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Which are the challenges of reduced order modelling?

Performing in real-time (on-fly) complex problem characterized by
many parameters, solving low-dimensional problem;
reducing significantly the computational complexity;
evaluating multi-query tasks: uncertainty quantification analysis and
data-driven model.

Active research lines:
combination with domain decomposition algorithm in space
combination with parallel-time integrator
smart sampling of parameters in time and space
adaptation with cheap cost on-fly for data-driven application
combination with surrogate model
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Parametrized partial differential equation

One of key feature of ROM is the possibility to exploit the affinely
parametrization of the equations with respect to the parameters:
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Offline-online paradigm
Offline:

Sampling the parameters in a physical predefinite range
Define a manifold of snapshotsM = {Ti (µi ), µi ∈ D} ⊂ RN with
dim(M) = m << #dof . Let V := [T1| . . . |Tm].

Online:
Select µnew , express the solution

T (µnew )k+1 = ak+1
1 (µnew )T1(µ1) + . . .+ ak+1

m (µnew (t))Tm(µm)

The coefficients {a1, . . . , am} are obtained solving :
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Reduced Order Model recipes

Project-based methods:
proper orthogonal decomposition (POD)
reduced basis (be Greedy)
Greedy-POD
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Project-based technique: proper orthogonal decomposition

How to reduce the information from the snapshots? How to quantify the
information and the discard noise?
Algorithm 1: Proper orthogonal decomposition

Input : Preselected parameters µ1, . . . , µm and snapshots
T1, . . . ,Tm, toll= 0.1

Output: Compressed POD basis WPOD := [φ1| . . . |φPOD ]
1 Construct the covariance matrix C , whose entries Ci ,j = 〈Ti ,Tj〉;
2 Solve Cψ = λψ with decreasing order λm ≥ λm−1 ≥ . . . ;
3 Criteria ‖V−WPOD W T

POD V ‖F

‖WPOD‖F
=

∑m
i=POD λi∑m

i=1 λi
< toll;

4 Compute φi = 1√
λi
Vψi for i = 1, . . . ,POD
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Project-based technique: reduced basis

Given m snapshots, which are the best snapshot parameter location ? Be
greedy in selection!)

Algorithm 2: Greedy-Reduced Basis
Input : A set of parameters D = {µ1, . . . , µm}, toll= 1e − 6
Output: Reduced basis WRB := span {T1, . . . ,TRB}

1 Compute T (µn) for a random µn;
2 Add T (µn) to WRB and perform the orthogonalization;
3 For each µ ∈ set {µ1, . . . , µm} \ µn;
4 Solve the reduced system (compute the coefficient a) for µ;
5 Evaluate the (a-posteriori) error estimator η(µ) ;
6 Choose (the worst) µn+1 = arg maxµ∈D η(µ);
7 If η(µn+1) > toll , then set n = n + 1 and go to 2., otherwise
terminate.
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Combine Greedy-POD for unsteady equations

Algorithm 3: Greedy-POD (Global trajectory)
Input : A parameter µ1, set n = 1, N1, N2, N3 = 0, Z = ∅,

toll= 1e − 6
Output: Reduced basis WPOD := span

{
φ̃1, . . . , φ̃POD

}
1 Compute the trajectory

{
T 0(µn), . . . ,TK (µn)

}
for µn;

2 Compress 〈φ1, . . . , φPOD〉 = POD(T 0(µ1), . . . ,TK (µ1),N1);
3 Enrich Z := Z ∪ 〈φ1, . . . , φPOD〉;
4 Set N3 = N3 + N2 ;
5 Compress 〈φ̃1, . . . , φ̃N3〉 = POD(Z ,N3);

6 Set WPOD = span
{
φ̃1, . . . , φ̃N3

}
;

7 Choose (the worst) µn+1 = arg maxµ∈D η(tK , µ);
8 If η(tK , µn+1) > toll , then set n = n + 1 and go to 1., otherwise
terminate.
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Application of ROM recipes to multigroup neutronic
diffusion
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Evaluation of reactivity
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Limitations in ROM recipe

computational cost in assembling the reduced system scales with the
full dimension problem
limitation in solving non-linear and parametric dependent problems
adaptation requires to evaluate the full system
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Surrogate model: HiMoD

Assuming a flow phenomena characterized by a main-stream dominant
dynamics + transverse dynamics which are relevant only locally.

vh
m(x , y) =

m∑
k=1

vh
k (x)φk (y)x ∈ Ω1D and y ∈ Σx

where φk are modal basis function that describe the transverse dynamics.
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POD+HiMoD = HiPOD

Figure: HiMoD simulation

Figure: Two POD basis

Figure: 6 POD basis

Figure: 19 POD basis
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Advanced model reduction: Gappy POD

Algorithm 4: POD evolution basis
Input : A set of parameter µ1, . . . , µm, toll
Output: POD basis W (POD, βj ) for the j−th time step

1 Fix the j − th time, collect all snapshots at this time:
Y j = [T (µ1, t

j ), . . . ,T (µm, t
j )] ;

2 Compute the POD basis,
W (POD, βj ) = [φj

1| . . . |φ
j
βj

] = POD(Y j , βj ) ;

How to determinate online the coefficient z j
k of the expansion

T j(0)(t j , µnew ) =
∑βj

k=1 z
j
kφ

j
k for the “optimal“ guest of the Newton-like

method at the j−th time step?
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Algorithm 5: Forecasting method
Input : Evolution POD basis, αmax ≥ maxjβj

Output: Forecasting guest T (tn+1 + c1∆tn) for new parameter
1 For each time step n = 1, . . . ,K ;
2 If the forecast T (tn+1 + c1∆tn) is available then set the initial
guess T n(0), otherwise from previous time step. ;

3 Solve Newton-method and compute T (tn) with the given initial
guest.;

4 Let Kn the number of Newton iteration at time n.;
5 If Kn ≥ toll and (n − 1) ≥ maxj βj then ;
6 Set the memory α = min(n − 1, αmax ) and compute z j coefficient
using the previous α time information, solving:;

7 zj = arg min
z∈Rβj ‖Z (n, α)W (POD, βj )z − Z (n, α)[T (t0 +

c1∆T ), . . . ,T (tK−1 + c1∆T )]T‖;
8 where Z (n, α) = [en−α−1, . . . , en−1]T .;
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Definition of SDC sweep

Given an ODE (or a unsteady PDEs reduced to an ODE) of the form

y ′(t) = f (t, y(t)) with y(t0) = y0

Let [tn, tn+1] be the interval where we apply the time-integration; and
tn ≤ t0 ≤ . . . ≤ tM−1 ≤ tn+1. A sweep of deferred correction algorithm
(SDC) based on backward-Euler is defined by solving iteratively

yk+1(tm+1) = yk+1 + ∆tm(f (tm+1, y
k+1(tm+1))− f (tm+1, y

k (tm+1)))

where Qm+1
m = δt

∑M
i=0(qm+1,i − qm,i )f (ti , y

k
i ) and qm,j are obtain the

quadrature point of high-order collocation integration. The convergence is
monitored by the residual.
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Parallelism-in-Time: PFASST

How to extend this concept in exascale multilevel space-time parallelism?
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fine
sweep
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How to combine PinT with model reduction?
Construct for each time step a evolving ROM basis
Construct a coarse sweep online based on Gappy-POD
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Research questions

How to quantify the goodness of on-fly model from engineering point
of view ?
How much can benefit XDEM from model reduction ?
How much can increase its scalability from PinT+ROM?
How the reduction model in different modules can interact?
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