

ELASTOGRAPHY UNDER UNCERTAINTY.

Jack S. Hale,¹ Patrick E. Farrell², Stéphane P.A. Bordas¹.

¹Research Unit in Engineering Sciences, University of Luxembourg. ²Mathematics Institute, University of Oxford.

ELASTOGRAPHY

Elastography is any method that can be used to extract quantitative or qualitative data about *elastic modulus distributions* from images of elastic solids (Parker, Dooley, and Rubens, 2011).

WHY?

- ▶ Tumorous tissue is *significantly stiffer* than healthy tissue.
- ▶ If we can detect that change in stiffness we a useful extra imaging modality for cancer diagnosis.
- ▶ There is growing clinical evidence that elastography is useful (Parker, Dooley, and Rubens, 2011).

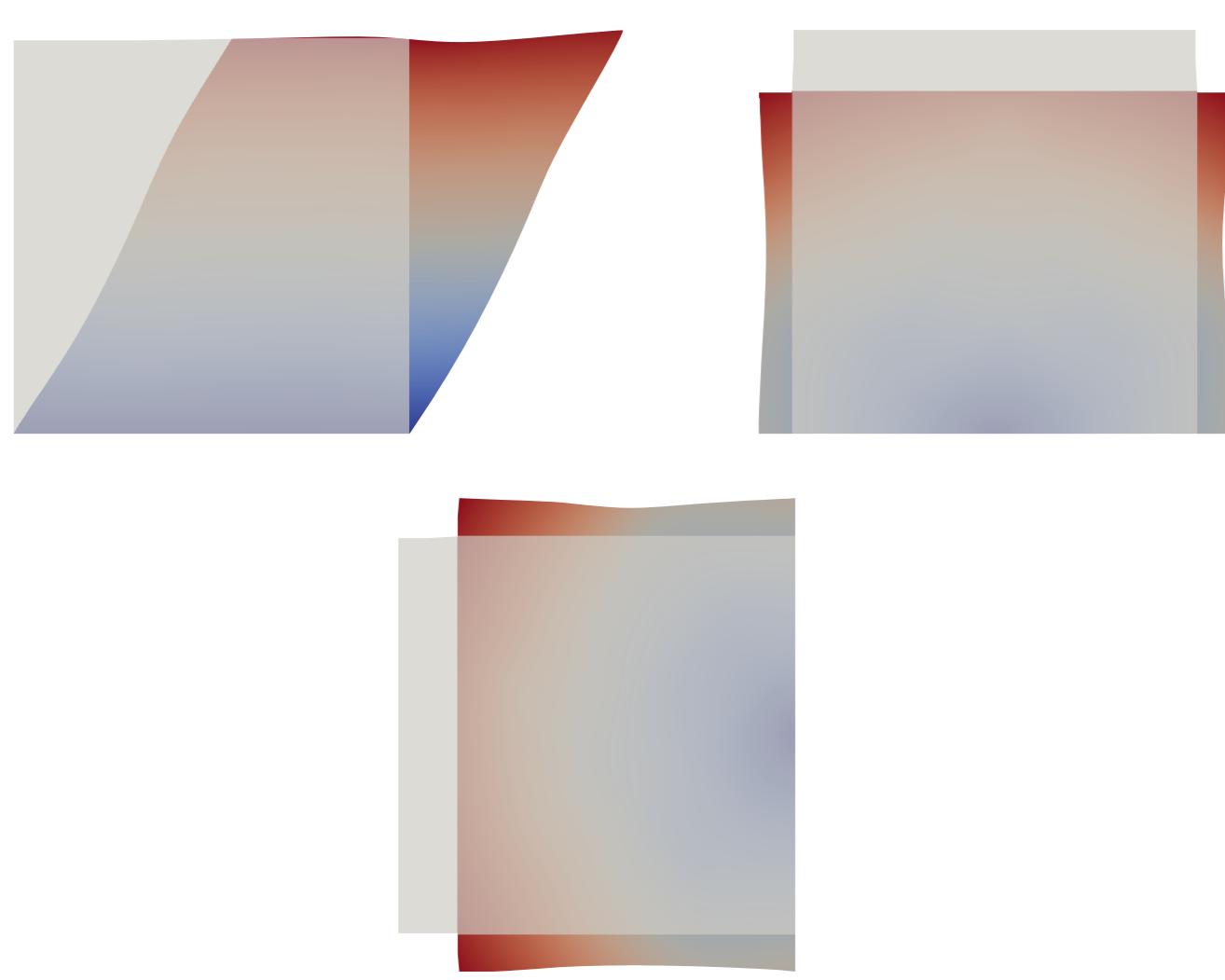
QUESTIONS AND ISSUES

- ▶ Imaging modalities are *corrupted by noise*. How can we take this noise into account? How does it affect the results?
- ▶ If we only have *surface observations* of an object, how much do we really know about the parameters *inside*?
- ▶ The displacements of soft-tissues are related to the the stiffness parameters by a complex set of non-linear PDEs. Can we find the parameters in a *reasonable amount of time*?

MODEL PROBLEM

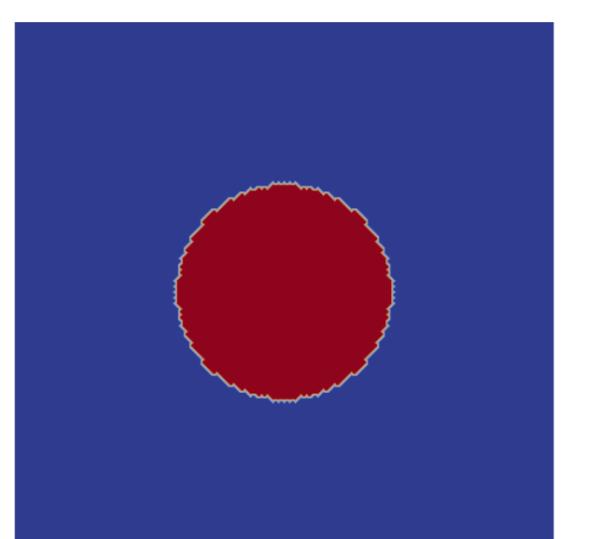
Given displacement observations on the surface of a block of soft tissue, possibly containing a stiff tumor, what can we infer about the material parameters of the tissue inside? How sure are we about what we infer?

FIGURE 1



Left: Three virtual experimental results from applying three different loads to the same non-homogeneous block of soft tissue. We are only given the observations on the exterior surface, and they are corrupted by random white noise.

FIGURE 2



Left: The true material parameter field used to generate the experimental data in Figure 1. A stiff circular tumour is surrounded by softer healthy tissue.

REFERENCES

Farrell, P. et al. (2013). "Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs". In: *SIAM Journal on Scientific Computing* 35.4, pp. C369–C393. doi: 10.1137/120873558.

Parker, K. J., M. M. Dooley, and D. J. Rubens (2011). "Imaging the elastic properties of tissue: the 20 year perspective". In: *Physics in Medicine and Biology* 56.1, R1. doi: 10.1088/0031-9155/56/1/R01.

Spantini, Alessio et al. (2014). "Optimal low-rank approximations of Bayesian linear inverse problems". In: *arXiv:1407.3463 [math, stat]*.

Stuart, A. M. (2010). "Inverse problems: A Bayesian perspective". In: *Acta Numerica* 19, pp. 451–559. doi: 10.1017/S0962492910000061.

