
Chapter 15

Hi-POD Solution of Parametrized Fluid

Dynamics Problems: Preliminary Results

Davide Baroli, Cristina Maria Cova, Simona Perotto, Lorenzo Sala,

and Alessandro Veneziani

Abstract Numerical modeling of fluids in pipes or network of pipes (like in the

circulatory system) has been recently faced with new methods that exploit the spe-

cific nature of the dynamics, so that a one dimensional axial mainstream is enriched

by local secondary transverse components (Ern et al., Numerical Mathematics and

Advanced Applications, pp 703–710. Springer, Heidelberg, 2008; Perotto et al.,

Multiscale Model Simul 8(4):1102–1127, 2010; Perotto and Veneziani, J Sci Com-

put 60(3):505–536, 2014). These methods—under the name of Hierarchical Model

(Hi-Mod) reduction—construct a solution as a finite element axial discretization,

completed by a spectral approximation of the transverse dynamics. It has been

demonstrated that Hi-Mod reduction significantly accelerates the computations

without compromising the accuracy. In view of variational data assimilation pro-
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cedures (or, more in general, control problems), it is crucial to have efficient

model reduction techniques to rapidly solve, for instance, a parametrized problem

for several choices of the parameters of interest. In this work, we present some

preliminary results merging Hi-Mod techniques with a classical Proper Orthogonal

Decomposition (POD) strategy. We name this new approach as Hi-POD model

reduction. We demonstrate the efficiency and the reliability of Hi-POD on multi-

parameter advection-diffusion-reaction problems as well as on the incompressible

Navier-Stokes equations, both in a steady and in an unsteady setting.

15.1 Introduction

The growing request of efficient and reliable numerical simulations for modeling,

designing and optimizing engineering systems in a broad sense, challenges tra-

ditional methods for solving partial differential equations (PDEs). While general

purpose methods like finite elements are suitable for high fidelity solutions of

direct problems, practical applications often require to deal with multi-query

settings, where the right balance between accuracy and efficiency becomes critical.

Customization of methods to exploit all the possible features of the problem at

hand may yield significant improvements in terms of efficiency, possibly with no

meaningful loss in the accuracy required by engineering problems.

In this paper we focus on parametrized PDEs to model advection-diffusion-

reaction phenomena as well as incompressible fluid dynamic problems in pipes

or elongated domains. In particular, we propose to combine the Hierarchical

Model (Hi-Mod) reduction technique, which is customized on problems featuring

a leading dynamics triggered by the geometry, with a standard Proper Orthogonal

Decomposition (POD) approach for a rapid solution of parametrized settings.

A Hi-Mod approximation represents a fluid in a pipe as a one-dimensional

mainstream, locally enriched via transverse components. This separate description

of dynamics leads to construct enhanced 1D models, where locally higher fidelity

approximations are added to a backbone one-dimensional discretization [4, 16–

18, 20]. The rationale behind a Hi-Mod approach is that a 1D classical model can be

effectively improved by a spectral approximation of transverse components. In fact,

the high accuracy of spectral methods guarantees, in general, that a low number of

modes suffices to obtain a reliable approximation, yet with contained computational

costs.

POD is a popular strategy in design, assimilation and optimization contexts, and

relies on the so-called offline-online paradigm [6, 8, 10, 24, 28]. The offline stage

computes the (high fidelity) solution to the problem at hand for a set of samples

of the selected parameters. Then, an educated basis (called POD basis) is built
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15 Hi-POD Solution of Parametrized Fluid Dynamics Problems 237

by optimally extracting the most important components of the offline solutions

(called snapshots), collected in the so-called response matrix, via a singular value

decomposition. Finally, in the online phase, the POD basis is used to efficiently

represent the solution associated with new values of the parameters of interest, a
priori unknown.

In the Hi-POD procedure, the Hi-Mod reduction is used to build the response

matrix during the offline stage. Then, we perform the online computation by

assembling the Hi-Mod matrix associated with the new parameter and, successively,

by projecting such a matrix onto the POD basis. As we show in this work, Hi-POD

demonstrates to be quite competitive on a set of multiparameter problems, including

linear scalar advection-diffusion-reaction problems and the incompressible Navier-

Stokes equations.

The paper is organized as follows. In Sect. 15.2, we detail the Hi-POD technique

and we apply it to an advection-diffusion-reaction problem featuring six parameters,

pinpointing the efficiency of the procedure. Section 15.3 generalizes Hi-POD to a

vector problem, by focusing on the steady incompressible Navier-Stokes equations,

while the unsteady case is covered in Sect. 15.4. Some conclusions are drawn in

Sect. 15.5, where some hints for a possible future investigation are also provided.

15.2 Hi-POD Reduction of Parametrized PDEs: Basics

Merging of Hi-Mod and POD procedures for parametrized PDEs has been proposed

in [12, 13], in what we called Hi-POD method. We briefly recall the two ingredients,

separately. Then, we illustrate a basic example of Hi-POD technique.

15.2.1 The Hi-Mod Setting

Let ˝ � Rd be a d-dimensional domain, with d D 2; 3, that makes sense to

represent as ˝ 
 S
x2˝1D

fxg � ˙x, where ˝1D is the 1D horizontal supporting

fiber, while ˙x � Rd�1 represents the transverse section at x 2 ˝1D. The

reference morphology is a pipe, where the dominant dynamics occurs along ˝1D.

