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APPLICATIONS

PERSONALISED	
  MEDICINE ENGINEERING

Computer-­‐aided	
  
surgery

Durability	
  &	
  
Sustainability Energy Aerospace

Computer-­‐aided	
  
diagnos:cs	
  

Computational mechanics & computational 
materials sciences Multiscale/field interface problems

COMPETENCES

MULTI-­‐SCALE	
  FRACTURE	
  
aerospace	
  composites,	
  
polycrystalline	
  materials  

COUPLED	
  PROBLEMS	
  
biofilms,	
  liquid	
  crystals,	
  
fluid-­‐structure,	
  ba?eries 

QUALITY	
  &	
  ERROR	
  
CONTROL	
  

op@mise	
  computa@onal	
  
@me	
  given	
  an	
  accuracy	
  

level

INTERACTIVITY	
  
Reduce	
  

computa@onal	
  costs	
  
by	
  several	
  orders	
  of	
  

magnitude

DISCRETISATION	
  
discrete	
  and	
  con@nuum	
  

approaches
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Real-time simulation of cutting during brain surgery, 
Courtecuisse et al. 2014, Medical Image Analysis

http://legato-team.eu  —  stephane.bordas@uni.lu S. Bordas, B. Peters, A. Zilian and S. Belouettar (LIST)

http://legato-team.eu
mailto:stephane.bordas@uni.lu
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Discretisation

Enabling	
  methodologies	
  

Image	
  to	
  
mesh

CAD	
  to	
  mesh

a	
  posteriori	
  
error	
  

Enrichment	
  
Meshless

Sundararajan,	
  Tomar,	
  SB,	
  2015

Lian,	
  Peng,	
  Atroshchenko,	
  2015

virtual	
  elts

IGABEM

Duflot,	
  SB,	
  Wyart,	
   
Pierard,	
  Jin,	
  2015	
  

Agathos,	
  Chatzi,	
  SB,	
  2015
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Model	
  order	
  
reduction

Solver

Interactive	
  
simulations

Discretisation

Goury,	
  Kerfriden,	
  Akbari,	
  SB,	
  2014,	
  2016

Courtecuisse,	
  Kerfriden,	
  SB,	
  et	
  al.	
  2014
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Mathematical	
  
model

Computational	
  
ModelParameters
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NUMERICAL	
  SOLUTION

GEOMETRICAL	
  MODEL	
   DISCRETISATION

MATERIAL	
  MODELS	
  
Phenomenological	
  	
  
Elasticity/Plasticity	
  

Crack	
  growth	
  law	
  (Paris…)	
  
Fracture	
  energy	
  

Maximum	
  tensile	
  strength	
  
Multi-­‐scale	
  

Debonding,	
  Fibre	
  pull-­‐out	
  
Fibre	
  breakage,	
  interface	
  

fracture,	
  grains,	
  dislocations,	
  

A	
  POSTERIORI	
  
ERROR	
  	
  

CONTROL

EXPERIMENTS

Validation & parameter identification

Verification

CONVENTIONAL	
  APPROACH	
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NUMERICAL	
  
SOLUTION

GEOMETRICAL	
  
MODEL	
  

DISCRETISATION

LEARN	
  MATERIAL	
  
MODELS	
  

which scales?
what models?

what parameters?
what scale transition?
what data is missing?

A	
  
POSTERIORI	
  

REAL	
  SYSTEM

DIGITAL	
  TWIN	
  OF	
  THE	
  SYSTEM

DATA	
  

INFORMATION	
  

Strain

Structural 
Health

Cracks

Environment
Conditions

Scales of 
interest

Crack 
growth 

rate

Worst load 
combination

Inspection 
interval Mission?





MoNvaNon:	
  mul@scale	
  fracture	
  of	
  engineering	
  structures	
  and	
  materials
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PracNcal	
  early-­‐stage	
  design	
  simulaNons	
  (interacNve)

[Allix, Kerfriden, Gosselet 2010]
Discretise

0.125 mm
50 mm

100 plies

courtesy: EADS

‣Reduce the problem size while controlling the error (in QoI) 
when solving very large (multiscale) mechanics problems  

Discretise

Surgical	
  simulaNon	
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Ways to reduce the models

• Homogenisa@on	
  (FE^2,	
  etc.)	
  -­‐	
  Hierarchical	
  	
  

• Concurrent	
  and	
  hybrid	
  (bridging	
  domain,	
  ARLEQUIN,	
  etc.)	
  

