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Enabling methodologies
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Partitioned reduced basis

Compute particular realisations
(COost Intensive ) using domain
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Motivation: multiscale fracture of engineering structures and materials

Practical early-stage design simulations (interactive)

0.125 mm

e

-----------------------"-------I

» Reduce the problem size while controlling the error (in Qol)
when solving very large (multiscale) mechanics problems 16
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Homogenisation (FE*2, etc.) - Hierarchical
Concurrent and hybrid (bridging domain, ARLEQUIN, etc.)
Enrichment (PUFEM, XFEM, GFEM)

Model reduction (algebraic)
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Localisation

Definition of an RVE

1°>> 17 > 19

|
P <
Microscale

Coupling of macroscopic and microscopic levels

The volume averaging theorem 1s postulated for:

1) Strain tensor: €€ = ! u @, ndl
2(x°)| Jaaxe)
. 11 - . 1
2) Virtual work (Hill-Mandel condition): Y : tf . sul dr
€2(x€)] Q%)
3) Stress tensor: oo _ 1 t/ @ x/ dT
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Macro-level

Advantages and abilities:

The macroscopic constitutive law is not
required

Non-linear material behaviour can be simulated
Microscale behaviour of material 1s monitored

at each load step

UNIVERSITE DU
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Micro-level

Drawbacks:

In softening regime:
. Lack of scale separation
. Macroscale mesh dependence
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3

A limit point

load

displacement

Details in Phil. Magazine, 2015, Akbari, Kerfriden, Bordas

stephane.bordas@alum.northwestern.edu
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The distribution of strain-gradient sensitivity Ly ||VVu€||e
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Reduction methods based on algebraic reduction
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lllustration of the method of separated representation
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C’l:sm(OOlaj)

100

Very rich approximations!

1000

100
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Real Tcut
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50
50 § 100F 7 . =
160 i = | Got the nose
2008 | 2 (rectangle,
250p ‘ & : approximation
300 - | e of order 2 is
_ - enough)
250F = -3
400
300 - 450 F
350 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
s 4 Nc = Nc = 2
400 i
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Ne
_ _ Z RN A
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(CL, Cicm.y = argmin » Y (u(zs, y;) — @z, y;))?
i Yj
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Got the nose
(rectangle,
approximation
of order 2 is
enough)

. Converges
slowly locally
(idem fracture)

u(xi, yi) = ZQ;(%) C (i)

(CL, Cicm.y = argmin » Y (u(zs, y;) — @z, y;))?
i Yj
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® Search for the solution in space / time / parameter in a product space:

U: Uep=R"xT xP —R" C' eR"
o . .
- 511T—>R, \V/’LE[[]-anC]]a
Ut,pu) = ;Qi Bi(t)vi(k) v :P =R, Vie[l,nc],

® Optimality of an expansion of order n. with respect to a particular metric defined on

Z/{sep

» Data compression: POD (Proper Orthogonal Decomposition) is a classical choice in
dimension 2

Data compression in many dimensions: multilinear POD

Solver in many dimensions without a priori knowledge of the solution: PGD
Model order reduction: Snapshot POD, Snapshot PGD

Initialiser, preconditioners: low-order POD, low-order PGD, Snapshot POD

VvV vV VvV Vv

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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® One writes the classical POD problem:

ind an orthonormal basis . T mnimising the POD functional:
ﬁ g c Ran 7 g C _I !ZZ g f

Jron(C) = / I - cCmu)de

® Equivalently, look for a maximum of

Jpop(C) = / U(t)'CcC'U(t)dt = Tr(C'KC)

teT -

P Correlation operator:

=
|
;ﬁ\
\‘l
IS
c
B

® Solution: eigenvalue problem

P = Negh where  (A")keqo.n] in decreasing order

[l@

—(¢" & . o

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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CAERDY® combination of a set of pre-calculated representative solutions

(1) Solve FINE for n_S parameters (EXPENSIVE!)

