which
decides which part goes where and how the main goals are achieved with
each set of rules. This process tends to be less efficient if the developer
does not have a guiding algorithm for making the related calculations or a
method for allowing effective rule-grouping.

Software engineers and human experts in specific domains are accus-
tomed to adopt a single algorithm to solve a specific problem. However,
when it comes to rules or sets of rules, the algorithm is composed of a se-
ries of mini algorithms or smaller pieces, independent from each other, that
work together to achieve some goals. These smaller pieces develop into the
conditions and the actions of the rules. Once this model is adopted by the
developers of the rules, it gets quite straightforward to break situations into
rules. In spite of adopting this model, the solution brings up a new chal-
lenge: should each situation or mini algorithm be grouped in separate sets
of rules, as exposed in figure 2.5a? Or should they be all put together and

19

ﬁm

Situation 1 J—

Situation 1

\/\ Set 1 of rules \/_\ \
/

" . Situation 2
Situation 2 —_— o \/—\ A common set of
\/\ J— rules

Set 2 of rules

(b) A set of rules for multiple situa-

(a) A set of rules for each situation. tions.
:::::i || — @
— @Goal 1 Miniset C of Set 1 of rules Goal a

N N\,
Miniset A of Set 1 of rules —_— @

D = O~

©
Miniset B of Set 1 of rules Goal 3
Goal c
Miniset B of Set 1 of rules
(c) Sets of rules with one to many
goals. (d) Set of rules that share rules.

Figure 2.5: Conceptual and design challenges in rule representation.

no differentiation made, as illustrated in figure 2.5b? If the rules are not
grouped in a structured manner it will lead to big problems when having to
handle sets of thousands of rules. But if the rules are grouped into distinct
sets of rules, should each set of rules have one particular goal, as shown in
figure 2.5a by the first mini-set of rules, i.e., mini-set A, or they could be
targeting multiple goals, as the mini-set B of rules in figure 2.5a7

If a solution where each mini-set of rules is assigned to one goal is chosen,
it would solve partially the problem because another issue will need to be
addressed, i.e., the fact of having common rules. Figure 2.5d presents a
sketch of this new sub-challenge. For example, considering an e-Learning
scenario, a system would want to notify the students in several different
cases like when there is a new assignment or when they forget to complete
their assignment. The notification action would be designated to be carried
out to a single rule, which would contain the algorithm for sending generic
messages. It would make no sense to have multiple rules with the same code
but with different names just to simplify the conceptual design phase. But
what would happen if the same rule would be called simultaneously by two
other rules? This could generate a conflict at the level of the mechanism or
engine which processes the rules.

Digging even deeper, at the level of the structure of a rule, several ques-
tions arise in terms of how should the mapping of actions and rules be done,

20

partOf
partOf

L
Wi

(a) Mapping choice 1. (b) Mapping choice 2.

partOf)

rulel partOf
w
w
rule2
w
w
rule3
w

*es

(¢) Mapping choice 3. (d) Mapping choice 4.

Figure 2.6: The mapping between functions and rules.

as shown in figure 2.6. For example, should there be only one action per rule
like in figure 2.6¢ or could several actions be implemented in the body of
the same rule like in figures 2.6a, 2.6b or 2.6d? And if a rule would contain
several possible output actions, up to how many functions or instructions
should a rule have?

The simplest option would be to choose the most basic type of rule,
i.e., the ‘IF condition THEN action’ rule. But this would lead to some
limitations in terms of expressing more complex instructions and strategies.
On the other hand, if a rule becomes too complex regarding the functions it
has to execute or the operations it has to perform, it could cause problems
in terms of execution time or, if one of the operations or functions of the
rules would fail, it may cause the entire algorithm of the rule to stop. And,
because part of the operations rules perform in general imply the generation
of other rules, reaching several goals of the applications could be delayed
or even interrupted. Finding a correct balance between the elements that
compose the structure of rules is an important aspect that the developers
have to bear in mind when developing complex software systems.

21

2.2 Reasoning

If in the previous section the thought of providing a structure for capturing
and expressing knowledge was described, this section is more focused on
the behaviour of systems that are using some of the formerly mentioned
structures for representing knowledge and on their actions.

The term ‘reasoning’ is applying to about everything which involves
taking a sophisticated decision. Reasoning is about an existing mechanism
that can interpret knowledge and about determining what to do with this
knowledge. Several types of reasoning can be differentiated, from analogical,
conditional or inductive reasoning to traditional logic, based on the analysis
of premises [41, p. 156].

In everyday use, all the software systems are reasoning systems as they
incorporate, in their code, some mechanism for taking decisions. However,
most of these systems are using simple, straightforward techniques of rea-
soning like ‘if else’ statements or mathematical propositions. Even though
many authors refer to more advanced reasoning processes as intelligent rea-
soning this utilisation of the word intelligence is not agreed by all the au-
thors which argue that intelligence is only a term to describe a typical form
of human behaviour [42]. Either way, the most common use of the term
‘reasoning’, in computer science, is related to the methods or strategies of
applying the computer representation of logic.

Reasoning systems cover a wide range of applications from robotics, com-
puter vision and game theory to natural language processing or business
management. A number of significant categories of reasoning systems have
been used or proposed for reasoning in Al systems, workflow systems or
deductive database systems. Knowledge Management is a well-known field
where reasoning plays an important role. It is, however, more centred on
organisational knowledge and how to make the best out of it in companies,
public institutions or other large organisations. More relevant to this disser-
tation are the categories of reasoning systems used in AI. These categories
include constraint solvers, theorem provers, logic programs, rule-based sys-
tems, deductive classifiers, machine learning systems, expert systems, case-
based reasoning, agents or intelligent agents, or procedural reasoning sys-
tems. Many of them share, to a certain degree, strategies, techniques and
various algorithms for applying knowledge.

Rule-based systems, for example, use rules to represent knowledge and
inference engines to manipulate the knowledge to arrive at a particular solu-
tion. Deductive classifiers, a concept which started to attract attention after
rule-based systems were studied intensively, use frame languages, similar to
0-0 languages, to describe classes and their relations. Case-based reasoning
systems address an issue by focusing on previous problems related to that
particular issue, which already have a solution. Logic programs are another
side of the coin because they rely on programming languages like Prolog to

22

formally solve problems.

2.2.1 Rule-based Systems

RBSs employ rules not only to represent knowledge, as seen in section 2.1.1,
but to encode the behaviour of the system. And, by referring to the be-
haviour of a system, it is meant to include defining actions as capturing,
distributing and applying knowledge. Trying to define problems and to
solve them by thinking in terms of rules is one of the most common and
old ways of human reasoning, including the most famous set of rules, the
Ten Commandments. Going not so back in the past, in the eighties, tradi-
tional rule-based systems were considered to be one of the best solutions for
encompassing the know-how of a human expert [43].

Even though RBSs are basically tools present everywhere in technology
and science, most of their usages are done in a straightforward way, without
taking into account their properties or considering any kind of optimisation.
They are one form of implementing knowledge-based systems and applying
them to fields like AT or Knowledge Engineering (KE). In fact, RBSs provide
a paradigm for fields like decision support, system monitoring, intelligent
control, operational knowledge encoding or situation classification [5, p. 7].
They support the development of applications in the previously mentioned
fields. Numerous successful applications using RBSs have been developed,
including controlling the power on a research reactor at the Massachusetts
Institute of Technology [44] or, in the medical domain, to help the diagnosis
of aphasia’s subtypes and the classification of pap-smear examinations [45].

A RBS consists of at least 3 main parts: a collection of rules or a knowl-
edge base, a collection of facts or a working memory and an interpreter,
sometimes called inference engine [46, p. 126] [47]. Some authors consider
that simple RBS can be composed only of a rule base and an interpreter
[p. 270][48]. Knowledge Engineering is a wide discipline that involves the
creation of RBSs [49]. KE encompasses steps like problem assessment, rep-
resenting the knowledge as facts and rules, or choosing the appropriated
software tool to develop the RBS and testing it. The collections of rules
represent long term knowledge, while the collections of facts, which are case-
specific, represent a form of short term knowledge. Facts are unconditional
statements, which are true at the moment of their usage [50, p. 19]. Or they
can be simple objects relevant for rules. The way facts are obtained in a
RBS differ from system to system. They can be acquired from the sensors
connected to the system, they can represent information obtained from the
user’s input, can be already stored in the memory of the system or can be
derived from rules. The inference engine is a mechanism for processing rules
and is carrying out the reasoning process for finding a solution by making
the connection between the facts and the rules.

Reasoning in RBS is the way in which rules are put together to create

23

new knowledge. It is performed according to two main schemes that manage
deductive inference: Forward Chaining (FC) and Backwards Chaining (BC)
46, p. 195].

The FC scheme is a data-driven approach, meaning that the initial facts
are known but not the necessary conclusion. In a FC system, the working
memory, which is in a continuous process of updating, is responsible of
managing the facts. The inference engine, also referred to as the rules engine,
is in charge of handling the rules and of taking the right action course needed
in each situation. Rules are triggered when their specific conditions are
fulfilled. These conditions need to match patterns of facts in the working
memory. If the facts are matched, then an action, which normally adds or
deletes something from the working memory, is performed. The steps of a
basic algorithm of a FC system are to 1) find the rules whose conditions
hold, 2) select one of the rules to fire and 3) to carry out the targeted
actions. The second step involves an extra step for choosing a strategy for
handling conflicts between the rules. The algorithm is part of a cycle which
is repeated until the targeted goal is reached or there is no rule which fires
any more.

Two of the most well-known examples of FC systems are XCON, written
in the forward chaining rule-based language OPS5 and used for configuring
VAX computers [51], and CLIPS [52], one of the most used RBS. Alterna-
tives to FC approaches imply either that priorities should be attached to
each rule or the first rule found should be executed or the rules that match
should be investigated in parallel. The Rete algorithm was proposed to solve
the problems that concerned the rule matching step, which was taking more
than 90% of the time of a RBS [53].

If the designers of a system know what the conclusion might be, a FC
system would be less efficient than a BC system. In a BC system, as its
name says, the starting point is the goal of the system. In contrast with FC,
which is applied at assertion time, BC is used at query time. In order to
achieve this goal or to satisfy the initial hypotheses, the BC system queries
the knowledge base for validating the hypotheses or to determine if the goal
can be reached with the available information.

One of the main differences of these two approaches, FC and BC, is
that the rules used in each approach differ from each other. Even though
rules keep the same ‘IF...THEN...” structure, a FC rule would not usually
contain an action after the ‘THEN’ statement but, instead, it would contain
a certain state. If the premises or the conditions after the ‘IF’ statement are
true then the state is valid. For instance, the rule ‘IF' (lecturing Programming
1) AND (writing article) AND (day Monday) THEN (overworked person)’
is an example of a BC rule. A BC system does not have to keep a working
memory but is more concerned about the list of goals. BC is used, for
example, in Prolog and for solving SQL queries.

24

2.2.2 Expert Systems

Two decades ago, in 1997, IBM’s super computer, Deep Blue, defeated Gary
Kasparov, the world chess champion at that time [54]. It was one of the first
signs that Al systems are able to surpass the human intellect in a particular
domain. Later on, in 2011, another super computer from IBM, Watson,
consisting of ten racks of ten Power 750 servers, defeated two of the best
Jeopardy! players in the world [55]. This was yet another example of how
man was overcome by a machine, how machines are getting closer to passing
the Turing test [56]. These two famous cases were actually implementations
of Expert Systems (ESs), where human expert knowledge in a particular
field was integrated in a computing system. These cases show how it is
possible for computers to ‘understand’ and to analyse complex situations
with precision, including many variables and possible scenarios, and how
software programs can take the best possible decision in the given circum-
stances. Nowadays, advances in the particular field of AI reached such a
development point that chess programs are able to beat any human chess
player in the world.

Some authors make no distinction between ESs, RBSs or production
systems [41, p. 149] [57, p. 68]. RBSs and production systems are frameworks
that help construct ESs, rather than the ES itself. Production systems are
FC RBSs, while ESs can be implemented with the help of RBSs, case-based
systems, neural networks or a hybrid model, a combination of the previous
ones [57, p. 68-71]. A RBS, for example, becomes an ES when there exists
an ontological model for representing the domain and the other stages like
knowledge acquisition. Just because some knowledge is represented inside a
rule does not make the system an ES. RBSs can be constructed without the
assistance of a human expert in a certain domain as it can contain simple
instructions.

The goal of an ES is to replace human experts in a certain domain [58].
This does not mean that an ES applies the thinking model of the specialist,
it just focuses on the knowledge provided by the expert on how to address
a problem in a specific domain. Several definition for ESs exist but they
all differer in one or several ways and so, no common, unique and precise
definition exists in the literature. Despite the lack of a single definition, ESs
present a couple of characteristics they all share like the capacity of sepa-
ration between knowledge and reasoning, the ability to perform reasoning
over different KRs or the feature of solving a problem heuristically [59, p. 3]
[60, p. 35]. More precisely, the first characteristic refers to the clear separa-
tion of the knowledge base and the inference engine, which is also a general
strategy used by all traditional RBSs. The second one refers to the multiple
KR schemes available as ESs are implemented using various programming
languages such as Prolog or Java. And the third characteristic refers to the
rule of thumb which is applied when solving a problem. These features are

25

rule ”validate payment”

dialect ”mvel”

dialect ”java”

when

5 $h1 : Payment(

6 paymentType in ("Euro”, ”Swiss Francs”) && (type in ("VISA”,
"MASTER—CARD?”) || bank in (”Luxembourg”, ”Switzerland”))

- W

o)

g| then

9 System.out.println($h1.paymentType + 7:” + $hi.bank);
10 $h1.setValidState(true);

11| end

(a) The ‘validate payment’ rule in Drools.

1| public class Payment {
2 private String paymentType;
3 private String type;
4 private String bank;

6 private boolean validState = false; //the payment is initially invalid

8 //setters and getters for each field

(b) The class Model of the ‘validate payment’ rule

Figure 2.7: A rule written in Drools language and its corresponding Java
Class Model.

important because they make the differentiation of ESs from conventional
programs.

ES technologies include specific ESs, shells or ES development environ-
ments. Specific ESs are that category of ESs which offer recommendations in
a specific task domain. ES development environments include tools like the
high level symbolic programming languages like LISP as well as hardware
devices like workstations or minicomputers. ES shells are tools that provide
both an inference engine and a user-interface for it. When shells are provided
with a knowledge base then they become ESs. Shells are used intensively in
developing ESs and not to solve a particular problem by becoming the ES
itself. Advanced shells offer the possibility of choosing from multiple KR
approaches and reasoning techniques. Among the best-known ES shells, of
particular interest is the Java Expert System Shell (Jess) [61], which is a
rule engine, firstly developed as a Java port for the CLIPS language, that
allows experts to build Java software that has the ability to ‘reason’ using

26

knowledge provided by the experts in the form of declarative rules. Jess
can be really easy to integrate with Java-based web-enabled applications
as it creates its rules in XML format. Another option is the open-source
rule engine, based on Drools, called JBoss Rules [62]. A big advantage of
this implementation is the adaptation of the Rete algorithm for the O-O
approach [41, p. 212]. This approach can be quite handy when an expert
in a field that does not have programming skills in a certain language can
express his/her expertise in a more natural way.

For example, figure 2.7 contains a simple rule written in Drools and its
corresponding class model in Java. The ‘validate payment’ rule, illustrated
in figure 2.7a, is set to print out the details of a payment and to validate the
payment when certain conditions are meet, e.g., the payment has to done
at a bank either in Luxembourg or in Switzerland. It uses two dialects,
mainly the Java and the MVEL, which is focused of pointing the variables
to the setters and the getters declared in the model class, shown in figure
2.7b. This category of rules is well-suited for writing business applications
but still has a lot of catching up to do for the mobile world, even though
attempts have been made [63].

Rule-based Expert Systems

In general, this subtype of ES is one of the most representative subtypes for
ESs. This subcategory includes famous programs in the early eighties such
as MYCIN [64] and DENDRAL [65] or, more recently, programs constructed
with the help of CLIPS, an ES shell. Rule-based Expert Systems (RBESs)
constructed in CLIPS are widely used in sectors like industry, government
or academia because it offers support for three important paradigms, i.e.,
0-0O programming, rule-based programming and procedural programming
[52, p. 912].

A RBES consists of five main parts, i.e., the knowledge base, a database,
an inference engine, an explanatory subsystem and a user interface [41,
p. 154] [66, p. 151]. The last two parts are extra components specific to
RBESs. The explanatory subsystem is a tool which provides explanations
to the end-used about the reasoning schema employed by the ES and how
was the conclusion reached. This can be useful when checking the active
rules that are currently running on the system or the rules which were un-
successful. The user interface is in fact the tool which permits the end-user
to work with the ES and can consist of several graphical elements like inter-
faces or menus.

2.2.3 Agents

Agent is an umbrella term which covers multiple domains. Many authors
tried various definitions for describing what an agent is [67, 68, 69, 70, 71].

27

The term of agent is associated by many other authors to the ability of a
system to mimic the human intelligence. That is why these authors use
the notion of intelligent agent to express the same meaning. A common
agreement for a precise definition, accepted by the AI community, has not
yvet been found due to the many research sub-fields in Al, ranging from
more general topics such as perception, knowledge or logical reasoning, to
specific areas such as medical diagnosis, robots or prediction systems, where
agents have different properties, specific to each sub-domain. Agents were
proposed in the idea of being a tool for analysing software systems and not
for splitting the world into agents and non-agents [67, p. 33].

Definitions for agents can be either very general, e.g., an agent is an
entity that perceives a particular environment through its sensors and acts
upon it through effectors [67, p. 31], as depicted in figure 2.8a, or very spe-
cific, e.g., agents are systems that have properties such as autonomy, social
ability, reactivity and pro-activeness [69]. In [71], agents are considered as
entities capable of acting in the place of someone with explicit permission.
This definition is very general and weak, and can be interpreted very eas-
ily in many different ways. Some authors make a clear distinction between
agents and autonomous agents [72], while others impose some more restric-
tive properties for defining agents like sensing and acting autonomously or
like realising, in the sense of accomplishing, a set of goals and tasks [70].

If a general definition is taken, then, an agent can be nearly anything
or anybody that is able to take decisions on its own. Thus, for practical
reasons, the authors in [73, p. 23] proposed that agents should be divided
into several categories, i.e., physical or tangible agents such as robots,
software agents or pieces of software code that can take autonomous action
and natural agents or humans and animals. Following this line of logic, the
authors of the first definition [67, p. 31] extended and explained further their
initial definition and thus, agents became software agents. A software agent
is a computer program that performs a certain task if it decides any action is
necessary [74]. In order to be distinguished from simple software programs,
they have other characteristics such as autonomous control, can perceive
their environment, are adaptive, can persist over a longer period of time and
can take over another’s goals [75, p. 4]. Also, in [69], the authors distinguish
between a weak notion of agency, provided in the previous paragraph, and a
strong notion of agency, i.e., where an agent has more human-like properties
such as knowledge, belief, intention and obligation.

As pointed out previously, the difference between these definitions is
quite unclear. They try to identify what do various software agents have
in common in order to distinguish them from other programs or software
systems. In [71], authors indicate that if all the software agents are in the
end software systems, the opposite, i.e., that all software systems are soft-
ware agents, is not true. They propose two properties for verifying if a
program can be considered as a software agent: the test of temporal conti-

28

Environment

Perception Actions

l Sensors Application
Actions
N

Perception Action
Software System
Sensors f Actuators .
(b) A proactive software system com-
Agent . .
posed of an application and a Proac-
(a) The representation of an agent tive Engine (PE)

Figure 2.8: A side-by-side representation of two related software entities.

nuity and the perception of its environment. They argue that the majority
of programs are failing one of the two properties. The third property, au-
tonomy, is another requirement considered essential in other studies [73,
p. 26] [76]. However, autonomy or an autonomous agent, has various
meanings, varying from one author to another. In [76], autonomous means
that an agent can perform an action without implicit intervention from a
user or other programs, while being in control of its own actions and internal
state. On the other hand, in [75, p. 37], autonomous refers to the ability of
an agent to lean as much as it can to fill out the gaps caused by partial or
incorrect prior knowledge. More precisely, autonomous refers to a system
that can opt to perform a task free from outside influences [77]. There are
other properties, like collaboration or collaborative behaviour and adaptive-
ness, which are used by some authors to define agents [78, p. 112], but it is
more a strong property for a certain type of agents, i.e., multi-agents.
The previously described properties are not outlined for creating a tool
that checks if a software system is a software agent, but it is dedicated
for comparing the proposed computing model described in chapter 3 to a
software agent. The computing model presented in this study, i.e., the
Proactive Engine, is a rule-based system, which executes rules. It is used as
a complementary software and, if it not used aside another program, it has
no purpose because initially it does not contain any rules to execute. The
task of creating rules for a certain application is assigned to the development
team. The PE is executed, on the server-side Operating System (OS), like a
normal Java application [14] and on the mobile OS as a middleware software
[79]. The OS can interfere at any given time, for well-known reasons like
resource limitation, and can stop the activity of the PE. The engine depends
on the environment where it is executed. This will affect the autonomy or
the capacity of acting on their own and the long-time property which need
to be satisfied by a software agent. If it is not taken into consideration the
intervention of the OS, then these 2 properties are weakly satisfied because
the PE is designed to run and execute rules continuously in the background.

29

Local database

<queries app A, app B, app C>

rules <b1, b2, ...>
rules <c1, c2, ...>

App A App B App C

1
|
|
|
|
|
| rules <al, a2, ..>
|
1
|
|
1
|
|

Environment
O-------mm e O

Figure 2.9: The architecture of a Proactive System.

The PE taken together with an application and a set of rules, as seen in
figure 2.8b, is not similar if compared to a software agent, as the rules are
predefined on the Proactive System. There is no mechanism for generating
new code or new rules, and so, the learning process is limited to what is coded
inside the rules. The PS does not help building intelligence, it acts how it was
programmed, based on the integrated knowledge. Figure 2.8b shows that
both, the PE and the application, can take different actions and interact
with the environment in different ways. Another point, shown in figure 2.9,
is that the PE was designed as a system where multiple applications could
execute sets of rules or PaSs, without developing a new execution mechanism
each time. On the other hand, software agents have exclusive access to their
data [73, p. 73]. If an external process or another program can change the
agent’s data, it would not have control over them and this could prevent it
from following its goals. An agent builds knowledge and needs a structure
to store and represent facts, actions, goals and its computing environment.
This helps the agent to deal with uncertainty or situations that may occur
and which were not anticipated. The PE, on the other hand, does not
handle unforeseen situations, it performs only actions that are integrated in
its rules. And, to know from the beginning all the possible situations that
might happen and to create a rule for each of them, is close to impossible
when talking about complex computational systems.

To summarise, even though the proposed software system in this work
can be seen as a software agent because they may share some properties
like context-awareness, adaptiveness or collaboration, they are, nevertheless,
distinct entities. A PE could be used together with a software agent for pro-
viding proactive features, addressing one of the important research questions
in agent theory, i.e., about providing an agent with proactive behaviour.

30

Chapter 3

The Proposed Computing
Model

As it has been pointed out in the previous chapter, RBSs comprises both
an approach to support robust software development and a simple and well-
structured method to represent knowledge and to reason about it. Among
other benefits, RBSs give the developer the possibility to add rules to extend
an existing set of rules, if the behaviour of the system is not complete or
some additional unprocessed situations or actions were discovered at a later
date. However, a pure, traditional rule-based approach has its limitations
as any other particular approach when compared to others, as also seen in
the previous chapter. O-O programming, opposed to traditional RBSs, uses
objects as knowledge units, which describe various concepts and operations.
However, a solution which will combine the advantages of procedural pro-
gramming, of logic programming, of declarative programming and of O-O
programming is not so easy to design. Following this line of reasoning, in
this chapter, a solution incorporating both the O-O paradigm and the rule-
based paradigm is proposed. This approach is preferred because it benefits
from the advantages of both paradigms and because several limitations of
each particular paradigm are overcome.

3.1 The Proactive Engine

The model proposed in this chapter for representing knowledge and for per-
forming advanced computations is called the Proactive Engine. It is a
rule-based system designed to work not only with common data types, vari-
ables and facts, which are supported by the majority of rule languages, but
also with objects. Objects are necessary because they correspond usually
to real-world entities and because they can express quite complex struc-
tures. Instead of providing a solution that implements objects into rules,
which suffers because rule-based programming is not as portable as O-O

31

programming [80], this chapter offers a model which uses O-O languages as
a foundation for implementing rules. The level of expressiveness, precision
and wordiness often depends on the programming language. For example,
high-level programming languages like Ruby or Python may be better in
terms of expressiveness, while lower-level programming languages like Java,
C or C++ tend to go for wordiness.

The PE is conceived as a middleware system, performing actions be-
tween the OS of the device and the applications. Together with a software
application and a corresponding set of rules it represents a PS. The PE is
intended to behave ’silently’, in the background of the OS, where it oper-
ates, the same way as background services do on many OSs. This approach
is done with respect to the PaC paradigm, which is intended to remove the
person that uses applications from the computational loop and put him/her
in a supervising role. This way, the user does not have to give an explicit
command in order for the system to perform an action, e.g., execute a rule.

The PEF is responsible for maintaining a precise overview of the PS’s
goals and for executing Proactive Rules. It is also used for controlling the
state of the PS. The object-oriented rule-based structure ensures an intelli-
gent and automatic management of knowledge.

3.2 The Modular Architecture of the Proactive
Engine

The PE, as a middleware rule-based system, is composed of multiple com-
ponents, i.e., a Rule Engine (RE), a local database, a Queue Manager (QM),
a Notification Manager and a Communication Engine, as seen in figure 3.1.
These components work together for allowing the PE to compute proac-
tively. Each of the PE’s components has a different function and is in charge
of a particular process. For example, the RE is taking care of executing
all the rules that are in the current queue. More about each component’s
function in the next subsections. An additional component or a database
Application Programming Interface (API) is added when the PE works to-
gether with a system which has its own database. This database API is
composed of a set of subroutines and queries necessary to access the com-
plementary software’s database. The main advantage of the PE is that it
keeps the logic separated from the code of the application. Being split in
different components or modules it is much easier for developers to work or
modify a single unit instead of changing the entire system.

With such a modular architecture, the PE is able to capture relevant
context information, support distributed reasoning, to act pro-actively, to
provide adaptation mechanisms and to perform multiple collaborative ac-
tions at the same time.

32

] Interface Interface
g | |
° Layer
< A A
— user's context
v N v
[-
- Middleware o _
2| _ |Layer [Notification Manager]
gl 3
°ll 5
— |«3 | (Communication) [Queue Rules
2 Engine Manager Engine Tocal
> oca
- <
g | = é E '@‘ Database
5 @ External
E x - - Proactive
3 Proactive Engine System
z i
| Network Layer M ge 1 | | M ge 2 ann |

Figure 3.1: The Modular Architecture of a Proactive Engine.

3.2.1 The Rule Engine

The Rule Engine is a mechanism that is responsible for executing Proactive
Rules. This process happens in iterations. An iteration is a repetitive step,
consisting of a step of verification and execution of Proactive Rules (PRs).
The duration of an iteration can vary, in function of the number of rules
that are in the queue of rules that have to be checked for execution. The
duration of an iteration depends on the computing power of the system.
An example of how many PRs can be executed in one iteration on different
OSs and how much time it take for the iteration to carry out all its tasks is
shown in chapter 3.4. The time interval between two consecutive iterations
is always constant and its value is determined by the developer. It can be
adjusted in function of the performance of the device on top of which the
PE operates.
Basically, the functions of the RE can be broken down as follows:

e Selecting Proactive Rules to be examined or checking the Current
Queue for a list of Proactive Rules;
e Selecting the Proactive Rules to be fired in an incremental order;

e Checking the activation guards of each selected Proactive Rule for
triggering the rest of the phases;

33

e Finishing the execution of the different phases of the triggered Proac-
tive Rules.