• Enrichment	
  (PUFEM,	
  XFEM,	
  GFEM)	
  

• Model	
  reduc@on	
  (algebraic)

17
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Reduction methods based on homogenisation
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Coupling of macroscopic and microscopic levels 
The volume averaging theorem is postulated for: 
  1) Strain tensor: 
  
  2) Virtual work  (Hill-Mandel condition): 
 
  3) Stress tensor: 

Definition of  an RVE 

mailto:email@cardiff.ac.uk
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Hierarchical multi-scale approaches (FE^2)

20

In softening regime: 
•  Lack of scale separation 
•  Macroscale mesh dependence 

The macroscopic constitutive law is not 
required 
Non-linear material behaviour can be simulated 
Microscale behaviour of material is monitored 
at each load step 
 
 

Advantages and abilities: Drawbacks: 

mailto:email@cardiff.ac.uk
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Details in Phil. Magazine, 2015, Akbari, Kerfriden, Bordas
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Reduction methods based on algebraic reduction

31
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Illustration of the method of separated representation

32
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Illustration of the method of separated representation

33

C

1 = sin(0.01x)

C

2 = (x� 500)3

↵1 = e�0.02 t

↵2
= cos(

p
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Illustration of the method of separated representation

34

+
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Very rich approximations!
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Data compression: get the nose with the POD!
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Data compression: get the nose with the POD!
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Data compression: get the nose with the POD!
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Method of separated representation

• Search	
  for	
  the	
  solu@on	
  in	
  space	
  /	
  @me	
  /	
  parameter	
  in	
  a	
  product	
  space:	
  

• Op@mality	
  of	
  an	
  expansion	
  of	
  order	
  nc	
  with	
  respect	
  to	
  a	
  par@cular	
  metric	
  defined	
  on	
  	
  

➡ different	
  metrics	
  lead	
  to	
  different	
  methods,	
  which	
  have	
  their	
  pro/cons	
  

➡ Choice	
  strongly	
  dependent	
  on	
  the	
  context	
  

‣ Data	
  compression:	
  POD	
  (Proper	
  Orthogonal	
  Decomposi@on)	
  is	
  a	
  classical	
  choice	
  in	
  
dimension	
  2	
  

‣ Data	
  compression	
  in	
  many	
  dimensions:	
  mulNlinear	
  POD	
  
‣ Solver	
  in	
  many	
  dimensions	
  without	
  a	
  priori	
  knowledge	
  of	
  the	
  solu@on:	
  PGD	
  
‣ Model	
  order	
  reduc@on:	
  Snapshot	
  POD,	
  Snapshot	
  PGD	
  
‣ Ini@aliser,	
  precondi@oners:	
  low-­‐order	
  POD,	
  low-­‐order	
  PGD,	
  Snapshot	
  POD

38

Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,

Ci 2 Rn

�i : T ! R, 8i 2 J1, nCK ,
�i : P ! R, 8i 2 J1, nCK ,

Usep
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Proper Orthogonal Decomposition (POD)

• One	
  writes	
  the	
  classical	
  POD	
  problem: 
 
	
  	
  	
  	
  	
  find	
  an	
  orthonormal	
  basis	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  minimising	
  the	
  POD	
  func:onal:	
  

• Equivalently,	
  look	
  for	
  a	
  maximum	
  of	
  	
  

‣ Correla@on	
  operator:	
  

• Solu@on:	
  eigenvalue	
  problem	
  

➡ 	
  	
  

➡ 	
  	
  

• 	
  	
  	
  	
  	
  	
  Error

39

JPOD(C) =

Z

t2T
kU(t)�CCTU(t)k22 dt

C 2 Rn⇥nc , CT C = I
d

J̄POD(C) =

Z

t2T
U(t)TCCTU(t) dt = Tr(CTKC)

K =

Z

t2T
U(t)U(t) dt

K�k = �k�k

C =
�
�1 �2 ... �nc

�
(�k)k2J0,nKwhere                           in decreasing order

JPOD(C) =
nX

k=nc+1

�k

Z

t2T
↵i ↵j dt = �ij �
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a posteriori model order reduction. Idea: search for the solution as a linear 
combination of a set of pre-calculated representative solutions 

40
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C =
�
U1 U2 ... UnC

�

(1)	
  Solve	
  FINE	
  for	
  n_S	
  parameters	
  (EXPENSIVE!)	
  