. ng loads
S=(Ss'" s .. 8")

lEm Fp, i
gl (2) Singular value decomposition
L2 ns
J///é k=1 ng solutions, sorted by relevance
where (Zk)ke[[l nd decreasing order

(3) Trufreation

Reduced basis: family of representative solutions

Initial set of equations

Fro @+ Fro =0

(4) Galerkin orthogonality

Family of
/fepresentative solutions

Ca
L]
Solution
Coefficients

QT Eint (29) + ET Eext -

Approximation of the
solution in a space of
small dimension (n¢)

hane.bordas@alum.northwestern.edu

bordasS@cardiff.ac.uk
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Reduced Ritz basis

This solution is not in
the snapshot !

0.1

0.09

0.08

0.07
0.06

0.05

® P. Kerfriden, P. Gosselet, S. Adhikari, and S.
Bordas. Bridging proper orthogonal
decomposition methods and augmented
Newton-Krylov algorithms: an adaptive
model order reduction for highly nonlinear
mechanical problems. Computer Methods in
Applied Mechanics and Engineering,
200(5-8):850-866, 2011.

0.04

Error
Maximum damage /20

0.03

0.02

0.01

0 5 10 15 20 25 30 35 40 45 50

Time step
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| o Reduced basis
Compute particular

realisations (snapshots)

» The POD solution is not
able to reproduce the

f = 15°, 10" (last) time step o
' solution in the cracked

£ »

27 e area

= 4 = > 1

S 7 » Due to lack of correlatiol

2 7 .

S 7 —  POD introduced by crack
— growth

» Leads to a local
projection error

10 solutions
NANNNNNANSNANNNANAN

wya

Solution at arbitrary angle using the reduced model

v

Solution of the ROM

# = 30°, 10" time step

Y '
7
7
e
7 SRR T
/s :?:—-: - —_—
2 R A
7 LA
Z AN T
~a

Solution to the
full. unreduced.

model 3

ﬁ

rc bg du RealTcut

Error
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10+
8-
Highly correlated solution fields
6
4 -~
w = —
fEne & &
2t a® B o
i & g
or wee 9«? 0
2k
-4 |-
-6
First realisation Second realisation
0 5 10 15 20 0 5 10 s 20
Localisation of fracture, uncorrelated
B Direct numerical simulation: efficient preconditioner? B Reduced order modelling?

m) Adaptive coupling?

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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THE RETURN OF THE MONKEY!
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What can we do to address this lack of separation

of scales/reducibility?
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methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly
nonlinear mechanical problems. Computer Methods in Applied Mechanics and Engineering, 200(5-

R):850-866, 2011.

P. Kerfriden, J.C. Passieux, and S. Bordas. Local/global model order reduction strategy for the
simulation of quasi-brittle fracture. International Journal for Numerical Methods in Engineering,

89(2):154-179, 2011.
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zones and representative subspaces in fracture of random composites. Accepted for publication in
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Extended_abstract ACME-UK_2012_OlivierGouryUpdated.pdf

https://hal.inria.fr/docs/00/99/49/23/PDE/multiscaleMOR. pdf

hitp://www.researchgate.net/protile/Olivier_Goury/publication/
273832418 Dealing_with_interfaces_in_partitioned_model_ord

er_reduction_for_application_to nonlinear problems/links/
550e95¢40ci212874168fe/6.pdf

http://www.researchgate.net/profile/Ahmad_Akbari_R/pub
80083497 _Scale_selection_in_nonlinear_fracture_mechanics o
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erc bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu ReaH_CUJ[



mailto:email@cardiff.ac.uk
http://www.researchgate.net/profile/Olivier_Goury/publication/273832418_Dealing_with_interfaces_in_partitioned_model_order_reduction_for_application_to_nonlinear_problems/links/550e95c40cf212874168fe76.pdf
https://hal.inria.fr/docs/00/99/49/23/PDF/multiscaleMOR.pdf
http://orbilu.uni.lu/bitstream/10993/18015/1/presentationWCCM.pdf
https://orbilu.uni.lu/bitstream/10993/12452/1/Extended_abstract_ACME-UK_2012_OlivierGouryUpdated.pdf
http://www.researchgate.net/profile/Ahmad_Akbari_R/publication/280083497_Scale_selection_in_nonlinear_fracture_mechanics_of_heterogeneous_materials/links/55cdb5f308aebd6b88e06691.pdf