We generically consider an elliptic problem in the form

find u 2 V W a.u; v/ D F.v/ 8v 2 V; (15.1)

where V 
 H1.˝/ is a Hilbert space, a.�; �/ W V � V ! R is a coercive, continuous

bilinear form and F.�/ W V ! R is a linear and continuous form. Standard notation
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for the function spaces is adopted [11]. We refer to u in (15.1) as to the full solution.

The solution to this problem is supposed to depend on some parameters that we will

highlight in our notation later on.

In the Hi-Mod reduction procedure, we introduce the space

Vh
m D

n
vh

m.x; y/ D
mX

kD1

Qvh
k .x/'k.y/; with Qvh

k 2 Vh
1D; x 2 ˝1D; y 2 ˙x

o
;

where Vh
1D � H1.˝1D/ is a discrete space of size Nh, f'kgk2NC is a basis of L2-

orthonormal modal functions (independent of x) to describe the dynamics in ˙x, for

x varying along ˝1D. For more details about the choice of the modal basis, we refer

to [2, 14, 20], while Vh
1D may be a classical finite element space [4, 17, 18, 20] or an

isogeometric function space [21].

The modal index m 2 NC determines the level of detail of the Hi-Mod reduced

model. It may be fixed a priori, driven by some preliminary knowledge of the

phenomenon at hand as in [4, 20], or automatically chosen via an a posteriori
modeling error analysis as in [17, 19]. Index m can be varied along the domain

to better capture local dynamics [18, 19]. For simplicity, here we consider m to be

given and constant along the whole domain (uniform Hi-Mod reduction).

For a given modal index m 2 NC, the Hi-Mod formulation reads as

find uh
m 2 Vh

m W a.uh
m; vh

m/ D F.vh
m/ 8vh

m 2 Vh
m: (15.2)

The well-posedness of formulation (15.2) as well as the convergence of uh
m to u can

be proved under suitable assumptions on space Vh
m [20].

In particular, after denoting by f#jgNh
jD1 a basis of the space Vh

1D, for each element

vh
m 2 Vh

m, the Hi-Mod expansion reads

vh
m.x; y/ D

mX

kD1

h NhX

jD1

Qvk;j#j.x/
i
'k.y/:

The unknowns of (15.2) are the mNh coefficients
˚Quk;j

�Nh;m

jD1;kD1
identifying the

Hi-Mod solution uh
m. The Hi-Mod reduction obtains a system of m coupled

“psychologically” 1D problems. For m small (i.e., when the mainstream dominates

the dynamics), the solution process competes with purely 1D numerical models.

Accuracy of the model can be improved locally by properly setting m. From an

algebraic point of view, we solve the linear system Ah
muh

m D fh
m, where Ah

m 2
RmNh�mNh is the Hi-Mod stiffness matrix, uh

m 2 RmNh is the vector of the Hi-Mod

coefficients and fh
m 2 RmNh is the Hi-Mod right-hand side.
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15 Hi-POD Solution of Parametrized Fluid Dynamics Problems 239

15.2.2 POD Solution of Parametrized Hi-Mod Problems

Let us denote by ˛ a vector of parameters the solution of problem (15.1) depends

on. We reflect this dependence in our notation by writing the Hi-Mod solution as

uh
m.˛/ D uh

m.x; y; ˛/ D
mX

kD1

h NhX

jD1

Qu˛
k;j#j.x/

i
'k.y/; (15.3)

corresponding to the algebraic Hi-Mod system

Ah
m.˛/uh

m.˛/ D fh
m.˛/: (15.4)

The Hi-Mod approximation to problem (15.1) will be indifferently denoted

via (15.3) or by the vector uh
m.˛/.

The goal of the Hi-POD procedure that we describe hereafter is to rapidly

estimate the solution to (15.1) for a specific set ˛
 of data, by exploiting Hi-Mod

solutions previously computed for different choices of the parameter vector. The

rationale is to reduce the computational cost of the solution to (15.4), yet preserving

reliability.

According to the POD approach, we exploit an offline/online paradigm, i.e.,

- we compute the Hi-Mod approximation associated with different samples of the

parameter ˛ to build the POD reduced basis (offline phase);

- we compute the solution for ˛
 by projecting system (15.4) onto the space

spanned by the POD basis (online phase).

15.2.2.1 The Offline Phase

We generate the reduced POD basis relying on a set of available samples of the

solution computed with the Hi-Mod reduction. Even though offline costs are not

usually considered in evaluating the advantage of a POD procedure, also this stage

may introduce a computational burden when many samples are needed, like in

multiparametric problems. The generation of snapshots with the Hi-Mod approach,

already demonstrated to be significantly faster [14], mitigates the costs of this phase.

The pay-off of the procedure is based on the expectation that the POD basis is

considerably lower-size than the order mNh of the Hi-Mod system. We will discuss

this aspect in the numerical assessment.

Let S be the so-called response (or snapshot) matrix, collecting L Hi-Mod

solutions to (15.1), for p different values ˛i of the parameter, with i D 1; : : : ; L.