The RE executes PRs in the order they are added in the queues of the
QM. They can also have priority labels, to specify the priority order in
which the PE should execute the PRs. It contains 3 important parameters:
F, or the frequency of an iteration, D, or the latency that can occur between
consecutive iterations and NN, or the maximum number of PRs that can
executed during an iteration.

Multiple instances of the same PR can exist on the PE. For example,
the action of sending a message to the GUI of an application can be de-
fined inside a PR. This rule can be instantiated multiple times in different
situations, a process which can happen during the same iteration of the PE.

3.2.2 Proactive Rules

The rule that the RE is processing is a special type of rule, with a particular
structure. To make it easier to refer to it, the name Proactive Rule is
chosen. Its structure is more complex then the classical IF-THEN rule
and other types of rules presented in chapter 2.1.1, and is adapted for the
0-0O paradigm. It is composed of 5 parts and it was first proposed by
Zampunieris [14]. These 5 parts include data acquisition, activation
guards, conditions, actions and rules generation. Choosing a more
complex structure for rules was done for the efficiency and simplicity of
parsing rules and of executing them. Also, it is clearer to the developer
where to put instructions or actions. This structure was particularly selected
to comply with O-O implementations of the PS. This approach allows the
PS to skip the step of checking for the type of the parameters of traditional
rules which are part of a knowledge base. The 5 parts of the PR can be
implemented in O-O programming languages using methods.

During the data acquisition phase, relevant contextual information is
collected. This information is used in all the other 4 phases of the PR and
it is vital for helping the PR to take different decisions. The activation
guards phase is made out of a series of tests to establish if the rest of
the rule is going to be processed. If the activation guards are evaluated
as true then the next phase, i.e., conditions, is going to be executed for
sure. Otherwise, the two next phases, i.e., the conditions and the actions,
will be skipped. The conditions part or phase is making a series of tests,
based on the information acquired in the first part of the rule, and evaluates
these tests. If the tests are evaluate positively, then the PE can execute
the next part, i.e., the actions. Phase 2 and phase 3 are very similar in
terms of structure, representing validation tests before taking any action or
generating any rule. They can be implemented as boolean methods in an O-
O programming language. The fourth part or the actions is the composed

34

1: procedure THE PARTS OF PROACTIVE RULE
2 dataAcquisition

3 if activationGuards then

4: activated = true

5 if conditions then

6 actions

7 return boolean ruleGeneration

Figure 3.2: The 5 sections of a Proactive Rule and their execution.

of a list of actions that are performed in a sequence. Such actions can
include sending messages to the front-end users or inserting new entries in
the database. This part will only be executed if the conditions in parts 2 and
3 are validated. And, the last part of a PR or the rule generation phase
will determine if the PR will terminate its execution during the current
iteration or it will continue to be executed at the next iteration. Technically
speaking, this process is called cloning a rule. From a theoretical point of
view, this ensures the continuity of a chain of rules, rules which imply a
certain logic, a procedure which is described later on, in chapter 4. During
this last phase, additional PRs can be generated. A very basic version of
this algorithm in pseudo-code is given in figure 3.2.

Cyclic Rules

A PR can have the property of being cyclic if it continues to clone itself and
gets executed by the PE at each iteration. Cyclic rules can be generated
by other rules and do not have to run from the beginning, when the PE
starts; this is the job of meta-rules. These types of rules are usually the
starting point of a chain or of multiple chains of rules which try to achieve a
certain goal. This particular rule is very useful when the developer predicts
the occurrence of an event or the lack of an event in the future. The rule
does not have to trigger immediately other rules, but only when special
conditions are accomplished, e.g., the date and the hour of the system is
the same as the date and the hour specified inside the PR for automatically
sending reports about a certain happening. The cyclic rule will continue to
be in the next queue of rules which will be evaluated by the PE but will not
continue its actions until the special conditions will be meet.

This example is one of the many examples where rules help specifying
a set of instructions or actions that should happen only in particular situa-
tions. Cyclic rules do not have to be necessary listed in the current queue
of rules from the beginning, i.e., the first iteration of the system, but can
be added on the fly to the current or the next queue. It depends on what
precisely the developer wants to check and what the system is designed for.
Certain functions require cyclic rules that check at each iteration if certain

35

conditions are met or if certain things happened, in order to be able to pro-
vide a quick answer. As activation conditions tend to be complex, rules have
to be able to wait for longer periods of time to be activated, e.g., multiple it-
erations of the PE. For example, a rule that is in charge of sending messages
should not be cyclical because these messages can spam the receivers, if they
appear more than one or two times (in case of very important events).

Meta-Rules

Meta-rules are a special type of PRs and have the property to trigger PaSs.
They are normally the first rules in the current queue of the PE, integrated
before the beginning of the first iteration of the PE. They can be seen as
a starting point of the system. Similar to the concept of metarule used in
Al activating a meta-rule implies the triggering of additional PRs, which
open chains of rules that compose PaSs. However, the difference is that
metarules in Al describe how other rules should be used. Instead of having
a logical chaining procedure of rules, the behaviour of this rule takes care of
implicitly triggering other rules.

3.2.3 The Queue Manager

The Queue Manager (QM) is a structure composed of 2 First-in, First-Out
(FIFO) lists called the Current Queue (CQ) and the Next Queue (NQ). The
CQ contains the PRs which will be executed by the PE during the current
iteration. The NQ is an additional queue created for the next iteration, i.e.,
it contains PRs which were generated during the rules generation phase of
PRs and that will be executed during the next iteration. At the end of the
current iteration, the new CQ will be the old NQ. Then, the old NQ will be
emptied and will contain no PRs at the start of the iteration. One queue
for managing the PRs is not enough because of a particular situation, i.e.,
during an iteration new PRs are generated and they cannot be added at the
end of the same queue as this would result in always reaching the value of
N, one of the 3 important parameters of the RE, or the maximum number
of rules per iteration allowed for execution.

3.2.4 The Local Database

For saving the state of the PS and for storing relevant information, a data
storage component or a database is necessary. As seen for RBSs in general,
a storing mechanism is needed for keeping knowledge. This is realised with
the help of a knowledge base. However, there are a couple of differences
between knowledge bases and databases. Databases are accumulation of
information handled in such a way that links between its elements can be
easily done, enabling users to quickly and efficiently access the desired in-
formation. In contrast, knowledge bases are more complex mechanisms and

36

require more computing capabilities. A database will continue to expand by
adding information while a knowledge base would continuously absorb and
transform information. Knowledge bases can include, for example, other
mechanisms such as data mining methods. For a PS it is sufficient to work
with a database, as it uses prediction methods to anticipate the situations
that the PS will have to respond to. The queries for inserting, accessing and
handling the data on the PE have to be implemented.

3.2.5 The Communication Engine

The Communication Engine (CE) is a component of the PE that handles
the data exchange between various PSs. It is in charge of ensuring that
messages are sent correctly, that they arrived at the destination and that
the PE is keeping track of what was send, when and to whom. Its techni-
cal implementation can be done with the help of sockets, a widely-spread
mechanism for sending and receiving data. Each PE is equipped with a CE
in order to be able to collaborate with other PEs. The communication of
PSs is done via messages, which activation commands for PRs.

3.2.6 The Notification Manager

The Notification Manager (NM) is an optional component of the PE, neces-
sary only in cases when the PE would require a GUI. This can be very useful
in general for checking and supervising the activity of the PE on a device or
a machine, to see which PRs are executed and what the PS is doing in the
background or, even more, to send directly notifications, messages and/or
alarms both to the developers and to the front-users. In some cases, like
the Android-based mobile devices, it plays a role in making the PE to work
silently in the background of the OS.

3.3 Properties of Proactive Systems

Due to its design and architecture, the model proposed in the previous
subsection has several important properties that are necessary for addressing
many of the challenges of current computing networks and systems. These
properties and how they occur on Proactive Systems are better described
in the second part of this dissertation where real-world applications are
developed. Each case study from chapters 5 to 7 demonstrates how these
properties are revealed by empirical research.

3.3.1 Anticipation

A PS, due to its approach of representing and reasoning about knowledge
called PaS, is able to anticipate future situations and the state of the system.

37

The future state of the system is deduced from the current state of the
system. The necessary information regarding the state of the system is saved
in the local database, a component of the PE, and is continuously updated.
At a technical point of view, PaSs describe how should a PS respond in case
of foreseen situations/events and does not provide a methodology to handle
unforeseen situations or events that may occur on a system. From the user’s
point of view that is interacting with applications the behaviour of the PS,
in some cases, would look like it is anticipating his/her next move. However,
the PS will behave exactly how it is programmed by its creator.

Making decisions before a possible occurrence of a situation or an event
is one of the features of PSs. PaSs make it possible for PSs to take decision
in advance, due to their mechanisms of anticipation, of performing real-time
observation and of being context-aware. The possibility of acting ahead of
time determines the proactive behaviour of a system. PaSs are anticipat-
ing modules which include prediction approaches. They do not work with
probabilities but the conditions of the PRs that compose them allow PSs
to express a certain degree of anticipation. These series of conditions are
patterns which can determine what action to be taken and precisely when.

3.3.2 Context-Awareness

Context, in computer science, refers to the information which is used for
characterising a situation and its circumstances [81]. Context-awareness,
or the ability of a system to acquire and utilise contextual information,
is an important property of PSs because it allows them to monitor their
computing environment.

Context-aware behaviours of PSs include showing refined information
to the user based on the context, the automatic execution of services and
adding contextual information to knowledge to transform it into wisdom.
For understanding the current situation a PS is able to combine several
contextual values [82] including time context, e.g., the day, week, month or
year, user context, e.g., location, profile and social characteristics, computing
context, e.g., network parameters and connectivity, and physical context, e.g.,
heart rate, noise level or temperature. The role of context-awareness fits the
goals of PSs, i.e., to reduce the explicit interaction of the user as much as
possible [83].

By using specific PRs, a PS is able to keep an eye on the slight or major
changes that are occurring and is ready to act accordingly. Sensing informa-
tion from one environment can sometimes lead to some inconsistencies if, for
example, sensors are broken and they transmit the wrong information. But,
together with the collaboration property, a PS can get extra information to
check the consistency of the local contextual information.

38

3.3.3 Adaptiveness

This property is important as PSs can activate in different computing en-
vironments. This property refers to the capacity of the PE of adapting
its behaviour depending on the computing power of the system on which
it operates or depending on the different policies of the OS. It does not
refer to architectural adaptation [83] nor to the self-adaptive property of
autonomous systems, which can change the structure of their components,
modify their behaviour while they are performing their duties and decide
how to react, to what and when to reach to it. Self~-adaptiveness includes
all the self* properties of a system and, in this work, this does not con-
cern PSs. All the adaptive measure of a PS are implemented in advance
by the developer/designer of the system. The PS is not able to change its
behaviour if a policy or a rule has not been added to the system. Moreover,
the functions of each component of the PE will not change during execution.
The PS is not capable of generating PRs by itself, while it is running.

From the point of view of the end-user, which interacts with smart ap-
plications or PSs, it will seem that the system is able to adapt its behaviour,
in function of certain parameters. For example, if a user would be driving,
the PS integrated in the mobile device would sense the high speed due to its
context-aware property and would make changes at the level of the screen of
the mobile device. This changes could include restricting the normal inter-
face of the application, blocking the user’s access to the interface or changing
the size of the buttons and other elements to make them bigger and more
noticeable.

3.3.4 Collaboration

Due to its design and the ability of communicating between them, PSs offer
the possibility of active collaboration. But what is active collaboration and
how does it work between PSs? This property refers to a shared effort by
a group of PSs to individually contribute for solving a task. An efficient
rule-based strategy, named Global Proactive Scenarios, offer PSs the possi-
bility to collaborate and to take advantage of the abundance of information.
Collaboration, in this context, involves a particular form of distributed com-
puting. More precisely, it offers a data exchange mechanism through which
PSs can have access to a more global knowledge and to a larger set of ac-
tions. It is not breaking down the computing tasks of a PS and distribute
or assign them to other PSs.

Collaboration involves more than just communication or interaction be-
tween PSs that are running on different devices. It involves the cooperation
of these systems for working together for finding solutions to various tasks or
for checking certain information. Figure 3.3 shows a point of view where the
authors [3] put collaboration as the layer on top of communication, coordi-

39

Integration of: 4
Actions >
Performance
Goals >
Information ‘E
4 4 Intensity of
Reciprocal Systematic Interaction:
Information Matching
Join s
Arrangement Synchronisation

Figure 3.3: Different layers of interaction [3].

nation and cooperation. Communication handles only information which is
sent from one system to another, coordination refers to joint arrangement,
cooperation goes above and offers systematic matching, while cooperation
add synchronisation to complete the degree of interaction between PSs.

3.4 Implementing the Proposed Model

Two main implementations of the PE were created for validating the model
and for using it to create real-world applications: one for servers and one
for mobile devices. Java is selected to be the programming language for
developing the PE because it has O-O concepts like abstraction, encapsu-
lation, polymorphism and inheritance, because it is platform independent,
being able to run on any OS with a Java Virtual Machine, because there is
a big number of devices running Java, e.g., mobile devices, desktop Personal
Computers (PCs) and servers, and because Java works with a big collection
of additional open source libraries.

3.4.1 Middleware Model for Server Platforms

A server application is a must have in the case of working with multiple
distributed systems. Exceptions to this rule include peer-to-peer systems
where tasks are distributed between peers. This type of architecture excludes
the need for a central coordination point or a server. Multiple sorts of tools
are available for building server-side applications in Java.

Implementing the PE on a server as a Java application was chosen be-
cause of the compatibility with other platforms, i.e., with Android, the Java-
based OS for mobile devices. On the server side, because of its hardware
structure and because of the powerful OSs that operate on top of it, it is

40

Remote Server

@PEJ ﬂeb page Proactive Engine

\ HTTP post
\ wwuw.
\ “{‘5‘ R
JSON msg .
*.. local http post
JSON msg (()) / [

Y_—" HTTP post . %
h
PE 2 Google's Cloud Relay Server Local Database
Messaging Server

Figure 3.4: The server-side architecture.

much easier to develop applications which can perform tasks in the back-
ground of the OS.

All the components of the PE, i.e., the RE, the QM, the CE and the
NM, are included in the application. The local database is developed using
MySQL [84] and the data persistence mechanism with Hibernate ORM [85].
The CE, working with another application, called the Relay Server, ensures
the sending of messages to the other PSs. As the Relay Server is not an
internal part of the PE, its description and functionality are provided in the
subsection 3.4.3. Several external libraries such as Java API for JSON pro-
cessing from Oracle [86] or the MySQL connector [87] were used to make the
connection between the different parts of the PS. A more general overview
of the server’s structure is offered in figure 3.4.

3.4.2 Middleware Model for Mobile Platforms

Developing a PE for mobile devices came in response to the increasing popu-
larity of smartphones, which are connected to the Internet most of the time.
This allows people to stay online everywhere they go and to access online
services remotely at any time they want.

The PE was designed to run constantly in the background in order to
allow the user to interact with different applications. On Android this can
be achieved with the help of background services. However, these services
cannot run constantly as they might be ’killed’ or stopped by the OS if they
use too many resources over an extended period of time. Therefore, the
existing solution for desktop computers needed to be adapted in order to
still allow the PE to execute PaSs. This was done using an ”Alarm Manager”
that activated the background service every F' seconds and that executed
one iteration of the RE. The Alarm Manager was triggered by the onBoot

41

event.

Similar to the middleware model for servers, saving the rules at every
iteration of the PE was achieved through the Object Relational Mapping
Lite (ORMLite) [88] package framework for Android. Additionally, the same
procedure applies for saving the sent and received JSON messages. The
ORMLite package is a lightweight package for persisting Java objects to
SQL databases. The procedure for adding notifications was also simplified,
e.g., if the developer needs to add a new type of notification, he/she only
has to create the corresponding file with the correct annotations and the
PE will take care of creating the equivalent tables and of the saving the
related entries. Notifications use the internal notification system provided
by Android and can be further customised and modified by the applications
developers if needed.

Related work

This section presents the state-of-the-art related to RBSs and to collabora-
tive middlewares for mobile devices, published in [79]. Multiple collaborative
middleware systems for mobile devices are available on the market, e.g., [89],
[90] and [91]. They differ by their type: event-based architectures, e.g., for
supporting location aware-mobile applications [92], or publisher-subscriber
architectures, e.g., for [93] systems. These frameworks offer communication
services for the mobile devices, which use them for performing collabora-
tive tasks. Our framework does not only achieve message passing from one
device to another but also permits more complex actions like remote rule
activations, parallel commands or complex reasoning algorithms.

Existing RBSs for mobile devices [94] [95] [96] currently solve only simple
tasks and do not provide methods for achieving more complex tasks like dis-
tributed reasoning, task distribution, data sharing, acquiring global context
information or/and collaborative filtering. And most of all, these systems
do not have an efficient algorithm for handling global information, expect,
in some cases, the logic that is set on the server side.

IF THIS THEN THAT [96] is a mobile application that realises automa-
tion for small tasks between Internet-connected services. The user can write
simple rules, also called recipes, in order to achieve different goals like adding
the photo of a user to the cloud-based archive if the user has been tagged in
that particular photo on Facebook [97]. These rules, however, are just sim-
ple conditional statements. HeaRT [94], a lightweight rule-based inference
engine designed for mobile devices, was used in [98] for providing simple
tasks like online reasoning, part of a bigger plan to develop context-aware
mobile applications. The rules that are written for this engine can achieve
local reasoning only based on the internal sensors of a mobile device and
do not explore the possibility of having multiple engines performing global
reasoning. Minimal Rule Engine (MiRE) [23], a context-aware processing

42

engine, was implemented in order to obtain an engine capable of processing
rules on mobile devices. However, the rules are written in XML and, due to
their structure, are not capable of integrating more complex logics. These
approaches, i.e., [94], [95] and [96], try to address the growing demand of
using rule-based tools on mobile platforms and manage to do it but for a
very narrow type of applications.

3.4.3 Communication architecture for Proactive Engines

Several technologies are available for making possible communication be-
tween mobile devices and/or servers, each with their own advantages and
disadvantages. After analysing the alternatives, the chosen solution, which
suits mobile-based and server-based PSs is the GCM server together with a
relay server. There are another few alternatives on the market like Parse
[99], PubNub [100] or UrbanAirship [101]. Nevertheless, while these services
make it easier to develop push notifications for iOS and Android, they are
still GCM-based solutions. One alternative, which does not use GCM at all,
is Pushy [102]. However, Pushy’s architecture is very similar to GCM, main-
taining its own background socket connection, to receive push notifications
[103].

Google Cloud Messaging

GCM for Android is a service provided by Google, which allows the sending
and reception of data between a server and Android-based smartphones.
The GCM service handles the delivery process of the messages, meaning
that it takes care that the messages are delivered to the correct device. In
the case where a message is sent to an offline device, GCM temporarily
stores the message until the receiving device comes back online.

The Relay Server

The Relay Server is an entity necessary for handling the messages between
different RBPSs. The GCM server is not enough to provide all the function-
ality for passing messages between devices. The device-to-device communi-
cation implementation is illustrated in figures 3.5 and 3.6. The registration
process of one device is shown in figure 3.5, while figure 3.6 is showing the
communication between already registered devices. The devices first have
to register to the GCM server and get a registration identifier. Then, they
communicate this identifier along with a username through a simple HT'TP
request to the relay server, which stores them in a database. If an already
registered device now wants to communicate with another registered device,
it sends its message along with the receiving device’s username to the relay
server, which retrieves the correct identifier and pushes the message along

43

Send Registration ID(step 3)

1 Device

' Register (step1)
iR

Registration ID (step2)

Google

Google's Cloud
Messaging Server

Figure 3.5: The registration process for one device, passing through GCM
Server.

Relay Server

Send Message (step 1) Send confirmation (step 4)

Device 1
o
PE l -

Relay Confirmation (‘
Relay Message (step 3)

Message (step 6)

Device 2

Relay Message Relay Confirmation
(step 2) Message (step 5)

PE

Google

Figure 3.6: The communication process between 2 registered devices.

with the identifier to the GCM, which then takes care of the delivery of the
message.

Message Structure

The messages exchanged between different RBPSs need to follow the same
standards. The messages are encoded in the JSON protocol and have dif-
ferent attributes depending on the type of message. The only attribute that
is common to all message types is the instruction attribute that allows the
receiving RBPS to parse incoming messages correctly. There are currently
two types of messages, the activate rule message type and the confirmation
message type. The activate rule message type contains the following at-
tributes:instruction,msglD, senderID, receiver ID, ruleName, parameterList.

The msgID along with the senderID allows the receiving RBPS to keep
track of already received messages. This will be explained in detail in the
next subsection. The ruleName and parameterList attributes are the core

44

© 0 N O U e W N

"instruction":"activate rule",

"msgId": "messageID",

"senderID":"ID",

"receiverID": ["registrationID"],
"ruleName" : "RO04",

"PARAMETER_TYPES": ["paraml", ... ,"paramx"],
"PARAMETER_VALUES": ["vall", ... ,"valx"]

Figure 3.7: Example of a JSON message exchanged between 2 Proactive
Engines, which contains a command to activate a Proactive Rule.

attributes of the communication process. They allow the creation of a PR
on another RBPS. The ruleName attribute contains the name of the PR
that will be created on the receiving device and the parameterList contains
the parameters necessary to create this PR dynamically. After the PR is
created, it will be added to the next Queue of the PE. An example of a
message exchanged between RBPSs, which contains a command to activate
a PR, can be seen in figure 3.7. The confirmation message only contains
three attributes: instruction, msgID and receiverID, where msgID is the ID
of the message whose delivery is confirmed.

Error Handling

In a distributed environment, messages are not guaranteed to arrive, as they
can be lost along the communication process. In order to prevent the loss of
messages, RBPSs keep track of sent and received messages, including their
senders and receivers, by saving them in a table in the local database. After
sending a message, the PE saves it to the database. If no confirmation
message is received within a given time period, the message is sent again.
The time period varies depending on the priority level of the message, which
can be set when sending the message. It is also possible to set no priority
level at all so that the message does not have to be confirmed. This is
quite useful for doing message broadcasts in order to find other devices
with the same preferences, where it is not important if every device receives
the broadcast. Upon receiving the confirmation for a specific message, this
message is deleted from the database.

The procedure after receiving a message is very similar to the sending
procedure. The message is saved in a designated table in the database and a
confirmation message is sent over to the sender of the message. In the case

45

the confirmation message does not arrive, the sending device resends the
message and as the receiving device has saved the message in its database,
it ignores the second message. The stored messages are deleted after a fixed
period of time. In order to take care of resending and ignoring messages,
there are two PRs constantly running on the engine: one rule that takes care
of the messages that were sent and one rule that takes care of the received
messages.

Limitations of GCM and Workarounds

GCM has two big disadvantages, a messages size limit and a limit on the
number of devices a message can be simultaneously sent to. The size limit
on the messages is of 4 Kilobytes. The messages designed for RBPSs can
be delivered using the initial method proposed by the framework as they
are smaller than 4 Kilobytes. If the size limit is exceeded, the relay server
will store the complete message in the local database and just send a small
message to the receiving device to notify it that a message is available. The
device will then download the message directly from the server and add the
PR to the Queue. The second restriction of the GCM is that a message can
only be sent to 1000 devices simultaneously. This limit can be reached by
the proposed model only if a broadcast is sent to all devices and the number
of devices is bigger than 1000. In this case, the server just splits the list of
all devices into groups of 1000 and pushes the same message to the GCM
for every group.

3.4.4 Performance analysis of Proactive Engines

Mobile devices include a multitude of smartphones and tablets produced
by different companies, with different specifications. It is thus necessary to
investigate how PEs perform on different devices and what are the factors
that influence the overall performance of PaSs.

Methodology

The method for analysing the performance of the PEs involved measuring
the time between two consecutive iterations. An iteration, as described
in section 3.2.1, is an executing instance composed of a set of PRs and is
measured in terms of duration. Ten different sets of PRs were considered for
the tests: starting from small sets of rules, containing 100 rules, until larger
sets of rules, with 1000 rules. For these tests, an iteration was composed of
two main operations: the execution phase and the saving phase. During the
execution phase, the RE runs each instruction, part of each PR, that contains
actions. The actions can include acquiring data from the sensors or from
the local database, sending notification to the users or even the generation
of other rules for the next iteration. The saving phase was mainly used for

46

Table 3.1: Average time of an Iteration of the Proactive Engine on 3 different
devices.

#rules/iteration 100 300 700 1000
Smart Iterat(lgz)Tlme 436.7 672.5 1099.8 1294.2
phone

Saving Execution
Time Time
(ms) (ms)
Iteration Time

320 107.7 475 197.5 6714 4284 7722 522
(75%) (25%) (T1%) (29%) (61%) (39%) (60%) (40%)

Tablet () 130.5 233.2 383.9 495.5
STaiV:I?eg EX%‘;‘EOH 1086 219 1754 578 2754 1085 3524 143.1
(ns) ey () (TH) (%) (25%) (T1%) (29%) (T1%) (29%)

Desktop ~ |reration Time 425 68.5 127.5 220

(ms)
Saving Execution
Time Time
(ms) (ms)

Computer
6.5 36 2 66.5 24.5 103 354 184.6
(15%) (85%) (3%) (97%) (19%) (81%) (16%) (84%)

saving the set of rules that will be executed during the next iteration. A list
of rules, together with their parameters are saved into the local database.
This phase was created as a safety measure in case a crash would occur or
the RE is stopped by internal factors. After a crash, when the RE restarts,
it reads the last list of rules that was saved in the database and it will start
executing them.

Multiple rounds of tests were performed, each round of tests containing
10 evaluations for each device. The execution time averages for all the tests
were computed for obtaining more accurate values. Other applications and
services running on the devices involved in the tests were not explicitly closed
because the intention was to analyse the performance of the PEs in the same
circumstances that a common user would be using his/her device.

Table 3.1 contains the averages of the total amount of time, in millisec-
onds, that one iteration required for running sets of 100, 300, 700 and 1000
PRs. The total time is divided furthermore into saving time and execution
time, which are average values in milliseconds that represent the amount of
time needed by the RE for the saving phase and for the execution phase.
All the sets of rules contained clones of the same basic PR. This rule was
designed specially to see how much time does the RE needs to save an in-
stance of all the rules that will run at the next iteration. This explains the
relatively low values for the execution time.

For example, running 100 PRs on the smartphone took, in average, 436
milliseconds for one iteration. The time necessary to save the rules for the
next iteration took 329 milliseconds, representing 75% of the total amount
of time of the iteration. This case is confirmed by the values obtained from
running the same 100 PRs on the tablet, were the time for saving the rules
for the next iteration took 83% of the total time of the iteration. The same
results were obtained for saving the rules in the was also confirmed by the

47

Device Samsung Galaxy S3 Nexus PC
Model GT-19300 10
0s Android 4.3 Android 4.4.4 Window?
64-bit
Baseband o500 yxUGNAs KTUSP
Compilation
Kernel 3.0.31-2429075
RAM 1 GB 2 GB 8 GB
Chipset FExynos 4412 Quad Exynos 5250 Intel 6 C200
CPU Quad-core Dual-core 1.7 GHz iI;thefle((J)ore
1.4 GHz Cortex-A9 Cortex Al5 34 CHyz
GPU Mali-400MP4 Mali-T604
Accelerometer, Accelerometer,
Sensors gyro, proximity, gyro, proximity, None
compass, compass,
barometer barometer
Wi-Fi 802.11, Wi-Fi 802.11,
a/b/g/n, a/b/g/n,
dual-band, dual-band,
WLAN Wi-Fi Direct, Wi-Fi Direct, None
DLNA, DLNA, DLNA, DLNA,
Wi-Fi hotspot Wi-Fi hotspot

Figure 3.8: Hardware and software specifications of the devices used in the
experiments.

values obtained from running 300, 700 and 1000 rules. If for 100 rules it
took 75% of the total iteration time for saving the rules in the database, for
1000 rules the percentage decreased to 60% of the total iteration time and
stabilised around that value.