CARDIFF

UNIVERSITY

Data compression: fracture

PRIFYSGOL

(CAERDY(H

Snapshot POD (snapshot space is spanned by the
ensemble of solutions at all time steps)

“Exact” solution
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POD order 1
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Domain Partitioning
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Partitioned reduced basis

Compute particular realisations

» Decompose the structure into
subdomains

P Perform a reduction in the highly

(cost intensive) using domain
decomposition (snapshots)

10" (last) timestep

/ g = 15° : '
— (® correlated region
1IN - B . | » Couple the reduced to the non-
Z —. Partitioned W o E : reduced region by a primal Schur
/ Complement
- 0= 4 @
2 X
7 N\ &
7 \
N\

.................

~ e o RN SN
Locally non correlated:
no reduction
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® Reduced subspaces are independent and we assume a snapshot is
a priori available

-« . » (1) Dimension of the local space for each subdomain?
- - b » (2) Is a given subdomain is reducible?
5 9
s s T ® (1) and (2) will be treated by cross-validation (e.g. W. J.
""""""""""""""" ' Krzanowski. Cross-validation in principal component analysis.
10° Biometrics, 43(3):575-584, 1987.)
O subdomain 6 . . .
B eriet g P Training set: snapshot
» 107" \\.\ X subdomain 2 > Validation set: set of additional finescale solutions
g L\ A  subdomaln 7 » Independent training/validation avoids overfitting
= -2 \ C . .
g 10 - P Cross validation emulates independence. Error calculated
= using the local reduced basis obtained by a snapshot POD
s 107° transform of all the available snapshot solutions except the
S one corresponding to the value of the summation variable.
= -4 \
@ 10 \
=) S X~ _ ® NOTE: If the snapshot is not assumed a priori then
B

(?U -5 \ e e S - P Assess whether the snapshot contains sufficient information, and
§ 10 A, T generate additional, suitable, data if required
O 6 P Most analysis (mostly by statisticians) assume the snapshot is known a

10 priori. Recent review: Hervé Abdi and Lynne J. Williams. Principal

1 1 component analysis. Wiley Interdisciplinary Reviews: Computational
10‘7 N " L ) Statistics, 2(4):433{459, 2010.
0 5 10 15 20
n'®) T 2
o [ Al = (e),(n)
Z Z Ui(tn, p) —Z (_C_"_i,j l _U_i(fn-ll)) _C:i,j I
- (e) 2 REP=¢t €Th i=1 2
(Vsnnp) - 2
> D Uit w3
tn€TH pepP*
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@® Relative error

Z [UPP (t,,, 1) — U™ (tn, 1) 5
l/app,(lt)(lja.pp)2 _ t, cTh

ex 2
Z U™ (tn, 1) 12

tn€TH
O O
40 27
10 ¢ _ 107%¢
3 —— Partitioned POD + SA -t Partitioned POD + SA
weill= Partitioned POD : welll= Partitioned POD
=0 = Full Scale Inexact = @ = [ull Scale Inexact
1072 3
s | :
o 3
s 210
E E
= 3 =
10 3
i ) o
-~ - .0
A Y
\
\
10_4 2 3 1 1 \ 1 10 4 L L 1 1 )
0 20 40 60 80 100 0 20 40 60 80 100
runtime runtime