Precisely, we identify each Hi-Mod solution with the corresponding vector in (15.4),

uh
m.˛i/ D 	Qu˛i

1;1; : : : ; Qu˛i
1;Nh

; Qu˛i
2;1; : : : ; Qu˛i

2;Nh
; : : : ; Qu˛i

m;Nh


T 2 RmNh ; (15.5)
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the unknown coefficients being ordered mode-wise. Thus, the response matrix S 2
R.mNh/�L reads

S D 	
uh

m.˛1/; uh
m.˛2/; : : : ; uh

m.˛L/

 D

2
666666666666664

Qu˛1

1;1 Qu˛2

1;1 : : : Qu˛L
1;1

:::
:::

:::
:::

Qu˛1

1;Nh
Qu˛2

1;Nh
: : : Qu˛L

1;Nh

Qu˛1

2;1 Qu˛2

2;1 : : : Qu˛L
2;1

:::
:::

:::
:::

Qu˛1

2;Nh
Qu˛2

2;Nh
: : : Qu˛L

2;Nh
:::

:::
:::

:::

Qu˛1

m;Nh
Qu˛2

m;Nh
: : : Qu˛L

m;Nh

3
777777777777775

: (15.6)

The selection of representative values of the parameter is clearly critical in

the effectiveness of the POD procedure. More the snapshots cover the entire

parameter space and more evident the model reduction will be. This is a nontrivial

issue, generally problem dependent. For instance, in [9] the concept of domain of
effectiveness is introduced to formalize the region of the parameter space accurately

covered by a snapshot in a problem of cardiac conductivity. In this preliminary

work, we do not dwell with this aspect since we work on more general problems. A

significant number of snapshots is anyhow needed to construct an efficient POD

basis, the Hi-Mod procedure providing an effective tool for this purpose (with

respect to a full finite element generation of the snapshots).

To establish a correlation between the POD procedure and statistical moments,

we enforce the snapshot matrix to have null average by setting

R D S � 1

L

LX

iD1

2
666666666666664

Qu˛i
1;1 Qu˛i

1;1 : : : Qu˛i
1;1

:::
:::

:::
:::

Qu˛i
1;Nh

Qu˛i
1;Nh

: : : Qu˛i
1;Nh

Qu˛i
2;1 Qu˛i

2;1 : : : Qu˛i
2;1

:::
:::

:::
:::

Qu˛i
2;Nh

Qu˛i
2;Nh

: : : Qu˛i
2;Nh

:::
:::

:::
:::

Qu˛i
m;Nh

Qu˛i
m;Nh

: : : Qu˛i
m;Nh

3
777777777777775

2 R.mNh/�L: (15.7)

By Singular Value Decomposition (SVD), we write

R D 
˙˚T ;

with 
 2 R.mNh/�.mNh/, ˙ 2 R.mNh/�L, ˚ 2 RL�L. Matrices 
 and ˚ are unitary

and collect the left and the right singular vectors of R, respectively. Matrix ˙ D
diag .�1; : : : ; �q/ is pseudo-diagonal, �1; �2; : : : ; �q being the singular values of R,
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with �1 � �2 � � � � � �q and q D minfmNh; Lg [5]. In the numerical assessment

below, we take q D L.

The POD (orthogonal) basis is given by the l left singular vectors f ig associated

with the most significant l singular values, with l � mNh. Different criteria can be

pursued to select those singular values. A possible approach is to select the first l
ordered singular values, such that

Pl
iD1 �2

i =
Pq

iD1 �2
i � " for a positive user-defined

tolerance " [28]. The reduced POD space then reads Vl
POD D spanf 1; : : : ; lg,

with dim.Vl
POD/ D l.

Equivalently, we can identify the POD basis by applying the spectral decompo-

sition to the covariance matrix C 
 RTR (being mNh � L ). As well known, the

right singular vectors of R coincide with the eigenvectors ci of C, with eigenvalues

�i D �2
i , for i D 1; : : : ; L. Thus, the POD basis functions reads  i D ��1

i Sci [28].

15.2.2.2 The Online Phase

We aim at rapidly computing the Hi-Mod approximation to problem (15.1) for

the parameter value ˛
 not included in the sampling set f˛igL
iD1. For this pur-

pose, we assume an affine parameter dependence. Then, we project the Hi-Mod

system (15.4), with ˛ D ˛
, onto the POD space Vl
POD, by solving the linear system

A˛�
PODu˛�

POD D f˛�
POD;

with A˛�
POD D .
 l

POD/TAh
m.˛
/ 
 l

POD 2 Rl�l, f˛�
POD D .
 l

POD/T fh
m.˛
/ 2 Rl and

u˛�
POD D Œu˛�

POD;1; : : : ; u˛�
POD;l�

T 2 Rl, where Ah
m.˛
/ and fh

m.˛
/ are defined as

in (15.4), and 
 l
POD D Œ 1; : : : ; l� 2 R.mNh/�l is the matrix collecting, by column,

the POD basis functions.

