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Recent reports indicate a dominant role for cellular microenvironment or niche for stably maintaining cellular
phenotypic states. Identification of key nichemediated signaling that maintains stem cells in specific phenotypic
states remains a challenge, mainly due to the complex and dynamic nature of stem cell-niche interactions. In
order to overcome this, we consider that stem cells maintain their phenotypic state by experiencing a constant
effect created by the niche by integrating its signals via signaling pathways. Such a constant niche effect should
induce sustained activation/inhibition of specific stem cell signaling pathways that controls the gene regulatory
program defining the cellular phenotypic state. Based on this view, we propose a computational approach to
identify the most likely receptor mediated signaling responsible for transmitting niche signals to the transcrip-
tional regulatory network that maintain cell-specific gene expression patterns, termed as niche determinants.
We demonstrate the utility of our method in different stem cell systems by identifying several known and
novel niche determinants. Given the key role of niche in several degenerative diseases, identification of niche de-
terminants can aid in developing strategies for potential applications in regenerative medicine.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Stem cells play a crucial role in maintaining tissue homeostasis. In
this context, interplay between stem cells and their microenvironment,
also known as the niche, is necessary for the maintenance of stem cell
phenotypic state (Scadden, 2014). In general, distinct stem cell popula-
tions are influenced by specific niche elementswith defined localization
and composition of supportive stromal cells, extracellular matrix, gap
junctions, and soluble factors (Scadden, 2014; Xin et al., 2016). The cel-
lular niche acts as the intermediate that senses, integrates and translates
information from the neighborhood of the stem cell by transfer of exter-
nal cues into intracellular signaling events to determine its cellular state.
The effect of niche on stem cell phenotype is shaped by physiological
contexts determined by the tissue and organismal requirements (Xin
et al., 2016). Further, the tight regulation of stem cell and progenitor
cell turnover that contributes to tissue homeostasis characterizes
healthy tissues. However, this fine balance is often found perturbed in
cases of several degenerative diseases of liver, heart, lung and brain;
where regenerative medicine hold immense promise (Lane et al.,
2014). The key idea is targeted activation of endogenous stem cells to
ed the study. S.R. and S.M.A.
. implemented the method. All
afting of the manuscript.
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repair the damaged tissues. Currently, a major challenge in this area
includes the limited functional integration (or engraftment) of
transplanted stem cells into the target tissue. This could possibly be
due to the negative regulatory effect of diseased niche on transplanted
stem cells (Lane et al., 2014). In order to overcome this, an understand-
ing of those signaling pathways or niche determinants that normally
control stem cell functional state in response to the niche is essential.
However, due to the inherent complexity and dynamic nature of stem
cell-niche interactions it is often difficult to characterize them by exper-
iments alone. Computational systems biology approaches to model
stem cell-niche interactions could be very helpful in this regard. In
fact, few computational methods to model population level dynamics
of stem cell-niche interactions have been used to untangle their regula-
tory relationship at the level of cell-cell interactions (Lei et al., 2014;
Szekely et al., 2014). Even though suchmodels are useful, they encoun-
ter a number of limitations due to: incomplete characterization of the
niche, fluctuations of the niche components, and a large number of
non-linear interactions between the niche components and stem cells.

Here, we present a computational method to identify the niche de-
terminants of stem cell phenotypic state. However, instead of
attempting to model the stem cell-niche interactions (explicitly) in its
entire complexity, we consider an alternative view by considering that
each stem cell interacts with the niche via a constant effect created by
all molecular and cellular signals coming from the niche. Such a con-
stant effect of the niche on stem cell should induce sustained activa-
tion/inhibition of specific stem cell signaling pathways for maintaining
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scr.2016.09.006&domain=pdf
0opyright_ulicense
http://dx.doi.org/10.1016/j.scr.2016.09.006
mailto:antonio.delsol@uni.lu
Journal logo
http://dx.doi.org/10.1016/j.scr.2016.09.006
0opyright_ulicense
http://www.sciencedirect.com/science/journal/18735061
www.elsevier.com/locate/scr


407S. Ravichandran et al. / Stem Cell Research 17 (2016) 406–412
their phenotypes. This view of stem cell-niche interactions shifts the
focus of the problem towards the identification of signaling pathways
constantly activated/inhibited due to the niche influence instead of ac-
counting for niche composition and its interactionwith the stem cell ex-
plicitly. The rationale behind our method is that the niche maintains
stem cells in a stable state in the gene expression landscape by a
sustained effect on their transcriptional regulatory network (TRN) de-
spite niche dynamics and cellular heterogeneity. Such a sustained effect
of the niche is transmitted through constantly activated/inhibited intra-
cellular signaling pathways compatible with the phenotype specific
TRN. Indeed, recent studies in different systems have demonstrated
that stem cell state is determined by constant activation/inhibition of
specific pathways by the constitutive influence of its niche (Codega et
al., 2014; Kunisaki et al., 2013; Rompolas et al., 2013). Ourmethod relies
on gene expression differences between stem cells displaying different
niche-dependent phenotypes, and aims to infer and rank signaling
pathways that are sustained and differentially (in)active for stably
maintaining their corresponding phenotypes.