S =
�
S1 S2 ... SnS

�

(3)	
  Trunca@on	
  

Solution
Coefficients

Family of  
representative solutions

Approximation of the 
solution in a space of 
small dimension (nc)

F
Int

(U) + F
Ext

= 0

Initial set of equations

(4)	
  Galerkin	
  orthogonality	
  

S = U⌃VT =
nSX

k=1

⌃k Uk VkT

(⌃k)k2J1 nSKwhere                           in decreasing order

nS solutions, sorted by relevance

(2)	
  Singular	
  value	
  decomposi@on	
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• P.	
  Kerfriden,	
  P.	
  Gosselet,	
  S.	
  Adhikari,	
  and	
  S.	
  
Bordas.	
  Bridging	
  proper	
  orthogonal	
  
decomposi:on	
  methods	
  and	
  augmented	
  
Newton-­‐Krylov	
  algorithms:	
  an	
  adap:ve	
  
model	
  order	
  reduc:on	
  for	
  highly	
  nonlinear	
  
mechanical	
  problems.	
  Computer	
  Methods	
  in	
  
Applied	
  Mechanics	
  and	
  Engineering,	
  
200(5-­‐8):850-­‐866,	
  2011.
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Limitations: case of highly non-linear fracture mechanics pbs

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

Reduced Ritz basis

C1

C2

C3

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Er
ro

r

Time step

M
ax

im
um

 d
am

ag
e 

/2
0

−5 0 5 10 15 20 25
−3

−2

−1

0

1

2

3

4

5

6

FD

UD

41

This solution is not in 
the snapshot !
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Application to a parametric fracture problem

42
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Application to a parametric fracture problem

43

‣ The	
  POD	
  solu@on	
  is	
  not	
  
able	
  to	
  reproduce	
  the	
  
solu@on	
  in	
  the	
  cracked	
  
area	
  

‣ Due	
  to	
  lack	
  of	
  correla@on	
  
introduced	
  by	
  crack	
  
growth	
  

‣ Leads	
  to	
  a	
  local	
  
projec@on	
  error

mailto:email@cardiff.ac.uk
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Parametric / stochastic multiscale fracture mechanics

44

➡ Reduced order modelling?➡ Direct numerical simulation: efficient preconditioner?

➡ Adaptive coupling?

First realisation Second realisation

Highly correlated solution fields

Localisation of fracture, uncorrelated

mailto:email@cardiff.ac.uk


THE RETURN OF THE MONKEY! 
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What can we do to address this lack of separation 
of scales/reducibility? 

46
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How we got to this point...

47

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672853/ 
http://orbilu.uni.lu/bitstream/10993/12454/2/presentationUSNCCM.pdf 
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http://www.researchgate.net/profile/Olivier_Goury/publication/
273832418_Dealing_with_interfaces_in_partitioned_model_ord

er_reduction_for_application_to_nonlinear_problems/links/
550e95c40cf212874168fe76.pdf 

https://hal.inria.fr/docs/00/99/49/23/PDF/multiscaleMOR.pdf

http://orbilu.uni.lu/bitstream/10993/18015/1/
presentationWCCM.pdf 

https://orbilu.uni.lu/bitstream/10993/12452/1/
Extended_abstract_ACME-UK_2012_OlivierGouryUpdated.pdf 

http://www.researchgate.net/profile/Ahmad_Akbari_R/publication/
280083497_Scale_selection_in_nonlinear_fracture_mechanics_of_heterogeneo

us_materials/links/55cdb5f308aebd6b88e06691.pdf 

mailto:email@cardiff.ac.uk
http://www.researchgate.net/profile/Olivier_Goury/publication/273832418_Dealing_with_interfaces_in_partitioned_model_order_reduction_for_application_to_nonlinear_problems/links/550e95c40cf212874168fe76.pdf
https://hal.inria.fr/docs/00/99/49/23/PDF/multiscaleMOR.pdf
http://orbilu.uni.lu/bitstream/10993/18015/1/presentationWCCM.pdf
https://orbilu.uni.lu/bitstream/10993/12452/1/Extended_abstract_ACME-UK_2012_OlivierGouryUpdated.pdf
http://www.researchgate.net/profile/Ahmad_Akbari_R/publication/280083497_Scale_selection_in_nonlinear_fracture_mechanics_of_heterogeneous_materials/links/55cdb5f308aebd6b88e06691.pdf
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Data compression: fracture

