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Abstract—Future systems based on post-CMOS technologies will be wildly heterogeneous, with properties largely unknown today.
This paper presents our design of a new hardware/software stack to address the challenge of preparing software development for such
systems. It combines well-understood technologies from different areas, e.g., network-on-chips, capability operating systems, flexible
programming models and model checking. We describe our approach and provide details on key technologies.
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1 INTRODUCTION

In 2012, the large-scale research project Center for Advancing
Electronics Dresden (cfaed) was set up in Dresden to explore new
materials and technologies for electronic information process-
ing, which potentially help overcoming the limits of today’s
CMOS-technology. The project consists of multiple sub-projects
that focus on promising concrete technologies, including recon-
figurable transistors based on silicon nanowires (SiNW) [43],
[17], [12] and carbon nanotubes (CNT) [38], [36], [32], [29],
organic electronics [31], chemical information processing (e.g.,
microchemomechanical labs-on-chip [42]) and self-assembling
nano-structures built with DNA origami [14]).
The long-term - allegedly impossible - task of cfaed’s Orches-
tration sub-project is to unleash the full potential of future - yet
unknown - computing platforms and to turn breakthroughs in
emerging materials and technologies into application perfor-
mance. We envision wildly heterogeneous computing systems
with potentially large numbers of possibly unreliable process-
ing elements and deep heterogeneous memory subsystems that
are in part built from the above technologies.
Since these new technologies are not yet available and their
characteristics unknown, we use heterogeneous CMOS systems
as a starting point for our research. Our objective is to initially
design CMOS-based systems such that they can be more easily
used for novel technologies and architectures. Since hetero-
geneity already is an important concept for overcoming barriers
limiting conventional CMOS-based architectures (e.g., power-
density problems [39], [16]), we can start with an already large
base of heterogeneity [9], [28], [10], [26], [33], [35], [37], [5], [34].
Sec. 2 describes the Orchestration Stack which addresses ex-
pected challenges for wildly heterogeneous systems and Sec. 3
presents initial implementations contributing to the stack.

2 THE ORCHESTRATION STACK

On the lowest layer of the Orchestration Stack (see Fig. 1) we as-
sume to have a variety of heterogeneous components based on
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different technologies such as SiNWs, CNTs or classical CMOS
hardware (possibly with upcoming channel materials [21]) that
have different characteristics in terms of performance and costs.
These components can be specialized processing elements,
e.g., accelerators, heterogeneous memories [44] or interfaces to
bridge to peripherals, e.g., wireless communication devices, or
to novel computing fabrics, e.g., labs-on-a-chip. Components
can also be partially reconfigurable circuits combining different
processing elements or providing a platform for application-
specific and even software-delivered circuits.
All we require is that the com-
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Fig. 1. The Orchestration Stack

ponents have a well-defined
interface that allows embed-
ding them into a tile-based
architecture and that enables
to exchange data and com-
mands using some kind of
network (e.g., a network-on-
chip (NoC) [18]). New mate-
rials providing this interface
can hence be embedded into
this architecture. In Sec. 3 we
present such an architecture
and illustrate first steps we
took towards our technical vi-
sion of fast reconfigurable hardware built from SiNWs or CNTs.
The operating system’s (OS) task is to isolate hardware compo-
nents and establish communication channels to other tiles and
remote memories. As is common practice, the OS consist of a
kernel and several servers on top of the kernel [15], [13], [30].
However, since no assumptions can be made on the compo-
nents, the classical user/kernel-mode separation of privilege
cannot be expected to be available. Hence, a fairly different
design is needed for the OS. Sec. 3 presents a first prototype.
The main challenge in programming wildly heterogeneous,
parallel systems is to master and hide the complexity from
upper layers of the stack while preserving the opportunities
provided by the underlying hardware. The keys for addressing
this challenge are heterogeneous programming interfaces in terms
of domain specific languages (DSLs), programming models and
runtime systems. These interfaces help separating the concerns
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of core algorithmic problems and possible implementations
from structural properties of the architecture and particular
properties of the heterogeneous components. Along interfaces,
compilers are needed to lower the abstractions and, for exam-
ple, reason about parallel execution and data layouts. Com-
pilers must identify application resource demands specific to
the hardware while exploiting heterogeneous resources. This
includes methods for deciding where, when and how to run
which parts of the application and where to store data, which,
in turn, requires models of the specific heterogeneous resources.
Compilers should thus generate alternatives equipped with
meta-information for possible mappings of algorithms to re-
sources. Based on the generated meta-information, application
runtimes and OS-level resource managers negotiate desired and
available resources to find a global schedule of resources that
meets all application requirements. Once granted by the OS, the
runtime adjusts the application by switching to the respective
compiler generated alternative.
To benefit best from the flexibility of heterogeneous computing
platforms with dynamic resource (re)allocation mechanisms,
application algorithms need to provide a high degree of flex-
ibility. Within Orchestration we work on data base applications
(DB), computational fluid dynamics (CFD) and computational
biologyy and use them as drivers for our approach.
Last but not least, we integrate formal methods in our de-
sign process to quantitatively analyze low-level orchestration
protocols for stochastically modeled classes of applications
and systems [4]. The model-based formal quantitative analysis,
carried out using probabilistic model checking (cf. [11], [8]), is
particularly useful for the comparative evaluation of (existing
and future) design alternatives, to compare the performance of
heuristic orchestration policies with theoretical optimal solu-
tions or to determine optimal system parameter settings.