By exploiting the POD basis, we write

uh
m.˛
/ 	

lX

sD1

u˛�
POD;s s:

The construction of A˛�
POD and f˛�

POD requires the assembly of the Hi-Mod

matrix/right-hand side for the value ˛
, successively projected onto the POD

space. Also in the basic POD online phase, we need to assembly, in general,

the full problem, and the Hi-Mod model, featuring lower size than a full finite

element problem, gives a computational advantage. In addition, the final solution is

computed by solving an l � l system as opposed to the mNh � mNh Hi-Mod system,

with a clear overall computational advantage, as we verify hereafter. In absence of

an affine parameter dependence, we can resort to an empirical interpolation method

as explained, e.g., in [24].
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15.2.3 Numerical Assessment

In this preliminary paper, we consider only 2D problems, the 3D case being

a development of the present work. We consider the linear advection-diffusion-

reaction (ADR) problem

8
ˆ̂<
ˆ̂:

�r � �
�.x/ru.x/

� C b.x/ � ru.x/ C �.x/u.x/ D f .x/ in ˝

u.x/ D 0 on �D

�.x/
@u

@n
.x/ D 0 on �N ;

(15.8)

with �D; �N � @˝ , such that �D [ �N D @˝ and
ı

� D \ ı
� ND ;, where �, b,

� and f denote the viscosity, the advective field, the reactive coefficient and the

source term, respectively. In particular, we set ˝ D .0; 6/ � .0; 1/, with �N D
f.x; y/ W x D 6; 0 � y � 1; g and �D D @˝ n �N . We also assume constant

viscosity and reaction, i.e., we pick � D 0:1�0 for �0 2 Œ1; 10� and � 2 Œ0; 3�;

then, we assign a sinusoidal advective field, b.x/ D Œb1; b2 sin.6x/�T with b1 2
Œ2; 20� and b2 2 Œ1; 3�, and the source term f .x/ D f1�C1 .x/ C f2�C2 .x/ for f1,

f2 2 Œ5; 25� and where function �! denotes the characteristic function associated

with the generic domain !, C1 D f.x; y/ W .x � 1:5/2 C 0:4 .y � 0:25/2 < 0:01g
and C2 D f.x; y/ W .x � 0:75/2 C 0:4 .y � 0:75/2 < 0:01g identifying two ellipsoidal

areas in ˝ . According to the notation in (15.1), we set therefore V 
 H1
�D

.˝/,

a.u; v/ 
 �
�ru; rv

� C �
b � ru C �u; v

�
, for any u; v 2 V , and F.v/ D �

f ; v
�
, for

any v 2 V ,
��; �� denoting the L2.˝/-scalar product.

In the offline phase, we select L D 30 problems, by randomly varying coefficients

�0, � , b1, b2, f1 and f2 in the corresponding ranges, so that ˛ 
 Œ�0; �; b1; b2; f1; f2�T .

We introduce a uniform partition of ˝1D into 121 sub-intervals, and we Hi-Mod

approximate the selected L problems, combining piecewise linear finite elements

along the 1D fiber with a modal expansion based on 20 sinusoidal functions along

the transverse direction.

In the online phase, we aim at computing the Hi-Mod approximation to

problem (15.8) for ˛ D ˛
 D Œ�

0 ; �
; b


1 ; b

2 ; f 


1 ; f 

2 �T , with

�

0 D 2:4; �
 D 0; b


1 D 5; b

2 D 1; f 


1 D f 

2 D 10:

Figure 15.1 shows a Hi-Mod reference solution, uR;h
m , computed by directly applying

Hi-Mod reduction to (15.8) for ˛ D ˛
, with the same Hi-Mod discretization setting

used for the offline phase.

This test is intended to demonstrate the reliability of Hi-POD to construct an

approximation of the Hi-Mod solution (that, in turn, approximates the full solution

u), with a contained computational cost.

Figure 15.2 shows the spectrum of the response matrix R in (15.7). As highlighted

by the vertical lines, we select four different values for the number l of POD modes,

i.e., l D 2; 6; 19; 29. For these choices, the ratio
Pl

iD1 �2
i =

Pq
iD1 �2

i assumes the

value 0:780 for l D 2, 0:971 for l D 6, 0:999 for l D 19 (and, clearly, 1 for l D 29).
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Fig. 15.1 ADR problem. Hi-Mod reference solution

Fig. 15.2 ADR problem. Singular values of the response matrix R

Fig. 15.3 ADR problem. Hi-Mod approximation provided by the Hi-POD approach for l D 2

(top), l D 6 (center), l D 19 (bottom)

The singular values for the specific problem decay quite slowly. This is due to the

presence of many (six) parameters, so that the redundancy of the snapshots (that

triggers the decay) is quite limited.

Nevertheless, we observe that the Hi-POD solution still furnishes a reliable and

rapid approximation of the solution in correspondence of the value ˛
. Precisely,

Fig. 15.3 shows the Hi-Mod approximation provided by Hi-POD, for l D 2; 6; 19

(top-bottom). We stress that six POD modes are enough to obtain a Hi-Mod reduced
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Table 15.1 ADR problem

l D 2 l D 6 l D 19 l D 29

jjuR;h
m �uh

m.˛�/jjL2.˝/

jjuR;h
m jjL2.˝/

3.52e-01 3.44e-02 9.71e-04 4.38e-04

jjuR;h
m �uh

m.˛�/jjH1.˝/

jjuR;h
m jjH1.˝/

4.54e-01 6.88e-02 2.21e-03 8.24e-04

Relative errors for different Hi-POD reconstructions of the Hi-Mod solution

solution which, qualitatively, exhibits the same features as uR;h
m . Moreover, the

contribution of singular vectors for l > 19 is of no improvement. We also notice

that the results for l D 6 are excellent, in spite of the large number of parameters.