49

POD order 1

POD order 3

“Exact” solution

Snapshot POD (snapshot space is spanned by the 
ensemble of solutions at all time steps)

mailto:email@cardiff.ac.uk
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Partitioned POD/DDM

50
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Reduced DDM-POD

51

‣ Decompose	
  the	
  structure	
  into	
  
subdomains	
  

‣ Perform	
  a	
  reduc@on	
  in	
  the	
  highly	
  
correlated	
  region	
  

‣ Couple	
  the	
  reduced	
  to	
  the	
  non-­‐
reduced	
  region	
  by	
  a	
  primal	
  Schur	
  
complement

mailto:email@cardiff.ac.uk


Order of the POD transforms
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Choice of the reduced subdomains: local error estimation by 
“leave one out cross-validation” (LOOCV)

• Reduced	
  subspaces	
  are	
  independent	
  and	
  we	
  assume	
  a	
  snapshot	
  is	
  
a	
  priori	
  available	
  
‣ (1)	
  Dimension	
  of	
  the	
  local	
  space	
  for	
  each	
  subdomain?	
  
‣ (2)	
  Is	
  a	
  given	
  subdomain	
  is	
  reducible?	
  

• (1)	
  and	
  (2)	
  will	
  be	
  treated	
  by	
  cross-­‐valida@on	
  (e.g.	
  W.	
  J.	
  
Krzanowski.	
  Cross-­‐valida@on	
  in	
  principal	
  component	
  analysis.	
  
Biometrics,	
  43(3):575-­‐584,	
  1987.)	
  
‣ Training	
  set:	
  snapshot	
  
‣ ValidaNon	
  set:	
  set	
  of	
  addi@onal	
  finescale	
  solu@ons	
  
‣ Independent	
  training/valida@on	
  avoids	
  overfiqng	
  	
  
‣ Cross	
  valida@on	
  emulates	
  independence.	
  Error	
  calculated	
  

using	
  the	
  local	
  reduced	
  basis	
  obtained	
  by	
  a	
  snapshot	
  POD	
  
transform	
  of	
  all	
  the	
  available	
  snapshot	
  solu@ons	
  except	
  the	
  
one	
  corresponding	
  to	
  the	
  value	
  of	
  the	
  summa@on	
  variable.	
  

• NOTE:	
  If	
  the	
  snapshot	
  is	
  not	
  assumed	
  a	
  priori	
  then	
  
‣ Assess	
  whether	
  the	
  snapshot	
  contains	
  sufficient	
  informa@on,	
  and	
  

generate	
  addi@onal,	
  suitable,	
  data	
  if	
  required	
  
‣ Most	
  analysis	
  (mostly	
  by	
  sta@s@cians)	
  assume	
  the	
  snapshot	
  is	
  known	
  a	
  

priori.	
  Recent	
  review:	
  Hervé	
  Abdi	
  and	
  Lynne	
  J.	
  Williams.	
  Principal	
  
component	
  analysis.	
  Wiley	
  Interdisciplinary	
  Reviews:	
  Computa@onal	
  
Sta@s@cs,	
  2(4):433{459,	
  2010.
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Order of the POD transforms
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Performance: load angle 40 | 27 - 121 nodes

• Rela@ve	
  error
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40o 27o
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Performance: load angle 40 | 27 - 256 nodes
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40o 27o

• Rela@ve	
  error
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Performance: load angle 40 | 27 - 441 nodes

• Rela@ve	
  error
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mailto:email@cardiff.ac.uk


bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

Performance: load angle 40 | 27 - 961 nodes
• Rela@ve	
  error
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40o 27o

• Rela@ve	
  error

mailto:email@cardiff.ac.uk


58

NUMERICAL	
  SOLUTION

GEOMETRICAL	
  MODEL	
   DISCRETISATION

MATERIAL	
  MODELS	
  
Phenomenological	
  	
  
Elasticity/Plasticity	
  

Crack	
  growth	
  law	
  (Paris…)	
  
Fracture	
  energy	
  

Maximum	
  tensile	
  strength	
  
Multi-­‐scale	
  

Debonding,Fibre	
  pull-­‐out	
  
Fibre	
  breakage,	
  interface	
  

fracture,	
  grains,	
  dislocations,	
  

A	
  POSTERIORI	
  
ERROR	
  	
  

CONTROL

EXPERIMENTS

Validation & parameter identification

Verification

CONVENTIONAL	
  APPROACH	
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When the material model is not known, this conventional 
approach is inadequate

Deep-­‐brain	
  s@mula@on
Courtesy Alexandre Bilger, PhD thesis, Inria, 2014
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NUMERICAL	
  SOLUTION

IMAGE/MODEL	
   DISCRETISATION

MATERIAL	
  MODELS	
  

Phenomenological	
  	
  
Neo-­‐Hookean,	
  Ogden,	
  …	
  

Multi-­‐scale	
  
cutting,	
  fracture,	
  

???	
  