Significant differences for running an instance with 1000 rules, between
the smartphone, the tablet and the desktop computer, appear in the last
column of table 3.1. If, in the desktop computer’s case, the total time
for finishing the execution of one iteration took 220 milliseconds, which is
quite fast, the same operation took almost twice more on the tablet and
approximately 5 times more on the smartphone.

The results in table 3.1 also meet the general expectations in terms of
computing capabilities of the involved systems. For instance, executing one
iteration with 100 rules required approximately 4 times more time on the
tablet than on the PC and more than 8 times more on the smartphone that
on the desktop computer. The difference did not change much when execut-
ing 300, 700 and 1000 rules. This is mainly due to the particular hardware

48

1,500 T T

— T T
é) —e— Smartphone g —e— Smartphone
El ~=— Tablet = ~=— Tablet
S1000f | PC 1 B¢ |
Z -
- ks
° E
<5} B
£ 500 . 500 .
2 e 8
2 el E
E -/'/./ ./'”’V) § M
E of T T | "o ‘J ‘ ‘ ‘]
1 1 1 1 1
200 400 600 800 1,000 200 400 600 800 1,000
of rules executed per iteration # of rules executed per iteration(ms)

(a) Total time of one iteration on all the (b) Iteration time on different devices
devices when saving the rules at the end without saving the rules at the end of
of the iteration the iteration

Figure 3.9: Different iterations times on all 3 different devices.

configuration of each system as illustrated in figure 3.8. The smartphone was
equipped with 1 Gigabyte of RAM and a quad-core 1.4 Gigahertz processor,
while the tablet, which achieved better performance results, was equipped
with 2 Gigabyte of RAM and a dual-core 1.7 Gigahertz processor. The
desktop computer had the best configuration, i.e., 8 GB of RAM and an i7
processor with 4 physical cores capable of operating at frequencies up to 3.4
GHz, and so, it had the best results.

Saving rules on the database took a lot of time in comparison with the
operation of executing the rules. A possible cause is the ORMLite library
used for data storage on Android. On the other hand, the data storage on
the desktop computer was done with the help of MySQL [84] and Hibernate
ORM [85] frameworks and needed far less time than for executing rules. A
solution, which can be applied in production for avoiding time losses, is to
remove the feature of saving rules at each iteration and to set up a saving
phase for the RE only once, e.g., when the shut-down event appears on the
mobile devices. Another important conclusion is that running more than
1000 PRs on the smartphone or tablet is a time-consuming process and, at
this moment, these devices are able to run only limited sets of PRs, while
still being able to provide real-time services to their users. This amount of
rules is directly related to the computing capabilities of each device and the
libraries used to ensure different functionalities of the PE. However, for the
mobile applications that use PaSs on top of the PE, sets of up to 100 rules
should be enough to achieve the desired goals.

Figure 3.9a and figure 3.9b illustrate better the differences of running
one iteration between the different devices. They include the average re-
sults of all the 10 sets of PRs that were performed on all 3 devices. The

49

scale for the execution time of one iteration was kept on purpose to show
the major difference between amount of time needed for one iteration with
the saving phase and without the saving phase. In figure 3.9a it can be
noticed relatively big fluctuations in the execution time of one iteration on
the smartphone. It is not linear like in the tablet’s case and the desktop
computer’s case. If, until running iteration of 800 rules, the time increased
in an expected manner, afterwards, it started to rise up quickly. It means
that for iterations with more than 800 rules the smartphone is starting to
consider the PE quite heavy in terms of the processing resources needed
and this can slow down other applications that need to access the same re-
sources. In figure 3.9b, however, the distribution of execution time without
saving the rules in the database is increasing constantly, meaning that the
duration time can be anticipated for various number of rules.

Communication Tests

Other series of tests were conducted between the smartphone and the tablet
to measure the duration of their communication. It was measured how much
time it took for sending and receiving a message, meaning the first 3 steps
of the communication process, between the two already registered devices.
After 10 tests, it took, in average, 751.3 milliseconds for performing the
following operations: the creation of the message on device 1, sending the
messages to the relay server, sending the message to the GCM server and
then, receiving the message on device 2. The message used in the exper-
iments was the same one as the one presented in figure 3.7. It contained
specific instructions for activating a rule on device 2. The Relay Server was
running on the desktop computer with the software and hardware configu-
rations shown in figure 3.8. The entire communication process also depends
on external factors like the network bandwidth and latency, and on the re-
sponse time of the GCM server, which is also not part of our system and
cannot be controlled.

Battery Consumption on the Mobile Devices

Mobile devices obtain the necessary energy for performing complex opera-
tions from their batteries, which implies that analysing power consumption
on these devices is very important. Our approach to calculate energy con-
sumption was to measure the battery level on the smartphone using An-
droid’s internal system functions calls [104].

Benchmarks for Battery Consumption

Three types of benchmarks were carried out. The first one was designed
for testing only the PE alone, which was executing sets of 100 PRs each 30
seconds. The PE used in these tests was designed to simulated rules that

50

Table 3.2: Average Battery Consumption.

Applications Average
Proactive Engine 1.5%
Wakelock application 4.3%
Wakelock application + Proactive Engine 5.4%

would be used in different real-world applications. In the second benchmark,
the interaction of a user with the screen of his/her smartphone by using
a wake-lock application that woke up the screen of the device, at 100%
brightness, for a total of 18 minutes per hour was simulated. And, in the
last benchmark, both the PE and the wake-lock application were running
simultaneously on the smartphone.

For all three benchmarks, 10 executions of 1 hour each were performed in
order to compute their averages. During the tests the smartphone’s Global
Positioning System (GPS), wireless connection, Bluetooth and the other
mobile data connections were turned off.

Results of the Benchmarks

The results, shown in table 3.2, indicate first that executing Proactive Rules
on a running PE for mobile devices, during 1 hour, takes only 1.5% of the
total amount of the battery of the smartphone and second that a standard
application consumes significantly more energy than a PE. The results of
the third benchmark confirm the difference obtained between the first two
benchmarks.

3.4.5 Conclusion and Discussions

These tests were necessary for estimating the optimal number of PRs, which
can be executed in one iteration by the PE on a smartphone, on a tablet
and on a desktop computer, without having big delays. This aspect, or
the response time, is very important when we want to design applications
that can execute PaSs on each device. The energy consumption analysis on
the smartphone indicates that PE does not consume much of the battery,
which is a key aspect when developing mobile applications. The experiments
indicate that PEs can be successfully integrated into mobile devices, that
the model is able to run on different computing devices and that the pro-
cesses of the proposed model are very efficient from a computational point
of view and do not affect the overall performance of a device. Moreover,
different performance evaluations of PEs on smartphones, tablets and desk-
top computers were conducted and compared. A solution was provided for
improving significantly the execution time of PRs and implicitly of PaSs by

o1

saving them when shut-down events occur instead of saving them during
each iteration of the PE.

52

Chapter 4

Proactive Scenarios

4.1 Linking and Grouping Rules

A Proactive Scenario (PaS) is a set of predefined rules with several par-
ticular properties. The rules that compose the scenario describe a particular
case and take according actions, each rule making an incremental progress
towards a situation-level goal. It can be seen like a collection of rules that
implies a sequence of events and actions. Proactive Scenarios come as a
response to one of the major challenges in rule-based systems, i.e., how to
organise and link rules in order to obtain the desired output, presented in
chapter 2.1.2. PaSs are not just a particular collection of rules but they
are situation-solving modules, where rules are linked in a particular way
to reach a certain goal. The traditional way of creating rules through di-
alog, with the help of an expert, can block the development process as it
can get very slow [105]. Many rule classification systems were developed
in the last thirty years like decision tree-based systems, which include C4.5
rules [106], or covering-based systems, including the AQ15 algorithm [107],
or association rule-based systems, with methods like CMAR [108] or CBA
[109]. However, association rule-based systems are used intensively in the
field of data mining, decision tree-based systems in the field of decision sup-
port systems and covering-based systems in fields such as expert systems or
information systems. For these systems, a particular collection of such rules
doesn’t necessarily imply a sequence. Also, as the rules used in these sys-
tems are expressions following the basic structure of the IF-THEN rule, it is
not difficult to chain these rules based on their input and output conditions.

PaSs are good knowledge representation and reasoning mechanisms be-
cause they give the user the possibility of specifying exactly which PR should
be executed in which order and under which kind of special conditions. From
the point of view of their design, PaSs are backward chaining mechanisms,
as they start from the initial goals of the system and they end by validating
or not that goals. From an execution point of view, or the way the PE is

53

t1 to

Proactive Scenario t R6 goal
R5 R4
i3

Figure 4.1: The decision tree structure of a Proactive Scenario.

firing PRs, the PaSs are a forward chaining mechanism as they work their
way towards reaching a goal.

Several methods exist for structural representation of rules such as de-
cision tables, decision trees, binary decision diagrams or tabular systems [5,
p. 97]. These methods are used specially for propositional logic. Table 4.1
contains an example of a classical form of decision table. This is an easy way
of representing a simple rule, where condition ¢;; indicates which condition
of rule; to be checked and action g;; indicates which action of rule; to be
executed. But decision tables cannot be used because of the structure of
the PaSs, which are composed of more complex rules, i.e., PRs. Therefore,
the simplest method is to use a decision tree structure for expressing and
creating PaSs, as shown in figure 4.1. The PaS is decomposed in function
of the different actions that need to be executed. The PRs are linked based
on the set of defined actions. The PaS in figure 4.1 is composed of 6 PRs.
PRs 1, 2 and 3 form a chain because each rule contains different conditions
that have to be fulfilled before triggering the next rule or achieving the final
goal. These conditions do not necessary become true after an iteration of the
PE. The time between the activation of two rules is normally one iteration,
excepting the case when something happens to the PE and it is stopped.
But the time to activate a PR, i.e., the time to satisfy all the conditions in
the activation guards phase, differs from PaS to PaS.

4.1.1 Local Proactive Scenarios

Local Proactive Scenarios (LPaSs) are PaSs that run on a single system
and perform only tasks or actions that happen on the system where they are
executed. LPaSs keep the decision tree structure of PaS and the possibility
of having various distribution of PRs, depending on the number of actions
and what functionalities they have to address.

LPaSs do not have constraints in terms of PRs or actions that compose
them. They can be activated by GPaSs or by other LPaSs. The difference

54

Table 4.1: A classical decision table with vertical rules [5, p. 110].

rulel rule2 ... ruleX
conditionl c11 C19 Clz
conditionZ Cs1) Con
actionl all a1 (050"
actionZ a1 a9 A

is that the activation is done locally, when it is requested by a LPaS, or re-
motely, when it is requested by a GPaS. The downside of LPaSs is that they
are limited from getting information from multiple external sources, from
performing collaborative actions and from adapting to other computing en-
vironments. They are not involved in a data exchange process with software
systems performing on other devices. They can collaborate, at most, with
applications running locally on the same device.

4.1.2 Global Proactive Scenarios

In the current settings, not all the devices can natively communicate with
other devices. This offers no support for collaborative tasks. This subsection
proposes a modal that will allow PSs to collaborate by providing a commu-
nication protocol based on PRs. Then, later on, in the second part of this
thesis, real-world examples are given with how this collaboration between
PSs works in practice.

Global Proactive Scenarios (GPaSs) are information sharing mecha-
nisms with the following characteristics: they can detect unexpected events,
they dynamically collect information from devices with an integrated PE,
they provide strategies for cooperative reasoning and they support collective
decision making processes. In contrast with traditional distributed systems,
GPaSs provide the possibility of achieving distributed reasoning between
PEs by the concurrent execution of various PaSs.

The main idea of GPaSs is to look for the minimal set of relevant infor-
mation to perform a local or collective task. And this operation has to be
done in an efficient matter as there is abundant information coming from all
the sensors of a ubiquitous environment. A balance needs to exist between
the proportion of retrieved data and the precision of processed data. In
practice, it is hard to achieve this balance. To address this problem, GPaSs
activate local PRs on devices that have an integrated PEs for retrieving and
processing data coming from their embedded sensors. After it is processed,
only the relevant data is exchanged between the devices.

GPaSs imply several PEs working together for solving a bigger puzzle.
As the communication between PEs functions by exchanging JSON messages

55

which activate PRs, several PRs have to be loaded into the memory on the
receiving device. And, as any device with a PE is assumed to be able to
start a GPaS, the PRs have to be present on both, the sending and the
receiving devices.

The design of GPaSs is aiming at numerous objectives. With the help
of GPaSs, the local information available on a smart device is distributed
to another PS, context is captured at various levels, expected situations are
detected and treated accordingly, resources shared and general knowledge
is gathered for achieving a ubiquitous intelligence capable of taking smart
decisions. From the front user’s point of view, only the effects of GPaSs are
noticeable and not how they are activated or how they manage to exchange
information. Thus, it will not be necessary for the users that interact with
the smart applications to have advanced technical skills for using smart
devices, instead they will be able to focus more on their tasks and achieving
their goals.

GPaSs enable devices to perform a wide range of group tasks and to
benefit from a collective intelligence, which is far more effective than the
knowledge of each single device. They can change the state of the PSs as
well as being affected by the system’s state changes. The effects of GPaSs
can be measured by developing case studies, where the performance of the
PEs and frequency of triggering PRs can be evaluated.

Two main ways of triggering GPaSs exist, i.e., either the occurrence of a
foreseen event or the interactions of users with the screens of their devices.
At a technical level, foreseen events are detected by PRs, which are acting
as background services with a clear purpose of monitoring the environment
of each device. For example, running low on battery on a smartphone is a
foreseen event. If the battery level drops under a certain percentage, specific
action are taken, e.g. the luminosity of the screen of the smartphone is
reduced to a minimum level. The user’s input can be divided into explicit
or implicit instructions. Explicit instructions refer to precise and clear input
from the user, while implicit instructions point out commands which are not
directly expressed but they are implied. For instance, on mobile devices, an
explicit command can be when a user wants to share his/her location with a
group of friends by pressing a certain button on the screen of his/her device.

One of the biggest advantage of GPaSs is that they can work without
having to implement any server-side strategy, which would contain all the
logic for exchanging the information between different devices. However,
an additional server-side strategy could be added, on top of the existing
GPaSs, for ensuring a better management in case the GPaSs fails. This
method requires an additional development step and is recommended only
as a backup feature in case the communication between PEs does not end
successfully.

56

: Initiator : Collaboratorl : Collaborator2

StartNegotiation
7 ReceiveRequest
222 Analyse
SendResponse
StartNegotiation()
ReceiveRequest
22 Analyse
SendResponse
CheckAnswers

_Z 21 Perform Action

Figure 4.2: A sequence diagram with the collaboration mechanism of a
Global Proactive Scenario.

4.1.3 Negotiation protocol of Global Proactive Scenarios

A simple GPaSs with only one round of negotiation between 3 devices
equipped with a PS is presented in figure 4.2. It is simple because the
PS on the initiating devices is asking for information from the other de-
vices, i.e., collaboratorl and collaborator2, in order to solve a task. After
this information is received, the initiating device has enough information to
do the required actions. A more complex GPaS involves multiple rounds of
collaboration and is taking into account the unsuccessful sent or received
messages. An unsuccessful action of sending or receiving a JSON message
between PSs can be cause by multiple factors like the network latency where
they operate, an unconnected devices, etc. These factors are well-known in
the networking field.

The device that starts the GPaS is a called an initiator. Any PS can be
the initiator of a GPaS. Additionally, any device can have more than one
GPaS that is being executed. The PSs that are involved in the collabora-
tion are called collaborators. As PSs communicate through messages which
activate PRs, each collaborator has to have the according PR, which is sent
as a parameter in the JSON message, available in the rule base.

57

model
goal specification creating PaSs implementation
and validation

Conceptual Design Logical Design Physical Design

Figure 4.3: Designing Rule-based Proactive Systems.

4.2 Rule-based Proactive Systems Design

As seen in figure 4.3, RBPSs should follow three main development phases:
the conceptual design, the logical design and the physical design. This top-
down structured method represents a standardised and organised approach
for analysing and modelling a set of requirements. The advantage of this
method is that the developer/engineer mainly needs to discover the appro-
priated goals and functions and to translate them to PaSs. Additional work
can include the development of the GUI, if the system is using one, or the
development of database tables and structures, if the system needs to store,
for example, its state. RBPS design phases have the advantage of being
modularised. Another advantage is that, if an additional goal is needed, it
can easily be added to set of goals of the PSs due to its modular design. The
same applies for creating additional PaSs and for adding additional PRs.

4.2.1 The Conceptual Design Phase

This stage is made for breaking-down the application/software system into
multiple goals. It is up to the developer to determine primary goals and sec-
ondary goals of the application. These goals are constructed with a strong
reference to the requirements that where created. Requirements specifica-
tion is tough another particular topic that is not included in this work.
Nevertheless, requirements are important as they represent the source for
specifying the goals.

58

Decompose
system

Y Y
| Goall | | Goa2 | ..
CLpast | iactions’ Gpasi]

-

S [GPas!

End

Figure 4.4: The Conceptual Design Phase of the design process of Rule-
based Proactive Systems.

The conceptual design stage does not only focus on obtaining a list of
goals but is also concentrating on identifying important entities, their char-
acteristics and the relations between them, including database tables and
elements that need to be stored, and functions that the application is able
to perform. Also important, the goals of the PS are related to the prop-
erties that the system has to have. For example, if the general purpose of
the system is to detect various situation changes then the PS needs to be
context-aware. This cannot be a particular goal, but a more general goal.
Instead, this property should be described in a particular situation, when it
is needed in a much narrower sense.

Figure 4.4 is an illustration of the method proposed to decompose appli-
cations/software systems according to their goals and, then, based on these
goals, into PaSs. The case where PaSs are present for a particular situation
signifies the option to automate a procedure or a set of procedures. Not all
the goals of a systems require PR.

4.2.2 The Logical Design Phase

The logical design stage is the stage where the developer/engineer, after
identifying the main goals and functions of the systems, is developing PaS
and how they achieve the proposed goals of the PS. The developer has to
choose the correct type of PaS, i.e., LPaSs for taking care of local actions

59

and GPaSs for handling situations where collaboration is needed between
various PSs. Then, it is important to establish how should the PRs be linked
and grouped in order to build valid PaSs.

An efficient logical design phase is achieved when the number of itera-
tions needed to achieve the goals determined in the conceptual design stage
is reduced to a minimum. This is also a stage that depends on the experience
and the set of skills of the designer. Linking and grouping PRs into PaSs is
a process that relies on the judgement of the developer. He/she is in charge
of managing the interdependencies of PaSs and to see if, for example, they
do not produce conflicts in the actions that they perform.

4.2.3 The Physical Design Phase

During this last phase, all the previous PaSs should be implemented and
tested by using a PE. This phase is one of the most important as it verifies
if the decisions of grouping PRs into certain PaSs was done in an efficient
way. The last design phase consists of managing the different functions
of the PS. If, for example, the PS is not behaving according to its initial
goals because maybe too many instructions were inserted into a PR or one
of the actions of the PR is taking more time than an iteration of the PE,
then corresponding measures can be taken, e.g., redistributing the actions
of a rule or creating additional rules as part of the PaSs or increasing the
duration of an iteration of the PE.

4.3 Distributed knowledge

Collaboration has many forms. However, in the area of RBSs, collabo-
ration is process which involved the exchange of rules. It does not refer
to collaboration in the sense used in the field of computer-supported co-
operative work (CSCW), where the collaborative activities focus more on
interaction including synchronous document editing, video-conferencing or
real-time groupware. This subsection contains an overview of the role played
by rules and rule-based systems in distributed systems, a task already which
was already started by some authors [110].

4.3.1 Parallel Rule-based Systems

The initial success of RBSs in the eighties and nineties pushed forward
this technology to traditional research fields like distributed and parallel
computing. Firing rule in parallel was already taken into account for both
FC [111] and BC production systems [112]. If this approach is used it will
increase the execution time of the RBS but it will also create consistency
problems in the conditions and actions of the rules.

60

AW N =

ACLMessage request = new ACLMessage(ACLMessage.REQUEST) ;
request.setProtocol (FIPANames.InteractionProtocols.FIPA_REQUEST);
request.addReceiver (new AID(receiver, AID.ISLOCALNAME));
myAgent . addBehaviour (
new AchieveREInitiator (myAgent, request) {
protected void handleInform(ACLMessage inform) {
System.out.println(Protocol finished. Rational Effect achieved.
Received the following message: +inform);

(a) A FIPA-Request initiator behaviour

MessageTemplate mt = AchieveREResponder. createMessageTemplate (
FIPANames.InteractionProtocols. FIPA_REQUEST);

2| myAgent .addBehaviour(new AchieveREResponder (myAgent, mt) {

protected ACLMessage prepareResultNotification(ACLMessage request,
ACLMessage
response) {
System.out.println(Responder has received this message:+request) ;
ACLMessage informDone = request.createReply();
informDone.setPerformative (ACLMessage . INFORM) ;
informDone.setContent (inform done);
return informDone;

B;

(b) A FIPA-Request responder behaviour

Figure 4.5: FIPA-Request responder and initiator behaviour [4].

The model proposed in chapter 3 is designed to fire PaSs in parallel and
is capable of also firing PRs in parallel, depending on the implementation.
As PRs are written in Java and each instance of the rule is an object, the
possibility of firing multiple PRs in parallel can be solved with the help
of threads. However, in cases where the PS has tens or hundreds of rules
in the CQ, this could represent a major problem. A solution would be to
limit the number of threads created and assign these rule to the NQ. But,
this method would not guarantee a correct flow in executing PaSs as many
iteration would be execute by the PE until certain PaSs would achieve their

goals.

61

4.3.2 Distributed Rule-based Systems

Distributed computing for rule-based systems is mainly used in the field of
multi-agents, where agents use a rule-based implementation. Multi-agents in
production systems are able to communicate asynchronously, like MAGSY
agents for example [113], as well as being able to provide services to other
agents. In this case, distributed computing, refers more to the interaction
of agents, which can exchange messages. The content of this messages is
used for changing/updating the facts of another agent or, if a service is
invoked by a remote agent, it can change both facts and rules of the targeted
agent. Another widely-used type of agents, i.e., JADE agents [114], can send
messages to other agents using Jess, a shell written in Java, for interacting
with them. An example of FIPA ACL message used in the interaction by
an initiator and its responder are illustrated in figures 4.5a and 4.5b.

Peer-to-Peer Systems

Rule-based distributed computing is applied also to Peer-to-peer (P2P) sys-
tems which have multiple applications in domains like ubiquitous comput-
ing, distributed content management and distributed processing. The P2P
systems do not only communicate but also can collaborate by exchanging
resources and providing services to each other. Examples of P2P rule-based
systems include distributed database management systems [115] that main-
tains and manages data across multiple systems spread on different networks
or sensor-based platforms for ubiquitous environments [116] that abstracts
the passage to sensor data using an inference mechanism based on rules.
Even though if P2P rule-based systems provide the infrastructure to avoid
all the configuration needed for using a client-server approach, the negotia-
tion protocol can become very slow and complicated.

62

Part 11

Application Development
and Case Studies

63

In order to illustrate the potential of the model presented in chapters
3 and 4, three different case studies are proposed. The main purpose of
these case studies is to focus at first on providing relevant answers to RQ5.
The upcoming case studies, each representing a chapter of its own, are also
provided to better understand how would the proposed computing model
be applied in real-world situations.

The following chapters provide validation examples of PaSs, addressing
RQ4 and examine the properties of RBPSs, which is the core subject of
RQ2. These properties are not studied only from a theoretical point of
view but they are analysed in a real-case scenario according to the particular
situation of each case study. The ability of capturing changes in context is
shown in each example, while the capacity of anticipating various situations
is underlined in each PaS.

The case studies are proposed in an incremental way of complexity, start-
ing with the most basic example of them, presented in chapter 5, until the
most complete and advanced example, presented in chapter 7. The first case
study uses the first type of PaSs, i.e., LPaSs, to address the needs of a com-
plex e-Learning system and does not involve the cooperation with additional
systems.

Starting from chapter 6, the proposed examples indicate the necessity
of having collaboration and communication mechanism to address issues in
multiple research fields. This necessity is taken care of with the help of
GPaSs. This solution does not replace LPaSs but completes them. Chapter
7 offers an application which includes both LPaSs and GPaSs at different
levels, and shows how they can work together to provide an efficient solution
in a complex situation. The complexity of each case study refers to functions
carried out by the involved PSs and to the type and number of devices
involved in the experiments. If, in the first case study, the PS is developed
next to a single system running on a single platform, the other case studies
include both mobile and server platforms and devices.

The case studies are validated by creating several prototype applica-
tions, which are implemented and tested. Different application domains like
e-Health, e-Learning and e-Business were explored for underlying the broad
range of areas of expertise where RBPSs can be successfully applied. How-
ever, the point is not to demonstrate that all the problems in these domains
can be solved by using RBPSs. RBPSs address only a specific category of
systems which can benefit from PaC.

Each case study is introduced with additional background information
related to the tackled domain and to discussion on related work with respect
to that particular research field. This additional information completes the
background information and theoretical information presented in chapters
3 and 4.

64

Chapter 5

Application 1 - Online Social
Communities

The first case study [117] involved developing multiple LPaSs to automati-
cally create, organise and develop social groups inside a LMS, i.e., Moodle
version 2.2.4, and to guide, inform and assist students though the whole
process [118]. The LPaSs used in this study were an enhanced version of
the PaS presented initially in [119].

This study did not only show how the behaviour of a LMS can be trans-
formed, by employing PaC, but it tackled some other important aspects in
the e-Learning field like the online participation, the level of engagement
and the collaboration of students. Other interesting aspects were taking
into account such as analysing OCoPs, a particular form of Communities
of Practice (CoPs) developed and maintained using the Internet, from the
point of view of their life cycle and of their activities. To achieve these
goals, new ways of organising students into virtual communities with a clear
purpose and tools for building and sharing knowledge were proposed.

LMSs had a major influence on how teachers taught and how learners
learned over the past 20 years. They continue to represent a very hot topic
in Information Technology (IT) as many universities and colleges across the
world use LMSs for delivering educational content to their users. Recently,
many people consider that learning to be more of a social process and many
educators are using social learning platforms such as Edmodo or social net-
working software like Elgg for addressing the growing needs of their learners.
With the increasing popularity of networking platforms like Facebook, Twit-
ter, Google Plus or LinkedIn, there have been numerous attempts to use
similar tools in education. The main arguments are that these tools would
enhance the online collaborative learning process and that it will allow their
users to build and maintain stronger relationships with one another. It is
essential that LMSs either change their approach on how to deliver educa-
tional content to their users or they adapt to the newest trends by including

65

more social features such as internal ratings and reviews for courses, events
and resources or a collaborative system which would allow students to build
powerful learning networks.