Table 15.1 provides more quantitative information. We collect the L2.˝/- and

the H1.˝/-norm of the relative error obtained by replacing the Hi-Mod reference

solution with the one provided by the Hi-POD approach. As expected, the error

diminishes as the number of POD modes increases.

15.3 Hi-POD Reduction of the Navier-Stokes Equations

We generalize the Hi-POD procedure in Sect. 15.2.2 to the incompressible Navier-

Stokes equations [25]. We first consider the stationary problem

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�r � .2� D.u// .x/ C .u � r/ u.x/ C rp.x/ D f.x/ in ˝

r � u.x/ D 0 in ˝

u.x/ D 0 on �D

.D.u/ � pI/ .x/ n D gn on �N ;

(15.9)

with u D Œu1; u2�
T and p the velocity and the pressure of the flow, respectively

� > 0 the kinematic viscosity, D.u/ D 1
2

�ru C .ru/T
�

the strain rate, f the force

per unit mass, n the unit outward normal vector to the domain boundary @˝ , I the

identity tensor, g a sufficiently regular function, and where �D and �N are defined

as in (15.8). We apply a standard Picard linearization of the nonlinear term

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�r � �
2� D.ukC1/

� C �
uk � r�

ukC1 C rpkC1 D f in ˝

r � .ukC1/ D 0 in ˝

ukC1 D 0 on �D�
D.ukC1/ � pkC1I

�
n D gn on �N ;

where fuj; pjg denotes the unknown pair at the iteration j. Stopping criterion of the

Picard iteration is designed on the increment between two consecutive iterations.
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Problem (15.9) is approximated via a standard Hi-Mod technique, for both the

velocity and the pressure, where a modal basis constituted by orthogonal Legendre

polynomials, adjusted to include the boundary conditions, is used. Finite elements

are used along the centerline. The finite dimension Hi-Mod spaces for velocity

and pressure obtained by the combination of different discretization methods need

to be inf-sup compatible. Unfortunately, no proof of compatibility is currently

available, even though some empirical strategies based on the Bathe-Chapelle test

are available [7, 14]. In particular, here we take piecewise quadratic velocity/linear

pressure along the mainstream and the numbers mp; mu of pressure and velocity

modes is set such that mu D mp C 2. Numerical evidence suggests this to be an

inf-sup compatible choice [1, 7]. Finally, the same number of modes is used for the

two velocity components, for the sake of simplicity.

We denote by Vh;u
1D � H1.˝1D/ and by Vh;p

1D � L2.˝1D/ the finite element space

adopted to discretize u1, u2 and p, respectively along ˝1D, with dim.Vh;u
1D / D Nh;u

and dim.Vh;p
1D / D Nh;p. Thus, the total number of degrees of freedom involved by a

Hi-Mod approximation of u and p is Nu D 2muNh;u and Np D mpNh;p, respectively.

From an algebraic viewpoint, at each Picard iteration, we solve the linear system

(we omit index k for easiness of notation)

Sh
fmu;mpg zh

mu;mp
D Fh

fmu;mpg; (15.10)

where

Sh
fmu;mpg D

"
Ch

fmu;mug ŒBh
fmu;mpg�

T

Bh
fmu;mpg 0

#
2 R.NuCNp/�.NuCNp/;

with Ch
fmu;mug 2 RNu�Nu , Bh

fmu;mpg 2 RNp�Nu the Hi-Mod momentum and divergence

matrix, respectively, zh
mu;mp

D Œuh
mu

; ph
mp

�T 2 RNuCNp the vector of the Hi-Mod

solutions, and where Fh
fmu;mpg D Œfh

mu
; 0�T 2 RNuCNp , with fh

mu
the Hi-Mod right-

hand side of the momentum equation.

When coming to the Hi-POD procedure for problem (15.9), we follow a

segregated procedure, where a basis function set is constructed for the velocity and

another one for the pressure. The effectiveness of this reduced basis in representing

the solution for a different value of the parameter is higher with respect to a

monolithic approach, where a unique POD basis is built. We will support this

statement with numerical evidence. Still referring to (15.6) and (15.7), we build two

separate response matrices, Ru 2 RNu�L and Rp 2 RNp�L, which gather, by column,

the Hi-Mod approximation for the velocity, uh
mu

.˛/ 2 RNu , and for the pressure,

ph
mp

.˛/ 2 RNp , solutions to the Navier-Stokes problem (15.9) for L different choices

˛i, with i D 1; : : : ; L, of the parameter that, in this case, is ˛ D Œ�; f; g�T . A standard

block-Gaussian procedure resorting to the pressure Schur-complement is used to

compute velocity and pressure, separately [3].

simona.perotto@polimi.it



246 D. Baroli et al.

Following a segregated SVD analysis of the two unknowns, after identifying the

two indices lu and lp, separately, we construct a unique reduced POD space Vl
POD,

with l D max.lu; lp/, by collecting the first l singular vectors of Ru and of Rp. More

precisely, for a new value ˛
 of the parameters, with ˛
 ¤ ˛i for i D 1; : : : ; L,

at each Picard iteration, we project the linearized Navier-Stokes problem onto the

space Vl
POD.