Patient	
  specific	
  ???

A	
  POSTERIORI	
  
ERROR	
  	
  

CONTROL

EXPERIMENTS	
  ???

Validation & parameter identification

Verification
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REAL	
  PATIENT

DIGITAL	
  TWIN	
  OF	
  THE	
  PATIENT

DATA	
  

INFORMATION	
  

Organ 
state

Health

Disease

Environment
Conditions

Scales of 
interest

Disease 
evolution

“Inspection”
interval Fitness

Treatment 
simulation



news from legato
http://legato-team.eu 

http://legato-team.eu




Thank	
  you	
  for	
  your	
  a?en@on!	
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CISM-­‐ECCOMAS	
  Interna@onal	
  Summer	
  School	
  on	
  “Modelling,	
  
Simula@on	
  and	
  Characteriza@on	
  of	
  Mul@-­‐Scale	
  Heterogeneous	
  
Materials”	
  September	
  28,	
  2015	
  —	
  October	
  2,	
  2015	
  

OPEN	
  SOURCE	
  CODES	
  

PERMIX:	
  Mul@scale,	
  XFEM,	
  large	
  deforma@on,	
  coupled	
  2	
  LAMMPS,	
  ABAQUS,	
  OpenMP	
  -­‐	
  

MATLAB	
  Codes:	
  XFEM,	
  3D	
  ISOGEOMETRIC	
  XFEM,	
  2D	
  ISOGEOMETRIC	
  BEM,	
  2D	
  MESHLESS	
  
DOWNLOAD	
  @	
  h]p://cmechanicsos.users.sourceforge.net/ 

 
COMPUTATIONAL	
  MECHANICS	
  DISCUSSION	
  GROUP	
  Request	
  membership	
  @	
  	
  
h?p://groups.google.com/group/computa@onal_mechanics_discussion/about	
  

	
    

http://cmechanicsos.users.sourceforge.net
http://groups.google.com/group/computational_mechanics_discussion/about
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Conclusions and perspectives

• Domain	
  coupling	
  using	
  the	
  primal	
  Schur-­‐complement	
  domain	
  decomposi@on	
  method.	
  	
  

• Local	
  subproblems	
  have	
  been	
  reduced	
  by	
  projec@on	
  in	
  low-­‐dimensional	
  subspaces	
  obtained	
  
by	
  the	
  snapshot	
  POD.	
  	
  

• This	
  approach	
  permits	
  to	
  flexibly	
  reduce	
  the	
  computa@onal	
  cost	
  associated	
  with	
  highly	
  
nonlinear	
  problems.	
  In	
  par@cular:	
  
‣ the	
  local	
  reduced	
  spaces	
  are	
  generated	
  independently,	
  and	
  have	
  independent	
  dimensions,	
  

which	
  allows	
  us	
  to	
  focus	
  the	
  numerical	
  effort	
  where	
  it	
  is	
  most	
  needed.	
  	
  
‣ subdomains	
  that	
  are	
  close	
  to	
  highly	
  damaged	
  zones	
  need	
  a	
  richer	
  model	
  to	
  account	
  for	
  the	
  

effect	
  of	
  topological	
  changes.	
  The	
  local	
  POD	
  transforms	
  automaNcally	
  generate	
  local	
  
reduced	
  spaces	
  of	
  larger	
  dimension	
  in	
  these	
  zones.	
  

‣ the	
  domain	
  decomposi@on	
  framework	
  enables	
  us	
  to	
  switch	
  from	
  reduced	
  local	
  solvers	
  to	
  
full	
  local	
  solvers	
  in	
  a	
  transparent	
  manner.	
  This	
  is	
  par@cularly	
  useful	
  for	
  the	
  subdomains	
  that	
  
contain	
  process	
  zones,	
  as	
  a	
  solu@on	
  obtained	
  by	
  projec@on	
  would	
  be	
  more	
  expensive	
  than	
  
a	
  direct	
  solu@on	
  for	
  a	
  desirable	
  accuracy.	
  