In this regard, several existing computational pathway analysis
methods can potentially identify deregulated signaling pathways from
high-throughput datasets (Hung, 2013; Khatri et al., 2012). In particu-
lar, due to huge progress in microarray and sequencing techniques,
computational methods tend to rely more on transcriptomic datasets
to identify signalingpathways that differ between two conditions. How-
ever, thesemethods are generally not specific for identification of differ-
entially active and sustained signaling that maintains the different
phenotypes, but are more generic in nature to capture all possible
deregulated signaling events that could also be transient in nature. On
the contrary, our method is more specific, since it aims to identify only
constantly activated/inhibited signaling pathways that are responsible
for maintaining the phenotype-specific TRN state, andwhose perturba-
tions can destabilize this state. Indeed, sustained activation/inhibition of
signalingpathways are shown to exhibit a clear influence on the expres-
sion of genes participating in such pathways, which is not always ob-
served in cases of transient activation/inhibition (Whitmarsh, 2007).
For example, gene expression signatures have been successfully
employed to identify constantly active oncogenic addiction pathways
(Bild et al., 2006). Furthermore, signaling pathways involved in differ-
entiation and cellular growth are known to induce changes in expres-
sion of genes involved in the signal transduction (Codega et al., 2014;
Zhu et al., 2006).

We applied our method to different stem cell systems, including
neuronal, hair follicle, muscle and hematopoietic in order to demon-
strate its utility in identifying niche determinants. Importantly, many
of our top ranking predictions have been experimentally found to play
a key role in nichemediated regulation of specific stem cell phenotypes.
The proposed method is general in the sense that it can be applied to
any stem cell system with existing transcriptome data corresponding
to distinct niche mediated-phenotypes. Furthermore, our method over-
comes the difficulty of explicitly characterizing niche components in
order to describe their collective effect onmaintenance of stem cell phe-
notypic states. The knowledge of niche determinants will be helpful for
targeted manipulation of the niche effect on stem cells to control their
phenotypic states, and therefore can aid in development of novel thera-
peutics based on regenerative medicine.

2. Results

2.1. Method framework

A schematic representation of our method is shown in Fig. 1. Our
method considers that niche maintains stem cells in a stable state by a
sustained effect on their TRN via constantly activated/inhibited intracel-
lular signaling pathways compatible with the phenotype-specific TRN
state. The fact that the cells exhibit differences in their phenotype due
to differential effect of the niche suggests that the intracellular signaling
events controlling the specific GRN for maintain the specific phenotype
are differentially active. To identify key differences at the level of signal-
ing intermediates due to differential effect of niche, we first compiled a
database-derived raw signaling interactome originating from differen-
tially expressed receptors (DERs) to differentially expressed transcrip-
tion factors (DETFs) specific for the cell type under study. In order to
recapitulate the control of theniche over the stem cell state,we consider
that the upregulated receptors of a given stem cell phenotype are under
the direct influence of the niche. Since the exact mechanisms of the
niche effect are often not well known, we represent it by introducing
a dummy niche node in the raw signaling network. This dummy node
is then connected to all upregulated receptors for each phenotype
under consideration (Fig. 1). Therefore, signal transduction from the
niche to DETFs must be propagated through at least one of the upregu-
lated receptors. Such a representation of unknown external influence by
a dummy node has been applied earlier (Tuncbag et al., 2013). In our
representation, we have two dummy niche nodes, each representing a
specific niche condition (Fig. 1).

The edges in the signaling interactome were weighted using the
gene expression data. Thisweighting schemewas implemented tomax-
imize the compatibility between the expression data and interaction
sign. By compatible, wemean consistency between the sign of the inter-
actions (i.e. positive when activating and negative when inhibiting) and
the effect (i.e. activation or inhibition) that the receptor has on its
downstream target transcription factors (TFs). For example, sign of a
signaling path from a receptor to a TF that is up regulated or
overexpressed must be positive (activation), while it must be negative
(inhibition) for down regulated or under-expressed TF. We calculated
the differential edge weight such that for a given phenotype it reflected
the probability of the target gene of the specific interaction to be rela-
tively more active when compared to the other phenotype by consider-
ing the interaction sign and booleanized expression state of the
interacting nodes.