But why integrate social features inside a LMS when the majority of stu-
dents have a Facebook account? One answer could be that social platforms
like Facebook have many problems with fake accounts. These accounts rep-
resented more than 5% of the total number of registered accounts [120]. This
decreases the level of trust among users and discourages users to branch out
from their circle of friends. Students used a unique account with their real
names for logging into the local Moodle platform, for accessing their online
course, for enrolling in their exams and for uploading their online assign-
ments. This is one of the main reasons for choosing Moodle for this study.
Another reason was that students do not possess the rights for adding re-
sources and tools like wikis, forums and chats or other content into their
courses as they have limited permissions. This only allowed students to be
trained by their teachers, and limits their knowledge to the given materials.
The final reason for using this platform was that it could easily be extended
with the help of blocks and plug-ins, without modifying its source code.
Platforms like Facebook or Twitter are an ideal place for social learning,
which can be defined as learning by conversation, observation or by ques-
tioning. But social learning is more concentrated on the individual’s needs
and that is why we consider OCoPs to be more suited for collaborative
work. They are more focused on enlarging and distributing the knowledge
of a group, as opposed to a single person [121]. Inside a Online Community
of Practice (OCoP), people are learning by collaborating, exchanging and
sharing information. Moodle offers the possibility of grouping students in-
side a course, but this procedure has to be done manually by the teacher or
by an administrator. This can easily be done if the number of participants
is small, but it rapidly becomes time consuming when there are many stu-
dents. Moreover, students cannot build their own communities or knowledge
networks inside a course, which is important, because they have limited ca-
pabilities on the LMS. Students cannot discover other students from other
semesters or from other study programs with the same particular interests
in various fields because they are limited to knowing only the participants
of their own courses. This is where PaC came as a solution for the LMS.

5.1 Related Background Information

5.1.1 Social Awareness Systems

Context or situation awareness is a major research topic in areas like trans-
portation, aviation, navigation and air traffic control. Another type of
context-aware systems is represented by social aware systems that use their
sensors and their capacity of analysing data to take smart actions. Several

66

attempts were made do define and understand what a social aware sys-
tem is and how does it behaves [122] [123]. In [122], the authors divided
awareness into 2 types: superficial and non-superficial. The non-superficial
awareness was considered more important as it was described as the process
of understanding the individuals and their actions. Finally, they arrive at
the conclusion that social awareness requires trust and the absence of fear,
meaning that users that are using social awareness systems should have a
certain level of trust otherwise their behaviour would affect the other mem-
bers. Coates [123] describes social awareness software as ”software which
supports, extends, or derives added value from, human social behaviour”.
Social awareness systems are systems that are capable of helping connected
individuals or groups of people to be aware of different activities, interests
and situations [124]. Studies about social aware systems include the cre-
ation of a framework for the development of social awareness systems [125].
This framework was designed to ease the authors’ investigations on how to
include information of close friends into a person’s work environment.

5.1.2 SNSs and LMSs

Previous discussions argue that courses inside a LMS are focusing too much
on simply delivering content to its users [126] [127]. The authors argued that
social networking, as an emerging technology, could be applied in education
because it represents an important factor on how we know and understand
things. Recently, in the e-learning research community, many efforts have
been made to integrate SNSs with e-Learning systems [128] [129] [130]. In
the first study [128], the successful integration of a SNS, i.e. Facebook,
with a multimedia based LMS, i.e., Coome, was done as a possible solution
for increasing the level of interaction and engagement of the students. The
second study [129] investigated, during a period of 4 months how students
and teachers would collaborate inside a hybrid e-learning environment using
specific social networking tools. The importance of this study was to ob-
serve and analyse the different types of interactions that would support and
maintain multiple styles of learning. Du et al. [130] propose an e-learning
collaborative and interactive platform that integrates social software inside
the LMS. One of the benefits of having such a platform is the ability to pro-
vide a personalized space for each user where users could read information
coming from their groups and circles of friends. The key feature of the whole
model is a filtering mechanism that would process the information coming
from the user’s knowledge network and social network. Creating groups, as
part of a course, on the LMS, would encourage the process of active learn-
ing, and would better support the interaction between the participants, and
increase online participation in the platform.

67

5.2 Research Hypotheses and Objectives

Additional to the main research questions presented in section 1.2, several
research questions related to the e-Learning domain were also addressed.
In order to validate these research questions several LPaSs were developed
and implemented on top of a PS, which included the LMS. The aim was
to establish to which extent the users of a LMS would benefit from having
social features inside their e-learning platform, which properties of learning
software should be improved in order to have proactive characteristics and
if organizing students into various OCoPs would have a positive impact on
how students interact, learn and collaborate inside a LMS. For addressing
the questions above, three hypotheses (RH) were developed:

RHa. Social features support OCoP and increase the student engagement
inside a LMS.

RHDb. The e-learning platform is aware of different situations and can adapt
to the user’s need through PaC.

RHc. Community building based on multiple themes allows a better inter-
action, creates well-defined knowledge networks and stimulates the learning
process of the students.

5.3 The Proactive System

For making the Moodle platform a proactive system, a middleware archi-
tecture was used [119]. This architecture followed the initial rule-based
proactive model proposed by Zampunieris [14]. The middleware architec-
ture was composed from several components both on the server-side and
on the client-side, as shown in figure 1 in [131]. The server side consisted,
apart the Moodle application written in PHP, a PE, a local database and a
wrapper to access Moodle’s database on the server-side. The PE was com-
posed of a rules engine for processing rules and several queues for storing the
rules. On the client-side, which was the web interface of Moodle, multiple
elements were implemented such as a pop-up question box and two plug-ins,
i.e., a side-block for displaying the OCoPs and the activity inside them and
another side-block for coaching messages, illustrated in figure 5.1 and figure
5.2. The structure of pop-up question box was designed to show different
questions, with different content, but with the same possibility of answers
for all of them, i.e., “Ok” and “Cancel”. The answer of the user was then
immediately sent to the server via web sockets and then registered in a spe-
cific table of the local database, created specially to hold extra information
that cannot could not be stored on LMS’s own database.

68

Coaching -0

07-May-2013 04:01 - Groups Inactive Luxembourg-Ville

BE o
Messages
= o 07-May-2013 04:00 - Groups Inactive Bachelor en Informatique (professionnel) e
= o 01-May-2013 04:00 - Groups Inactive Romania Groups Inactive Bachelor]
© B8 B 17402013 10:53 - Social Group Enrollment Groups inactive Romama H
@) Ssocial Group Enroliment ko]
© B O 16-Apr-2013 11:25 - Social Group Enrollment
@) social Group Enroliment k]
O B W 164pr-2013 10:40 - Social Group Enrollment

Figure 5.1: Pop-up question box and Social Groups side-block on Moodle.

Social Groups -

Do you want to be part of country-based social groups ? Master in Com puter m
ini Science
If "Yes', please select your country of origin, and then press ‘Ok', If there aredmlnlmum £0
3 student :
Select your Country : - # Afghanistan o
coming from

Afghanistan the same country

Social Groups

@ Master in Computer i)
Science

Figure 5.2: Coaching Messages side-block and the detailed list of messages
on Moodle.

The two side-blocks were used to make users more acquainted with the
events happening in their social groups and to show to everyone a list of their
groups together with their level of activity. These blocks were displayed on
the right side of any web page inside the LMS during valid login sessions,
after a user was able to successfully log-in to his/her account. The “Coaching
Messages” side-block, shown in figure 5.1, was created to increase the level
of awareness of each user by providing fresh information about the groups,
by alerting the users in case of an important event and by showing them
that the PS was dynamic and active all the time. The first version of this
side-block was used for conducting experiments to obtain an automatic and
enhanced management of the online assignments on Moodle [132]. The
side-block displayed only the subject of the last five messages and their
importance, which were calculated with the help of LPaSs, on the left side
of the subject. A detailed list with all the messages was opened when a user
wanted to read all his/her messages and clicked on the “Read All” button
situated at the bottom of the “Coaching Messages” side-block. Another
button was provided for deleting any message both from the block and from

69

the page with detailed messages. The “Social Groups” side-block, shown in
figure 5.2, showed to each user a list of 5 groups, according to the time and
date they were joined by the user. To the left of each OCoP an icon was
added to show if the OCoP was active or not, i.e., red for inactive groups
and green for active groups, and, to the right of each OCoP, a button was
also added to remove the current user from that specific group.

5.3.1 Local Proactive Scenarios

Working with only one system, i.e., the Moodle platform, involved develop-
ing PaSs that analysed only local information and took only local actions.
Also called LPaSs, these scenarios were based on the first type of scenarios
presented in chapter 4. The LPaSs that were developed for this study case
were included into a structure called the Proactive Cycle. This structure
was composed of 3 main phases: “setting-up the groups”, “enhancing social
interaction inside the groups” and “adjusting the groups”. All the rules were
part of one LPaS of the 3 main stages of the proactive cycle, except the first
LPaS (LPaS01), which included 2 rules, i.e., SO01 and S002. These rules
were included at the first run of the PS.

Initially, for this study, each LPaS had only one corresponding rule, ex-
cept for the first LPaS which would trigger the other LPaSs. This approach
would was not so efficient for larger groups of LPaSs, where situations would
have multiple corresponding actions. This common challenge of rule-based
systems, as seen in figure 2.6¢ in chapter 2.1.2, was addressed in chapters 4
and 4.2, by dividing scenarios into multiple corresponding rules which would
target a common goal, as seen in figures 2.6a or 2.6b or 2.6d. Also, this first
set of LPaSs did not contain the naming convention established in chapter
4. More precisely, a proactive meta-scenario was considered a LPaS that
was composed of a cyclic rule. However, the meta-scenario is in fact a
meta-rule, presented in chapter 3.2.2, which is in charge of creating other
PaSs. So, the only proactive meta-rule was (R02), part of LPaS01, which
created all the other LPaSs.

Designing LPaSs

LPaSs were designed according to the goals and target actions of the system
using the methodology described in chapter 4.2. The first main goal of the
system was to create a course on Moodle and to inscribe all the participants
into this course. LPaS01 was designed to achieve this goal. It is composed
of 2 PRs, i.e., RO01 and R002. The content of the first rule, i.e., R001, is
shown in pseudo-code in figure 5.3. The other goals of the PS concerned
the social groups, i.e., to create the groups and their materials, to check and
adjust the social interaction inside these groups and to end of adjust the
life cycle of the groups. The goals also represented the 3 different stages

70

1. procedure LPAS01(R001) > First rule part of the first LPaS01
2: dataAcquisition:

3: currentT'ime + systemGetCurrentTime

4: actiwvationGuards:

5: if currentTime > startTime then return true

6: else

7 return false

8: conditions:

9: if courseExist(courseShortName, courseName) then return true
10: else

11: return false

12: actions:

13: MySQLOperations.start Transaction()

14: Begin

15: createCourseCategory (categoryName, categorySortorder)
16: updateCourseCategory(categoryID)

17: createCourse(courseName, categorylID, courseStartDate;
18: createCourseSection(courselD, sectionCityDescription)
19: insertEnrolMethods(courselD)

20: End

21: MySQLOperations.commit()

22: rulesGeneration:

23: if getActivated() then createRule(new S002(courselD))

24: else

25: createRule(this);

Figure 5.3: Proactive Rule R001 in pseudo-code.

of the proactive cycle. The first stage was composed of LPaS101, LPaS102,
LPaS103, LPaS104 and LPaS105, the second stage of LPaS201, LPaS202
and LPaS203, while the third stage of LPaS301 and LPaS302.

5.4 The Experiment

For testing the LPaSs and assessing the three hypotheses, a study was con-
ducted during the second half of a summer semester at the University of
Luxembourg, as an online experiment, using the local Moodle platform
[117]. With the help of the LPaS, the eligible users were enrolled inside
a specialised course and inside the first type of OCoP, based on the study
programs of the users. Two resources were added at level of the course, con-
taining a user manual and a detailed description of the whole project. A set
of three communication tools, including a forum, a chat and a folder, were
generated when each OCoP was created. After the first successful login of

71

each participant, two new types of OCoPs were proposed through a question
box specifically built for the GUI of Moodle. New OCoPs and their resources
were only generated if there were minimum three participants willing to join
these groups. The OCoPs were based on Groups and Groupings, features
already integrated in the latest version of Moodle. Groupings can make
activities within a course available only to a set of users, which are firstly
arranged into groups and groupings. Group modes were set to Separate
Groups for the whole course, i.e., only members of the same group could see
the group activities while to all the others they were invisible, which means
that the visibility of a resource was determined by its group membership.
By default, the users inscribed in the course containing social groups only
had basic permissions for using the resources of the group, meaning that
they could use them, they could add documents to the folder but they could
not change the settings of the existing forum, chat and folder.

5.4.1 Participants

A total of 2404 individual participants were included in the tests, but only
1088 were selected for the enrolment in the course which contained the first
set of communities due to the fact that they were only assigned in the stu-
dent role in their other courses. A particular case was given by the PhD
students that represented a large percentage of the total number of unregis-
tered users. They have multiple roles on the Moodle platform like teacher
or manager. The main reason for only selecting students for eligibility to
participate in the experiments on Moodle was the assumption that students
would feel more comfortable in sharing experiences, course materials and
projects between one another without having teachers or assistants moni-
toring their activity and actions. The participants were divided into two
main categories: engaged students and uncommitted students. En-
gaged students refers to the students whom accepted being a part of at
least one other community, and voluntarily joined the newly formed groups,
while uncommitted students refers to the students that were automatically
placed in their study-based OCoPs but did not want to take part of any
other community.

5.4.2 Data Collection and Analysis

Data was continuously collected during the experiments by both the LMS
and the proactive scenarios and meta-scenarios. Additional data was also
gathered because some important data could not be registered in the LMS’s
database. For example, actions like delete a coaching message, view a coach-
ing message and leave a community, which were specific to the two Moodle
blocks used in the experiment, were recorded in another database specifi-
cally created for information about the communities of practice and their

72

members.

Analysing the data was done in two main phases. The first phase con-
sisted of a step-by-step process of examining the data for making local de-
cisions such as creating or ending the life cycle of a community. This con-
tinuous process of evaluating the data was an outcome of using PaC. It was
necessary for sustaining the second hypothesis, RHb, and for answering one
of the research objective of this case study. The second phase, which hap-
pened at the end of the experiment, included gathering relevant data about
the communities, the interactions that took place inside the communities
and the resources that were used by the participants.

5.4.3 Measurements

Quantitative measures were taken for supporting the first hypothesis, RHa.
For evaluating the activity of the participants it was taken into account
their actions related to the three main resources that were provided, i.e.
the forum, the chat and the folder, from the moment they were enrolled in
their communities. Operations such as Add Discussion, Add Post, Update
Discussion, Update Post, View Discussion, View Post were considered for
the forum resource, Report, Talk, Update and View for the chat resource
and FEdit, Update and View for the folder resource. The activity inside the
groups was measured in two stages, i.e., three weeks before the beginning of
the experiments and three weeks after the start of the experiments. These
periods were considered very relevant because they were situated in the
middle of the semester and did not include weeks where the activity would
be influenced by other factors like the beginning or end of the semester, when
students’ online activities are quite numerous on the e-learning platforms.

The second hypothesis, RHb, was mainly evaluated with respect to the
proactive procedures that determined which participants did not leave and
actively took part in their OCoPs until the end of the semester. These proce-
dures included notifications, reminders and messages sent by the proactive
LMS to the participants in order to encourage them to participate actively
in their OCoPs. These procedures also informed students about new posts
and new resources, and offered guidance within their social environment.

The last hypothesis, RHc, was verified by investigating quantitatively
and qualitatively communities in terms of collaborative work regarding learn-
ing practices, knowledge networks and particular interests. It was also con-
sidered how many OCoPs of each type were initialized and how many were
waiting to be created.

5.4.4 Results and Discussions

A total number of 3618 actions was recorded for the three main tools pro-
vided inside each OCoP. Forum actions were account with 46.6% of the

73

Table 5.1: Results of Forum actions inside all the different categories of
OCoPs

Tvpes of Forum
yP Add Add Update View View
OCoPs : 0 date : .. :
discussion post post discussion post
City-based 7 8 2 6 98 196
Country-based 9 8 2 6 135 263
Study-based 7 7 1 4 254 675
Total 2 el

1688

Table 5.2: Results of Chat and Folder actions inside all the different cate-
gories of OCoPs

Chat Folder

Types of OCoPs Edit_ Update View
City-based 35 9 14 127 7 2 86
Country-based 46 27 14 163 9 2 107
Study-based 166 51 9 614 8 2 432

Toral
1275 655

total number of actions, the chat actions with 35.2% and the folder actions
with 18.2%. The forum was by far the most used tool in all three categories
of social groups, also shown in tables 5.1 and 5.2. Actions like viewing forum
posts and viewing discussion represented more than 96% of the total activity
in the forums. These results show that students were more reluctant to add
or update a post or a discussion, and would rather participate as observers.
The folder and chat tools were rarely used by the participants considering
the number of participants and the short period for the experiments.

One explanation for the lack of activity of the students is the structure
and the design of these tools. For example, the chat was designed more like
a chat room, i.e., a place where students can participate in discussions at
any time. To use the chat, students had to be online at the same time, which
is quite improbable for communities with few members. Also, discussions
between students were not saved by the LMS, so each time the chat had
no remaining participants, the LMS would remove all the conversations.
This explains the difference between conversing (87 recorded actions) and
viewing the chat rooms (904 recorded actions). Adding and editing content
of the folder in each community, with a total of 30 actions, was significantly
less used opposed to other operations like viewing the resources of a certain
folder which recorded more than 600 actions.

Out of the three main categories of OCoPs the study-based commu-
nities had the highest number of activity. In the study-based OCoPs, the

74

-10%

2,000 — 3}
£ 1.2) =
” 2z]
4,500 M 1 g 1 1
= Z 08} 1
o o
2,000 1 %06 1
g B 04l |
= 500 -
g 0.2¢ :
=
0 T Z 0 T T
3 weeks before 3 weeks after 3 weeks before 3 weeks after
0o engaged students 00 engaged students
liuncommited students louncommited students

(a) Statistics containing number of logins (b) Statistics containing overall activities
inside the LMS without logins

Figure 5.4: Comparing activities inside the LMS before and after the start
of the study

LMS recorded a total of 948 actions concerning the Forum, 442 concerning
the Folder and 840 concerning the Chat. This came as a consequence of
having five times more participants in the study-based OCoPs than in
the city-based OCoPs or country-based OCoPs. The registered num-
ber of activities showed a small difference in favour of country-based OCoPs
compared to city-based OCoPs. One argument is that people participating
in the country-based OCoPs found it much easier to express themselves in
their native language. A relevant example is given by the community of stu-
dents coming from Portugal, which represented one of the most active social
communities in the study. All the forum posts and replies were written in
Portuguese, which showed a clear desire of students to communicate in their
native tongue.

Measurements, presented in figure 5.4a, indicate that the average login
actions per week, of both engaged and uncommitted students, increased in
the first three weeks after the launch of the experiments. The rise in the
case of the engaged students, i.e., 21.1%, was similar to the one in case of
the uncommitted students, i.e., 23.3%. If an engaged student logged into
his/her Moodle account 3.5 times in average per week before the start of the
experiment, then, after the start of the experiment, this average reached 4.3
logins per week. For the uncommitted users, the average went from 1.67 to
2.03 login actions per week.

In figure 5.4b, a similar increase as the one in figure 5.4a can be no-
ticed for all the activities performed by the students within the LMS except
their successful login actions. These activities included actions completed

75

Table 5.3: Students who left their communities compared to those that
stayed

Tvpes of OCoPs Number of students that Number of students that
yp left his/her community stayed in his/her community
City-based 9 98
Country-based 6 159
Study-based 222 866

by the students inside their courses regarding assignments, grades and other
resources and actions done at the level of the LMS including checking the
calendar for important dates, upcoming course events and updates for dis-
cussions. The recorded activities showed, in the 3-weeks period after the
beginning of the study, an increase of 32.0% for the students that took an
active part inside the OCoPs and an increase of 10.7% for the uncommitted
students.

The results indicate that inserting more opportunities to socialize as part
of a course into a LMS have a positive effect on the online engagement of
the students, which supports the first hypothesis RHa and which confirms
expectations about the first research objective.

Table 5.3 shows that the number of students that preferred to remain in
the groups is quite high compared to the number of students who decided
to leave their social groups, especially for the engaged students. The num-
ber of students who decided to leave their groups in the time interval of 4
weeks constitutes 9.1% of the total number of members in study program-
based OCoPs, 0.37% for the city-based OCoPs and respectively 25.6% in the
country-based OCoPs. This demonstrates that students were quite satisfied
with their communities and preferred to remain inside these communities.
One reason for this outcome could be that students were alerted when the
system detected relevant activities inside their OCoPs such as new forum
posts or discussions, new resources that were added to folders or when new
chats or discussion took place. Students were also informed when their
OCoPs were inactive for more than 3 days, meaning that there was no ac-
tion detected by the system inside the OCoPs. During the experiments a
total of 5913 reminders, hints and notifications were generated for all the
1088 students, meaning an average of 9.2 messages per user per week. Un-
der the proactive analysis lens, LPaSs were used for constantly analysing
the situation inside the OCoPs and for deciding whether to send either a
notification, reminder or hint.

5.4.5 Conclusion

These empirical investigations clearly demonstrated that the limitations of
a LMS can be overcome and the LMS can be transformed into an intelli-
gent and aware system. The key contribution demonstrated that including

76

social features inside the LMS and creating OCoPs as part of a course,
with the help of LPaSs, enabled different collaborative learning techniques.
LPaSs permitted the LMS to actively seek out and analyse information
about OCoPs and their members, and make decisions based on this infor-
mation without an explicit command from any user or administrator.

The expectations about the first hypothesis were confirmed by the re-
sults, which show that employing social features as part of a student’s courses
increased the level of online student engagement. It is also likely that this
could positively influence a student’s performance when completing online
assignments and tasks. The second hypothesis was not fully measured and
more specific actions need to be implemented for measuring, with the help
of PaC, the positive benefits of OCoPs and by applying them inside the
LMS. Future efforts will focus on how to make activities more engaging
inside OCoPs, on how to add valuable content to expand the general knowl-
edge inside OCoPs, and on how to make OCoPs more attractive in order
to increase user participation. Creating a variety of communities offers stu-
dents the possibility of creating well-defined, knowledge-based networks and
social networks inside the OCoPs. Arranging students into OCoPs to ex-
change information, express new ideas and to observe one anothers work led
to collective solutions for various problems and questions; it also stimulated
the learning process of these students, thus confirming the third hypothesis,
and answering the third research question. OCoPs require space to expand
and need time to evolve in order to reach a mature phase. Social barriers
need to be broken by their members whom do not know one another, and
without physical presence, but reaching this level of comfort within an aca-
demic LMS will take some time. The evolution of OCoPs inside e-learning
platforms should continue to be observed and investigated. Future work
should also include a proactive mechanism capable of motivating the users
inside the OCoPs. The integration of OCoPs should not be limited to a
single specialized course, but rather as part of all courses inside a LMS. Fi-
nally, more focus should be placed upon the correlation between the engaged
students that get socially involved in the LMS and the student’s academic
performance in that course.

7

Chapter 6

Application 2 - SilentMeet

The second case study introduces a mobile application, i.e., SilentMeet,
which uses group-driven collaboration and location-based collaboration for
automatically switching smartphones into silent mode during meetings or
important events. It is the first application that employs GPaSs in order to
achieve its target goals. This application was firstly published in [133] and
then an extended version in a journal [134].

Apart from the main function of the prototype application, which is
to silence mobile phones during meetings, there are three main objectives:
a) to provide a collaborative application capable of acquiring contextual
information from various devices, b) to check if it is possible to achieve
collective reasoning using a rule-based middleware architecture for mobile
devices, and c) to validate GPaSs in a real-case example. Objective (a) is
addressing RQ2, objective (b) focuses on RQ3 and RQ4, while objective
(c) targets to provide one of the answers to RQ5.

More precisely, for the first step of the collaboration, a partial agreement
algorithm is used for establishing if a meeting is confirmed by its partici-
pants and, during a second round, for confirming if the meeting will take
place, based on the location of the participants. The application avoids those
cases when a meeting is accepted but the participants are not coming to the
meeting or when participants do not reply to the meeting invitations but
they are still attending the meeting. SilentMeet uses a new technique for ex-
changing information, for coordinating and for taking distributed decisions,
called GPaSs. For executing GPaSs, a rule-based middleware architecture
for mobile devices, presented in chapter refmobiledev, is utilised. GPaSs
and the middleware architecture allow developers of collaborative applica-
tions to define the actions of their applications in a structured way without
having to take care of the communication and coordination of the mobile
devices. Also, there is no need for developing a server-side application where
the global decision would be taken; all the logic is integrated into GPaSs.

78

6.1 Related Background Information

Related work is divided into several categories which are considered the
most relevant for this case study. The first one examines context-aware mo-
bile collaborative systems, where the focus is on the context of groups of
users, the second one discusses relevant collaborative middleware architec-
tures for mobile devices, the third one has examples of collaborative mobile
applications developed for other fields than the ones that turn the mobile
phone into silent mode and the last one contains several examples of mobile
applications developed for silencing smartphones in various situations.

6.1.1 Context-Aware Mobile Collaborative Systems

A key characteristic of mobile collaborative systems, where groups of users
perform common activities and have the same interests, is the ability to ac-
quire different contextual information from multiple sources, not only from
local, individual sources. The idea is that multiple devices can observe and
reason about the same event from different angles. Multiple frameworks
were developed to ease the creation of context-aware mobile applications
[135] [136] [137], but the aspect of reasoning about the shared contextual
information, coming from multiple applications, was not explored. Wang
et.al [138] propose a context-aware strategy for collaborative mobile appli-
cations based on location. However, the collaboration process is limited as
the context information depends only on the near proximity of the partici-
pants. Despite a collaborative strategy for sharing context between devices,
the authors only provide in [139] a simple integration of the context, which
is just added to the knowledge base.

6.1.2 Collaborative Mobile Middleware Architectures

Numerous studies [140][141][142] have been conducted that provide middle-
ware architectures as tools for developing collaborative applications. One
important difference is that these studies look at collaboration from a differ-
ent angle. More precisely, they concentrate on user-centred collaboration,
where the focus is to get the users to interact more and more with their ap-
plications on the mobile devices. The issue is that these applications would
depend too much on the actions of their users and, if the users do not engage
properly in each step of their interaction with their devices, the applications
may remain at the same step. Opposite of this, PaC tries to reduce the users’
involvement by automatizing large amounts of processes. By doing so, the
users can concentrate more on the essential tasks they are required to do.
MobiSoC [143], a middleware enabling mobile social applications, showed
on initial tests indicated that this framework provided good response times
for 1000 users for location-based matching and place-based matching.

79

6.1.3 Collaborative Mobile Applications

Using the WatchMyPhone (WMP) tool kit, a shared text editing collabora-
tive application was developed in [144] with the help of Mobilis Framework
[145]. The proposed tool kit is compressed into a library and can be used by
other collaborative applications by including this library into their project.
However, this type of applications imply synchronous collaboration, which
is another area of research. Another field where collaboration is crucial is
represented by mobile-based games. In [146], the authors created a mobile
game based on collaborative game play. The game was developed on top
of a middleware architecture. However, the whole framework consisted not
only from a client side middleware but also from a server side middleware,
which handles the biggest part of the complexity.

6.1.4 Applications for silencing the Smartphone

Many commercial mobile applications exist on the market, like Silence [147],
Go Silent [148] or Advanced Silent Mode [149], which automatically switch
off the sounds of mobile devices based on the user’s preferences. These
simple applications are focused on one user and perform only local tasks
like checking the user’s predefined preferences or detecting calendar events.
They do not use any kind of collaboration with other devices to make the ap-
plication smarter. For example, SilentTime [150] searches for weekly events
in the local schedule and automatically silences the user’s phone if a future
event is detected. It offers the user the possibility to add exceptions, in case
he/she is waiting for an important phone call. However, the application has
a couple of downsides. First, it is exclusively based on the user’s input, i.e.,
a calendar event or exceptions of a special situation will only be detected
if the user creates them before, and second, it does not use any kind of
communication with other devices to check if the events will take place or
not. Another example is AutoSilent [151], which is slightly different from
SilentTime because it adds an extra step of verification before muting the
user’s phone, i.e., it will verify if the user’s location corresponds with the
event’s location at a certain time. This extra feature is again just a simple
check because it does not use any kind of collaboration, like, for example,
checking also the location of the other participants.