3 TOWARDS AN IMPLEMENTATION OF THE STACK

This section provides some details of and pointers to compo-
nents well fitting to the spirit of the Orchestration Stack. These
examples include some of our own work and some others we
found in the scientific literature.
SiNW Reconfigurable Circuits: As first steps to replace com-
mon CMOS circuits by new technology, we chose to start
rebuilding CMOS-based reconfigurable circuits using Silicon
NanoWire technology. SiNW technology promises simpler de-
sign and manufacturing processes, as it is doping-free, has
homogeneous physical and electrical characteristics [17] and
is inherently CMOS compatible. In SiNW transistors, polarity
is individually controllable via a separate polarity gate. Thus,
p-type and n-type transistors can be mixed on the die, which
eases wiring constraints and allows for tighter placement.
Making use of this property allowed us to reduce the transis-
tor count for a 6-function programmable logic cell over two
inputs from 92 transistors for CMOS-based circuits to 26 [40].
We also improved basic gates like NAND, NOR, X(N)OR,
majority/minority and MUX. Starting from this, we observe
the effects of these improvements on a larger circuit, an 8-bit
conditional carry adder. Using SiNW transistors, the speed can
be improved by 25%, the area by 14% and the transistor count
by almost 50%.
The Tomahawk Architecture: Tomahawk [2] is a CMOS-
based multiprocessor system-on-a-chip (MPSoC) with process-
ing elements and accelerators for digital signal processing
and database querying [1], [41], [23]. Processing elements are
equipped with local scratch-pad memories and connected via
a NoC. The Tomahawk architecture allows for connecting

arbitrary, untrusted hardware components, e.g., freely pro-
grammable FPGAs. To unify the control over these tiles, each
tile is connected to the NoC via a Data Transfer Unit (DTU).
The DTU provides controlled message passing and memory
access to other networked components. It has two interfaces,
one for the untrusted component to access outside memory
and to send/receive messages, the other for higher privileged
components to control the permissions of these accesses. The
only requirement for the untrusted component to access mem-
ory and to send messages is the ability to access the DTU
registers. Notably, it does not require complex architectural
properties such as virtual memory for protection. In addition
to the DTU-mechanisms, the Tomahawk provides a logically
decoupled processing element called CoreManager, coordinat-
ing the processing elements and responsible for the allocation
and configuration of processing elements and global memory
and tile-to-tile data transfers (similar to [22]).
The M3 Operating System: Similar to other microkernel-based
approaches, M3 systems [3] are split into privileged kernels
and unprivileged servers and applications. However, unlike in
traditional OS approaches, the kernel cannot rely on processor
features like user/kernel mode and memory management units
to shield itself from applications.
Instead, in M3 systems, one or more M3 kernels run on dedi-
cated and privileged tiles, while servers and applications run on
unprivileged tiles. The key for isolation is that only privileged
tiles can configure DTUs to, e.g., create communication chan-
nels. With this design, arbitrary components can be integrated
as tiles and controlled by the M3 kernel. The configuration
of DTUs is controlled by means of capabilities modeled after
the L4 capability [27] system. Capabilities are created and
protected by the kernel and can be exchanged between servers
and applications. OS functionality like file systems or network
stacks are provided by servers on unprivileged tiles and can be
accessed from applications via DTU messages. For example, a
file system can be built as an untrusted FPGA.
Heterogeneous Programming Interfaces: As mentioned in
Sec. 2, we achieve separation of concerns with interfaces at
different levels. As an example at a lower level, we have
built a dataflow-based language together with a retargetable
compiler that generates optimized code for the Tomahawk
architecture [7]. This includes a mapping of actors to het-
erogeneous processing elements, and of data transfers to the
underlying message passing interface over the DTU. At higher
levels, we have made significant progress in new algorithms
for CFDs [19], [20], a DSL for computational biology [25] and
a general skeleton framework [24]. We also see great potential
on interfaces that allow describing memory access patterns, as
successfully shown by Ben Nun et al [6] using template meta-
programming for different GPU architectures.

4 CONCLUSION

It is much too early to draw conclusions on whether or not the
Orchestration Stack will successfully enable the effective and
efficient usage of novel post-CMOS technologies. However, our
initial experiences in building parts of the stack - mostly re-
stricted to CMOS - did not expose any obvious show stoppers.
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checking for feature-oriented systems,” Transactions on Aspect-
Oriented Software Development, vol. 12, pp. 180–220, 2015.

[12] P.-E. Gaillardon, H. Ghasemzadeh, and G. De Micheli, “Vertically-
stacked silicon nanowire transistors with controllable polarity:
A robustness study,” in Test Workshop (LATW), 2013 14th Latin
American, April 2013, pp. 1–6.

[13] D. B. Golub, D. P. Julin et al., “Microkernel operating system
architecture and mach,” in In Proceedings of the USENIX Workshop
on Micro-Kernels and Other Kernel Architectures, 1992, pp. 11–30.

[14] F. N. Gür, F. W. Schwarz et al., “Toward self-assembled plasmonic
devices: High-yield arrangement of gold nanoparticles on dna
origami templates,” ACS Nano, vol. 10, no. 5, pp. 5374–5382, 2016,
pMID: 27159647.

[15] P. B. Hansen, “The nucleus of a multiprogramming system,”
Communications of the ACM, vol. 13, no. 4, pp. 238–241, 1970.

[16] N. Hardavellas, M. Ferdman et al., “Toward dark silicon in
servers,” IEEE Micro, vol. 31, no. EPFL-ARTICLE-168285, pp. 6–
15, 2011.

[17] A. Heinzig, T. Mikolajick et al., “Dually active silicon nanowire
transistors and circuits with equal electron and hole transport,”
Nano Letters, vol. 13, no. 9, pp. 4176–4181, 2013, pMID: 23919720.

[18] A. Hemani, A. Jantsch et al., “Network on chip: An architecture for
billion transistor era,” in Proceeding of the IEEE NorChip Conference,
vol. 31, 2000.

[19] I. Huismann, J. Stiller, and J. Fröhlich, “Two-level
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