Next, in this weighted raw signaling interactome we aimed to iden-
tify signaling paths that are regulated by the niche, and are potentially
responsible for the observed expression pattern of the DETFs. For this,
we employed Prize Collecting Steiner Tree (PCST) formalism to infer
sub-networks with the dummy niche node as the root or origin and
the DETFs as the terminal nodes. Steiner Tree formalism have been
used earlier to reconstruct active signaling pathways (Bailly-Bechet et
al., 2011). Since the dummy node is connected only to the upregulated
receptors of a given cell type, the inferred sub-networks will encom-
pass only those receptors that are both topologically favorable and
compatible in the expression state to link the DETFs. Therefore,
from several upregulated receptors, one could narrow down to the
few linking the DETFs based on their unique network topological
features. Such sub-networks (Steiner trees) are inferred for the two
different phenotypes under consideration (Fig. 1). Further, the sta-
tistical significance of the receptors in the inferred sub-networks
were assessed by randomizing (100 iterations) the edge weights of
the raw signaling network.

In order to test if the signaling events initiated by the receptors
shortlisted as significant are indeed sustained in their effect on the un-
derlying transcriptional states, we performed in silico perturbation ex-
periments of the specific receptors in a Boolean model of the TRN, and
quantified the perturbation effect on the underlying attractor state. Fur-
ther, this served as a ranking of the inferred signaling pathways
(Methods).

In order to test the applicability of ourmethod, we specifically chose
systems where gene expression data for two distinct stem cell pheno-
types from in vivo model systems were available. In particular, we fo-
cused on systems where the niche played an important role in
maintaining the specific cellular phenotypic state. These include com-
parisons of inactive versus injury induced active stem cells, stem cells
versus their differentiated progeny, quiescent versus active stem cells
depending on their spatial location. Our computational predictions
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Fig. 1. Schematic of the computational method. Gene expression data of stem cells in two distinct phenotypic states is the input for the method. Then, differentially expressed genes
(represented by red and green nodes) are identified, and are classified as receptors and transcription factors. In step 3, a signaling interactome is constructed by connecting the up
regulated receptors (inverted triangles) to the DETFs (squares) from prior knowledge networks based on literature support. The edges of the signaling interactome are differentially
weighted based on the gene expression data. Then, the receptors upregulated for each phenotype under consideration are linked to dummy niche nodes that represent the external
influence of the niche. In step 4, sub-networks that link the upregulated receptors to the DETFs for each phenotype are extracted using a PCST formalism. Finally, in order to identify
those sub-networks that are necessary for the maintenance of TRN stability, Boolean simulations of the combined signaling–TRN model are performed to assess the extent of change in
the phenotype specific attractor state.

Table 1
Cellular phenotype comparisons and predicted niche determinants.

Stem cell system Cellular phenotype comparison Niche determinants p value

Phenotype 1 Phenotype 2 Phenotype 1 Phenotype 2

Neuronal Quiescent vs Active NSCs Quiescent
Cav1
Cd40
S1pr1

Active
Egfr
Trim27

Quiescent
1.96E−25
2.01E−11
1.71E−02

Active
4.24E−61
1.19E−16

Neuronal oligodendrocyte precursors Inactive vs Active OPCs Inactive
-

Active
Cd44

Inactive
-

Active
1.01E−03

Neuronal NSCs vs Immature neurons NSCs
Igf2

Immature neurons
-

NSCs
4.87E−02

Immature neurons
-

Hair follicle Long term vs short term HFSCs Long-term
Tnfrsf18
Itgb6
Ace
Fgf2
Osmr

Short-term
Bmpr1b
Notch3
Wnta

Long-term
1.37E−09
1.18E−08
1.44E−04
6.75E−04
2.70E−03

Short-term
2.11E−08
8.24E−06
4.34E−02

Hematopoietic Long term vs short term HSCs Long-term
Tgfbr1

Short-term
Il17rb
Epha4
CD40

Long-term
7.38E−06

Short-term
3.81E−10
7.80E−07
1.92E−02

Skeletal Quiescent vs Active SCs Quiescent
Notch1
Fgfr1

Active
Il1rl1
Cd44

Quiescent
2.30E−08
4.36E−03

Active
3.10E−10
1.20E−04

The table lists the cellular phenotype comparisons made in this study with the corresponding predictions for each phenotype. The last two columns show the p-values denoting the sig-
nificance of the predictions. Those predictions with experimental validations are highlighted in bold.