‣ the	
  transi@on	
  between	
  ``offline''	
  and	
  ``online''	
  computa@ons	
  becomes	
  flexible.	
  The	
  reduced	
  
models	
  can	
  be	
  used	
  in	
  the	
  zones	
  where	
  the	
  local	
  reduced	
  spaces	
  converge	
  quickly	
  when	
  
enriching	
  the	
  snapshot	
  space,	
  while	
  s@ll	
  compu@ng	
  snapshots	
  and	
  refining	
  the	
  reduced	
  
models	
  via	
  a	
  direct	
  local	
  solver	
  in	
  the	
  remaining	
  subdomains.

65
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Perspectives 

• Further	
  work	
  related	
  to	
  domain	
  decomposi@on	
  
‣ load	
  balancing	
  mismatch	
  would	
  occur	
  when	
  using	
  such	
  a	
  strategy	
  in	
  parallel.	
  CPUs	
  which	
  

support	
  domains	
  that	
  are	
  not	
  reduced,	
  or	
  domains	
  for	
  which	
  the	
  corresponding	
  subproblems	
  
need	
  to	
  be	
  projected	
  in	
  a	
  space	
  of	
  rela@vely	
  high	
  dimension,	
  would	
  require	
  to	
  perform	
  more	
  
opera@ons.	
  The	
  domain	
  par@@oning	
  itself	
  should	
  be	
  performed	
  jointly	
  with	
  the	
  model	
  reduc@on	
  
in	
  order	
  to	
  distribute	
  the	
  load	
  evenly.	
  

‣ the	
  interface	
  problem	
  itself	
  was	
  not	
  reduced	
  here,	
  to	
  guarantee	
  the	
  interface	
  kinema@c	
  
compa@bility.	
  

➡ Subop@mal	
  reduced	
  order	
  model.	
  Would	
  generate	
  expensive	
  communica@ons	
  in	
  parallel	
  

➡ A	
  reduc@on	
  of	
  the	
  interface	
  problem	
  using	
  the	
  POD	
  can	
  be	
  done	
  but	
  is	
  neither	
  elegant	
  
nor	
  easy	
  

➡ Dual	
  Schur-­‐complement	
  domain	
  decomposi@on	
  method	
  would	
  allow	
  the	
  kinema@c	
  
approxima@on	
  of	
  the	
  subproblems	
  to	
  include	
  the	
  interface.	
  However,	
  this	
  would	
  only	
  
deflect	
  the	
  difficulty	
  to	
  the	
  necessary	
  reduc@on	
  of	
  the	
  interface	
  Lagrange	
  mul@plier	
  
space.	
  This	
  issue	
  is	
  our	
  current	
  direc@on	
  of	
  research.
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Bayesian inference
Primer
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Likelihood
Posterior

Prior
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⇡(x)
⇡(y|x)

⇡(x|y)
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⇡(x)
⇡(y|x)

⇡(x|y)

Bayes’	
  theorem	
  

posterior =

prior⇥ likelihood

evidence

prior

posterior

likelihood



8/31/2015 77

Bayes’ theorem

Parameter	
  identification:	
  Bayesian	
  approach	
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Bayes’ theorem

Descriptive formula

Parameter	
  identification:	
  Bayesian	
  approach	
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A	
  discrete	
  example	
  of	
  Bayes’	
  theorem	
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This	
  is	
  our	
  prior	
  information	
  for	
  the	
  probability	
  of	
  each	
  face:	
  1/6
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P=1/6
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Assume	
  that	
  after	
  throwing	
  the	
  dice,	
  you	
  see	
  the	
  above	
  evidence
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Goal:	
  determine	
  the	
  probability	
  of	
  this	
  evidence	
  for	
  each	
  face	
  of	
  the	
  dice
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a
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b
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c
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d
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a b

cd
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a b

cd
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a b

cd

One	
  would	
  never	
  see	
  a	
  dot	
  at	
  the	
  star	
  positions	
  for	
  this	
  face  
The	
  probability	
  of	
  the	
  evidence	
  is	
  zero
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a b

cd
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Two	
  possibilities	
  (a,c)	
  and	
  (b,d)

a b

cd
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Also	
  two	
  possibilities	
  (a,c)	
  and	
  (b,d)

a b

cd

a b

cd
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a b

cd
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a b

cd
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a

bc

d
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a

bc

d



100

ab

c d
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a b

cd

a

bc

d

ab

c d

a

bc

d
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a b

cd

a

bc

d

ab

c d

a

bc

d

Four	
  possibilities
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Four	
  possibilities

a b

cd
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Four	
  possibilities

a b

cd
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a b

cd
a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

0

2 2

4 4 4
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a b

cd
a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

0

2 2

4 4 4
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Probability	
  that	
  this	
  was	
  the	
  face	
  of	
  the	
  dice	
  knowing	
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P=0