(a) Relative error for the different models using 121 nodes (a) Relative error for the different models using 121 no
per subdomain per subdomain
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@® Relative error

Performance: load angle 40 | 27 - 256 nodes

Z [UPP (t,,, 1) — U™ (tn, )|

y2PP:(1) (TJ2PP) 2 _ ta€T"

ex 2
Z U™ (tn, 1) 12

tn€TH
40°
10 .
—t— Partitioned POD + SA
wfl= Partitioned POD
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/ GEOMETRICAL MODEL \ / DISCRETISATION \

Verificati

<

/ MATERIAL MODELS
Phenomenological
Elasticity/Plasticity

Crack growth law (Paris...)
Fracture energy
Maximum tensile strength
Multi-scale
Debonding,Fibre pull-out
Fibre breakage, interface
fracture, grains, dislocations,

< 4

Validation & par r identification

CONVENTIONAL APPROACH



When the material model is not known, this conventional
approach is inadequate

Deep-brain stimulation

Courtesy Alexandre Bilger, PhD thesis, Inria, 2014
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" IMAGE/MODEL . /  DISCRETISATION

Verificati

/" MATERIAL MODELS

Phenomenological
Neo-Hookean, Ogden, ...
Multi-scale
cutting, fracture,

277

Patient specific ???

Validation & par

4
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/ DIGITAL TWIN OF THE PATIENT \

Treatment
simulation
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interest
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news from legato
http://legato-team.eu
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Thank you for your attention!

International Centre
for Mechanical Sciences

r\f\

CISM-ECCOMAS International Summer School on “Modelling,
Simulation and Characterization of Multi-Scale Heterogeneous
Materials” September 28, 2015 — October 2, 2015

OPEN SOURCE CODES
PERMIX: Multiscale, XFEM, large deformation, coupled 2 LAMMPS, ABAQUS, OpenMP -

MATLAB Codes: XFEM, 3D ISOGEOMETRIC XFEM, 2D ISOGEOMETRIC BEM, 2D MESHLESS
DOWNLOAD @ http://cmechanicsos.users.sourceforge.net/

COMPUTATIONAL MECHANICS DISCUSSION GROUP Request membership @
http://eroups.google.com/group/computational mechanics discussion/about
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Domain coupling using the primal Schur-complement domain decomposition method.

® Local subproblems have been reduced by projection in low-dimensional subspaces obtained
by the snapshot POD.

® This approach permits to flexibly reduce the computational cost associated with highly
nonlinear problems. In particular:

» the local reduced spaces are generated independently, and have independent dimensions,
which allows us to focus the numerical effort where it is most needed.

» subdomains that are close to highly damaged zones need a richer model to account for the
effect of topological changes. The local POD transforms automatically generate local
reduced spaces of larger dimension in these zones.

» the domain decomposition framework enables us to switch from reduced local solvers to
full local solvers in a transparent manner. This is particularly useful for the subdomains that
contain process zones, as a solution obtained by projection would be more expensive than
a direct solution for a desirable accuracy.

 the transition between offline" and “online" computations becomes flexible. The reduced
models can be used in the zones where the local reduced spaces converge quickly when
enriching the snapshot space, while still computing snapshots and refining the reduced
models via a direct local solver in the remaining subdomains.

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu Reachut
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Perspectives i lu

PRIFYSGOL UNIVERSITE DU
CALRDY@ LUXEMBOURG

® Further work related to domain decomposition

» load balancing mismatch would occur when using such a strategy in parallel. CPUs which
support domains that are not reduced, or domains for which the corresponding subproblems
need to be projected in a space of relatively high dimension, would require to perform more
operations. The domain partitioning itself should be performed jointly with the model reduction
in order to distribute the load evenly.

» the interface problem itself was not reduced here, to guarantee the interface kinematic
compatibility.