a Represent three receptors perturbed simultaneously for the assessment of significance (see text for details).
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rank the receptors most crucial for influencing the DETFs, and does not
attempt to rank the inferred signaling intermediates (other down-
stream molecules like associated kinases and phosphatases) or the en-
tire pathway as a whole. The list of computational predictions and
associated literature support is listed in Table 1. In the following sec-
tions, we describe our computational predictions of niche determinants
for each stem cell system in detail.
2.2. Quiescent versus active neural stem cells

Recent reports suggest that quiescent and active neural stem cells
(NSCs) are localized in distinct compartments of the sub ventricular
zone of the CNS (Codega et al., 2014). Further, the molecular make-
up of these cells was found to be distinct. We found more than
3000 genes to be differentially expressed between quiescent and ac-
tive NSCs, including 234 receptors and 245 TFs. In the case of quies-
cent stem cells, the receptor molecule, Cav1 was ranked the highest
by our method (Table 1). Out of 245 differentially expressed TFs,
Cav1 was inferred to regulate the expression state of 53 TFs. Impor-
tantly, our method could identify signaling from S1pr1 receptor as
significant (Table 1, Fig. 2A), whose role in maintaining quiescence
of NSCs has been experimentally validated (Codega et al., 2014).
Cav1 (caveolin-1), a lipid raft associated protein, is a novel predic-
tion of our method for regulating quiescent neural stem cell state
that requires experimental validation. However, Cav1 is known to
play certain crucial role in regulating neuronal stem cell differentia-
tion (Baker and Tuan, 2013).

In the case of active neural stem cells, our method identified Egfr
as the top candidate and it regulated 116 TFs (Table 1). Further, Egfr
signaling is well known to regulate active NSCs and is in fact used as a
marker to identify active NSC population (Codega et al., 2014).
Fig. 2. Niche determinants of NSCs, OPCs and NSCs of DG. The figure shows the sub-networks o
Quiescent vs Active NSCs. B) Inactive vs Active OPCs. C) NSCs vs immature neurons. Pointed arr
the expression status of the genes, red: upregulated and green: down regulated. The receptors
2.3. Inactive versus active oligodendrocyte progenitor cells

Oligodendrocyte progenitor cells (OPCs) are the primary source of
myelinating oligodendrocytes, and are responsible for restoration of
myelin sheaths upon a demyelinating injury. Normally, this is a highly
efficient process; however, in chronic disease conditions, such asmulti-
ple sclerosis, this process is not efficient. This is in part attributed to dis-
eased niche causing a differentiation block of OPCs (Franklin and
Ffrench-Constant, 2008). Therefore, in this example, we specifically fo-
cused on identifying niche determinants of OPCs activated in response
to injury. Here, we have analyzed gene expression of OPCs before (inac-
tive) and after (active) cuprizone induced demyelination inmicemodel
to identify the niche determinants of active OPCs (Moyon et al., 2015).
We identified about 800 genes to be differentially expressed, including
56 TFs and 33 receptors. For active OPCs, our computational analysis
identified Cd44 as significant for controlling the active state of OPCs
(Table 1, Fig. 2B). Signaling from Cd44 was found to control 41 TFs.
Our method predicted a strong role of Cd44 in regulating cellular phe-
notype of active OPCs. In fact, Cd44 mediated signaling in response to
demyelinating injury is experimentally observed to be necessary formi-
gration and subsequent differentiation of the activated OPCs (Piao et al.,
2013). Further, it was observed that knock down of this receptor leads
to severe impairment of OPC migration to demyelinated lesions, impli-
cating a strong role for Cd44 mediating signaling for active OPC pheno-
type (Piao et al., 2013).