Another possible approach is to keep the computation of the velocity and pressure

separate on the two basis function sets with size lu and lp, by resorting to an

approximation of the pressure Schur complement, followed by the computation of

the velocity, similar to what is done in algebraic splittings [3, 22, 26, 27]. More

in general, the treatment of the nonlinear term in the Navier-Stokes problem can

follow approximation strategies with a specific basis function set and empirical
interpolation strategies [24]. At this preliminary stage, we do not follow this

approach and we just assess the performances of the basic procedure. However,

this topic will be considered in the follow-up of the present work in view of real

applications.

It is also worth noting that no inf-sup compatibility is guaranteed for the POD

basis functions. Numerical evidence suggests that we do have inf-sup compatible

basis functions, however a theoretical analysis is still missing.

15.3.1 A Benchmark Test Case

We solve problem (15.9) on the rectangular domain ˝ D .0; 8/ � .�2; 2/, where

�D D f.x; y/ W 0 � x � 8; y D ˙2g and �N D @˝ n �D.

Moreover, we assume the analytical representation

f D



f0;x C fxx x C fxy y
f0;y C fyx x C fyy y

�
(15.11)

for the forcing term f involved in the parameter ˛.

In the offline stage, we Hi-Mod approximate L D 30 problems, by varying the

coefficients fst, for s D 0; x; y and t D x; y, in (15.11), the kinematic viscosity � and

the boundary value g in (15.9). In particular, we randomly sample the coefficients

fst on the interval Œ0; 100�, whereas we adopt a uniform sampling for � on Œ30; 70�

and for g on Œ1; 80�.

Concerning the adopted Hi-Mod discretization, we partition the fiber ˝1D into 80

uniform sub-intervals to employ quadratic and linear finite elements for the velocity

and the pressure, respectively. Five Legendre polynomials are used to describe the

transverse trend of u, while three modal functions are adopted for p.
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In the online phase, we compute the Hi-POD approximation to problem (15.9)

with parameters ˛
 D Œf
; �
; g
�T , with f
 D Œ82:6; 12:1�T , �
 D 51:4 and g
 D
24:2, fxx D fyy D fxy D fyx D 0. Figure 15.4 (left) shows the contour plots of the two

components of the velocity and of the pressure for the reference Hi-Mod solution

fuR;h
mu

; pR;h
mp

g (from top to bottom: horizontal velocity, vertical velocity, pressure), with

uR;h
mu

D ŒuR;h
mu;1; uR;h

mu;2�
T .

For the sake of completeness, we display the results of a monolithic approach

in Fig. 15.4 (center and right), where the POD basis is computed on a unique

response matrix for the velocity and pressure. While velocity results are quite

accurate, pressure approximation is bad, suggesting that, probably, a lack of inf-

sup compatibility of the reduced basis leads to unreliable pressure approximations,

independently of the dimension of the POD space.

When we turn to the segregated approach, Fig. 15.5 shows the distribution of the

singular values of the response matrices Ru and Rp, respectively. Again the values

decay is not so rapid to pinpoint a clear cut-off value (at least for significantly small

dimensions of the reduced basis), as a consequence of the multiple parametrization

that inhibits the redundancy of the snapshots. However, when we compare the

Hi-Mod solution identified by three different choices of the POD spaces, Vl;u
POD

Fig. 15.4 Steady Navier-Stokes equations. Hi-Mod reference solution (left), Hi-Mod approxima-

tion yielded by the monolithic Hi-POD approach for l D 11 (center) and l D 28 (right): horizontal

(top) and vertical (middle) velocity components; pressure (bottom)

Fig. 15.5 Steady Navier-Stokes equations. Singular values of the response matrix Ru (left) and Rp

(right)
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Fig. 15.6 Steady Navier-Stokes equations. Hi-POD approximation yielded by the segregated Hi-

POD approach for l D 4 (left), l D 6 (center), l D 10 (right): horizontal (top) and vertical (middle)

velocity components; pressure (bottom)

Table 15.2 Steady Navier-Stokes equations

jjuR;h
mu ;1 � uh

mu ;1.˛�/jjH1.˝/

jjuR;h
mu ;1jjH1.˝/

jjuR;h
mu ;2 � uh

mu ;2.˛
�/jjH1.˝/

jjuR;h
mu ;2jjH1.˝/

jjpR;h
mp

� ph
mp

.˛�/jjL2.˝/

jjpR;h
m jjL2.˝/

l D 4 7:1 � 10�3 3:9 � 10�1 4:8 � 10�1

l D 6 3:8 � 10�4 4:3 � 10�2 3:9 � 10�1

l D 10 1:1 � 10�4 8:6 � 10�3 1:3 � 10�3

Relative errors for different Hi-POD reconstructions of the Hi-Mod solution

and Vl;p
POD, with the reference approximation in Fig. 15.4 (left), we notice that

the choice l D 6 is enough for a reliable reconstruction of the approximate

solution (see Fig. 15.6 (center)). The horizontal velocity component—being the

most predominant dynamics—is captured even with a lower size of the reduced

spaces Vl;u
POD, while the pressure still represents the most challenging quantity to be

correctly described.