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Bayesian inference

Primer
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Bayes’ theorem

orior — prior X likelihood r(zly) = m(x)m(y|x)
POSLEHIOL = evidence J m(@)m(y|z)dz
prior 7T ($)

Q
\\



Parameter identification: Bayesian approach

Bayes’ theorem

m(z)m(y|z)
w(x)m(y|x)dr

m(zly) = T
7(.) : probability distribution function

w(.|.) : conditional probability distribution function
x : material parameter

y : observations



Parameter identification: Bayesian approach

Bayes’ theorem

m(z)m(ylz)

m(z|y) = f

m(x)m(y|x)dx

Descriptive formula

Prior x Likelihood
Evidence

Posterior =



A discrete example of Bayes’ theorem
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This is our prior information for the probability of each face: 1/6
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Assume that after throwing the dice, you see the above evidence




Goal: determine the probability of this evidence for each face of the dice
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One would never see a dot at the star positions for this face

The probability of the evidence is zero







Two possibilities (a,c) and (b,d)






Also two possibilities (a,c) and (b,d)
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Four possibilities
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Prior x Likelihood & X 3

m(zly) = Evidence 16

Probability that @ was the face of the dice knowing
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Stress-strain dW

)
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\\ O » €
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Identify the parameters

ag
A

»C



Construct the likelihood function

Y = f(X,Q) observations=f(parameters, error)
() : Error

X : Material parameter



Noise model

Additive noise model

Y = f(X)+Q

Q

X ()




Likelihood function

Likelihood function for additive model

m(ylz) = m(w) = 7(y — f(x))

|

Y = f(X)+Q



Constitutive law: linear elasticity

Constitutive model

o= Fe or o = xe

Observed data

Y = Xe+ Q)

—
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Prior information o

oung’s modulus

0.014

0.012

0.01

o
o
o
o

Prior probability
o
o
o
(o)}

0.004

0.002

1 | | | 1 | |

100

200 300 400 500 600 700 800 900 1000
Young's modulus

Tlprior (IB) — N(2107 900)
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Error model (naise

40 | | | | | | | |

w
o
|
|

N
(%)
|

|

Error probability amplitude
— N
(8] o
| |
| 1

10+ -
5 - —
0 | | | ] J | L | | | |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Error(Gpa)

7(€)error = N(0,0.0001)
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Likelihood function

Likelihood function

w(ylx) = N(y — xe,0.0001)
m(ylz) = 7(w) = n(y — f(z))

—
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Bayes’ theorem: calculate the posterior

prior x likelihood

posterior = :
evidence




Bayes’ theorem: calculate the posterior

prior x likelihood

posterior = :
evidence

prior 77 (.Cl’})




Bayes’ theorem: calculate the posterior

m(@)7(ylz)
()7 (y|e)de

prior X likelihood

posterior =

m(xly) = f

evidence




Bayes’ theorem: calculate the posterior

m(z)m(y|x)
7(z)mw(y|x)dx

prior X likelihood

posterior =

m(xly) = f

evidence

prior 77 (LE)

] 100 200 300



Posterior probabilit
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0.01
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[o, ()7 (y|z)d
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0.002 - 3
%
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:
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“ 0 100 200 300 400 500 600 700 800 900 1000
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The 99.73% rule: obsérvations

0.3

0.25

0.2

© 0.15
Q.
9o
v
wn
v
H 0.1

0.05

- = = Mean value+3std
- = = Mean value-3std
@ Observed data

Mean value

| | |

0 0.2 0.4

0.6 0.8 1 1.2
Strain x1073
iNnCERT - Computer-assisted surgery with confidence - Stéphane BORDAS
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Propagation of'the uncertainty to the constitutive model

0.3

0.25

0.2

< 0.15
Q.
o
v
(7))
v
n 0.1

0.05

-0.05
0

stress-strain curve obtain using parameter mean
stress-strain curve obtain using parameter mean-3*std
stress-strain curve obtain using parameter mean+3*std
@ Observed data