2.4. Neural stem cells versus immature neurons

In the hippocampal dentate gyrus (DG), NSCs are responsible for
generating neurons. Niche mediated signals play a crucial role in con-
trolling the proliferation and differentiation of NSCs, and their progeni-
tors in DG. In this case, we have analyzed the gene expression of NSCs
f signaling pathway(s) identified by our method that are also experimentally validated. A)
ows indicate activation and blunted arrows indicate inhibition. The node colors represent
molecules are represented as inverted triangle while the TFs are represented as squares.
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and immature neurons (Bracko et al., 2012), and identified 1108 differ-
entially expressed genes, including 66 receptors and 68 TFs. Igf2 was
identified as the top ranking for NSC phenotype (Table 1, Fig. 2C). Igf2
mediated signaling was transmitted predominantly through Igf1r for
regulating 12 TFs. The role of Igf2 in maintaining the NSC state in DG is
well known and it is implicated in regulating the proliferation of these
cells (Bracko et al., 2012). Further, shRNA mediated knock down of Igf2
lead to profound loss of proliferation of hippocampal NSCs demonstrat-
ing that Igf2 was a niche specific regulator of NSC (Bracko et al., 2012).

In the case of immature neurons, none of the receptors was found to
significantly perturb the TRN attractor state.

2.5. Long term versus short term hair follicle stem cells

Recent report suggested that long term hair follicle stem cells
(HFSCs) arise from embryonic progenitor cells depending on its spatial
location (Xu et al., 2015). Embryonic progenitor cells residing in upper
follicle gain expression of adult stem cell markers, and become long
termHFSCs, whereas the cells remaining in the lower follicle region pro-
gressively lose their stem cell state and are defined as short termHFSCs.
Analysis of the gene expression of these two cell types identified 1393
differentially expressed genes, including 134 receptors and 131 TFs.
Bmpr1b and Notch3 were identified as top ranking receptors for regu-
lating short termHFSCs and they regulated 26 and 23 DETFs respective-
ly (Table 1). The role of Notch in short term HFSCs is not known,
however, Bmp signaling is known for regulating hair follicle stem cell
state (Kobielak et al., 2007). Further, our method identified Wnt path-
way related receptors Fzd10 and Rspo1 in addition to Wnt10b (Fig.
3A). Since these three molecules were related to the same pathway,
we performed Boolean simulations of perturbing them simultaneously
and observed significant change in the attractor configuration (Table
1). In this context, Wnt mediated signaling has been shown to regulate
the differentiation capabilities of short term HFSCs in vivo (Xu et al.,
2015).

In the case of long termHFSCs, ourmethod identified Tnfrsf18, Itgb6,
Ace, Fgf2 and Osmr as significant (Table 1). Although the role of Itgb6 in
Fig. 3. Niche determinants of HFSCs, HSCs and STs. The figure is same as Fig. 2. A) Long term
hair follicle stem cell differentiation is known (Xie et al., 2012), the pre-
cise roles of these receptors for the phenotypic maintenance of long
term HFSCs are not known.

2.6. Long term versus short term hematopoietic stem cells

The exquisite balance between self-renewal and differentiation of
hematopoietic stem cells (HSCs) is required to maintain the homeosta-
sis of lympho-hematopoietic system (Scadden, 2014). In this regard,
regulation of quiescent or long-term HSC pool is important. Here, we
have analyzed long term and short term HSCs in order to identify the
niche determinants of these two distinct phenotypic states (Ficara et
al., 2008). Gene expression analysis of these two cell types identified
1665 differentially expressed genes that include 98 receptors and 115
TFs. In the case of long term HSCs we found Tgfbr1 to be significant
and regulated 22 TFs (Fig. 3B, Table 1). Importantly, the role of Tgfβ sig-
naling in maintenance of long term quiescent HSCs is experimentally
observed (Ficara et al., 2008) and Tgfbr1 is a key receptor involved in
this signaling. Further, it has been suggested that cues from bone mar-
row niche are that activate this pathway is necessary for maintaining
long-term quiescent HSCs (Ficara et al., 2008).

In the case of short term HSCs we found the receptors Il17rb, Epha4
and Cd40 to be significant, and they regulated 21, 17 and 8 TFs respec-
tively (Table 1). The role of these receptors in regulating in short term
HSC is not well established and are novel predictions of our method.

2.7. Quiescent versus active skeletal muscle stem cells

Skeletal muscle is a postmitotic tissue that shows very low turnover
in the absence of disease or injury and its regenerative capacity is medi-
ated by satellite cells (SC, skeletal muscle stem cells) (Liu et al., 2013).
These cells remain generally in quiescent state and are activated upon
disease or injury. Here, we have analyzed the gene expression of quies-
cent SCs versus activated (injury induced) SCs in order to identify the
niche determinants of SC quiescence and active states (Liu et al.,
2013). We identified 2961 differentially expressed genes, including
vs short term HFSCs. B) Long term vs short term HSCs and C) Quiescent vs Active SCs.
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183 receptors and 176 TFs. In the case of quiescent SCs, our method
identified Notch1 and Fgfr1 as significant (Table 1). Notch signaling
was found to regulate 59 TFs whereas, Fgfr1 was found to regulate 28
TFs. Importantly, active Notch signaling is experimentally known to
maintain quiescent SC state by preventing its activation (Bjornson et
al., 2012). In fact, genetic ablation of Notch mediated signaling leads to
concomitant aberrant activation of SCs eventually leading to their de-
pletion (Bjornson et al., 2012). However, the relevance of Fgfr1 mediat-
ed signaling for quiescent SCs is not immediately clear.

