Strongly B-associative and preassociative functions

Bruno Teheux
joint work with Jean-Luc Marichal
University of Luxembourg

OSGAD 2016

OSGAD

OSGAD

Decision

OSGAD

Decision
Aggregation

A property of the arithmetic mean

$\mathbb{I} \equiv$ real interval

$$
F(\mathbf{x}):=\sum_{i=1}^{n} \frac{x_{i}}{n}, \quad \mathbf{x} \in \mathbb{I}^{n}, n \geq 1
$$

We have

$$
F(\mathbf{x})=F\left(x_{1}, \ldots, x_{\ell}, y, \ldots, y, x_{\ell+k+1}, \ldots, x_{n}\right)
$$

where $y=F\left(x_{\ell+1}, \ldots, x_{\ell+k}\right)$.

A property of the arithmetic mean

$\mathbb{I} \equiv$ real interval

$$
F(\mathbf{x}):=\sum_{i=1}^{n} \frac{x_{i}}{n}, \quad \mathbf{x} \in \mathbb{I}^{n}, n \geq 1
$$

We have

$$
F(\mathbf{x})=F\left(x_{1}, \ldots, x_{\ell}, y, \ldots, y, x_{\ell+k+1}, \ldots, x_{n}\right)
$$

where $y=F\left(x_{\ell+1}, \ldots, x_{\ell+k}\right)$.
This property is called B-associativity.

A characterization of quasi-arithmetic means

Theorem (Kolmogorov - Nagumo) Let $F: \bigcup_{n \geq 1} \mathbb{I}^{n} \rightarrow \mathbb{I}$. The following conditions are equivalent.
(i) F is B -associative, and for every $n \geq 1, F_{n}$ is
symmetric,
continuous,
strictly increasing in each argument,
reflexive, i.e., $F(x, \ldots, x)=x$ for every x.

A characterization of quasi-arithmetic means

Theorem (Kolmogorov - Nagumo) Let $F: \bigcup_{n \geq 1} \mathbb{I}^{n} \rightarrow \mathbb{I}$. The following conditions are equivalent.
(i) F is B -associative, and for every $n \geq 1, F_{n}$ is
symmetric,
continuous,
strictly increasing in each argument,
reflexive, i.e., $F(x, \ldots, x)=x$ for every x.
(ii) There is a continuous and strictly monotonic $f: \mathbb{I} \rightarrow \mathbb{R}$ such that

$$
F(\mathbf{x})=f^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right), \quad \mathbf{x} \in \mathbb{I}^{n}, n \geq 1
$$

These functions are called quasi-arithmetic means.

Notation

$X \equiv$ non-empty set
We regard n-tuples \mathbf{x} in X^{n} as n-strings over X
0 -string: ε
1-strings: x, y, z, \ldots
n-strings: $\mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots$
$|\mathbf{x}|=$ length of \mathbf{x}
$\mathbf{x}^{k}=\mathbf{x} \cdots \mathbf{x}$ (k times)

$$
X^{*}:=\bigcup_{n \geq 0} X^{n}
$$

We endow X^{*} with concatenation
Any $F: X^{*} \rightarrow Y$ is called a variadic function, and we set

$$
F_{n}:=\left.F\right|_{X^{n}} .
$$

B-associative functions

$F: X^{*} \rightarrow X \cup\{\varepsilon\}$
Definition. F is B-associative if

$$
F(\mathrm{xyz})=F\left(\mathrm{x} F(\mathrm{y})^{|\mathrm{y}|} \mathrm{z}_{\mathrm{z}} \quad \forall \mathrm{xyz} \in X^{*}\right.
$$

F is $\quad B$-associative if its value on \mathbf{u} does not change when replacing each letter of a substring \mathbf{y} of consecutive letters of \mathbf{u} by $F(\mathbf{y})$.

B-associative functions

$$
F: X^{*} \rightarrow X \cup\{\varepsilon\}
$$

Definition. F is
B-associative if its value on \mathbf{u} does not change when replacing each letter of a substring y of consecutive letters of \mathbf{u} by $F(\mathbf{y})$.

Strongly B-associative functions

$$
F: X^{*} \rightarrow X \cup\{\varepsilon\}
$$

Definition. F is strongly B-associative if its value on \mathbf{u} does not change when replacing each letter of a substring y of not necessarily consecutive letters of \mathbf{u} by $F(\mathbf{y})$.