ACKNOWLEDGEMENTS

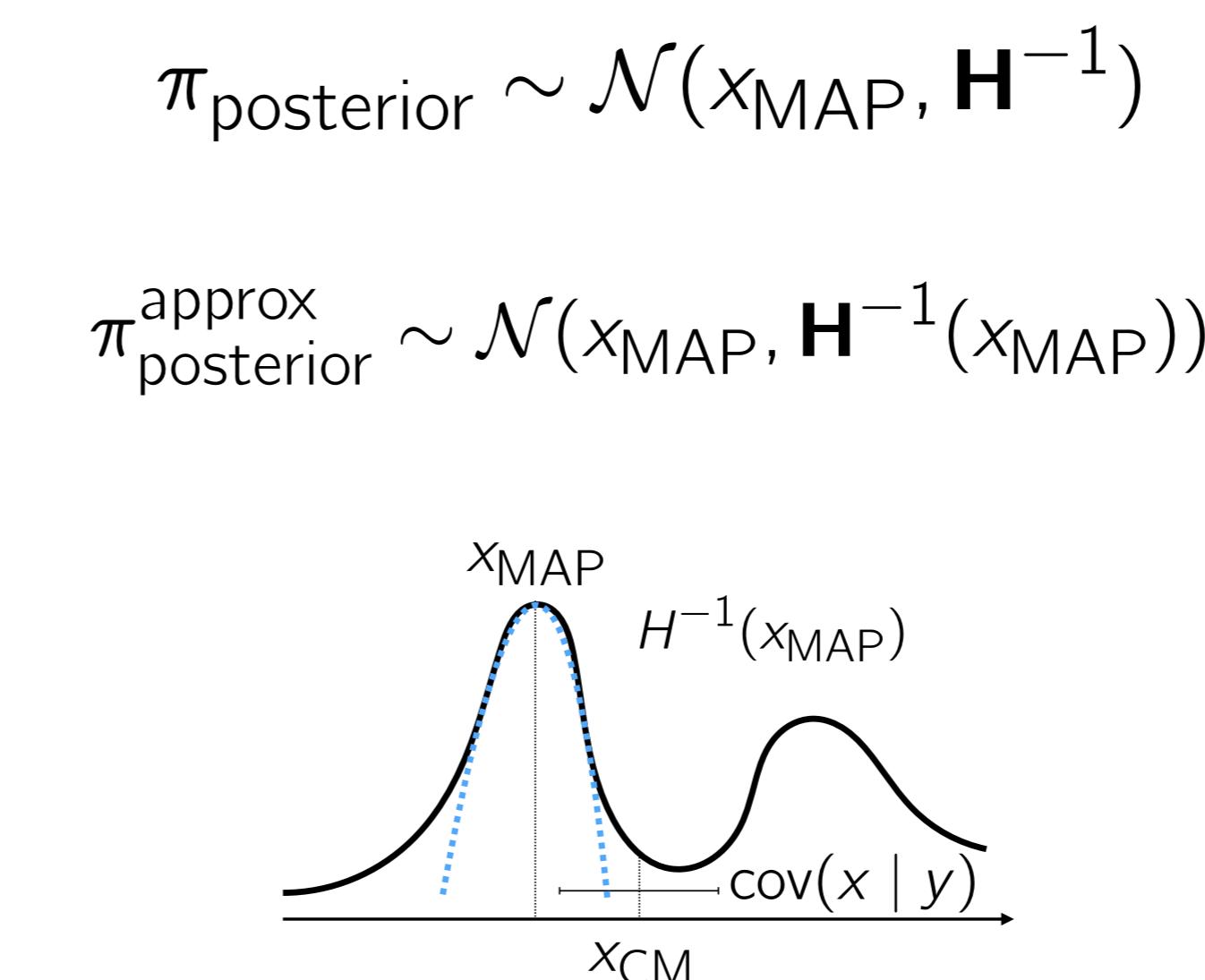
Jack S. Hale is partly supported by the National Research Fund, Luxembourg, and co-funded under the Marie Curie Actions of the European Commission (FP7-COFUND) Grant No. 6693582.

Patrick E. Farrell is supported by an EPSRC Early Career Research Fellow in Applied Mathematics.

METHODOLOGY

- ▶ We use the Bayesian framework for statistical inference (Stuart, 2010).
- ▶ Allows for rigorous statistical quantification of uncertainty arising from:
 - ▶ Partial observations.
 - ▶ Noisy instruments.
 - ▶ Model inadequacy.
- ▶ Soft tissue modelled by a fully non-linear hyperelastic PDE.
- ▶ Flexible Gaussian noise and prior modelling.
- ▶ We use derivatives of the finite element model to find the most likely material parameters and approximate the covariance structure.

FIGURE 3



Left: The Bayesian posterior encodes the probability of the all possible parameters given our experimental observations. We find the *maximum a posteriori* point through gradient-driven optimisation. We construct a *Gaussian approximation* of the covariance structure at this point.