6.2 Domain-Specific Problem Statement

There are quite a few mobile users who went through embarrassing situations
when their phones rang during important meetings, lectures, exams, presen-
tations, concerts, interviews or key talks offered at international conferences.
Imagine, for example, that during a viola recital of a famous musician, the
mobile phone of a person starts ringing, like it did during a recital in Slo-

80

vakia [152]. The musician is not only interrupted but he/she could also
lose focus and find it difficult to continue. Another case happened during
a performance of the New York Philharmonic in 2012, when the conductor
had to stop the orchestra because of a person sitting in the front row whose
smartphone produced a disturbing sound because of an alarm going off [153].
This happened despite the fact that an announcement was made to silence
all the mobile phones in that room. There are many more other examples
when muting the phone is a mandatory requirement. The main problem is
that each user has to manually configure his/her phone to be silent during
important events. And often, they forget. The detrimental and disruptive
effects of interruptions are a problem which got a lot of attention in many
different areas [154] [155]. A general common strategy or approach which
performs collaborative actions is missing.

Let us imagine the following real-world situation: an important event
is about to begin. The mobile devices of the participants, located in their
pockets, go automatically into silent mode. The participants do not have
to worry they forgot to silence their mobile phones, they can focus more on
their important tasks. The meeting can continue without any interruptions
or embarrassing situations.

6.3 A Rule-Based Solution - SilentMeet

SilentMeet is a mobile collaborative application that was developed in order
to minimize the risk of interruptions and their distracting effects during an
important event such as meetings, interviews or public events. Moreover,
in order to have an efficient collaboration algorithm, part of the user’s ac-
tions are automated by using PaC. The main difference between SilentMeet
and other applications is that SilentMeet does additional checks, based on
GPaSs or the collaboration with the other mobile devices, to establish if a
meeting is taking place or not. More precisely, it checks, among the possible
participants of the meeting, if there are at least 2 users that have accepted
to attend the meeting and have the meeting in their calendar, and, finally,
on the date of the meeting, it will check the location of the users 15 minutes
before the start of the meeting. The additional checks are necessary for
trying to avoid cases such as silencing a smartphone even if the meeting is
not taking place.

6.3.1 The GUI of SilentMeet

The application was developed for the Android OS and consists of a main
activity with a calendar view working as a date picker, laid out in figure 6.1a.
The basic idea is to provide the user with a simple interface for creating the
meeting, i.e., selecting the participants for this meeting, the place where the
meeting will take place and the starting and ending hour of the meeting. In

81

February 2016
s M T w T F s
3 4 & 6

] 9 10 n 12 1 New Meeting

14 15 16 17 18 19 20

Select Meeting Members

2 22 23 24 25 26

Location:Luxembourg City,Boulevard Users
March 2016
Konrad Adenauer User21@omalicom

1 2 3 4 5 REFUSE MEETING ~ ACCEPT MEETING user22@gmail.com

CANCEL 0K

(a) The home screen of (b) Receiving a meeting
the SilentMeet invitation (c) Selecting users

Location
Enter the location of the meeting
kirchberg quembourg|

Create Meeting

Enter start time Enter endTime

CANCEL OK

1231415161 7]18]9]0

gwer rtyuiop
asdfghj k|

(d) Selecting the start and end (e) Entering the location of the
time of a meeting meeting

Figure 6.1: SilentMeet’s GUL

figure 6.1, an example of creating a meeting using SilentMeet is provided.
At the start, the user selects a date from the calendar when the meeting
should take place. The date of the meeting should be higher or equal to
the current date otherwise the meeting will not be created. Afterwards, a
new dialogue opens asking the user for the start time and end time of the
meeting, as shown in figure 6.1d. Again, the start time has to be bigger
than the current time if the meeting is on the same day or, if the meeting is
on a further day, the start time has to be smaller than the end time. Then,
the user has to select the participants for the meeting. He/she will have
to choose from a list of predefined users, as presented in figure 6.1c, i.e.,
the users that have agreed to be part of the same group for creating future
meetings. Additional information about how these groups were created are
given in section 6.3.2. And finally, before sending the invitation to the other
members, the user has to input the location of the meeting, depicted in figure
6.1e. The location is given by the user as text, which is then converted into

82

GPS coordinates. These coordinates are stored locally on the phone, and,
just before the meeting takes place, they are compared with the current GPS
coordinates. The members selected for the meeting receive an invitation
with the date, location, start time and end time of the meeting, depicted in
figure 6.1b. Then, a user can accept, reject or not respond to the invitation
by selecting another area on the application’s screen. If the invitation is
accepted, the response is sent back to the initiator of the meeting. For
a meeting to be confirmed there needs to be at least 2 participants that
accepted to participate. The initiator of the meeting can cancel at any time
the meeting if he/she decides that the meeting should take place only if all
the invited members accept the invitation or for other reasons.

6.3.2 Grouping the participants for a meeting

Creating groups of people that knew each other and were more probable to
meet was predefined. Although, this step can also be partially automated
with the help of another GPaS, for SilentMeet the groups were predefined
before an event was created by each user. Then, when a calendar event is
created, the user also adds the participants from the list of users belonging
to a certain group. Users can perform collaborative actions only if they are
part of the same group of the same event. So, users first have to build their
own groups or agree to be part of already created groups. For example, in
a company, the secretary of a department creates a group for the employees
of that department that have meetings regularly. By joining this group, the
members agree that their mobile phones can be silenced by the application
of the other members, after multiple rounds of negotiation. Moreover, extra
conditions and checks are taken into account like the location of the event
and the participants, the date and the hour of the event and the local pref-
erences of each user. In figure 6.1c, a user is about to start a new meeting
and decides to invite both members of his/her group, i.e., users with emails
user21 @gmail.com and user22@gmail.com, to this meeting. In the given
example, the group is composed of precisely 3 users.

6.3.3 Global Proactive Scenarios for SilentMeet

The idea of SilentMeet is that the devices participating in a collaboration
process can take decisions based on global information, coming from other
smartphones equipped with PEs, therefore enhancing the local information.
Each device is able to make use of the global knowledge that is created by all
the devices involved in the collaboration. For example, a basic application
would only be able to detect an event based on the local information provided
by the calendar of a device. SilentMeet is able to query all the relevant
devices to obtain more precise information about that event by using a
particular GPaS.

83

1: procedure GPAS1(RO011) > Looking for new pending meetings
2: dataAcquisition:

3: boolean newMeeting <+ engine.isNewMeeting|()

4: activationGuards:

5: return true

6: conditions:

7: return newMeeting

8: actions:

9: List meetings «+ engine.getListOfPendingMeetings|()

10: for for each m in meetings do

11: Begin

12: ArrayList params.add(m.getMembers())

13: params.add(m.getDay(), m.getMonth(), m.getYear())

14: params.add(m.getStartHour(), m.getStartMinute()

15: params.add(m.getEndHour(), m.getEndMinute())

16: params.add(m.getLatitude(), m.getLongitude())

17: params.add(m.getMail())

18: End

19: if engine.meetingRequest WasNotSent(meeting.getld()) then
20: engine.sendMessage(” R021”, params, deviceIDs, 100)

21: SentMeeting sentMeeting <— new SentMeeting(m.getld())
22: engine.getLpeDBWrapper().save(sentMeeting)

23: rulesGeneration:
24: createRule(this)

Figure 6.2: Proactive Rule R0O11 in pseudo-code.

SilentMeet uses two GPaSs: the first one for creating and establishing
if a meeting will take place and the second one to check, just before the
meeting, the location of the users and to decide if they are close to the
meeting’s location in order to put the mobile phones into silent mode. A
meeting is confirmed in two steps: the first step checks if the participants
of the meeting have accepted the invitation to the meeting and have that
particular meeting in their calendars, and the second step checks the location
of the participants to see if it corresponds with the meeting’s location, on the
exact date, 15 minutes before the meeting is about to start. This algorithm
with all the extra checking steps is useful because false positives are avoided,
i.e., those cases where the meeting is not taking place but the phones are
still put into silent mode.

GPaS1

The purpose of the first GPaS is to create a meeting and establish if a
meeting is confirmed by checking with the mobile devices of the other par-

84

ticipants. This is only the first step of verifying if the meeting is going
to take place. It is necessary for starting the second verification step, i.e.,
the second GPaS. Each device needs additional information from the other
devices before taking a decision. The idea is that if multiple devices, part
of a collaboration group, have an event in their local calendar, with the
same date, time and location, it is very probable that the event will take
place. It is presumed that the same information about an event coming
from 2 different devices part of the same group is enough for the application
to decide what to do next, e.g., in this case, it will activate GPaS2. The
minimum number of 2 devices is motivated by the fact that a device should
not be able to mute, by itself, other devices without any kind of agreement.
GPaS1 allows a decision to be taken without the confirmation of the meet-
ing coming from all the participants, as this is very difficult to achieve in
real-life situations, with large numbers of users, where each user is expected
to manually add the event into the calendar.

GPaS1 is composed of 4 PRs, i.e., R011, R021, R012 and R022. R011
is one of the rules that is running from the beginning, when the application
is installed, and is checking for new meetings in the local database. The
code of the rule R0O11 is shown in figure 6.2. For SilentMeet, the PE was
set to execute an iteration each 5 seconds, so, RO11 will be checking each
5 seconds for a new meeting. When creating a meeting, as seen in figure
6.1, SilentMeet registers the meeting’s location, date, start time, end time
and the persons invited to that meeting. The status of the meeting, after it
was created locally on the smartphone, is set to pending and unsent. RO11
checks for all the pending unsent meetings, this step being part of the data
acquisition method of this rule, and, only if such meetings are detected,
the actions method will be activated. Inside this method, an invitation will
be sent to the users selected to attend the meeting. The invitation will
contain all the meeting’s details like its location, start time, end time, date
and members. The name of rule to be activated on the receiving PEs is
included among the parameters when the message is sent to the receiving
PEs. And so, rule R021 will be activated on the devices of the receivers.
For example, if userl decides to create a meeting and invite user2 and user3
to that meeting, on the devices of user2 and user3 the PE will activate rule
RO021. When rule R021 gets activated, it means that the receiver of the
message is invited to a new meeting. In its data acquisition phase it looks in
its own calendar if there is no other meeting on that specific date and time
and if this invitation has not already been accepted. If these conditions are
satisfied, then this rule will trigger a pop-up dialogue on the mobile phone
of this user to ask him/her if he/she accepts to attend this meeting, as seen
in figure 6.1b. The operations are part of the actions phase of the rule.
This rule does not generate other rules and does not clone itself. When
receiving the invitation inside the pop-up, the user has 3 options: accepts
the invitation, rejects the invitation or does not respond to the invitation

85

by changing the application or by clicking on another part of the screen. In
case he/she accepts the meeting, rule R012 gets activated. Even though
the cyclic rule R012 is one of the rules which is executed by the PE at each
iteration, it only gets activated when the conditions are true, i.e., the user
accepts or rejects a meeting. The immediate effect, if the conditions are
true, is to send the response to all the users invited to attend the meeting.
If the answer of the user is positive and he/she accepts to join the meeting,
then, at this particular moment, there are at least 2 persons that accepted
to attend the meeting. In case the answer is negative, the device of the same
user will register the meeting as refused and even if the meeting will still
take place with the other participants, the devices of this user will not be
switched into silent mode. The receiving devices activate rule R022 that
gets as parameters the answer of a user with regard to a specific meeting
invitation. If the answer is positive and the meeting is confirmed by at least
2 persons, GPaS2 will be activated. If the answer is negative, the device of
the initiator of the meeting still waits until all the answers from the invited
members are received. Until then, the meeting will be in pending mode. If
all the answers are negative or part negative and part unanswered before
the meeting starts, the meeting will be considered as cancelled.

GPaS2

GPaS2 is in charge of the second verification step by exchanging the loca-
tion of participants, if they are close to the meeting’s location. So, it is not
enough for accepting the invitation when the meeting is created by a user,
for example, 1 week before the actual meeting takes place, but there are 2
extra steps to be completed. The first one is that the users that accepted
the invitation have to be near the location of the meeting 15 minutes before
the meeting will begin and the second one is that they have to exchange
their location with at least one other participant that is also near the meet-
ing’s location. Only when these steps are fulfilled, the silent mode will be
activated. These extra steps of verification are useful for cases when even if
persons confirm their attendance at a meeting, they are stuck in traffic, or
they had an emergency and cannot attend the meeting, and so, activating
the silent mode on their smartphones is not necessary.

GPaS2 is composed of 3 PRs, i.e., R0O13, R023 and R024. RO013 is
only activated when a meeting has been created and accepted by at least 2
participants. It will check the current time on the device, and, if it is equal or
less but not more than the meeting’s start time minus 15 minutes, it will start
to check for the location of the device. If the location also corresponds to the
location of the meeting, then the condition for executing the rule’s actions
are met. These actions include sending a message to the other participants
to confirm the device’s presence at the meeting’s location. After sending the
message, the device of this user that activated R013 waits for receiving at

86

least one message from another PE of a participant in order to activate the
last rule, i.e., R024, which turns the smartphone into silent mode. Checking
for the location of the user every 5 seconds consumes a lot of battery, so,
this action is performed only when the current timestamp approximatively
corresponds to the meeting’s timestamp. Upon receiving the message from
one user that is close to the meeting’s location, the activation condition of
rule R023 will be fulfilled on the other participants’ smartphones. This rule
tells SilentMeet that there is at least 1 person attending the meeting and so,
has permission to switch the smartphone into silent mode if the local PE is
close to the meeting’s location. If this last condition is carried out then the
last rule is activated, i.e., rule R024. The last rule of GPaS2 is in charge
of finally silencing the mobile phone during that meeting. The only way this
rule is executed by the PE is to get through all the previous collaboration
steps of both GPaSs and to fulfil all the necessary conditions of each rule.
The command for silencing the device is given in the actions phase of the
rule R024. So, a user that did not reply with yes or no for attending the
meeting, can have his/her mobile phone switch into silent mode if his/her
device are at the meeting’s location, on the same date and same hour as the
meeting. SilentMeet considers that by fulfilling these conditions the device
is very likely to participate at that meeting, even though it did not provide
a precise answer. This case includes a hybrid algorithm for establishing if
a meeting will take place or not. The existing algorithms either check for
an entry in the calendar or, more advanced applications, just check for the
location of the current user but not the other users’ location.

Additional Rules

One of the rules that is executed at the beginning by the PE is called Regis-
terToServerRule that registers the user on the GCM server, if not already
registered. This will provide to each user a unique ID, which is then used
in the communication with the other smartphones equipped with PEs.

6.3.4 Collaboration Process

For muting the mobile devices of the participants of a group, after a calendar
event is detected, SilentMeet passes through a couple of rounds of collabo-
ration. These rounds of collaborations are depicted in Figure 6.3 with the
help of a sequence diagram. Moreover, it is shown how rules are activated
by other rules. This example shows what will happen on the PE from the
beginning of GPaS1, when a meeting is created on one smartphone, until
the end of GPaS2, when the meeting is confirmed and the devices are si-
lenced. The first GPaS can be activated, for example, 1 week before the
meeting actually takes places but GPaS2 needs to wait until the same date
and approximatively the same hour of the meeting to get activated. A user

87

------- dasssssssssnsnnnnnnnnalannns hssnshsssssssnnsnnnnnnnnnndunnnnnnt
I 1 when a I I
[Create [. ! !
I 1 meeting I I
| new | . | |
| ,___is created receives Accept to
| o« e
meeting jomn the
. !
g invitation meeting?
: |
receives parameters
new |
|

answer

012" Yes /No

detects
new answer

checks for
date and
location

location

receives
answer

|

|

M activate silent mode |

[end |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
activate silent mode
|
|
|
|
|
|
|

Figure 6.3: A sequence diagram with the collaboration of 2 smartphones of
the members of the same group, during a meeting negotiation process.

can receive multiple invitations at the same time and does not have to worry
about how they will be handled. This is done automatically by the PE. The
collaboration process depends on the communication of PEs, which depends
as well on the connectivity setting of each mobile device. The PE performs
also error checking and handling in case a message is lost somewhere in the
network and no answer is received from other PEs.

6.3.5 Message Exchange between Proactive Engines

As seen in chapter 3.4, PEs exchange information between each other with
the help of JSON messages. The messages can contain commands to acti-
vate certain PaSs or they can contain just simple context information. Fig-
ure 6.4 shows the content of a message written in JSON that is exchanged
between PEs in the case of SilentMeet. More exactly, when a meeting is
created on the device of the user with the email address user21 @gmail.com,
rule R0O11 gets activated and sends a message to user20@gmail.com and
to user22@gmail.com. The devices that get the invitation to the meeting

88

1

2 "instruction":"activate rule",

3 "msgId": /*set automaticallyx*/,

4 "senderID": /*set automaticallyx*/,

5 "receiverID": ["user20@gmail.com", "user22@gmail.com"],

6 "ruleName":"R0O21",

7 "PARAMETER_TYPES": [

8 "String[]", "Integer", "Integer", "Integer",
"Integer", "Integer", "Integer", "Integer",
"Double", "Double", "String"

9 1,

10 "PARAMETER_VALUES": [

11 ["user200gmail .com", "user22@gmail.com"], 29,3,2016,19,
6,20,6,49.6278694, 6.153422, "user21@gmail.com"

12]

13}

Figure 6.4: An example of a JSON message that is passed between RO11
and R021, when a meeting is created.

activate rule R021, which receives precise data about the date, start time,
end time, location, sender and list of invited members of the meeting.

6.4 Tests

A series of tests were conducted locally at our university on 3 different de-
vices: a Samsung Galaxy Note 3 and two Samsung Galaxy S6. All 3 devices
used an Android operating system and had installed SilentMeet, working to-
gether with the mobile middleware, in order to be able to execute GPaSs and
collaborate with each other. The devices were part of a predefined group of
3 participants with the following email addresses used as unique identifiers:
user20Q@gmail.com, user21@gmail.com and user22@gmail.com. During the
tests, all 3 devices were connected via WiFi to the same network. Initially,
all the devices had their sound turned on.

In the first series of tests, the user with the email address user20 @gmail.com
and using the Samsung Galaxy Note 3 was the initiator of a meeting and
created it on SilentMeet’s local calendar. The meeting was set to happen
after 10 minutes of its creation time, on the same date, in the same location
as all the devices, i.e., the campus at our university. The invitation was
displayed on the screen of the 2 other mobile phones and, after the meeting

89

was accepted by both guests, it was marked in the calendar of SilentMeet.
The devices started immediately to check their locations, compared it to the
meeting’s location and shared it with the other guests, as the start time of
the meeting was very close to the current time, i.e., less than 15 minutes
difference. All 3 devices were silenced when the meeting started.

The second series of tests happened in the same conditions as the first
tests except with one minor detail: one of the invited users did not accept
or reject the meeting proposal. However, the minimum of 2 persons that
accepted the invitation was reached and so, all the devices had activated
GPaS2, which checked their locations before the start of the meeting. Be-
cause all the other conditions were accomplished, the 3 devices were silenced
again when the meeting started.

For the third series of tests, the 3 users that were part of the meeting pro-
posal accepted the invitation but only one user was at the same location as
the location of the meeting, i.e., the user with the email user20@gmail.com.
The device of this user did not get a location confirmation from the other 2
users involved in the group meeting, so, it did not switch into silent mode.
Neither the 2 devices of the two other users.

6.4.1 Measurements

The first goal was to check if the application behaved as expected in the
most common cases, e.g., when all the users confirmed their presence at a
meeting and their location is the same as the meeting’s location when it
started, as well as the unusual situations. These unusual situations included
not providing an answer of participating to a meeting but still attending that
meeting, accepting the meeting’s invitation but not coming to the meeting or
being the only one present at a meeting confirmed by all the other members
of the group and where nobody else is present.

6.4.2 Results and discussions

The tests showed that the application behaves as expected and that all three
devices were muted after the negotiation process. In the given settings, it
took around 10 seconds to reach a common agreement that the meeting
will take place and to mute all three devices. However, this time is highly
dependent on the frequency parameter of the Rule Engine, meaning that
setting a lower time interval between two iterations will also lead to a faster
execution of the GPaSs.

6.5 Conclusion

In this case-study, it was demonstrated that it is possible to easily design and
implement a context-aware collaborative application on top of a rule-based

90

middleware engine with the help of PaC, more precisely, by using GPaSs.
SilentMeet is able to detect and acquire relevant context-information about
calendar events, to use a collective reasoning algorithm to establish if a
meeting will take place or not and to take decisions of silencing the smart-
phone, based on the shared locations of the users. Furthermore, the location
sharing process is handled very efficiently in order to reduce the unnecessary
battery consumption. At the same time, several parts of the collaboration
process were automated and the user’s involvement reduced only to the
most important operations, i.e., the creation of a meeting, the selection of
the participants and the sending of the invitations for participation. Silent-
Meet reduces the possibility of having meetings in the calendar that do not
take place any more or which are cancelled by the other participants. The
smartphone turns into silent mode only when multiple conditions are met,
reducing thus the risk of having the smartphone on mute when not attend-
ing any event. With only two GPaSs, composed of 7 PR, it is enough to
achieve SilentMeet’s goals.

91

Chapter 7

Application 3 - e-Health
System

The third case study, which is the most complex of the case studies presented
in this dissertation, focuses on providing a proactive e-Health system that
will allow patients, following a Cardiac Rehabilitation (CR) program out-
side the hospital, to exercise safely, according to their recommended train-
ing zones [156]. The e-Health system includes a smartwatch application,
a smartphone application and several server-side applications, working on
predefined personalised LPaSs and GPaSs, which are alerting, guiding and
supporting the patients. PaSs that are integrated into the mobile phones
and into the server contain knowledge of the medical experts like how react-
ing to different events, e.g., the sudden increase of the Heart Rate (HR) of
a cardiac patient while training at home.

The PS is capable of performing automated patient monitoring, of pro-
viding patients with real-time expert feedback, of alerting the patients in
case they perform exercises too fast or too intensive, of alerting the medical
experts in case an emergency is detected, of integrating patients into com-
munities of cardiac patients that are also training at home and of tracking
and comparing all the sessions of all the patients. The HR of patients is con-
tinuously measured, recorded and analysed during Exercise Training (ET),
which is is one of the decisive and crucial factors for reducing and preventing
unexpected cardiac events, with the help of wearable devices. Communities
of patients are created for stimulating and motivating patients to perform
according to their CR program. Opposed to traditional home-based CR
e-Health applications, profiles and training zones are created and handled
dynamically for each patient. The model presented in this case-study does
not aim at replacing the well-known, usual CR programs, but is attempting
to provide an alternative for patients who do not have the necessary means
or time of doing CR programs in clinical environments or hospitals. This al-
ternative should enable patients to adapt their lifestyle with little effort and

92

in safe and monitored conditions. Apart from answering to RQ5, this study
follows 2 other objectives, i.e., the possibility of integrating multiple levels
of medical expertise into smart devices for serving cardiac patients and the
circumstances that would make smartwatches and smartphones alternative
tools that will meet the needs of cardiac patients engaged in the second and
third CR phases.

7.1 Related Background Information

Even though the death rate caused by heart diseases has decreased in the
past years, the risks of heart failure are still very high, heart diseases being
accountable for almost one third of the worldwide deceases [157]. People
that suffered from a heart attack or have a heart disease/condition need to
reduce the probability of a potential future fatal heart event and one of the
main ways of doing this is CR.

7.1.1 Cardiac Rehabilitation

CR has many definitions [158][159], being seen as a set of key activities,
including physical, social and mental factors, which slow, or even reverse,
the evolution of the patient’s disease or condition [160]. The benefits of CR
include reducing the rate of mortality and unplanned hospital visits [161],
lowering blood pressure and stress [162], improving the patient’s exercise
capacity and the overall quality of life [163]. Despite the major benefits of
CR, the rate of participation in CR programs remains quite low [164]. To
address this problem, new strategies for keeping the patients motivated and
engaged in the CR programs need to be created. The reasons for the low
attendance in CR programs differ from one phase to another. The process of
CR is traditionally divided into four phases. Phase-1 starts at the hospital,
phase-2 and phase-3 continue at the patient’s home with periodical visits to
the hospital, and phase-4 is the long term maintenance process for staying
healthy.

This study focuses on phase-2 and phase-3 of the CR program, where
the patients have to perform multiple sets of exercises in an environment
that does not have medical equipment nor specialists to guide them, which
is possibly less safe. Studies indicate that patients in phase-2 of CR are
most vulnerable because they tend to do intensive exercises, if not guided
correctly, and this can have devastating effects on their health [165] [166].

7.1.2 Wearable devices

Recently, major advances in wearable technology, such as sensor technology,
communication technology and data analysis methods [167], give the possi-
bility to assess the physiological health of patients, by collecting data in a

93

non-invasive and non-obtrusive way [168]. Wearable devices were success-
fully used as monitoring and alerting systems in case of high-risk cardiac
patients [169], of analysing Parkinson patient’s movement for detecting and
preventing freezing of gait [170] and for estimations of heart and breathing
rates from wrist motions [171]. The newest generation of smartwatches is
now capable of measuring the HR very accurately with the help of Photo-
plethysmogram (PPG) technology [172]. The HR is a crucial health param-
eter measured in most of the CR programs.

7.1.3 Risk factors and challenges for home-based exercise
training

When doing home-based exercises in a non-Electrocardiogram (ECG) en-
vironment, i.e., at home, during phase-2 and phase-3 of the CR program,
cardiac patients are exposed to a series of risks, which may affect their
safety. These risks include training at high intensity, outside the recom-
mended limits, over-training or sudden increases or/and decreases of HR,
known as arrhythmias or abnormal heart rhythms. Challenges for CR pro-
grams include establishing an adequate training program and training limits,
personalised for each patient, defining complex profiles for each patient and
handling emergencies in an appropriated way.

High-interval training versus moderate training

Prescribing safe exercises is not an easy task. There are many guidelines and
recommendations for exercises for cardiac patients like the European Soci-
ety of Cardiology’s guidelines [173], American College of Sports Medicine’s
guide [174] or the recommendations of the European Association for Car-
diovascular Prevention and Rehabilitation [175]. For example, for aerobic
training, in [176], the authors recommend as intensity of the exercise 40-
70% heart rate reserve or 50-80% maximal HR, as frequency 3-7 days per
week and as duration 20-60 minutes per session or multiple 10-min sessions.
However, it is hard to determine the optimal exercise program in terms of
intensity and volume [177]. There is an ongoing discussion if training in
higher intensity zones substantially improves the patient’s peak oxygen con-
sumption VOapeqr [178] and the exercise capacity for coronary artery disease
patients [179]. Some studies have indicated, in the case of vigorous physical
activity, that the risk of sudden cardiac death [180] or myocardial infarction
[181] increases.

Over-training

Over-training appears when a patient exceeds the recommended training
frequency, duration, intensity or all of them. Training more often has been
shown to improve not only the (V Ogpeqr), but also the ventilatory anaerobic

94

threshold and quality of life [182]. But exceeding a certain limit of training
sessions per week has minor effects on a person’s physical condition [183]
and can even become dangerous. The same applies to the duration of a
training session. Some experts consider over-training more risky than not
training at all.