Strongly B-associative functions

Definition. $\quad F$ is strongly B-associative if its value on \mathbf{u} does not change when replacing each letter of a substring \mathbf{y} of not necessarily consecutive letters of \mathbf{u} by $F(\mathbf{y})$.

For instance,

$$
\begin{aligned}
F\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right) & =F\left(F\left(x_{1} x_{3}\right) x_{2} F\left(x_{1} x_{3}\right) x_{4} x_{5}\right), \\
& =F\left(F\left(x_{1} x_{3}\right) x_{2} F\left(x_{1} x_{3}\right) F\left(x_{4} x_{5}\right) F\left(x_{4} x_{5}\right)\right) .
\end{aligned}
$$

Strongly B-associative functions

Definition. $\quad F$ is strongly B-associative if its value on \mathbf{u} does not change when replacing each letter of a substring \mathbf{y} of not necessarily consecutive letters of \mathbf{u} by $F(\mathbf{y})$.

For instance,

$$
\begin{aligned}
F\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right) & =F\left(F\left(x_{1} x_{3}\right) x_{2} F\left(x_{1} x_{3}\right) x_{4} x_{5}\right), \\
& =F\left(F\left(x_{1} x_{3}\right) x_{2} F\left(x_{1} x_{3}\right) F\left(x_{4} x_{5}\right) F\left(x_{4} x_{5}\right)\right) .
\end{aligned}
$$

Example

F defined by $F(\varepsilon)=\varepsilon$ and $F(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ for $n \geq 1$ and $\mathbf{x} \in \mathbb{R}^{n}$ is strongly B -associative and symmetric.

Strongly B-associative functions

Fact.

$$
\text { Strongly B-associative }\left\{\begin{array}{l}
\Longrightarrow \\
\nLeftarrow
\end{array}\right\} \text { B-associative }
$$

Strongly B-associative functions

Fact.
Strongly B-associative $\left\{\begin{array}{l}\Longrightarrow \\ \nLeftarrow\end{array}\right\}$ B-associative

Example.
F defined by $F(\varepsilon)=\varepsilon$ and

$$
F(\mathbf{x})=\sum_{i=1}^{n} \frac{2^{i-1}}{2^{n}-1} x_{i}, \quad n \geq 1, \mathbf{x} \in \mathbb{R}^{n}
$$

is B-associative but not strongly B -associative.

Strongly B-associative functions

Fact.
B-associative + symmetric $\left\{\begin{array}{l}\Longrightarrow \\ \not\end{array}\right\}$ strongly B-associative

Strongly B-associative functions

Fact.
B-associative + symmetric $\left\{\begin{array}{l}\Longrightarrow \\ \nLeftarrow\end{array}\right\}$ strongly B-associative

Example.

F defined by $F(\varepsilon)=\varepsilon$ and $F(\mathbf{x})=x_{1}$ for every $n \geq 1$ and $\mathbf{x} \in \mathbb{R}^{n}$ is strongly B -associative but not symmetric.

Strongly B-associative functions

Proposition. Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$. The following condition are equivalent.
(i) F is strongly B-associative
(ii) F satisfies

$$
F(x y z)=F\left(F(x z)^{|x|} \mathbf{y} F(x z)^{|z|}\right) \quad \forall x y z \in X^{*}
$$

Strongly B-associative functions

Proposition. Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$. The following condition are equivalent.
(i) F is strongly B-associative
(ii) F satisfies

$$
F(x y z)=F\left(F(x z)^{|x|} \mathbf{y} F(x z)^{|z|}\right) \quad \forall x y z \in X^{*}
$$

Proposition. If $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is strongly B-associative, then $\mathbf{y} \mapsto F(x \mathbf{y} z)$ is symmetric for every $x z \in X^{2}$.

Invariance by replication

$F: X^{*} \rightarrow Y$ is invariant by replication if $F\left(\mathbf{x}^{k}\right)=F(\mathbf{x})$ for all $\mathbf{x} \in X^{*}$ and $k \geq 1$.

Proposition. If $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is strongly B -associative, then the following conditions are equivalent.
(i) F is invariant by replication.
(ii) $\operatorname{ran}\left(F_{n}\right) \subseteq \operatorname{ran}\left(F_{k n}\right)$ for every $n \geq 0$ and $k \geq 1$.