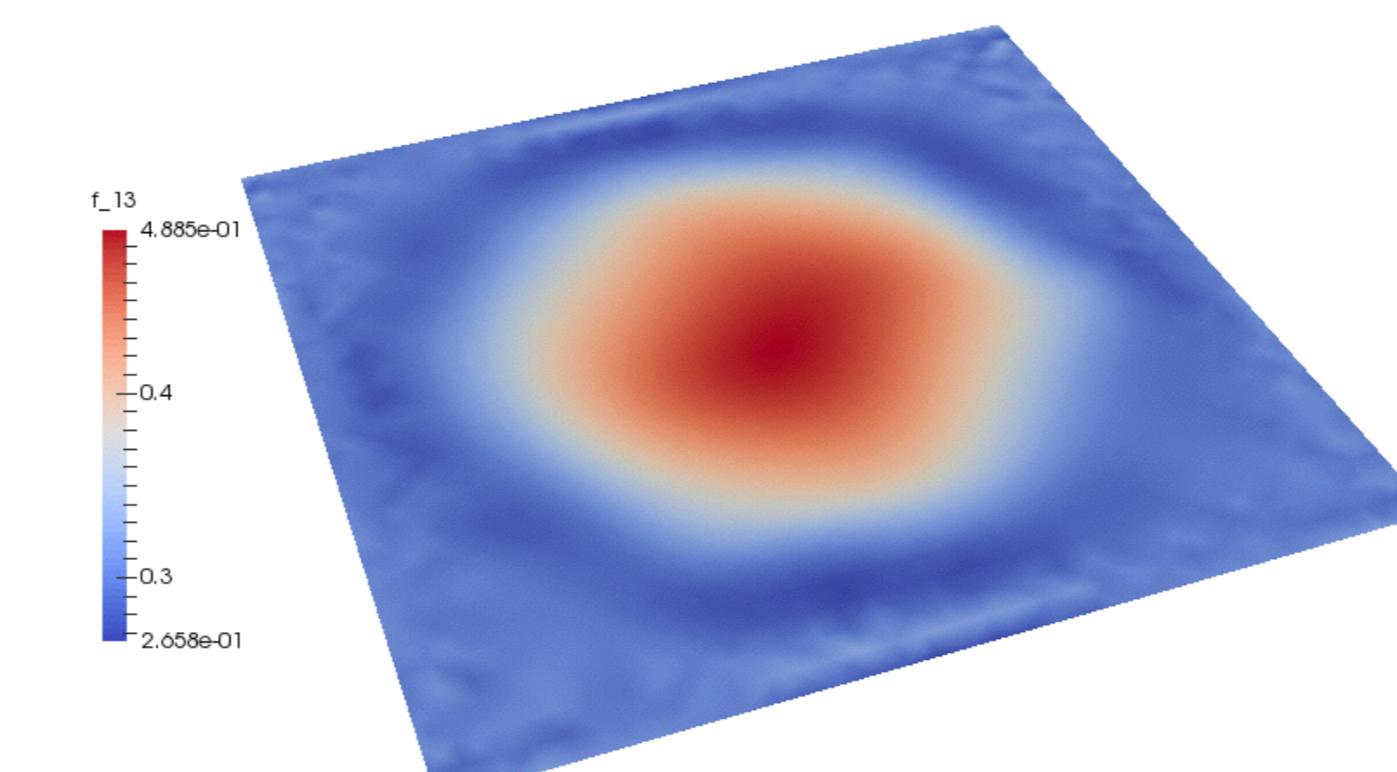
COMPUTATIONAL TECHNIQUES

- ▶ Automatic construction of forward and adjoint models with dolfin-adjoint (Farrell et al., 2013). *Easy to change physical model.*
- ▶ Efficient algebraic multigrid preconditioning of forward and adjoint models. *Forward runs dominate overall cost, reduce as much as possible.*
- ▶ Gauss-Newton Conjugate-Gradient method to find maximum a posteriori point. *Scales well on mesh refinement.*
- ▶ Matrix-free Krylov-Schur algorithm for principal component analysis of prior pre-and-post-conditioned Hessian of likelihood. *Fixed cost for given observations/model.*
- ▶ Optimal low-rank update from prior to posterior covariance (Spantini et al., 2014). *Reduces Hessian actions/forward model runs.*