In Table 15.2, we quantify the accuracy of the Hi-POD procedure. We compare

the relative errors between the Hi-Mod reference solution fuR;h
mu

; pR;h
mp

g and the Hi-

POD approximation fuh
mu

.˛
/; ph
mp

.˛
/g generated by different Hi-POD schemes,

with uh
mu

.˛
/ D Œuh
mu;1.˛
/; uh

mu;2.˛
/�T .

As for the computational time (in seconds),1 we found that the segregated Hi-

POD requires 0:13s to be compared with 0:9s demanded by the standard Hi-Mod

approximation. This highlights the significant computational advantage attainable

by Hi-POD, in particular for a rapid approximation of the incompressible Navier-

Stokes equations when estimating one or more parameters of interest.

1All the experiments have been performed using MATLAB® R2010a 64-bit on a Fujitsu Lifebook

T902 equipped with a 2.70 GHz i5 (3rd generation) vPro processor and 8 GB of RAM.
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15.4 Towards More Realistic Applications

We extend the Hi-POD segregated approach to the unsteady Navier-Stokes equa-

tions

8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

@u

@t
.x; t/ � r � .2� D.u// .x; t/ C .u � r/ u.x; t/ C rp.x; t/ D f.x; t/ in Q

r � u.x; t/ D 0 in Q

u.x; t/ D 0 on GD

.D.u/ � pI/ .x; t/ n D g.x; t/n on GN

u.x; 0/ D u0.x/ in ˝;

(15.12)

with Q D ˝ � I for I D .0; T/ the time window of interest, GD D �D � I, GN D
�N �I, u0 the initial value, and where all the other quantities are defined as in (15.9).

After introducing a uniform partition of the interval I into M sub-intervals of length

�t, we resort to the backward Euler scheme and approximate the nonlinear term via

a classical first order semi-implicit scheme. The semi-discrete problem reads: for

each 0 � n � M � 1, find funC1; pnC1g 2 V 
 ŒH1
�D

.˝/�2 � L2.˝/ such that

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

unC1 � un

�t
� r � �

2� D.unC1/
� C .un � r/ unC1 C rpnC1 D fnC1 in ˝

r � unC1 D 0 in ˝

unC1 D 0 on �D�
D.unC1/ � pnC1I

�
n D gnC1n on �N ;

(15.13)

with u0 D u0.x/, unC1 ' u.x; tnC1/, pnC1 ' p.x; tnC1/ and ti D i�t, for i D
0; : : : ; M.

For the Hi-Mod approximation, we replace space V in (15.13) with the same

Hi-Mod space as in the steady case.

When applied to unsteady problems, POD procedures are generally used for

estimating the solution at a generic time by taking advantage of precomputed

snapshots [28]. In our specific case, we know the Hi-Mod solution for a certain

number of parameters ˛i, and we aim at rapidly estimating the solution over a time

interval of interest for a specific value ˛
 of the parameter, with ˛
 ¤ ˛i. The

procedure we propose here is the following one:

1. we precompute offline the steady Hi-Mod solution for L samples ˛i of the

parameter, i D 1; : : : ; L;

2. for a specific value ˛
 of the parameter, we compute online the Hi-Mod solution

to (15.12) at the first times tj, for j D 1; : : : ; P;

3. we juxtapose the Hi-Mod snapshots to the steady response matrix obtained

offline;
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4. we perform the Hi-POD procedure to estimate the solution to (15.12) at times tj,

with j > P.

In absence of a complete analysis of this approach, we present here some

preliminary numerical results in a non-rectilinear domain. Hi-Mod reduction has

been already applied to curvilinear domains [15, 21]. In particular, in [21] we exploit

the isogeometric analysis to describe a curvilinear centerline ˝1D, by replacing the

1D finite element discretization with an isogeometric approximation.

Here, we consider a quadrilateral domain with a sinusoidal-shaped centerline (see

Fig. 15.7). We adopt the same approach as in [15] based on an affine mapping of the

bent domain into a rectilinear reference one. During the offline phase, we Hi-Mod

solve problem (15.9) for L D 5 different choices of the parameter ˛ D Œ�; f; g�T ,

by uniformly sampling the viscosity � in Œ1:5; 7�, g in Œ1; 80�, and f.x/ D Œf1; f2�T ,

with f1, f2 2 R in Œ0; 10�. Domain ˝1D is divided in 80 uniform sub-intervals.

We approximate u and p with five and three Legendre polynomials along the

transverse direction combined with piecewise quadratic and linear functions along

˝1D, respectively. The corresponding Hi-Mod approximations constitute the first L
columns of the response matrices Ru and Rp.

Then, we solve the unsteady problem (15.12). We pick u0 D 0, T D 10, and we

introduce a uniform partition of the time interval I, with �t D 0:1.

The data ˛
 for the online phase are �
 D 2:8, g
 D 30 C 20 sin.t/ and f
 D
Œ5:8; 1:1�T . Matrices Ru and Rp are added by the first P D 5 Hi-Mod approximations

fuh;j
mu

.˛
/; ph;j
mp

.˛
/g, for j D 1; : : : ; 5, so that Ru 2 RNu�10 and Rp 2 RNp�10, where

Nu D 2 � 5 � Nh;u, Np D 3 � Nh;p with Nh;u and Nh;p the dimension of the one

dimensional finite element space used along ˝1D for u and p, respectively.