An alternative characterization of quasi-arithmetice means

Theorem (Kolmogorov - Nagumo) Let $F: \mathbb{I}^{*} \rightarrow \mathbb{I}$. The following conditions are equivalent.
(i) F is B-associative, and for every $n \geq 1, F_{n}$ is
symmetric ,
continuous,
strictly increasing in each argument, reflexive, i.e., $F(x, \ldots, x)=x$ for every x.
(ii) F is a quasi-arithmetic mean.

An alternative characterization of quasi-arithmetice means

Theorem (Kolmogorov - Nagumo) Let $F: \mathbb{I}^{*} \rightarrow \mathbb{I}$. The following conditions are equivalent.
(i) F is B-associative, and for every $n \geq 1, F_{n}$ is
symmetric,
continuous, strictly increasing in each argument, reflexive, i.e., $F(x, \ldots, x)=x$ for every x.
(ii) F is a quasi-arithmetic mean.

Theorem. B-associativity and symmetry can be replaced by strong B-associativity. Moreover, reflexivity can be removed.

A composition-free version of strong B-associativity

Definition. $\quad F: X^{*} \rightarrow Y$ is strongly B-preassociative if

$$
\left.\begin{array}{rl}
|\mathbf{x}| & =\left|\mathbf{x}^{\prime}\right| \\
|\mathbf{z}| & =\left|\mathbf{z}^{\prime}\right| \\
F(x z) & =F\left(x^{\prime} z^{\prime}\right)
\end{array}\right\} \Longrightarrow F(x y z)=F\left(x^{\prime} \mathbf{y z} z^{\prime}\right)
$$

Example. The length function $F: X^{*} \rightarrow \mathbb{R}: \mathbf{x} \mapsto|\mathbf{x}|$ is strongly B-preassociative.

A composition-free version of strong B-associativity

Definition. $\quad F: X^{*} \rightarrow Y$ is strongly B-preassociative if

$$
\left.\begin{array}{rl}
|\mathbf{x}| & =\left|\mathbf{x}^{\prime}\right| \\
|\mathbf{z}| & =\left|\mathbf{z}^{\prime}\right| \\
F(\mathbf{x z}) & =F\left(\mathbf{x}^{\prime} \mathbf{z}^{\prime}\right)
\end{array}\right\} \Longrightarrow F(x y z)=F\left(x^{\prime} \mathbf{y z} z^{\prime}\right) .
$$

Example. The length function $F: X^{*} \rightarrow \mathbb{R}: \mathbf{x} \mapsto|\mathbf{x}|$ is strongly B-preassociative.

Proposition. Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$. The following conditions are equivalent.
(i) F is strongly B-associative.
(ii) F is strongly B-preassociative and satisfies $F\left(F(\mathbf{x})^{|\mathbf{x}|}\right)=F(\mathbf{x})$.

Factorization of strongly B-preassociative functions with strongly B -associative ones

$$
\begin{gathered}
F: X^{*} \rightarrow X \cup\{\varepsilon\} \text { is } \varepsilon \text {-standard if } F(\mathbf{x})=\varepsilon \Longleftrightarrow \mathbf{x}=\varepsilon . \\
\delta_{F_{n}}(x):=F_{n}(x \cdots x)
\end{gathered}
$$

Factorization of strongly B-preassociative functions with strongly B -associative ones

$$
\begin{gathered}
F: X^{*} \rightarrow X \cup\{\varepsilon\} \text { is } \varepsilon \text {-standard if } F(\mathbf{x})=\varepsilon \Longleftrightarrow \mathbf{x}=\varepsilon . \\
\delta_{F_{n}}(x):=F_{n}(x \cdots x)
\end{gathered}
$$

Theorem. (AC) Let $F: X^{*} \rightarrow Y$. The following conditions are equivalent.
(i) F is strongly B-preassociative \& $\operatorname{ran}\left(F_{n}\right)=\operatorname{ran}\left(\delta_{F_{n}}\right)$ for all n;
(ii) $F_{n}=f_{n} \circ H_{n}$ for every $n \geq 1$ where

- $H: X^{*} \rightarrow X \cup\{\varepsilon\}$ is ε-standard and strongly B -associative,
- $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow Y$ is one-to-one for every $n \geq 1$.