0.2 0.4 0.6 0.8 1 1.2
Strain %1073
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Perfect plasticW
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Perfect plasticity

g
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Constitutive model

r(l)e ife<
x(2) if € >

q
|
RIRRIR
Seafs
=
|
o N—
Q
< ey
H,_/

» €

\/ iNnCERT - Computer-assisted surgery with confidence - Stéphane BORDAS 127




Perfect plastici

Modified form for constitutive model

o=2x(1)e(l — h(oc —x(2))) +z(2)h(c — x(2))

h : heaviside function

Observed data

Y =0+

—
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Perfect pIasticWaur plot of prior in parameter space

parameter 2
O'y()

0.5

O
&

~

o

wider” prior
for yield stress
-> more info
needed

Yield stress(Gpa)
o
w

0.2

0.1

“narrow” prior for E

0 100 200 300 400 500 600 700 800 900 1000 parameter 1
Young's modulus(Gpa) E

71'(:1:) - N(Mp-riora Fpr-ior)

~_fa0] 900 o
Hprior = 10.25| 77 Prier = 1 0 0.0025
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Perfect plastici

Posterior probability

Nobs
’ Z (v Fz)2
m(Z|yn,,,) x exp| — 5((33 ﬂpmor)TPpmor(x fprior) + L -2 )
2

oq : Error standard deviation
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Perfect plastici

Posterior probability

(z = p)° S e R
y; — F;
1 /T -1 \ =1
7.‘-(a"‘yf\robs) X ETP| — 'é (IL' o :U'P""’iOT) I 'r'zo'r(a7 :up"”'fo”’) + 0.2
Y
oq : Error standard deviation T likelihood for each
1/0.2 observation

—

iNnCERT - Computer-assisted surgery with confidence - Stéphane BORDAS 131



Perfect plastici

Posterior probability

stress measurement stress model

r — 2 NobsT T
( ,U)\ Z(yz’ — Fy)*

1 —
T =1
m(z|yn,,,) x exp| — 5 ((:17 prior) Fpmor(x Hprior) + 72 )
T Q
oq : Error standard deviation likelihood for each
1/0.2 observation

N
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Perfect plastici

Posterior probability

stress measurement stress model

r — 2 NobsT T
( ,U)\ Z(yz’ — F})?

1 —
T =1
m(z|yn,,,) x exp| — 5 ((:17 prior) Fpmor(x Hprior) + 72 )
T Q
oq : Error standard deviation likelihood for each
1/0.2 observation

f(CB‘,u,O') — O'\/%e_ 202

\Jbifficult to compute the evidence probability: use MCMC
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Markov-Chain Monte Carlo (MCMC) method: parameter space

too small

134



7 0.2

210 0.4

Yielding stress(Gpa)

IR ~ [4.0918 0.0044
/l'[)()sl("l'l'.()'l' _ [20866902603] !r[)().s‘f("l"l()l' _ ()()()‘14 ()()()()1

Nops = 39

Young's modulus(Gpa -
v (Gpa) 190 0.5
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Application to cyst localisation
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Q: What can we infer about the parameters inside the
domain, just from displacement observations on the
outside”?

Q: Which parameters am | most uncertain about?
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X~ N(;( rprior)

W
i E ~ N0, Ioise) v
Parameter Map
X y % Yobs
—,

Inference

Wposterior(X | y) X Tikelihood (y I X)ﬂ-prior(X)

1 , 1
Tyoseroly) x 0 (=3l = GIEs = 3lx =l )

noise 2 prior
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/Cb\

The displacements y for a given material parameter x are defined by a the minimum point
of the following Lagrangian:

L(y,x) :/qu(y,x) dx—/rt-y ds

where the energy density functional 4 1s defined through the following equations:

(U, x) = g(/c —d) — xIn(J) + g In(J)2,

O¢
F = X = |+ Vy,
C=F'F
IC = tr(C),

J = detF.
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Even once discretised (Finite Element Method)
Qh Z Rn — Rm
n=16112, 000

Colin27 brain atlas

20% extension test, 16 Core Xeon, 1.12 million cells, ~29 secs

on our Luxembourg Cluster
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Problems

* Evaluating parameter-to-observable map is very expensive.
* Discretised parameter space can be very large.