RESULTS

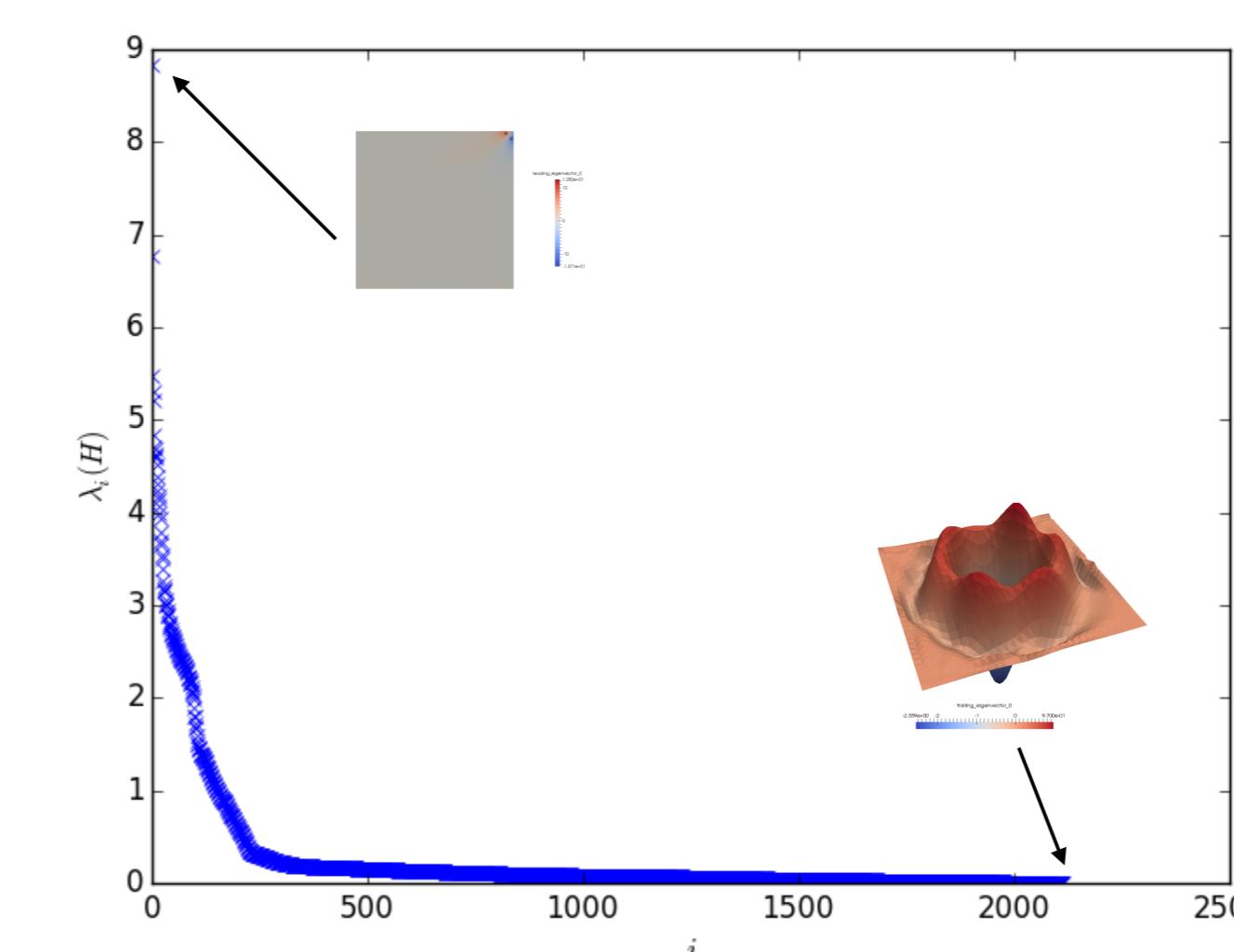
We can recover 10000s of parameters and quantify uncertainty in minutes on a laptop. *Practical.*

FIGURE 4



Left: Recovered MAP point, cf. Figure 1. We can detect the stiff inclusion inside the object just from the noisy surface observations.

FIGURE 5



Left: Low-rank structure of spectrum of posterior covariance. Data is only informative on low-rank subspace of original parameter space. Top left eigenvector points towards direction in parameter space most-constrained by the observations, bottom right towards least-constrained.