Associative functions

Definition $F: X^{*} \rightarrow X^{*}$ is associative if

$$
F(x y z)=F(x F(y) z), \quad x y z \in X^{*}
$$

Examples.

- the sum $x_{1}+\cdots+x_{n}$,
- the minimum $x_{1} \wedge \ldots \wedge x_{n}$,
- variadic extensions of binary associative functions,

Associative functions

Definition $F: X^{*} \rightarrow X^{*}$ is associative if

$$
F(x y z)=F(x F(y) z), \quad x y z \in X^{*}
$$

Examples.

- the sum $x_{1}+\cdots+x_{n}$,
- the minimum $x_{1} \wedge \ldots \wedge x_{n}$,
- variadic extensions of binary associative functions,
- sorting in alphabetical order,
- letter removing, duplicate removing.
F_{1} may differ from the identity map!

Associativity for string functions

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Examples. [...] duplicate removing
InPUT: xzu \cdots in blocks of unknown length given at unknown time intervals.
Output: $F(\mathbf{x z u} \cdots)$

Associativity for string functions

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Examples. [...] duplicate removing
InPUT: xzu ... in blocks of unknown length given at unknown time intervals.
Output: $F(x z u \cdots)$

"Highly" distributed algorithms

Factorization of strongly B-preassociative functions with associative ones

$H: X^{*} \rightarrow X^{*}$ is length-preserving if $|H(\mathbf{x})|=|\mathbf{x}|$ for all $\mathbf{x} \in X^{*}$.

Factorization of strongly B-preassociative functions with associative ones

$H: X^{*} \rightarrow X^{*}$ is length-preserving if $|H(\mathbf{x})|=|\mathbf{x}|$ for all $\mathbf{x} \in X^{*}$.

Theorem. (AC) Let $F: X^{*} \rightarrow Y$. The following conditions are equivalent.
(i) F is strongly B-preassociative.
(ii) $F_{n}=f_{n} \circ H_{n}$ for every $n \geq 1$ where

- $H: X^{*} \rightarrow X^{*}$ is associative, length-preserving and strongly B-preassociative,
- $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow Y$ is one-to-one for every $n \geq 1$.

Quasi-arithmetic pre-mean functions

$\mathbb{I} \equiv$ non-trivial real interval.
Definition. $F: \mathbb{I}^{*} \rightarrow \mathbb{R}$ is a quasi-arithmetic pre-mean function if there are continuous and strictly increasing functions $f: \mathbb{I} \rightarrow \mathbb{R}$ and $f_{n}: \mathbb{R} \rightarrow \mathbb{R}(n \geq 1)$ such that

$$
F(\mathbf{x})=f_{n}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right), \quad n \geq 1, \mathbf{x} \in X^{n}
$$

Example. $\quad F(\mathbf{x})=\prod_{i=1}^{n} x_{i}$ is a quasi-arithmetic pre-mean function over $\mathbb{I}=] 0,+\infty\left[\right.$ (take $f_{n}(x)=\exp (n x)$ and $f(x)=\ln (x)$) which is not a quasi-arithmetic mean function.

Characterization of quasi-arithmetic pre-mean functions

Idea. Apply the factorization result to the quasi-arithmetic means.

Characterization of quasi-arithmetic pre-mean functions

Idea. Apply the factorization result to the quasi-arithmetic means.
Theorem. Let $F: \mathbb{I}^{*} \rightarrow \mathbb{R}$. The following conditions are equivalent.
(i) F is a quasi-arithmetic pre-mean function.

Characterization of quasi-arithmetic pre-mean functions

Idea. Apply the factorization result to the quasi-arithmetic means.
Theorem. Let $F: \mathbb{I}^{*} \rightarrow \mathbb{R}$. The following conditions are equivalent.
(i) F is a quasi-arithmetic pre-mean function.
(ii) F is strongly B-preassociative, and for every $n \geq 1, F_{n}$ is symmetric,
continuous,
strictly increasing in each argument.

Open problems

Characterization of the class of $F: X^{*} \rightarrow X^{*}$ which are associative, length-preserving and strongly B-preassociative?

Which of those B-associative functions that satisfy

$$
F(x y z)=F(F(x z) y F(x z))
$$

are strongly B -associative?

Reference. J.-L. Marichal and B. Teheux. Strongly barycentrically associative and preassociative functions. Journal of Mathematical Analysis and Applications 437, 181 - 193, 2016.