Sudden changes of the Heart Rate

Patients with cardiac arrhythmias or with high risk of cardiac arrhythmias
need to be closely monitored when training. Arrhythmias, or irregular heart-
beats, may be completely harmless or life-threatening. A home-based CR
system should be able to detect when a patient has an abnormal increase
or decrease in the HR while exercising, as indicated in figure 7.3. Normally,
irregular heartbeats are detected by ECG but evidence of detecting arrhyth-
mias with a finger pulse sensor, which is also an optical sensor, was shown
in [184].

Low engagement level

Inadequate training stimulation, the lack of immediate results and the long
duration of training programs are only a couple of reasons for decreasing
the patients’ motivation and engagement in CR programs. Major beneficial
effects can be seen only after longer periods of time [185] and this requires
complex solutions, not only a monitoring device which shows some training
limits. One solution, proposed in this study, is to organise patients into com-
munities, based on similar characteristics and profiles, and to inform each
patient about how the other patients in his/her community are performing.

Remote Monitoring Systems for Cardiac Rehabilitation

The increasing need and the high significance of remote monitoring sys-
tems for post cardiac patients has been emphasized in numerous studies
[186][187][188][189]. A shift can be noticed in the CR technology, from self-
monitoring, self-awareness and self-determination [188] towards automated
monitoring [187], automated feedback systems [186] and real-time data pro-
cessing [189].

In [186], the authors proposed a mobile solution for a home-based CR
program, including a server-side application and a web portal for educa-
tional materials, for providing statistics or health reports and for discussion
messaging. This solution was capable of automatically turning on the ap-
plication on the mobile phone, of transmitting data to the server without
the user intervention and provided an automatic data synchronization of
new parameters, without changing the application. However, the patients
still had to provide health parameters manually to the application, includ-
ing the HR, exercising hours, sleeping hours, etc. The system was able to

95

provide motivational Short Message Service (SMS), video and relaxation
audio based on the received data. During the exercise sessions, patients
were guided through traffic light indications. The patient’s health condition
was evaluated by transforming different activities like walking or cycling
into metabolic equivalent of task hours and not by continuously measuring
the HR. A more advanced system was proposed by Kyriacou et al. (2011),
where the system is supporting the recording and transmission of health pa-
rameters such as ECG, HR, blood pressure, oxygen saturation and others,
directly from the measuring devices [187]. Despite of the advanced techno-
logical support, the data aggregation is used only for telemonitoring, and,
other functionalities such as sending personalized alarms or messages accord-
ing to each patient’s condition or establishing the risks zones of each patient
in function of his/her medical parameters and/or past training sessions, are
not included.

7.1.4 Wrist-worn devices for Cardiac Rehabilitation

Monitoring continuously health parameters like the HR is known to have an
important impact in CR programs. In clinical environment and hospitals
HR measurements are done using an ECG. But, outside hospitals, the use
of an ECG apparatus is quite limited because of the high costs and remote
houses of the patients. With the current technology on the market it is now
possible to record the HR using smartwatches that are equipped with an
optical HR sensor. In [190], the results of a performance evaluation on the
optical HR sensors of an LG smartwatch showed that it is reasonably accu-
rate to measure the HR via a wrist-worn device. Another study on remote
monitoring, using a wrist-worn device, indicated that wrist-worn devices can
be used in home telecare, telemedicine and for detecting emergencies [191].

7.2 The Architecture of the e-Health System

The architecture of the proposed e-health system consists of several compo-
nents: (i) the smartwatch application, (ii) the smartphone application and
(iii) the server-side applications. Each component is designed to add more
functionalities according to its computing capacity. Each application can
work on its own and is not dependent on the other ones. More precisely,
if the application on the smartphone cannot connect to the server it will
continue to work as a standalone application and will analyse the data com-
ing from the application on the smartwatch. The same case applies if the
smartwatch application loses its connection to the smartphone application
and cannot transmit the data coming from the sensors. It will have limited
processing capacity but it will still be able to measure and display differ-
ent parameters like the duration of the training, the recommended training
limits and the current HR.

96

End Session

Check your sensor You increased too
fast your HR

260 seconds

(a) The main screen of (b) A notification when (¢) Alerting the user.
the application during the sensor does not de-
ET. tect a valid HR value.

Figure 7.1: The GUI of the application on the smartwatch Gear S2 from
Samsung.

7.2.1 The Prototype Application on the Smartwatch

Commercial smartwatches like the Gear S2 from Samsung offer programmers
the possibility of creating applications which have access to a variety of sen-
sors on the smartwatch such as the accelerometer, gyroscope, HR monitor,
barometer or ambient light. In order to track the activity and measure the
HR of the patients involved in the CR program, a new prototype application
was created for this study. The application is able to monitor and display
continuously the HR using the PPG sensor of the watch, also known as an
optical sensor, to display messages and notifications on the screen, to vibrate
in case of alerts and notifications, to send raw data to the smartphone and
to receive information from the smartphone via a Bluetooth connection.
When the user starts the application, by pressing on the screen of the
smartwatch on the application’s icon, a new session starts to be recorded.
The values of the HR are written to 2 files, i.e., slice.txt and session.tzt,
which are stored locally on the internal memory of the smartwatch. New
data is written into slice.txt each 10 seconds and is sent to the smartphone
for processing. The session.txt file is recording the HR during the entire
training session and, at the end of the session, is sent to the smartphone for
further processing. The need of storing data into 2 different files is motivated
by the case when the smartwatch loses its connection with the smartphone
and cannot send the slice.txt. In this case the corresponding data will be
stored in the session.txt file and will be sent at the end of the session. The
application is designed to continue running in the background during the
training session, even if the user does not interact with it for a relatively
long period of time. If the user does not close the application, it will close
automatically if the HR is equal to (-3) for more than 30 seconds. The
value (-3) is obtained from the optical sensor in case the UV light does not
encounter any object in front of the sensor, meaning that the smartwatch

97

B o0 a 3 7 .4 100%M 11:33 3 7 .l 100% M 11:06

HBeeoRNaea

CURRENT
SESSION HISTORY STATISTICS

3 7 .4l 88%H 16:10

CURRENT
SESSION

CURRENT
g HISTORY STATISTICS

HISTORY STATISTICS

a:z) Date 1/04/2016 Session1 332;’5“2‘ ¢
8 StartTime 11:32:49 Session2 ggg:ll Pzr\(lln ® 4
\D Duration 13 sec Session3 ggg;pﬂn 6 4 3
v | Average HR 64.0 Session4 gggépzhg‘lﬁ pecpleIn yourcommunity. meximum trelnings/Week
o MaximumHR 67 Session5 gg:géﬂ ¢
M Session6 el

08:06PM

100% 0% 0% 0%

Session7

TooT 115.5 10:00

04012016 average HR of a training recommended training time

Session8 10:03AM session

Consider improving your
training Srald 0401,2016

10:04AM

04 01,2016

Session10 10:25AM

cjejajejejajejajelal

(a) Screenl - The sum- (b) Screen2 - A list (c) Screen3 - Statistics
mary of the last training with previous training about the patient and
session. sessions. his/her community.

Figure 7.2: The GUI of the smartphone application

may have been taken off the hand of the patient. Otherwise it displays (0)
in case it detects an object but it cannot retrieve a proper HR value.

The application consists of one main screen, as presented in figure 7.1a,
where the current HR is shown in the centre of the screen, together with
the time elapsed for the current training session and with the recommended
training limits. On top of the main screen several notifications can be dis-
played, as seen in figure 7.1b and figure 7.1c. For example, in case a patient
starts his/her training session and the smartwatch cannot detect the HR, a
notification with the text message “Check your sensor” will be displayed
on the screen, together with a vibrating alarm. Another example, in case
the patient increases the intensity of his/her training too fast, a vibrating
alarm will be triggered and a notification displayed with the message “You
increased too fast your HR”. These alarms or notifications are pro-
grammed to stay on the display of the smartwatch for 5 seconds, afterwards
they disappear from the screen. The application is meant to show only one
notification at the time.

The interaction of the patient with the screen of the smartwatch was
reduced to a minimum because the patient should be more focused on ex-
ercising correctly than on interacting with the application. Nevertheless,
when a training session is completed, patients can check on the application
on their smartphones its details together with other relevant information.

98

o

<

Heart Rate (beats per minute)

HR =123 BFM
50 HR = 93 BPM sudden increase
40 in 1 second
o J
30 T
20 HR difference of 37 BPM
10 in 3 seconds

1 2 3 4 g 9 10

5 6 7
Time (seconds)

Figure 7.3: Sudden increase of the HR during a training session

7.2.2 The Prototype Application on the Smartphone

A prototype application for Android-based mobile phones is created in order
to acquire raw data from the watch and to process it. The application is
receiving raw data each 10 seconds, via Bluetooth, from the smartwatch
application when an exercise session is started via a text file called slice.tzt
and, at the end of the exercise session, via a text file called session.txt. If a
slice is missed, the training session can be reconstructed based on the session
file. The other way around works as well, meaning that if the session text
file is not received, the session’s data can be reconstructed from the slice
text files. The specifications of the smartwatch and its operating system do
not make it a candidate for supporting middleware architectures, like a PE,
and for computing complex rules, while the smartphone qualifies perfectly
for this job.

The application has multiple screens where the patient can consult the
details of his/her last training session, see a list with previous sessions and
see statistics about themselves and their communities. In figure 7.2a, the
main screen of the application, in the upper side of the screen, the patient
can check if he/she respected the recommendations established before, at the
hospital, in terms of duration, frequency and intensity of a training session.
In the lower part of the screen, coaching messages are displayed to the user
for guiding or advising purposes. It will either tell the patients to improve
their training sessions or to continue, in case the exercise session was accord-
ing to the medical guidelines. The second screen of the application contains
a list of previous sessions, presented in figure 7.2b, and, when clicked on one
of them, a new screen which contains the summary of the clicked session will
open. And, finally, figure 7.2c shows the last screen which contains multiple
facts and statistics, such as the number of people in the patient’s community
which are also participating in the same CR program, the average HR of

99

procedure LPAS1(R31) > Analyses data at each iteration
dataAcquisition:

boolean smartwatchConnected < engine.isWatchConnected()
activation Guards:

return true
conditions:

return smartwatchConnected
actions:

hrValues < engine.getLatestHRValues|()

for for i = 0 to hrValues.size() do

for for j = i to hrValues.size() do
if (hrValues[j]-hrValues[i|>30) and (i+j<9)
. and hrValues[j]>0 and hrValues[i]>0 then
sendMessageToGear(” Take a break, you increased your

HR too fast!”)
15: else if (hrValues[j]-hrValues|i]<30) and (i+j<9)
16: and hrValues[j|>0 and hrValues[i]>0 then
17: sendMessageToGear(” Take a break, you decreased your
HR too fast!”)

18: rulesGeneration:

19: createRule(this)

20: sendMessageToGear(msg): > Additional method

21: payLoad <« sender.buildMessage(”title”, ”shortDescription”, msg,
71”7, ”break”, GearMessageSender. GEAR_ ACTION _ CANCEL)

e T
L v

Figure 7.4: Proactive Rule R31 of Local Scenario LPaS1 in pseudo-code.

all the previous training sessions, the maximum training times of a single
patient from the community and the hour recommended to begin training.
Communities are created on the server side for tackling the problem of low
patient motivation and engagement discussed in section 7.1.3. This can cre-
ate extra motivation factors which will increase the participation of patients
in their CR programs. Note that this last screen currently contains only a
basic set of statistics and facts and will be easily extended in the future.

The most important part is how the application works and how it is de-
signed to analyse the data. The application utilises the platform presented
in chapter refimplementation, which processed and executed PaSs period-
ically, e.g., each 3 seconds. Several GPaSs and LPaSs were developed for
achieving the various goals of this application.

Proactive Scenarios for the Mobile Application

The smartphone application includes 4 LLPaSs and 2 GPaSs. The convention
for naming the PaSs on the mobile application applies a number at the end

100

of the name of the PaS, followed by the letter “m”, coming from the word
“mobile”. This avoids possible confusions with the PaSs on the server side.

LPaS1m was developed for detecting sudden HR, changes during exercise
sessions, LPaS2m for checking the intensity of the training sessions, LPaS3m
for establishing training zones and how much does the patient train in each
zone and LPaS4m for creating coaching messages for the patient. LPaS1m
is in charge of detecting if a patient suddenly increases or decreases his/her
HR during a training session. If the patient is at 110 Beats Per Minute
(BPM) and is arriving at 150 PPG in less than 5 seconds and it stays high
or continues to increase, as shown in figure 7.3, then, the cardiac patient
can have a serious problem. Or, it can be caused by the sensor, which can
misread the correct value of the HR, or it can be caused by the communica-
tion channel between the smartphone and the smartwatch, which can lose
data. The complexity of this problem is further described in [192] or [193].
The code of the PR which represents LPaS1m in shown in figure 7.4.

The two global scenarios, i.e., GPaSIm and GPaS2m, contain rules on
both sides, on the smartphone’s side and on the server’s side. GPaS1 was
developed for dynamically adjusting the training limits of a patient, while
GPaS2m was created to handle the communities of patients. A concrete
example of the implementation of Global Scenario 2 is given in Section
7.2.5. The PaSs used for the study were discussed together with doctors
and medical specialists working at the 2 local hospitals.

7.2.3 The Server-side Layer

As depicted in figure 3.4 shown in chapter 3.4, the architecture of the server-
side layer is divided into several parts: the PE, the Relay Server, the local
database and a website. While the mobile application is in charge of handling
local data related to each patient, the server-side applications are responsible
for collecting, keeping track and analysing all the processed data coming
from all the mobile phones. More specifically, the Relay Server is used for
receiving and sending messages from and to mobile phones. The website
contains a personalised profile for each patient and is in charge of displaying
statistics related to his/her previous exercise sessions. A doctor can access
the results of the exercise session of any patient he/she is in charge of,
he/she can compare it with the other patients’ sessions and can update the
profile of each patient, thus increasing or decreasing the safety limits of a
patient’s HR during training. And, finally, the PE, a powerful Java rule-
based engine presented in chapter 3.4, is in charge of taking actions based
on the information it receives.

101

Proactive Scenarios for the Server Application

To take advantage of the global knowledge available on the server, several
local and global PaSs were developed. LPaS1s is in charge of periodically
generating medical reports containing the evolution of a patient in the CR
program from the beginning until the time of checking. Information is avail-
able regarding the number of trainings per week, the intensity and the dura-
tion of trainings, the time spent in each training zone, for each session, the
date and the starting hours of the exercise sessions. The reports generate a
PDF file which is available to the specialist or doctor via the website. This
scenario does not wait for the doctor’s explicit command but is building
and sending the report automatically. The other scenarios are global, one
for the dynamic profile of the patients, presented in details section 7.2.5, one
for handling the communities, one for providing extended medical coaching
and another one for continuing the work of LPaS1s.

GPaS2s checks which patients are not exercising according to their CR
program and sends messages to encourage them. These messages can con-
tain statistics about their communities or about certain patients in their
communities. GPaS3s performs one analysis on how much each patient
stayed in each training zone, e.g., how much time they were training at 55%
of their maximum HR, compares it with previous sessions of the patient
and decides if the patient needs to increase the training time spent in one
training zone or decrease this time, in case the training zone was too high,
e.g., 5 minutes at 70% of the maximum HR. And GPaS/s is in charge of
sending by email periodical reports, containing patient relevant information
regarding the training frequency, intensity and duration, to the specialists
in charge of the patients.

Communities of patients

Communities of patients with different characteristics are created and man-
aged on the server side via the web interface by the medical experts. The
possibility of automatically generating the communities, based on the profile
of the patients, exists and can be done with the help of extra PaS as it was
done in the first case study. However, as it was not the main focus of this
study, it was left to be manually handled and supervised by the medical
experts. So, in this example, with the current settings, an expert could de-
cide to create a community of male patients with the same cardiac affection,
with ages between 50 and 55, if there were at least 3 patients with these
characteristics. The supervision of the communities is done by the medical
experts via the web interface and via the periodical reports, which contain
more specific data about each patient compared to his/her community.

102

Local Database

Sensors + Display

Patient _d., Local and Global Scenarios
(] = =
raw data Jr_J[_ 1. information T ‘|’
. Proactive
o Engine 2. filter, inference
A
[3. local feedback 4. processed information

Global

Local and Global

5- global feedback Proactive Proactive Scenarios
Engine E on the Server
T + Historical data

e +Community data

6. particular and specialised

information
O
@
Doctor/specialist D
7. expert feedback € J

~

Figure 7.5: The architecture of the Proactive E-Health System with multiple
levels of monitoring and expertise

7.2.4 Multiple Levels of Feedback and Monitoring

Real-time feedback is a very important aspect when working with patients
with heart conditions. A simple alert can warn a cardiac patient if he/she is
doing something wrong and this can avoid accidents, even saving his/her life
in the given circumstances of CR. Different types of expertise are available
to patients when doing the CR exercises, as shown in figure 7.5. First, a
local level of expertise is embedded into the smartwatch and the mobile
phone thus providing local feedback, the second level, more extensive and
based on a broader context, comes from the server and the third level comes
directly from the medical experts and their personal devices.

Local level of expertise

The applications on the smartwatch and on the mobile phone are able to ac-
quire data, analyse it locally and provide patients with immediate feedback.
On the mobile phone, the prototype application is performing more com-
plex analyses with the help of PRs, which contain a set of minimum medical
knowledge. This first loop between the patient, the sensors of the smart-
watch, its screen and the mobile phone offers the necessary local medical

103

expertise.

Global level of expertise

At a more global level, on the server side, data is gathered from all the
smartphones of all the patients. At this stage, a more powerful PE in terms
of computing capacity is available for analysing and aggregating information
from all the smartphones. As described in section 7.2.3, the computing
capabilities of a similar PE are described in [79]. The full data set of the
patients is stored on the server, thus offering the possibility of analysing
historical data and of data mining techniques. Progressive monitoring is
also available on the server’s side, meaning that monitoring parameters can
change after more information about each patient is gathered.

The specialist’s direct advice

This level of feedback was designed to keep the doctors in the loop even when
they are not physically present at the hospital. They are informed on their
personal devices, e.g., mobile phones, if patients were up to date with their
CR program, they receive notifications about certain patients with more
severe forms of heart conditions and they are alerted in case a patient had
problems during his/her training sessions and did not stop according to the
indications of the local PS. In this last case, one solution is to immediately
call the patient to discuss with him/her, to see what happened exactly and
to take measures to prevent any unwanted heart event.

7.2.5 Dynamic Patient Profiles

As discussed in section 7.1.3, establishing training limits for each patient
is a big challenge, as training outside the correct limits can be dangerous,
even fatal. A post event symptom-limited graded exercise test at the hos-
pital, before the patient’s discharge, has to be done for determining the
exercise capacity of each patient. More precisely, it measures the peak
HR (measuredH Ry,,.) of a patient and determines the Anaerobic Thresh-
old (AT), which is the point where energy production is supplemented by
anaerobic mechanisms [194]. Another way of defining it is the exertion level
between anaerobic and aerobic training. AT is very important because of
the differences in physiological responses of patients during training below
and above AT. Cardiac patients have lower values for AT because of their
conditions.

Available applications do not offer personalised training boundaries, i.e.,
target HR zones, for cardiac patient. For example, Polar gives the users
the possibility of manually setting the training limits or of performing a
test session with the OwnZone program set to determine the limits of each
user [195]. Training zones are determined by the sensors on the chest strap

104

connected to the watch or, if the HR rose too fast during the measurements,
on age-based algorithms. But, if health changes appear for certain patients,
e.g., they start to take medication, the limits and training zones are not
updated accordingly.

The solution is to provide a GPaS to dynamically calculate the pro-
file of each patient. This task was assigned to GPaSls. When the mobile
application is installed it comes with training limits calculated by default,
as if the patient would not have an effort test. Then, the server pushes to
the patient’s smartphone necessary information for creating his/her training
zones and HR limits such as age, anaerobic threshold if existing, maximum
measured HR or if the patient is under treatment or not. Afterwards, these
limits are automatically pushed to the smartwatch of the patient. The medi-
cal specialist, who controls the profile of each patient remotely via a website,
can change certain parameters and so, the profile is then calculated again
according to the new parameters. For example, initially, a profile does not
have an anaerobic threshold value included, neither a maximum measured
HR and so, his/her training limits will be calculated based on his/her age.
As soon as the specialist introduces the AT’s value, the limits are adjusted
automatically, so, when the patient will start his/her next exercise session,
the new limits will be displayed on the smartwatch.

Several cases can be distinguished when establishing training limits for
cardiac patients, as the one for endurance training, where the training inter-
val is equal to 70%-85% of the measuredH Ry,q, [196]. For this study, target
heart rate (THR) zones were established for performing aerobic exercises. In
case the measuredH R,,,,, of a patient is known and the anaerobic threshold
is not, and the patient is under treatment, then the recommended THR inter-
val is between 65% - 90% of the measuredH R,,q;. Moreover, if the patient
is not under treatment but values are known for his/her measuredH R4z
and AT, the THR interval becomes [AT — 10bpm] for the lower limit and
[AT + 5bpm] for the upper limit. On the other hand, if the patient does
not have an AT neither a measuredH R,,,, and is under medication, then
the THR interval is between 55% and 77% of the theoretical H Ryyqz, which
is determined by the well-known formula (220 - age) [197]. Otherwise, if
he/she is not under medication, the lower limit and upper limits are set to
65%, respectively 90% of the theoretical H Ry -

7.3 System Testing and Evaluation

For testing and evaluating the proposed system in a real world scenario, an
experimental study was performed. The study involved collecting data from
5 men from our team, at the local university, for a duration of 8 weeks.
The low number of people and the fact of not using real cardiac patients
resulted from the difficulties of obtaining an authorization for working with

105

SESSION DETAILS

This is the patient’s session training session displayed as a
graph.

Session Date: 22/3/2016
Session start time: 18:09:49
Session duration: 24:21

Very High

2%

Figure 7.6: A 25 minutes training session which was registered on the server-
side without any errors.

real patients involved in a CR program, which takes minimum 1 year in
Luxembourg.

The participants were instructed, at the beginning of the study, to reg-
ister training sessions when performing physical activities during the day.
Their age ranged from 21 to 48 years old, being part of the same commu-
nity. They did not take any medication during the period of the experi-
ments. So, the recommended exercise training limits for each participant
was calculated using the formula discussed in the Section 7.2.5, i.e., 65-90%
of the theoretical H Rpqz, (220 - age). Each person participating in the
experiments was given a Samsung Galaxy S6 smartphone and a Gear S2
martwatch from Samsung. A unique email address was assigned to each of
the 5 participants. Each smartphone was equipped with a PE and with the
prototype application running on top of it. A special Bluetooth channel for
exchanging data was defined between the devices for not interfering with

106

other Bluetooth enabled devices.

A total of 90 valid training sessions were registered in the server’s database.
A training session was considered valid if it contained values bigger than 10
PPG. The smartwatch was able to register continuously the HR during en-
tire training sessions, as the one shown in figure 7.6, without any loss of data.
Figure 7.6 shows one example of a usual training session, starting from (0
bpm), when opening the application, moving up to around (50 bpm), when
a correct HR value was initially detected, and then continuing to increase
up to a value in between (150 bpm) and (165 bpm). This intensity interval
was then kept for the rest of the training session.

Changes on the profiles were performed several times and limits on the
smartwatches were adjusted either during training sessions or later on, when
starting a new training session, thus checking the PaSs regarding the patient
profiles on the server and on the smartphone. The participants reported
multiple times the appearance of alarms and notifications when they were
overpassing the recommended training limits, when they were not training
at the recommended frequency and when the sensor could not detect a HR
value. Coaching messages were displayed after each session and were kept
visible until the start of new session, thus validating the local scenarios on the
smartphones. A few cases were detected of smaller sessions containing non-
valid HR values, followed by longer training sessions with valid HR, values.
This fact occurred when the sensor of the smartwatch was not initially placed
correctly and when the smartwatch application was restarted.

7.4 Conclusion

The main goal of this study was achieved by providing a monitoring and
coaching RBPS that allows patients, participating in a home-based CR, pro-
gram, to train in safe limits, to improve their health condition and to de-
velop a long term habit of exercising, while keeping the medical experts in
the supervising role. Also, the RBPS makes it possible to take CR medical
knowledge and to integrate it, with the help of PaC, on wearable devices,
on mobile phones and on remote servers, thus make another contribution
towards validating the RQ5. The PaSs used to build the applications show
the ability of the e-Health system to anticipate various situations, to detect
contextual information and to adapt its behaviour accordingly, thus address-
ing RQ2. Furthermore, by using GPaSs in this complex e-Health situation,
another practical answer is provided to RQ3.

The tests showed promising results in favour of using wearable devices as
suitable tools for registering entire training sessions, mobiles for analysing
single patient-based data and servers for aggregating data from entire com-
munities of patients, hence, verifying the second research question. This
study also addresses a topic which is becoming increasingly popular, i.e.,

107

the utilisation of wearable sensors in e-Health rehabilitation applications.
The model introduced in this case study complements the traditional CR
programs that take place in specialized clinics, while offering patients an al-
ternative for their rehabilitation training, while maintaining the connection
patient-doctor. At the same time, by providing patients with a proactive
automated wearable and mobile application, the patient’s interaction with
the system is reduced to a minimum, thus, allowing him/her to focus more
on his/her training sessions. The objective of this model to expand, support
and increase the utilization of CR programs was also achieved.

108

Chapter 8

Conclusions

The rule-based model presented in this thesis is not only able to provide
a robust and simple way of computing, thus benefiting the developer, but
is also able to compute proactively, for and on behalf of the user, to per-
form complex computations, to provide a communication layer for achieving
collaboration, to detect and acquire relevant context-information and to ac-
tively seek for the information it needs. It is a development environment or
a framework with which developer can create smart applications capable of
running on multiple platforms.

In addition, the Proactive System can express and anticipate complex
situations with the help of Proactive Scenarios(PaSs). Not only Proactive
Scenarios can accurately describe these situations but they provide adequate
measures or actions to handle them.

All the research questions, presented in chapter 1.2, were addressed and
each one of them was answered. More precisely, RQ1 was answered by
analysing current computing choices and by providing arguments for choos-
ing rule-based systems to represent and reason about knowledge and for
being the base for implementing Proactive Systems.

The core components composing the modular architecture of a Rule-
Based Proactive System were identified and the functionality of each com-
ponent described. It was specified how these components work with each
other in order to build a functional Proactive System on platforms running
different operating systems.

Furthermore, the main properties of a Proactive Systems were portrayed
and explained. These properties are essential when addressing an important
category of current modern software applications. This helps answering
RQ2 and provides the necessary settings for having multiple environments
where Proactive Systems are functioning. Moreover, the possibility of having
various Proactive Systems communicating and exchanging information was
considered. A communication protocol between them is presented and the
content of their communication is specified and described, thus responding

109

to RQ3.

Because having a communication protocol and relevant content to send is
not enough to build complex collaborative systems, a strategy for achieving
collaboration between Proactive Systems is proposed and used. A strategy
called Global Proactive Scenarios (GPaSs) was proposed for automating the
communication and coordination between Proactive Systems, for providing
a technique to achieve collaboration and to make multiple Proactive Systems
to work together.

Following the design of local Proactive Scenarios, which are in charge of
sequences of events that occur to/on a single system and a set of correspond-
ing actions, Global Proactive Scenarios are taking advantage of the large
amounts of information that is available from multiple devices or computers
equipped with Proactive Engines. This technique opens new possibilities for
Proactive Systems to explore. Besides from offering the solution to RQ4,
Global Proactive Scenarios also deal with important challenges in RBSs.