P=⅛	
  

P=¼	
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P=0

P=⅛	
  

P=¼	
  	
  

P=1/6	
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Stress-­‐strain	
  data
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�

✏

Identify	
  the	
  parameters	
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Model

observations=f(parameters,	
  error)	
  

Construct	
  the	
  likelihood	
  function	
  	
  



8/31/2015 113

Additive noise model

Noise	
  model	
  



8/31/2015 114

Likelihood function for additive model

Likelihood	
  function	
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Constitutive model

Observed data

Constitutive	
  law:	
  linear	
  elasticity
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Prior	
  information	
  on	
  Young’s	
  modulus
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Error	
  model	
  (noise)
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Likelihood function

Likelihood	
  function
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Bayes’	
  theorem:	
  calculate	
  the	
  posterior	
  

posterior =

prior⇥ likelihood

evidence
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⇡(x)

Bayes’	
  theorem:	
  calculate	
  the	
  posterior	
  

posterior =

prior⇥ likelihood

evidence

prior
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⇡(x) ⇡(y|x)

Bayes’	
  theorem:	
  calculate	
  the	
  posterior	
  

posterior =

prior⇥ likelihood

evidence

prior

⇡(y|x) = N(y � x✏, 0.0001)
⇡(y|x) = ⇡(!) = ⇡(y � f(x))

likelihood
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⇡(x)

⇡(x|y)

Bayes’	
  theorem:	
  calculate	
  the	
  posterior	
  

posterior =

prior⇥ likelihood

evidence

prior

posterior

⇡(y|x) = N(y � x✏, 0.0001)
⇡(y|x) = ⇡(!) = ⇡(y � f(x))

⇡(y|x)
likelihood
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Posterior	
  probability

⇡(x|y) = ⇡(x)⇡(y|x)R
⌦ ⇡(x)⇡(y|x)dx

⇡(x)

⇡(y|x)
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The	
  99.73%	
  rule:	
  observations	
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Propagation	
  of	
  the	
  uncertainty	
  to	
  the	
  constitutive	
  model	
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Perfect	
  plasticity
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Perfect	
  plasticity

Constitutive model

x(2)
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Observed data

Modified form for constitutive model

Perfect	
  plasticity
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Perfect	
  plasticity:	
  contour	
  plot	
  of	
  prior	
  in	
  parameter	
  space

parameter	
  1

parameter	
  2

“wider”	
  prior	
  
for	
  yield	
  stress	
  
-­‐>	
  more	
  info	
  
needed

“narrow”	
  prior	
  for	
  E

�y0

E
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Posterior probability

Perfect	
  plasticity
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Posterior probability

Perfect	
  plasticity

likelihood	
  for	
  each	
   
observation1/�2

(x� µ)2
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Posterior probability

Perfect	
  plasticity

likelihood	
  for	
  each	
   
observation

stress	
  modelstress	
  measurement

1/�2

(x� µ)2
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Posterior probability

Perfect	
  plasticity

likelihood	
  for	
  each	
   
observation

stress	
  modelstress	
  measurement

1/�2

f(x|µ,�) = 1

�

p
2⇡

e

� (x�µ)2

2�2

(x� µ)2

Difficult	
  to	
  compute	
  the	
  evidence	
  probability:	
  use	
  MCMC
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Markov-­‐Chain	
  Monte	
  Carlo	
  (MCMC)	
  method:	
  parameter	
  space

too	
  small adequate

too	
  large too	
  large
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Perfect	
  plasticity:	
  amplitude	
  plot
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Source: Phillips

Application	
  to	
  cyst	
  localisation	
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Application	
  to	
  cyst	
  localisation	
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Q: What can we infer about the parameters inside the 
domain, just from displacement observations on the 

outside?