* Qutcome: Exploring posterior with ‘traditional sampling’ is not
going to work.
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Solutions

1. Connect Bayesian approach to ideas from
classical optimisation. Using derivatives of
posterior in parameter-space (Girolami).

2. Exploiting low-rank structure of prior to posterior
covariance updates (Flath 2012, Spantini 2015).
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MAP estimate. Bound-constrained Quasi-Newton BLMVM
with More-Thuente line search and ‘correct’ Riesz map.
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1ools

* The FEnICS Project is
collection of free software for
the automated, efficient

solution of differential FENICS
equations using the finite DF‘OJECG
element method.
http://fenicsproject.org

* dO|f|n'adJO|nt aUtOmatICa| |y Wells, Logg, Rognes, Kirby and many, many others...
derives the discrete adjoint,
tangent linear and higher- % dolfin-adjoint
order adjoint models from a

high-level description of the
forward model.

http://www.dolfin-adjoint.org

Farrell, Funke, Ham and Rognes.
2015 Wilkinson Prize for Numerical Software.
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The displacements y for a given material parameter x are defined by a the minimum point
of the following Lagrangian:

£(y.x)=/9¢(y,x> dx—/rt-y ds

where the energy density functional v is defined through the following equations:

W(u,2) = X(lc — )~ xIn(J) + 2 In(J)>2,

o¢
F_a—X—IJrVy,
C=F'F,

IC = tI’(C),

from dolfin import *
mesh = UnitSquareMesh(32, 32)

U = VectorFunctionSpace(mesh, "CG", 1)
V = FunctionSpace(mesh, "CG", 1)

# solution

u = Function(U)

# test functions

v = TestFunction(U)

# incremental solution

du = TrialFunction(U)

X = interpolate(Constant(1.0), V)

Imbda = interpolate(Constant(100.0), V)

dims = mesh.type().dim()

| = Identity(dims)
F =1+ grad(u)
C=FTF

J = det(F)

Ic = tr(C)

J = detF.

phi = (x/2.0)*(lc - dims) - x*In(J) + (Imbda/
2.0)*(In(J))**2

Pi = phi*dx

# gateaux derivative with respect to u in
direction v

F = derivative(Pi, u, v)

# and with respect to u in direction du

J = derivative(F, u, du)

u_h = Function(U)

F_h =replace(F, {u: u_h})

J_h =replace(J, {u: u_h})
solve(F_h == 0, u_h, bcs, J=J_h)
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Q: What can we infer about the parameters inside the
domain, just from displacement observations on the
outside”?

Q: Which parameters am | most uncertain about?
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Tralling elgenvector

Direction in parameter space least constrained by the
observations

150



trailling_eigenvector_O

-2.959e+00 -2 0 2.700e-01

w:llll_lllllllllll:w
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| eading Eigenvectors

Direction in parameter space most constrained by the
observations
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leading_eigenvector_0
1.250e+01

10

-10

-1.371e+01



leading_eigenvector_1
1.405e+01

10

-10

-1.377e+01



0 500 1000 1500 2000 2500
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Full Hessian.
4000+ actions.

Low-rank update.
292 actions.

Huge savings in computational cost.
Scales with model dimension because observations
stay the same.
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e Quantify and propagate uncertainties

eSelect the “best” model (Bayes factor)

e |dentify parameters for these models

e Assimilate experimental or other numerical data

e \Which parameters are we most uncertain about?

e \What additional data would reduce uncertainty?

iNnCERT - Computer-assisted surgery with confidence - Stéphane BORDAS