For supporting the proposed theoretical concepts and to tackle the last
research question, i.e., RQ5, which was more an exploratory research ques-
tion, three case studies were described. These case studies included various
applications for addressing issues in domains like e-Learning, business and
e-Health. Different domains were selected to emphasise the potential of the
model and techniques presented in this dissertation. Moreover, the soft-
ware systems and applications developed in the case studies were specially
selected in an ascending order of their complexity to point out the broad
range of situations where they can be successfully applied.

The results of each case study are a proof that Proactive System accom-
plished to achieve correctness, termination and response time of Proactive
Scenarios, which are important standards in rule-based systems.

In the first case study, the use of Local Proactive Scenarios were enough
for creating, managing and evaluating social groups, and for transforming
the local e-Learning system into a Proactive System. Experiments showed
that the given set of Local Proactive Scenarios were enough for handling so-
cial communities for more than 1000 students. This included the generation
of resources related to each community, of coaching messages and alerts,
and of monthly reports for each group. It was considered the most basic
example, not because of the the complexity of the software system which
was enhanced with proactive capabilities, but because there were no other
PSs involved.

The second case study uses a mobile application, i.e., SilentMeet, which
is based on two Global Proactive Scenarios to solve an issue which is en-
countered quite often in many situations, i.e., how to mute the smartphone
of people that are participating in a private event, where it is required to
silence all devices that may interrupt the event. These scenarios involve
several rounds of negotiation and use the location of the participants to es-
tablish if a meeting will take place or not. The users of SilentMeet benefit

110

from the fact that several steps of establishing a meeting and silencing the
devices are automated and they do not have to take part in each step of the
whole process.

And, the third case study, where all the theoretical concepts proposed
in this dissertation are involved, demonstrates even more the great poten-
tial of RBPSs. Not only this last example shows how the Proactive Engine
and several Local Proactive Scenarios are implemented successfully on top
of the operating system of mobile devices and desktop computers but is
shows how, by working together and collaborating, they achieve the desired
output which cannot be achieved only by mobile devices or only by desk-
top computers. This example also shows how important aspects in cardiac
rehabilitation can be addressed with the help of the proposed technology in
this thesis.

These case studies also show that GPaSs can use different types of col-
laboration algorithms. For example, a GPaS can use a partial collaboration
algorithm, where a minimum number of PEs have to agree or respond but
not all the PEs involved in the collaboration process, or a complete collab-
oration algorithm, where all the PEs have to give their consent in order to
proceed. A partial collaboration algorithm is proposed in the second case
study, when using SilentMeet, where, in order to have an actual meeting, it is
enough to have two people that confirmed the meeting at the same location
of the meeting. A full collaboration algorithm is shown in the third case
study, where all the Proactive Systems collaborate together for achieving
the desired output.

8.1 Future Perspectives

The work presented in this dissertation opens two main research directions
with multiple objectives. One concerns the framework for developing and
implementing Proactive Systems, while the other one refers to its fields of
application.

The first research objective regarding the proposed model or the rule-
based Proactive System is to look for a version of the Proactive Engine
which would take into account asynchronous events or which would benefits
from runtime optimisation methods such as multi-threading and/or differ-
ent scheduling approaches for Proactive Rules. A second possible objective
would be integrating Machine Learning algorithms into the Proactive Sys-
tem, which would allow Proactive Scenarios to adapt and to improve their
actions and functionalities by conducting various analyses on past experi-
ences and events. And, a third objective for the first research direction,
would be to propose other means for supporting cooperation and collabora-
tion between multiple Proactive Systems.

For the second research direction, the first objective could be the pro-

111

posal of several methods for designing patterns for Proactive Scenarios re-
gardless of their type. Having a design pattern would further help develop-
ers to arrange and link Proactive Rules. The second objective would allow
Proactive Scenarios to develop properties for the Proactive System like self-
optimisation or self-healing, concepts related to more advanced computing
systems. Collaborative Proactive Systems open new perspectives for com-
puting systems that spread around in all kinds of environments. The num-
ber of devices supporting these computing systems are increasing very fast.
Thus, it would be useful to see how large networks of Proactive Systems
would behave and how would their collaboration work in such dynamic and
unpredictable conditions. One way to achieve it would be to create a frame-
work or a tool that would simulate the behaviour and the functions of mul-
tiple Proactive Systems. This approach and possible third objective would
be an alternative to using real-world scenarios with hundreds or thousands
of involved devices. Another direction for collaborative Proactive Systems
would be to explore multiple application domains as the real of smart ap-
plications that need to benefit from a certain degree of automation and of
proactive behaviour is immense and extends beyond the one presented in
this dissertation.

112

List of My Publications

R. A. Dobrican and D. Zampunieris, “Supporting collaborative learning in-
side communities of practice through proactive computing,” in Proceedings
of the 5th annual International Conference on Education and New Learn-
ing Technologies, Barcelona, Spain 1-3 July, 2013, pp. 5824-5833, IATED,
2013.

R. A. Dobrican, S. Reis, and D. Zampunieris, “Empirical investigations on
community building and collaborative work inside a lms using proactive
computing,” in Proc. E-learn, vol. 1, pp. 1840-1852, 2013.

R.-A. Dobrican and D. Zampunieris, “Moving towards a distributed net-
work of proactive, self-adaptive and context-aware systems,” in ADAP-
TIVE 2014-The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications, pp. 22—-26, 2014.

R. A. Dobrican and D. Zampunieris, “A proactive approach for informa-
tion sharing strategies in an environment of multiple connected ubiquitous
devices,” in Proceedings of the International Symposium on Ubiquitous Sys-
tems and Data Engineering (USDE 2014) in conjunction with 11th IEEE
International Conference on Ubiquitous Intelligence and Computing (UIC
2014), pp. 763-771, IEEE, 2014.

R. A. Dobrican, G. Neyens, and D. Zampunieris, “Silentmeet-a prototype
mobile application for real-time automated group-based collaboration,” in
Proceedings of the 5th International Conference on Advanced Collaborative
Networks, Systems and Applications (COLLA 2015), pp. 52-56, IARIA,
2015.

G. Neyens, R. A. Dobrican, and D. Zampunieris, “Enhancing mobile de-
vices with cooperative proactive computing,” in Proceedings of the 5th In-
ternational Conference on Advanced Collaborative Networks, Systems and

Applications (COLLA 2015), pp. 1-9, TARIA, 2015.

R. A. Dobrican and D. Zampunieris, “A proactive solution, using wearable
and mobile applications, for closing the gap between the rehabilitation team

113

and cardiac patients,” in Proceedings of the IEEE International Conference

on Healthcare Informatics 2016 (ICHI 2016), pp. 146-155, IEEE, 2016.

R.-A. Dobrican and D. Zampunieris, “Moving towards distributed networks
of proactive, self-adaptive and context-aware systems: a new research direc-
tion?,” The International Journal on Advances in Networks and Services,
vol. 7, pp. 262272, 2014. ISSN: 1942-2644.

R. A. Dobrican, G. Neyens, and D. Zampunieris, “A context-aware collab-
orative mobile application for silencing the smartphone during meetings
or important events,” International Journal On Advances in Intelligent
Systems, vol. 9, no. 1&2, pp. 171-180, 2016.

114

Bibliography

1]

Object Management Group (OMG)., “Production rule representation
version 1.0,” 2009, [Online; accessed 8-September-2016]. [Online].
Available: http://www.omg.org/spec/PRR/1.0/PDF/

H. Boley, A. Paschke, and O. Shafiq, “Ruleml 1.0: the overarching
specification of web rules,” Lecture Notes in Computer Science, vol.
6403, no. 4, pp. 162-178, 2010.

V. Serrano and T. Fischer, “Collaborative innovation in ubiquitous
systems,” Journal of Intelligent Manufacturing, vol. 18, no. 5, pp.
599-615, 2007.

F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa, “Jade
programmers guide,” Jade version, vol. 4.0, 2010. [Online|. Available:
http://jade.tilab.com/doc/programmersguide.pdf

A. Ligeza, Logical foundations for rule-based systems. Springer, 2006,
vol. 11.

M. Weiser, “The computer for the 21st century,” Scientific american,
vol. 265, no. 3, pp. 94-104, 1991.

D. Tennenhouse, “Proactive computing,” Communications of the
ACM, vol. 43, no. 5, pp. 43-50, 2000.

M. Zhao, Y. Ye, Y. Han, Y. Xia, H. Zhu, S. Wang, Y. Wang, D. A.
Muller, and X. Zhang, “Large-scale chemical assembly of atomically
thin transistors and circuits,” Nature Nanotechnology, 2016.

I. PRESENT, “Cramming more components onto integrated circuits,”
Readings in computer architecture, vol. 56, 2000.

C. V. N. Index, “Global mobile data traffic forecast update, 20152020,”
Cisco white paper, 2016.

I. D. C. (IDC), “IDC Forecasts Worldwide Shipments of Wearables to
Surpass 200 Million in 2019, Driven by Strong Smartwatch Growth

115

http://www.omg.org/spec/PRR/1.0/PDF/
http://jade.tilab.com/doc/programmersguide.pdf

[12]

[13]

[14]

[15]

[19]

[20]

[21]

[22]

and the Emergence of Smarter Watches,” Press Release, Mar 2016.
[Online]. Available: https://www.idc.com/getdoc.jsp?containerld=
prUS41100116

D. Evans, “The internet of things how the next evolution of the inter-
net is changing everything. cisco white papers, 2011.”

R. A. Dobrican and D. Zampunieris, “Moving towards distributed net-
works of proactive, self-adaptive and context-aware systems: a new
research direction?” The International Journal on Advances in Net-
works and Services, vol. 7, pp. 262-272, 2014, iSSN: 1942-2644.

D. Zampunieris, “Implementation of a proactive learning management
system,” in Proceedings of” E-Learn-World Conference on E-Learning
in Corporate, Government, Healthcare € Higher Education”, 2006, pp.
3145-3151.

N. Alechina, B. Logan, N. H. Nga, and A. Rakib, “Verifying re-
source requirements for distributed rule-based systems,” in Interna-
tional Workshop on Rules and Rule Markup Languages for the Se-
mantic Web. Springer, 2008, pp. 31-38.

E. Kasanen, K. Lukka, and A. Siitonen, “The constructive approach in
management accounting research,” Journal of management accounting
research, vol. 5, p. 243, 1993.

R. A. Dobrican and D. Zampunieris, “Moving towards a distributed
network of proactive, self-adaptive and context-aware systems,” in
ADAPTIVE 2014-The Sixth International Conference on Adaptive
and Self-Adaptive Systems and Applications, 2014, pp. 22-26.

“Adaptive 2014 awards - awarded papers,” [Retrieved: August,
2016]. [Online]. Available: http://www.iaria.org/conferences2014/
AwardsADAPTIVE14.html

T. H. D. Varun Grover, “General perspectives on knowledge manage-
ment: Fostering a research agenda,” Journal of management informa-
tion systems, vol. 18, no. 1, pp. 521, 2001.

J. E. Rowley, “The wisdom hierarchy: representations of the dikw
hierarchy,” Journal of information science, 2007.

R. Brachman and H. Levesque, Knowledge Representation and Rea-
soning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2004.

J. R. Anderson, Cognitive skills and their acquisition. Psychology
Press, 1981.

116

https://www.idc.com/getdoc.jsp?containerId=prUS41100116
https://www.idc.com/getdoc.jsp?containerId=prUS41100116
http://www.iaria.org/conferences2014/AwardsADAPTIVE14.html
http://www.iaria.org/conferences2014/AwardsADAPTIVE14.html

23]

[24]

E. Turban, J. Aronson, and T.-P. Liang, Decision Support Systems
and Intelligent Systems 7 Edition. Pearson Prentice Hall, 2005.

Procedural knowledge, “Procedural knowledge/contexts/artificial
intelligence — Wikipedia, the free encyclopedia,” 2016, [On-
line; accessed T7-September-2016]. [Online|. Available: https:
//en.wikipedia.org/wiki/Procedural _knowledge

L. W. Anderson, D. R. Krathwohl, and B. S. Bloom, A taxonomy for
learning, teaching, and assessing: A revision of Bloom’s taxonomy of
educational objectives. Allyn & Bacon, 2001.

H. Allert, “Coherent social systems for learning: An approach for con-
textualized and community-centred metadata,” Journal of interactive
Media in Education, vol. 2004, no. 1, 2004.

M. P. Singh and M. N. Huhns, Service-oriented computing: semantics,
processes, agents. John Wiley & Sons, 2006.

J. Mylopoulos and H. Levesque, “An overview of knowledge represen-
tation,” in GWAI-83. Springer, 1983, pp. 143-157.

M. Minsky, “A framework for representing knowledge,” 1974.

J. Sowa, “Knowledge representation: Logical, philosophical, and com-
putational foundations,” Book in preparation. To be published by PWS
Publishing Company, Boston, Massachusetts, 2000.

R. Davis, H. Shrobe, and P. Szolovits, “What is a knowledge repre-
sentation?” Al magazine, vol. 14, no. 1, p. 17, 1993.

E. Mercier-Laurent and D. Boulanger, Artificial Intelligence for
Knowledge Management: First IFIP WG 12.6 International Work-
shop, ALJKM 2012, Montpellier, France, August 28, 2012, Revised
Selected Papers. Springer, 2014, vol. 422.

Y.-J. Hu, C.-L. Yeh, and W. Laun, “Challenges for rule systems on
the web,” in International Workshop on Rules and Rule Markup Lan-
guages for the Semantic Web. Springer, 2009, pp. 4-16.

N. Matsatsinis and Y. Siskos, Intelligent support systems for marketing
decisions. Springer Science & Business Media, 2012, vol. 54.

M. A. Mach and M. L. Owoc, “Knowledge granularity and represen-
tation of knowledge: Towards knowledge grid,” in International Con-
ference on Intelligent Information Processing. Springer, 2010, pp.
251-258.

117

https://en.wikipedia.org/wiki/Procedural_knowledge
https://en.wikipedia.org/wiki/Procedural_knowledge

[36]

[37]

[38]

[39]

[48]

[49]

D. Li and Y. Du, Artificial intelligence with uncertainty. CRC press,
2007.

E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, S. Das, G. M. Powell,
D. D. Corkill, and E. H. Ruspini, “Issues and challenges of knowledge
representation and reasoning methods in situation assessment (level 2
fusion),” in Defense and Security Symposium. International Society
for Optics and Photonics, 2006, pp. 623 510-623 510.

B. Bansal, Symbolic Logic and Logic Processing. Laxmi Publications,
2012.

Y. Erdani, “Acquisition of human expert knowledge for rule-based
knowledge-based systems using ternary grid,” Ph.D. dissertation, Uni-
versitat Duisburg-Essen, Fakultdt fiir Ingenieurwissenschaften Elek-
trotechnik und Informationstechnik, 2005.

J. Liebowitz, The handbook of applied expert systems. cRc Press,
1997.

I. R. M. Association., Machine Learning: Concepts, Methodologies,
Tools and Applications (3 Volumes). 1GI Global, 2012.

P. Langley, “Intelligent behavior in humans and machines,” in Amer-
ican Association for Artificial Intelligence, 2006.

F. Hayes-Roth, “Rule-based systems,” Communications of the ACM,
vol. 28, no. 9, pp. 921-932, 1985.

J. A. Bernard, “Use of a rule-based system for process control,” in
Robotics and IECON’87 Conferences. International Society for Optics
and Photonics, 1987, pp. 835-849.

A. Tsakonas, G. Dounias, J. Jantzen, H. Axer, B. Bjerregaard, and
D. G. von Keyserlingk, “Evolving rule-based systems in two med-
ical domains using genetic programming,” Artificial Intelligence in
Medicine, vol. 32, no. 3, pp. 195-216, 2004.

M. Flasinski, Introduction to artificial intelligence. Springer, 2016.

R. Davis and J. J. King, “The origin of rule-based systems in ai,”
Rule-Based Ezxpert Systems: The Mycin Experiments of the Stanford
Heuristic Programming Project, 1984.

G. Chryssolouris, Manufacturing systems: theory and practice.
Springer Science & Business Media, 2013.

J. K. Debenham, Knowledge systems design. Prentice-Hall, Inc., 1989.

118

[50]

[51]

[54]

[55]

[56]

A. A. Hopgood, Intelligent systems for engineers and scientists. CRC
press, 2011.

V. E. Barker, D. E. O’Connor, J. Bachant, and E. Soloway, “Expert
systems for configuration at digital: Xcon and beyond,” Commun.
ACM, vol. 32, no. 3, pp. 298-318, Mar. 1989. [Online]. Available:
http://doi.acm.org/10.1145/62065.62067

J. C. Giarratano et al., “Clips user’s guide,” NASA Technical Report,
Lyndon B Johnson Center, 1993.

C. L. Forgy and S. J. Shepard, “Rete: A fast match algorithm,”
AI Ezpert, vol. 2, no. 1, pp. 34-40, Jan. 1987. [Online]. Available:
http://dl.acm.org/citation.cfm?id=24761.24763

M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue,” Artificial
intelligence, vol. 134, no. 1, pp. 57-83, 2002.

D. A. Ferrucci, “Introduction to this is watson,” IBM Journal of Re-
search and Development, vol. 56, no. 3.4, pp. 1-1, 2012.

A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59,
no. 236, pp. 433-460, 1950.

J. A. Sokolowski and C. M. Banks, Modeling and simulation for ana-
lyzing global events. John Wiley & Sons, 2009.

E. A. Feigenbaum, “Expert systems: principles and practice,” 1992.
J. Peter, “Introduction to expert systems,” 1999.

M. Negnevitsky, Artificial intelligence: a guide to intelligent systems.
Pearson Education, 2005.

E. J. Friedman-Hill et al., “Jess, the java expert system shell,”
Distributed Computing Systems, Sandia National Laboratories, USA,
1997.

M. Proctor, M. Neale, M. Frandsen, S. Griffith, E. Tirelli, F. Meyer,
and K. Verlaenen, “Jboss rules user guide,” JBoss Web site:
http://labs. jboss. com/jbossrules/docs, 2007.

T. Livora, “Pmobile access to jbpm console,” B.S. thesis, Masaryk
University, Faculty of Informatics, Brno, Czech Republic, 2014.

G. Bruce, B. Buchanan, and E. Shortliffe, “Rule-based expert systems:
the mycin experiments of the stanford heuristic programming project,”
1984.

119

http://doi.acm.org/10.1145/62065.62067
http://dl.acm.org/citation.cfm?id=24761.24763

[65]

[66]

[67]

[68]

[69]

[70]

[76]

[77]

[78]

R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg,
“Dendral: a case study of the first expert system for scientific hy-
pothesis formation,” Artificial intelligence, vol. 61, no. 2, pp. 209-261,
1993.

R. T. Nakatsu, Reasoning with Diagrams: Decision-Making and
Problem-Solving with Diagrams. John Wiley & Sons, 2009.

S. Russell, P. Norvig, and A. Intelligence, “A modern approach,” Ar-
tificial Intelligence. Prentice-Hall, Egnlewood Cliffs, vol. 25, 1995.

Y. Shoham, “Agent-oriented programming,” Artificial intelligence,
vol. 60, no. 1, pp. 51-92, 1993.

M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” The knowledge engineering review, vol. 10, no. 02, pp. 115—
152, 1995.

P. Maes, “Intelligent software,” in Proceedings of the 2Nd
International Conference on Intelligent User Interfaces, ser. IUI ’97.
New York, NY, USA: ACM, 1997, pp. 41-43. [Online]. Available:
http://doi.acm.org/10.1145/238218.238283

S. Franklin and A. Graesser, “Is it an agent, or just a program?: A tax-
onomy for autonomous agents,” in International Workshop on Agent
Theories, Architectures, and Languages. Springer, 1996, pp. 21-35.

M. Luck, M. d’Inverno et al., “A formal framework for agency and
autonomy.” in ICMAS, vol. 95, 1995, pp. 254—-260.

T. Salamon, Design of agent-based models. Fva & Tomas Bruckner
Publishing, 2011.

7

H. S. Nwana, “Software agents: An overview,” The knowledge engi-
neering review, vol. 11, no. 03, pp. 205-244, 1996.

S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial intelligence: a modern approach. Prentice hall Upper Saddle
River, 2003, vol. 2.

N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agent
research and development,” Autonomous agents and multi-agent sys-
tems, vol. 1, no. 1, pp. 7-38, 1998.

B. T. Clough, “Metrics, schmetrics! how the heck do you determine a
uav’s autonomy anyway,” DTIC Document, Tech. Rep., 2002.

G. Weiss, Multiagent systems: a modern approach to distributed arti-
ficial intelligence. MIT press, 1999.

120

http://doi.acm.org/10.1145/238218.238283

[79]

[30]

[81]

G. Neyens, R.-A. Dobrican, and D. Zampunieris, “Enhancing mo-
bile devices with cooperative proactive computing,” in Proceedings of
the 5th International Conference on Advanced Collaborative Networks,
Systems and Applications (COLLA 2015). TARIA, 2015, pp. 1-9.

X. Wu and X. Lin, “Object-oriented modeling of rule-based program-
ming,” 1997.

G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in International Symposium on Handheld and Ubiquitous
Computing. Springer, 1999, pp. 304-307.

G. Chen, D. Kotz et al., “A survey of context-aware mobile computing
research,” Technical Report TR2000-381, Dept. of Computer Science,
Dartmouth College, Tech. Rep., 2000.

G. Sancho, I. B. Rodriguez, T. Villemur, and S. Tazi, “What about
collaboration in ubiquitous environments?” in 2010 10th Annual In-

ternational Conference on New Technologies of Distributed Systems
(NOTERE). IEEE, 2010, pp. 143-150.

“Mysql. my structured query language database management system.”
[Retrieved: May, 2016]. [Online]. Available: http://www.mysql.com/

“Hibernate orm. hibernate object/relation mapping framework.”
[Retrieved: May, 2016]. [Online]. Available: http://hibernate.org/

J. Kotamraju, “Java api for json processing: An introduction
to json.” [Retrieved: August, 2016]. [Online]. Available: http:
//www.oracle.com/technetwork/articles/java/json-1973242.html

“Mysql connector/j 5.1 developer guide.” [Retrieved: August, 2016].
[Online|. Available: http://dev.mysql.com/doc/connector-j/5.1/en/

G. Watson, “Ormlite package,” 2010.

J. Janeiro, T. Springer, and M. Endler, “A middleware service for co-
ordinated adaptation of communication services in groups of devices,”
in Pervasive Computing and Communications, 2009. PerCom 2009.
IEEE International Conference on. IEEE, 2009, pp. 1-6.

H. M. Chung, “Toward implementing a mobile collaborative system,”

in Systems and Informatics (ICSAI), 2012 International Conference
on. IEEE, 2012, pp. 1248-1252.

121

http://www.mysql.com/
http://hibernate.org/
http://www.oracle.com/technetwork/articles/java/json-1973242.html
http://www.oracle.com/technetwork/articles/java/json-1973242.html
http://dev.mysql.com/doc/connector-j/5.1/en/

[91] V. Sacramento, M. Endler, H. K. Rubinsztejn, L. S. Lima,
K. Goncalves, F. N. Nascimento, and G. A. Bueno, “Moca: A middle-
ware for developing collaborative applications for mobile users,” IFEE
Distributed systems online, vol. 5, no. 10, pp. 2-2, 2004.

[92] M. Caporuscio and P. Inverardi, “Yet another framework for support-
ing mobile and collaborative work,” in Enabling Technologies: Infras-
tructure for Collaborative Enterprises, 2005. WET ICE 2003. Pro-
ceedings. Twelfth IEEFE International Workshops on. IEEE, 2003,
pp. 81-86.

[93] N. Cacho, K. Damasceno, A. Garcia, T. Batista, F. Lopes, and C. Lu-
cena, “Handling exceptional conditions in mobile collaborative ap-
plications: An exploratory case study,” in 15th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’06). 1EEE, 2006, pp. 137-142.

[94] S. Bobek, G. Nalepa, and M. layski, “Challenges for migration of
rule-based reasoning engine to a mobile platform,” in Multimedia
Communications, Services and Security, ser. Communications in
Computer and Information Science, A. Dziech and A. Czyewski,
Eds. Springer International Publishing, 2014, vol. 429, pp. 43-57,
[Retrieved: May, 2015]. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-07569-3_4

[95] C. Choi, L. Park, S. J. Hyun, D. Lee, and D. H. Sim, “Mire: A minimal
rule engine for context-aware mobile devices,” in Third IEEE Inter-
national Conference on Digital Information Management (ICDIM),
November 13-16, 2008, London, UK, Proceedings, 2008, pp. 172-177.

[96] “Ifttt (if this then that),” https://ifttt.com/, [Retrieved: May, 2015].

[97] N. Peers. Your online life made simpler, thanks to ifttt. [Retrieved:
May, 2015]. [Online|. Available: http://blog.landl.co.uk/2014/10/
02/your-online-life-made-simpler-thanks-to-ifttt /

[98] G. J. Nalepa, “Architecture of the heart hybrid rule engine,” in Pro-
ceedings of the 10th International Conference on Artifical Intelligence
and Soft Computing: Part II, ser. ICAISC’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 598-605.

[99] “Parse push,” [Retrieved: May, 2016]. [Online]. Available: https:
/ /parse.com/products/push

[100] “Pubnub global data stream network,” [Retrieved: May, 2016].
[Online]. Available: https://www.pubnub.com/

122

http://dx.doi.org/10.1007/978-3-319-07569-3_4
http://dx.doi.org/10.1007/978-3-319-07569-3_4
https://ifttt.com/
http://blog.1and1.co.uk/2014/10/02/your-online-life-made-simpler-thanks-to-ifttt/
http://blog.1and1.co.uk/2014/10/02/your-online-life-made-simpler-thanks-to-ifttt/
https://parse.com/products/push
https://parse.com/products/push
https://www.pubnub.com/

[101]

[102]

[103]

[104]

[105]

[106]
107]

[108]

[109]

[110]

[111]

[112]

[113]

“Urban airship,” [Retrieved: =~ May, 2016]. [Online]. Available:
http://urbanairship.com/

“Reliable push notifications,” [Retrieved: May, 2016]. [Online].
Available: https://pushy.me/

E. Nava, “Pushy a new alternative to google cloud messaging,”
January 2015, [Retrieved: May, 2016]. [Online]. Available: http:
/ /eladnava.com/pushy-a-new-alternative-to-google-cloud-messaging /

“Battery management, android developers.” [Retrieved: May,
2016]. [Online]. Available: http://developer.android.com/reference/
android /os/BatteryManager.html

I. Hatzilygeroudis and J. Prentzas, “Integrating (rules, neural net-
works) and cases for knowledge representation and reasoning in expert
systems,” Expert Systems with Applications, vol. 27, no. 1, pp. 63-75,
2004.

J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, “The multi-
purpose incremental learning system aql5 and its testing application
to three medical domains,” Proc. AAAI 1986, pp. 1-041, 1986.

W. Li, J. Han, and J. Pei, “Cmar: Accurate and efficient classifica-
tion based on multiple class-association rules,” in Data Mining, 2001.
ICDM 2001, Proceedings IEEE International Conference on. IEEE,
2001, pp. 369-376.

B. L. W. H. Y. Ma, “Integrating classification and association rule min-
ing,” in Proceedings of the fourth international conference on knowl-
edge discovery and data mining, 1998.

C. Badica, A. Badita, M. Ganzha, A. lordache, and M. Paprzycki,
“Rule-based framework for automated negotiation: initial implemen-
tation,” in International Workshop on Rules and Rule Markup Lan-
guages for the Semantic Web. Springer, 2005, pp. 193—-198.

T. Ishida, “Parallel, distributed and multi-agent production systems-a
research foundation for distributed artificial intelligence.” in ICMAS,
1995, pp. 416-422.