Q: Which parameters am I most uncertain about?
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�posterior(x | y) � �likelihood(y | x)�prior(x)

G
x

Parameter Map

+

E ∼ N (0, Γnoise)

y yobs

X ∼ N (x̄ , Γprior)

πposterior(x |y) ∝ exp
(

−
1

2
||y − G(u)||2

Γ−1noise
−
1

2
||x − x̄ ||

Γ−1prior

)

Inference
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The displacements y for a given material parameter x are defined by a the minimum point

of the following Lagrangian:

L(y , x) =
�

�
�(y , x) dx �

�

�
t · y ds

where the energy density functional � is defined through the following equations:

�(u, x) =
x

2
(Ic � d)� x ln(J) +

�

2
ln(J)2,

F =
��

�X
= I+�y ,

C = FTF,

IC = tr(C),

J = detF.

B0 Bφ
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Even once discretised (Finite Element Method)

Colin27 brain atlas
20% extension test, 16 Core Xeon, 1.12 million cells, ~29 secs 

on our Luxembourg Cluster 

Gh : Rn → Rm

n = 1, 112, 000



Problems

• Evaluating parameter-to-observable map is very expensive. 

• Discretised parameter space can be very large. 

• Outcome: Exploring posterior with ‘traditional sampling’ is not 
going to work.
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Solutions

1. Connect Bayesian approach to ideas from 
classical optimisation. Using derivatives of 
posterior in parameter-space (Girolami). 

2. Exploiting low-rank structure of prior to posterior 
covariance updates (Flath 2012, Spantini 2015).
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MAP estimate. Bound-constrained Quasi-Newton BLMVM 
with More-Thuente line search and ‘correct’ Riesz map.



Tools
• The FEniCS Project is 

collection of free software for 
the automated, efficient 
solution of differential 
equations using the finite 
element method. 

• dolfin-adjoint automatically 
derives the discrete adjoint, 
tangent linear and higher-
order adjoint models from a 
high-level description of the 
forward model.

146

http://fenicsproject.org

http://www.dolfin-adjoint.org

Wells, Logg, Rognes, Kirby and many, many others…

Farrell, Funke, Ham and Rognes. 
2015 Wilkinson Prize for Numerical Software.

http://fenicsproject.org
http://www.dolfin-adjoint.org


from dolfin import *
mesh = UnitSquareMesh(32, 32)

U = VectorFunctionSpace(mesh, "CG", 1)
V = FunctionSpace(mesh, "CG", 1)
# solution
u = Function(U)
# test functions
v = TestFunction(U)
# incremental solution 
du = TrialFunction(U)
x = interpolate(Constant(1.0), V)
lmbda = interpolate(Constant(100.0), V)

dims = mesh.type().dim()
I = Identity(dims)
F = I + grad(u)
C = F.T*F
J = det(F)
Ic = tr(C)

phi = (x/2.0)*(Ic - dims) - x*ln(J) + (lmbda/
2.0)*(ln(J))**2
Pi = phi*dx
# gateaux derivative with respect to u in 
direction v 
F = derivative(Pi, u, v)
# and with respect to u in direction du
J = derivative(F, u, du)

u_h = Function(U)
F_h = replace(F, {u: u_h})
J_h = replace(J, {u: u_h})
solve(F_h == 0, u_h, bcs, J=J_h)

The displacements y for a given material parameter x are defined by a the minimum point

of the following Lagrangian:

L(y , x) =
�

�
�(y , x) dx �

�

�
t · y ds

where the energy density functional � is defined through the following equations:

�(u, x) =
x

2
(Ic � d)� x ln(J) +

�

2
ln(J)2,

F =
��

�X
= I+�y ,

C = FTF,

IC = tr(C),

J = detF.



148



149

Q: What can we infer about the parameters inside the 
domain, just from displacement observations on the 

outside?

Q: Which parameters am I most uncertain about?



Trailing Eigenvector

150

Direction in parameter space least constrained by the 
observations
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Leading Eigenvectors
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Direction in parameter space most constrained by the 
observations
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Full Hessian. 
4000+ actions. 

Low-rank update. 
292 actions.

Huge savings in computational cost. 
Scales with model dimension because observations 

stay the same.
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•Quantify	
  and	
  propagate	
  uncertainties	
  	
  

•Select	
  the	
  “best”	
  model	
  (Bayes	
  factor)	
  

•Identify	
  parameters	
  for	
  these	
  models	
  

•Assimilate	
  experimental	
  or	
  other	
  numerical	
  data	
  	
  

•Which	
  parameters	
  are	
  we	
  most	
  uncertain	
  about?	
  

•What	
  additional	
  data	
  would	
  reduce	
  uncertainty?
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Bayesian	
  approach:	
  summary