Figure 15.7 compares, at four different times, a reference Hi-Mod solution

fuR;h
mu

; pR;h
mp

g, with uR;h
mu

D ŒuR;h
mu;1; uR;h

mu;2�
T , computed by hierarchically reducing

problem (15.12) with the Hi-POD solution fuh
mu

.˛
/; ph
mp

.˛
/g, with uh
mu

.˛
/ D
Œuh

mu;1.˛
/; uh
mu;2.˛
/�T , for l D 6. The agreement between the two solutions is

qualitatively very good, in spite of the fact that no information from the Hi-Mod

solver on the problem after time t5 is exploited to construct the Hi-POD solution.

The pressure still features larger errors, as in the steady case.

We make this comparison more quantitative in Table 15.3, where we collect the

L2.˝/- and the H1.˝/-norm of the relative error between the Hi-Mod reference

solution and the Hi-POD one, at the same four times as in Fig. 15.7. We notice

that the error does not grow significantly with time. This suggests that the Hi-

POD approach can be particularly viable for reconstructing asymptotic solutions

in periodic regimes, as in computational hemodynamics. As for the computational

efficiency, Hi-POD solution requires 103s vs 287s of Hi-Mod one, with a significant

reduction of the computational time.
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Fig. 15.7 Unsteady Navier-Stokes equations. Reference Hi-Mod solution (left) and Hi-Mod

approximation yielded by the Hi-POD approach for l D 6 (right), at t D 2 (first row), t D 4

(second row), t D 6 (third row) and t D T (fourth row): horizontal (top) and vertical (middle)

velocity components; pressure (bottom)
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Table 15.3 Unsteady Navier-Stokes equations

jjuR;h
mu ;1 � uh

mu ;1.˛�/jjH1.˝/

jjuR;h
mu ;1jjH1.˝/

jjuR;h
mu ;2 � uh

mu;2.˛�/jjH1.˝/

jjuR;h
mu ;2jjH1.˝/

jjpR;h
mp

� ph
mp

.˛�/jjL2.˝/

jjpR;h
mp jjL2.˝/

t D 2 5:4 � 10�4 4:5 � 10�4 3:4 � 10�2

t D 4 2:4 � 10�3 2:1 � 10�3 1:0 � 10�1

t D 6 2:3 � 10�3 2:2 � 10�3 6:2 � 10�2

t D T 2:6 � 10�3 2:4 � 10�3 7:7 � 10�2

Relative error associated with the Hi-Mod approximation provided by Hi-POD at different times

15.5 Conclusions and Future Developments

The preliminary results in Sects. 15.2.3, 15.3.1 and 15.4 yielded by the combination

of the model/solution reduction techniques, Hi-Mod/POD, are very promising in

view of modeling incompressible fluid dynamics in pipes or elongated domains. We

have verified that Hi-POD enables a fast solution of parametrized ADR problems

and of the incompressible, steady and unsteady, Navier-Stokes equations, even

though in the presence of many (six) parameters. In particular, using Hi-Mod in

place of a traditional discretization method applied to the reference (full) problem

accelerates the offline phase and also the construction of the reduced problem

projected onto the POD space.

Clearly, there are several features of this new approach that need to be investi-

gated. First of all, we plan to migrate to 3D problems within a parallel implemen-

tation setting (in the library LifeV, www.lifev.org). Moreover, we aim at further

accelerating the computational procedure by using empirical interpolation methods

for possible nonlinear terms [24]. Finally, an extensive theoretical analysis is needed

to estimate the convergence of the Hi-POD solution to the full one as well as the inf-

sup compatibility of the Hi-Mod bases deserves to be rigorously analyzed.

As reference application we are interested in computational hemodynamics, in

particular to estimate blood viscosity from velocity measures in patients affected by

sickle cell diseases [23].
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Chapter 16

Adaptive Sampling for Nonlinear

Dimensionality Reduction Based
on Manifold Learning

Thomas Franz, Ralf Zimmermann, and Stefan Görtz

Abstract We make use of the non-intrusive dimensionality reduction method

Isomap in order to emulate nonlinear parametric flow problems that are governed

by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning

approach that provides a low-dimensional embedding space that is approximately

isometric to the manifold that is assumed to be formed by the high-fidelity Navier-

Stokes flow solutions under smooth variations of the inflow conditions. The focus

of the work at hand is the adaptive construction and refinement of the Isomap

emulator: We exploit the non-Euclidean Isomap metric to detect and fill up gaps

in the sampling in the embedding space. The performance of the proposed manifold

filling method will be illustrated by numerical experiments, where we consider

nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic

regime.

16.1 Introduction

In [8], the authors proposed a non-intrusive low-order emulator model for nonlinear

parametric flow problems governed by the Navier-Stokes equations. The approach is

based on the manifold learning method Isomap [17] combined with an interpolation

scheme and will be referred to hereafter as Isomap+I. Via this method, a low-

dimensional embedding space is constructed that is approximately isometric to the

manifold that is assumed to be formed by the high-fidelity Navier-Stokes flow
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