L. O. Hall, “Backpac: A parallel goal-driven reasoning system,” In-
formation sciences, vol. 62, no. 1, pp. 169-182, 1992.

K. Fischer, “The rule-based multi-agent system magsy,” Proceedings
of the CKBS, vol. 92, 1993.

123

http://urbanairship.com/
https://pushy.me/
http://eladnava.com/pushy-a-new-alternative-to-google-cloud-messaging/
http://eladnava.com/pushy-a-new-alternative-to-google-cloud-messaging/
http://developer.android.com/reference/android/os/BatteryManager.html
http://developer.android.com/reference/android/os/BatteryManager.html

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE. John Wiley & Sons, 2007, vol. 7.

S. K. Rahimi and F. S. Haug, Distributed database management sys-
tems: A Practical Approach. John Wiley & Sons, 2010.

T. Gross, T. Paul-Stueve, and T. Palakarska, “Sensbution: A rule-
based peer-to-peer approach for sensor-based infrastructures,” in 33rd
EUROMICRO Conference on Software Engineering and Advanced Ap-
plications (EUROMICRO 2007), Aug 2007, pp. 333-340.

R. Dobrican, S. Reis, and D. Zampunieris, “Empirical investigations
on community building and collaborative work inside a lms using
proactive computing,” in Proc. E-learn, vol. 1, 2013, pp. 1840-1852.

R.-A. Dobrican and D. Zampunieris, “Supporting collaborative learn-
ing inside communities of practice through proactive computing,” in
Proceedings of the 5th annual International Conference on Educa-
tion and New Learning Technologies, Barcelona, Spain 1-8 July, 2013.
IATED, 2013, pp. 5824-5833.

R.-A. Dobrican, “Proactive dynamic community of practice,” Ph.D.
dissertation, University of Luxembourg, Luxembourg, Luxembourg,
2012.

Facebook, inc. (2012, Dec.) Annual report on form 10-k. Facebook,
inc. [Online]. Available: https://www.sec.gov/Archives/edgar/data/
1326801,/000132680113000003 /fb-12312012x10k.htm

T. Fary. Social learning vs. communities of prac-
tice. [Online]. Available: http://janetclarey.com/2011/02/22/
social-learning-vs-communities-of-practice/

A. Caselles, C. Francois, G. Metcalf, G. Ossimitz, and F. Stallinger,
“Awareness and social systems,” Social Systems and the Future. Wien:
Berichte der dsterreichischen Studiengesellschaft fiir Kybernetik, pp.
29-42, 2000.

T. Coates, “An addendum to a definition of social software,” retrieved
on August, vol. 27, p. 2009, 2005.

B. L. Andersen, M. L. Jgrgensen, U. Kold, and M. B. Skov, “isocial-
ize: investigating awareness cues for a mobile social awareness appli-
cation,” in Proceedings of the 18th Australia conference on Computer-
Human Interaction: Design: Activities, Artefacts and Environments.

ACM, 2006, pp. 7-14.

124

https://www.sec.gov/Archives/edgar/data/1326801/000132680113000003/fb-12312012x10k.htm
https://www.sec.gov/Archives/edgar/data/1326801/000132680113000003/fb-12312012x10k.htm
http://janetclarey.com/2011/02/22/social-learning-vs-communities-of-practice/
http://janetclarey.com/2011/02/22/social-learning-vs-communities-of-practice/

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

J. Ibdnez, O. Serrano, and D. Garcia, “Emotinet: A framework for
the development of social awareness systems,” in Awareness Systems.
Springer, 2009, pp. 291-311.

L. Blackall, “Digital literacy: how it affects teaching practices and
networked learning futures-a proposal for action research in,” Inter-
national Journal of Instructional Technology and Distance Learning,
vol. 2, no. 10, 2005.

B. Ozkan and B. McKenzie, “Social networking tools for teacher edu-
cation,” TECHNOLOGY AND TEACHER EDUCATION ANNUAL,
vol. 19, no. 5, p. 2772, 2008.

J. Rozac, F. Buendia, J. Ballester, A. Kos, and M. Poga¢nik, “Integra-
tion of learning management systems with social networking platforms.

in proceedings of elml 2012,” in The Fourth International Conference
on Mobile, Hybrid, and On-line Learning, 2012, pp. 100-105.

J. J. Rodrigues, F. M. Sabino, and L. Zhou, “Enhancing e-learning
experience with online social networks,” IET communications, vol. 5,
no. 8, pp. 1147-1154, 2011.

Z. Du, X. Fu, C. Zhao, Q. Liu, and T. Liu, “Interactive and collabo-
rative e-learning platform with integrated social software and learning
management system,” in Proceedings of the 2012 International Confer-

ence on Information Technology and Software Engineering. Springer,
2013, pp. 11-18.

D. Shirnin, S. Reis, and D. Zampunieris, “Design of proactive scenarios
and rules for enhanced e-learning,” in Proceedings of the 4th Interna-
tional Conference on Computer Supported Education, Porto, Portugal
16-18 April, 2012. SciTePress—Science and Technology Publications,
2012, pp. 253-258.

S. Marques Dias, S. Reis, and D. Zampunieris, “Proactive comput-
ing based implementation of personalized and adaptive technology en-
hanced learning over moodle (tm),” in Proceedings of the 12th IEEE
International Conference on Advanced Learning Technologies, Rome,
Ttaly 4-6 July, 2012. TEEE Computer Society Publications, 2012, pp.
674-675.

R. A. Dobrican, G. Neyens, and D. Zampunieris, “SilentMeet-a pro-
totype mobile application for real-time automated group-based col-
laboration,” in Proceedings of the 5th International Conference on
Advanced Collaborative Networks, Systems and Applications (COLLA
2015). TARIA, 2015, pp. 52-56.

125

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

——, “A context-aware collaborative mobile application for silencing
the smartphone during meetings or important events,” International
Journal On Advances in Intelligent Systems, vol. 9, no. 1&2, pp. 171-
180, 2016.

E. Benitez-Guerrero, C. Mezura-Godoy, and L. G. Montané-Jiménez,
“Context-aware mobile collaborative systems: Conceptual modeling
and case study,” Sensors, vol. 12, no. 10, pp. 13491-13 507, 2012.

E. Williams and J. Gray, “Contextion: A framework for developing
context-aware mobile applications,” in Proceedings of the 2nd Inter-
national Workshop on Mobile Development Lifecycle. ACM, 2014,
pp. 27-31.

S. Elmalaki, L. Wanner, and M. Srivastava, “Caredroid: Adaptation
framework for android context-aware applications,” in Proceedings of
the 21st Annual International Conference on Mobile Computing and
Networking. ACM, 2015, pp. 386-399.

W. Wang, J. Gu, J. Yang, and P. Chen, “A group based context-aware
strategy for mobile collaborative applications,” in Advanced Technol-
ogy in Teaching. Springer, 2012, pp. 541-549.

L. Zavala, R. Dharurkar, P. Jagtap, T. Finin, and A. Joshi, “Mobile,
collaborative, context-aware systems,” in Proc. AAAI Workshop on

Activity Context Representation: Techniques and Languages, AAAL
AAAI Press, 2011.

V. Sacramento and et al., “MoCA: A Middleware for Developing Col-
laborative Applications for Mobile Users,” Distributed Systems Online,
IFEE, vol. 5, no. 10, pp. 2-2, Oct 2004.

J. Gabler, R. Klauck, M. Pink, and H. Konig, “uBeeMe - A platform
to enable mobile collaborative applications,” in Collaborative Com-
puting: Networking, Applications and Worksharing (Collaboratecom),
2018 9th International Conference Conference on, Oct 2013, pp. 188—
196.

P. Coutinho and T. Rodden, “The FUSE Platform: Supporting Ubig-
uitous Collaboration Within Diverse Mobile Environments,” Autom.
Softw. Eng, vol. 9, pp. 167-186, 2002.

A. Gupta, A. Kalra, D. Boston, and C. Borcea, “Mobisoc: a middle-
ware for mobile social computing applications,” Mobile Networks and
Applications, vol. 14, no. 1, pp. 35-52, 2009.

126

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

152]

[153]

[154]

S. Bendel and D. Schuster, “Watchmyphone - providing developer sup-
port for shared user interface objects in collaborative mobile appli-
cations,” in Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2012 IEEE International Conference on,
March 2012, pp. 166-171.

R. Liibke, D. Schuster, and A. Schill, “A framework for the devel-
opment of mobile social software on android,” in Mobile Computing,
Applications, and Services. Springer, 2011, pp. 207-225.

F. Klompmaker and C. Reimann, “A service based framework for
developing mobile, collaborative games,” in Proceedings of the 2008
International Conference on Advances in Computer Entertainment
Technology, ser. ACE ’08. ACM, 2008, pp. 42-45.

“Silence App,” 2015, URL: https://play.google.com/store/apps/
details?id=net.epsilonlabs.silence.ads [accessed: 2015-05-13].

“Go Silent App,” 2015, URL: https://play.google.com/store/apps/
details?id=com.eventscheduler [accessed: 2016-05-13].

“Advanced Silent Mode,” 2015, URL: https://play.google.com/store/
apps/details?id=com.joe.advancedsilentmode [accessed: 2016-05-13].

“Silent Time,” 2015, URL: https://play.google.com/store/apps/
details?id=com.QuiteHypnotic.Silent Time&hl=en [accessed: 2016-05-
13].

“Auto Silent,” 2015, URL: https://itunes.apple.com/us/app/
autosilent /id4747771487mt=8 [accessed: 2015-05-13].

Alastair Plumb. (2015, May) Slovakian Violist Lukas Kmit Interrupted
By Nokia Ringtone, Incorporates It Into Recital. Huffington Post.
[Online|. Available: http://www.huffingtonpost.co.uk/2012/01/23/
slovakian-violinist-lukas-kmit-nokia-ringtone_n_1223086.html

D. J. Walkin. New york philharmonic interrupted
by chimes mahler never intended. [Online]. Avail-
able: http://artsbeat.blogs.nytimes.com/2012/01/11/
new-york-philharmonic-interrupted-by-chimes-mahler-never-intended /
?1=0

D. A. Boehm-Davis and R. Remington, “Reducing the disruptive ef-
fects of interruption: A cognitive framework for analysing the costs
and benefits of intervention strategies,” Accident Analysis € Preven-
tion, vol. 41, no. 5, pp. 1124-1129, 2009.

127

https://play.google.com/store/apps/details?id=net.epsilonlabs.silence.ads
https://play.google.com/store/apps/details?id=net.epsilonlabs.silence.ads
https://play.google.com/store/apps/details?id=com.eventscheduler
https://play.google.com/store/apps/details?id=com.eventscheduler
https://play.google.com/store/apps/details?id=com.joe.advancedsilentmode
https://play.google.com/store/apps/details?id=com.joe.advancedsilentmode
https://play.google.com/store/apps/details?id=com.QuiteHypnotic.SilentTime&hl=en
https://play.google.com/store/apps/details?id=com.QuiteHypnotic.SilentTime&hl=en
https://itunes.apple.com/us/app/autosilent/id474777148?mt=8
https://itunes.apple.com/us/app/autosilent/id474777148?mt=8
http://www.huffingtonpost.co.uk/2012/01/23/slovakian-violinist-lukas-kmit-nokia-ringtone_n_1223086.html
http://www.huffingtonpost.co.uk/2012/01/23/slovakian-violinist-lukas-kmit-nokia-ringtone_n_1223086.html
http://artsbeat.blogs.nytimes.com/2012/01/11/new-york-philharmonic-interrupted-by-chimes-mahler-never-intended/?_r=0
http://artsbeat.blogs.nytimes.com/2012/01/11/new-york-philharmonic-interrupted-by-chimes-mahler-never-intended/?_r=0
http://artsbeat.blogs.nytimes.com/2012/01/11/new-york-philharmonic-interrupted-by-chimes-mahler-never-intended/?_r=0

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

J. T. Shelton, E. M. Elliott, S. D. Eaves, and A. L. Exner, “The dis-
tracting effects of a ringing cell phone: An investigation of the labora-
tory and the classroom setting,” Journal of environmental psychology,
vol. 29, no. 4, pp. 513-521, 2009.

R. A. Dobrican and D. Zampunieris, “A proactive solution, using wear-
able and mobile applications, for closing the gap between the rehabil-
itation team and cardiac patients,” in Proceedings of the IEEE In-
ternational Conference on Healthcare Informatics 2016 (ICHI 2016).
IEEE, 2016, pp. 146-155.

D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha,
M. Cushman, S. de Ferranti, J.-P. Despres, H. J. Fullerton, V. J.
Howard et al., “Heart disease and stroke statistics-2015 update: a
report from the american heart association.” Circulation, vol. 131,
no. 4, p. €29, 2015.

World Health Organization, “Rehabilitation after cardiovascular dis-
eases, with special emphasis on developing countries: report of a who
expert committee,” 1993.

H. Gohlke and C. Gohlke-Barwolf, “Cardiac rehabilitation,” European
heart journal, vol. 19, no. 7, pp. 1004-1010, 1998.

The British Association for Cardiovascular Prevention and Rehabil-
itation. (2012) The BACPR Standards and Core Components for
Cardiovascular Disease Prevention and Rehabilitation 2012 (2nd Edi-
tion) . Online; accessed 13-December-2015]. [Online]. Available: http:
//www.bacpr.com/resources/15E_BACPR _Standards FINAL.pdf

B. S. Heran, J. Chen, S. Ebrahim, T. Moxham, N. Oldridge, K. Rees,
D. R. Thompson, and R. S. Taylor, “Exercise-based cardiac rehabili-
tation for coronary heart disease,” Cochrane Database Syst Rev, vol. 7,
no. 7, 2011.

D. Thompson and D. De Bono, “How valuable is cardiac rehabilitation
and who should get it?” Heart, vol. 82, no. 5, pp. 545-546, 1999.

H. Antonakoudis, K. Kifnidis, A. Andreadis, E. Fluda, Z. Konti,
N. Papagianis, H. Stamou, E. Anastasopoulou, G. Antonakoudis, and
L. Poulimenos, “Cardiac rehabilitation effects on quality of life in pa-
tients after acute myocardial infarction,” Hippokratia, vol. 10, no. 4,
p. 176, 2006.

R. Arena, M. Williams, D. E. Forman, L. P. Cahalin, L. Coke, J. My-
ers, L. Hamm, P. Kris-Etherton, R. Humphrey, V. Bittner et al., “In-
creasing referral and participation rates to outpatient cardiac rehabil-
itation: The valuable role of healthcare professionals in the inpatient

128

http://www.bacpr.com/resources/15E_BACPR_Standards_FINAL.pdf
http://www.bacpr.com/resources/15E_BACPR_Standards_FINAL.pdf

[165]

[166]

[167]

[168]

169

[170]

[171]

[172]

[173]

and home health settings a science advisory from the american heart
association,” Circulation, vol. 125, no. 10, pp. 1321-1329, 2012.

P. D. Thompson, B. A. Franklin, G. J. Balady, S. N. Blair, D. Corrado,
N. M. Estes, J. E. Fulton, N. F. Gordon, W. L. Haskell, M. S. Link
et al., “Exercise and acute cardiovascular events placing the risks into
perspective: a scientific statement from the american heart association
council on nutrition, physical activity, and metabolism and the council
on clinical cardiology,” Clirculation, vol. 115, no. 17, pp. 2358-2368,
2007.

D. R. Thompson and R. J. Lewin, “Management of the post-
myocardial infarction patient: rehabilitation and cardiac neurosis,”
Heart, vol. 84, no. 1, pp. 101-105, 2000.

S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review
of wearable sensors and systems with application in rehabilitation,”

Journal of NeuroEngineering and Rehabilitation, vol. 9, no. 1, pp. 1-17,
2012. [Online|. Available: http://dx.doi.org/10.1186,/1743-0003-9-21

J. R. Windmiller and J. Wang, “Wearable electrochemical sensors
and biosensors: A review,” FElectroanalysis, vol. 25, no. 1, pp. 2946,
2013. [Online|. Available: http://dx.doi.org/10.1002/elan.201200349

U. Anliker, J. A. Ward, P. Lukowicz, G. Troster, F. Dolveck, M. Baer,
F. Keita, E. B. Schenker, F. Catarsi, L. Coluccini et al., “Amon: a
wearable multiparameter medical monitoring and alert system,” In-

formation Technology in Biomedicine, IEEE Transactions on, vol. 8,
no. 4, pp. 415-427, 2004.

M. Béchlin, M. Plotnik, D. Roggen, I. Maidan, J. M. Hausdorff, N. Gi-
ladi, and G. Troster, “Wearable assistant for parkinsons disease pa-
tients with the freezing of gait symptom,” Information Technology in
Biomedicine, IEEE Transactions on, vol. 14, no. 2, pp. 436-446, 2010.

J. Hernandez, D. McDuff, and R. W. Picard, “Biowatch: estimation
of heart and breathing rates from wrist motions,” in Proceedings of
the 9th International Conference on Pervasive Computing Technolo-
gies for Healthcare. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2015, pp. 169-176.

J. Allen, “Photoplethysmography and its application in clinical physio-
logical measurement,” Physiological measurement, vol. 28, no. 3, p. R1,
2007.

J. J. McMurray, S. Adamopoulos, S. D. Anker, A. Auricchio,
M. Béhm, K. Dickstein, V. Falk, G. Filippatos, C. Fonseca, M. A.

129

http://dx.doi.org/10.1186/1743-0003-9-21
http://dx.doi.org/10.1002/elan.201200349

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

Gomez-Sanchez et al., “Esc guidelines for the diagnosis and treatment
of acute and chronic heart failure 2012,” Furopean journal of heart
failure, vol. 14, no. 8, pp. 803-869, 2012.

A. C. of Sports Medicine et al., ACSM’s guidelines for exercise testing
and prescription. Lippincott Williams & Wilkins, 2013.

M. F. Piepoli, V. Conraads, U. Corra, K. Dickstein, D. P. Francis,
T. Jaarsma, J. McMurray, B. Pieske, E. Piotrowicz, J.-P. Schmid et al.,
“Exercise training in heart failure: from theory to practice. a consensus
document of the heart failure association and the european association

for cardiovascular prevention and rehabilitation,” Furopean journal of
heart failure, vol. 13, no. 4, pp. 347-357, 2011.

N. F. Gordon, M. Gulanick, F. Costa, G. Fletcher, B. A. Franklin,
E. J. Roth, and T. Shephard, “Physical activity and exercise recom-
mendations for stroke survivors an american heart association scien-
tific statement from the council on clinical cardiology, subcommittee
on exercise, cardiac rehabilitation, and prevention; the council on car-
diovascular nursing; the council on nutrition, physical activity, and
metabolism; and the stroke council,” Stroke, vol. 35, no. 5, pp. 1230-
1240, 2004.

P. Kokkinos and J. Myers, “Exercise and physical activity clinical
outcomes and applications,” Circulation, vol. 122, no. 16, pp. 1637—
1648, 2010.

T. Moholdt, E. Madssen, @. Rognmo, and I. L. Aamot, “The higher
the better? interval training intensity in coronary heart disease,” Jour-
nal of Science and Medicine in Sport, vol. 17, no. 5, pp. 506-510, 2014.

V. M. Conraads, N. Pattyn, C. De Maeyer, P. J. Beckers, E. Coeckel-
berghs, V. A. Cornelissen, J. Denollet, G. Frederix, K. Goetschalckx,
V. Y. Hoymans et al., “Aerobic interval training and continuous train-
ing equally improve aerobic exercise capacity in patients with coronary

artery disease: the saintex-cad study,” International journal of cardi-
ology, vol. 179, pp. 203-210, 2015.

D. S. Siscovick, N. S. Weiss, R. H. Fletcher, and T. Lasky, “The inci-
dence of primary cardiac arrest during vigorous exercise,” New Eng-
land Journal of Medicine, vol. 311, no. 14, pp. 874-877, 1984.

S. Giri, P. D. Thompson, F. J. Kiernan, J. Clive, D. B. Fram, J. F.
Mitchel, J. A. Hirst, R. G. McKay, and D. D. Waters, “Clinical and
angiographic characteristics of exertion-related acute myocardial in-
farction,” Jama, vol. 282, no. 18, pp. 1731-1736, 1999.

130

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)]

W. Nieuwland, M. A. Berkhuysen, D. J. van Veldhuisen,
J. Briigemann, M. L. Landsman, E. van Sonderen, K. Lie, H. J. Cri-
jns, and P. Rispens, “Differential effects of high-frequency versus low-
frequency exercise training in rehabilitation of patients with coronary
artery disease,” Journal of the American College of Cardiology, vol. 36,
no. 1, pp. 202-207, 2000.

A. C. of Sports Medicine et al., “ACSM’s guidelines for exercise testing
and prescription,” in Adaptations to cardiorespiratory exercise train-
ing, D. P. Swain and C. A. Brawner, Eds. Oxford: Oxford University
Press, 2013, ch. 32, pp. 496-510.

R. W. Kusuma, R. A. A. Abbie, and P. Musa, “Design of arrhyth-
mia detection device based on fingertip pulse sensor,” in Proceedings
of Second International Conference on Electrical Systems, Technology
and Information 2015 (ICESTI 2015). Springer, 2016, pp. 363-372.

S. Magalhaes, M. M. Ribeiro, A. Barreira, P. Fernandes, S. Torres,
J. L. Gomes, and S. Viamonte, “Long-term effects of a cardiac reha-
bilitation program in the control of cardiovascular risk factors,” Re-

vista Portuguesa de Cardiologia (English Edition), vol. 32, no. 3, pp.
191-199, 2013.

A. Sarela, J. Salminen, E. Koskinen, O. Kirkeby, I. Korhonen, and
D. Walters, “A home-based care model for outpatient cardiac rehabil-
itation based on mobile technologies,” in Pervasive Computing Tech-
nologies for Healthcare, 2009. PervasiveHealth 2009. 3rd International
Conference on, April 2009, pp. 1-8.

E. Kyriacou, P. Chimonidou, C. Pattichis, E. Lambrinou, V. Barberis,
and G. Georghiou, “Post cardiac surgery home-monitoring system,”
in Wireless Mobile Communication and Healthcare, ser. Lecture
Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, J. Lin and K. Nikita, Eds.
Springer Berlin Heidelberg, 2011, vol. 55, pp. 61-68. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-20865-2_9

J. Maitland and M. Chalmers, “Self-monitoring, self-awareness, and
self-determination in cardiac rehabilitation,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’'10. New York, NY, USA: ACM, 2010, pp. 1213-1222. [Online].
Available: http://doi.acm.org/10.1145/1753326.1753508

V. Gay, P. Leijdekkers, and E. Barin, “A mobile rehabilitation
application for the remote monitoring of cardiac patients after
a heart attack or a coronary bypass surgery,” in Proceedings

131

http://dx.doi.org/10.1007/978-3-642-20865-2_9
http://doi.acm.org/10.1145/1753326.1753508

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

of the 2Nd International Conference on PFErvasive Technologies
Related to Assistive FEnvironments, ser. PETRA ’09. New
York, NY, USA: ACM, 2009, pp. 21:1-21:7. [Online]. Available:
http://doi.acm.org/10.1145/1579114.1579135

D. Phan, L. Y. Siong, P. Pathirana, and A. Seneviratne, “Smartwatch:
Performance evaluation for long-term heart rate monitoring,” in Bio-

electronics and Bioinformatics (ISBB), 2015 International Symposium
on, Oct 2015, pp. 144-147.

J. M. Kang, T. Yoo, and H. C. Kim, “A wrist-worn integrated health
monitoring instrument with a tele-reporting device for telemedicine
and telecare,” Instrumentation and Measurement, IEEE Transactions

on, vol. 55, no. 5, pp. 1655-1661, Oct 2006.
Y. Shahar, D. Goren-Bar, D. Boaz, and G. Tahan, “Distributed, intel-

ligent, interactive visualization and exploration of time-oriented clin-
ical data and their abstractions,” Artificial intelligence in medicine,
vol. 38, no. 2, pp. 115-135, 2006.

C. Combi, G. Pozzi, and R. Rossato, “Querying temporal clinical
databases on granular trends,” Journal of biomedical informatics,
vol. 45, no. 2, pp. 273-291, 2012.

K. Wasserman, “The anaerobic threshold: definition, physiological
significance and identification,” 1986.

Polar Electro, “How to do OwnZone determination,” March
2016. [Online]. Available: http://support.polar.com/en/support/
tips/How_to_do_OwnZone_determination

L. A. Sebastian, S. Reeder, and M. Williams, “Determining target
heart rate for exercising in a cardiac rehabilitation program: A retro-

spective study,” Journal of Cardiovascular Nursing, vol. 30, no. 2, pp.
164-171, 2015.

S. M. Fox, J. P. Naughton, and W. Haskell, “Physical activity and
the prevention of coronary heart disease,” in Ann Clin Res, 1971, pp.
404-432.

132

http://doi.acm.org/10.1145/1579114.1579135
http://support.polar.com/en/support/tips/ How_to_do_OwnZone_determination
http://support.polar.com/en/support/tips/ How_to_do_OwnZone_determination

	Introduction
	Motivation
	Objectives of the thesis
	Methodology
	Contributions
	Dissertation outline

	I Theoretical foundations
	Background information
	Knowledge Representation
	Knowledge Representation Approaches
	Additional Challenges in Knowledge Representation

	Reasoning
	Rule-based Systems
	Expert Systems
	Agents

	The Proposed Computing Model
	The Proactive Engine
	The Modular Architecture of the Proactive Engine
	The Rule Engine
	Proactive Rules
	The Queue Manager
	The Local Database
	The Communication Engine
	The Notification Manager

	Properties of Proactive Systems
	Anticipation
	Context-Awareness
	Adaptiveness
	Collaboration

	Implementing the Proposed Model
	Middleware Model for Server Platforms
	Middleware Model for Mobile Platforms
	Communication architecture for Proactive Engines
	Performance analysis of Proactive Engines
	Conclusion and Discussions

	Proactive Scenarios
	Linking and Grouping Rules
	Local Proactive Scenarios
	Global Proactive Scenarios
	Negotiation protocol of Global Proactive Scenarios

	Rule-based Proactive Systems Design
	The Conceptual Design Phase
	The Logical Design Phase
	The Physical Design Phase

	Distributed knowledge
	Parallel Rule-based Systems
	Distributed Rule-based Systems

	II Application Development and Case Studies
	Application 1 - Online Social Communities
	Related Background Information
	Social Awareness Systems
	sns and lms

	Research Hypotheses and Objectives
	The Proactive System
	Local Proactive Scenarios

	The Experiment
	Participants
	Data Collection and Analysis
	Measurements
	Results and Discussions
	Conclusion

	Application 2 - SilentMeet
	Related Background Information
	Context-Aware Mobile Collaborative Systems
	Collaborative Mobile Middleware Architectures
	Collaborative Mobile Applications
	Applications for silencing the Smartphone

	Domain-Specific Problem Statement
	A Rule-Based Solution - SilentMeet
	The gui of SilentMeet
	Grouping the participants for a meeting
	Global Proactive Scenarios for SilentMeet
	Collaboration Process
	Message Exchange between Proactive Engines

	Tests
	Measurements
	Results and discussions

	Conclusion

	Application 3 - e-Health System
	Related Background Information
	Cardiac Rehabilitation
	Wearable devices
	Risk factors and challenges for home-based exercise training
	Wrist-worn devices for Cardiac Rehabilitation

	The Architecture of the e-Health System
	The Prototype Application on the Smartwatch
	The Prototype Application on the Smartphone
	The Server-side Layer
	Multiple Levels of Feedback and Monitoring
	Dynamic Patient Profiles

	System Testing and Evaluation
	Conclusion

	Conclusions
	Future Perspectives

