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ELASTOGRAPHY
Elastography is any method that can be used to extract quantitative or
qualitative data about elastic modulus distributions from images of elastic
solids (Parker, Doyley, and Rubens, 2011).

WHY?
I Tumorous tissue is significantly stiffer than healthy tissue.
I If we can detect that change in stiffness we a useful extra imaging

modality for cancer diagnosis.
I There is growing clinical evidence that elastography is useful (Parker,

Doyley, and Rubens, 2011).

QUESTIONS AND ISSUES
I Imaging modalities are corrupted by noise. How can we take this noise

into account? How does it affect the results?
I If we only have surface observations of an object, how much do we

really know about the parameters inside?
I The displacements of soft-tissues are related to the the stiffness

parameters by a complex set of non-linear PDEs. Can we find the
parameters in a reasonable amount of time?

MODEL PROBLEM
Given displacement observations on the surface of a block of soft tissue,
possibly containing a stiff tumor, what can we infer about the material
parameters of the tissue inside? How sure are we about what we infer?
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Left: Three virtual experimental results
from applying three different loads to the
same non-homogeneous block of soft
tissue. We are only given the observations
on the exterior surface, and they are
corrupted by random white noise.

FIGURE 2
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Left: The true material parameter field used
to generate the experimental data in Figure
1. A stiff circular tumour is surrounded by
softer healthy tissue.
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METHODOLOGY
I We use the Bayesian framework for statistical inference (Stuart, 2010).
I Allows for rigorous statistical quantification of uncertainty arising from:

I Partial observations.
I Noisy instruments.
I Model inadequacy.

I Soft tissue modelled by a fully non-linear hyperelastic PDE.
I Flexible Gaussian noise and prior modelling.
I We use derivatives of the finite element model to find the most likely

material parameters and approximate the covariance structure.
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πposterior ∼ N (xMAP,H
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Left: The Bayesian posterior encodes the
probability of the all possible parameters
given our experimental observations. We
find the maximum a posteriori point through
gradient-driven optimisation. We construct
a Gaussian approximation of the
covariance structure at this point.

COMPUTATIONAL TECHNIQUES
I Automatic construction of forward and adjoint models with

dolfin-adjoint (Farrell et al., 2013). Easy to change physical model.
I Efficient algebraic multigrid preconditioning of forward and adjoint

models. Forward runs dominate overall cost, reduce as much as
possible.

I Gauss-Newton Conjugate-Gradient method to find maximum a
posteriori point. Scales well on mesh refinement.

I Matrix-free Krylov-Schur algorithm for principal component analysis of
prior pre-and-post-conditioned Hessian of likelihood. Fixed cost for
given observations/model.

I Optimal low-rank update from prior to posterior covariance (Spantini
et al., 2014). Reduces Hessian actions/forward model runs.

RESULTS
We can recover 10000s of parameters and quantify uncertainty in minutes
on a laptop. Practical.
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Left: Recovered MAP point, cf. Figure 1.
We can detect the stiff inclusion inside the
object just from the noisy surface
observations.
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Left: Low-rank structure of spectrum of
posterior covariance. Data is only
informative on low-rank subspace of
original parameter space. Top left
eigenvector points towards direction in
parameter space most-constrained by the
observations, bottom right towards
least-constrained.
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