In the case of injury induced active SCs, Ilrl1 and Cd44 were predict-
ed to be significant (Table 1). Ilrl1 was found to regulate 46 TFs, where-
as, Cd44mediated signaling controlled 25DETFs (Fig. 3C). In this regard,
Cd44 is known tomeditate SCmigration and differentiation in response
to muscular injury (Scimeca et al., 2015). Further, Cd44 knock down
mice exhibited severely compromised migration and differentiation of
SCs validating our predictions (Mylona et al., 2006). The role of Ilrl1
for regulating injury induced activation of SCs is not known.

3. Discussion

Characterizing the regulatory relationship between stem cells and
their niches is fundamental for understanding tissue homeostasis and
its implications in disease conditions. Rapid strides are made in this di-
rection by explicit experimental characterization of niche elements and
their respective role in maintaining specific stem cell phenotypes
(Scadden, 2014). A few computationalmethods relying on this informa-
tion have been proposed to describe stem cell-niche interactions. How-
ever, the immense complexity that arises due to the many-body nature
of stem cell-niche interactions, as well as niche dynamics, urges the im-
plementation of alternative computational approaches. In this direction,
we have developed a computationalmethod that attempts to overcome
this complexity by capturing the net effect of the niche that is reflected
at the level of constant activation/inhibition of stem cell signaling path-
ways responsible for the stable maintenance of stem cell phenotypes.
Further, we showed that our method, though simple in its framework,
is able to capture experimentally confirmed niche determinants for dif-
ferent stem cell systems from a large set of DERs. Notably, from more
than 300DERs, ourmethodwas able to capture S1pr1 and Egfr formain-
tenance of neural stem cell quiescent and active states, respectively
(Codega et al., 2014). Prediction of Cd44 as a top ranking receptor for
maintaining active OPCs state is experimentally known in the context
of OPC migration upon injury-induced activation (Piao et al., 2013).
Similarly, in the case of activated SCs in response to injury, our method
predicted Cd44, whose role in SC migration was observed experimen-
tally (Kobielak et al., 2007). Interestingly, Cd44 mediated signaling
seems responsible for injury-induced activation of both OPCs and SCs,
and it might represent a common mechanism of stem cell response to
injury. Further, it points to the potential application of our method for
understanding degenerative disease mechanisms in general and can
possibly aid development of novel therapeutic strategies.

A precise quantitative assessment of overall sensitivity and specificity
of our computational approach is not readily possible due to incomplete
and ever increasing knowledge of niche mediated signaling pathways
that regulate stem cell phenotypes. Particularly, the information about
false positives and true negatives in stem cell systems are rarely avail-
able. However, in the case of false negatives, for some stem cell systems
that were studied, we found that our approach could not identify certain
known signaling pathways mediated by the niche. For instance, in the
case of NSCs, prostaglandin signaling (mediated by Ptgdr) andNotch sig-
naling are known to maintain the quiescent phenotype, and were not
identified by our approach (Codega et al., 2014; Llorens-Bobadilla et al.,
2015). Similarly, Wnt signaling which is known to play a role in long
term maintenance of HSCs was not identified by our approach
(Chotinantakul and Leeanansaksiri, 2012). Possible reasons for not iden-
tifying some of the knownnichemediated signaling responsible for stem
cell phenotype maintenance could be due to lack of information in the
interactome databases, inherent noise in gene expression data,
lack of good correlation between transcriptome and proteome/
phosphoproteome levels and redundancy in signaling pathways. Despite
these, our method, relying only on gene expression data could success-
fully identify several experimentally known candidates (true positives)
of nichemediated signaling formaintaining specific stem cell phenotype.

In the current study, we used only gene expression data for the anal-
ysis; however, phosphoproteomics data could also be used to assign
weights to the signaling interactome for the inference of niche determi-
nants. An important limitation of the method is that it considers only
DERs as the sources of niche induced signaling to regulate the expression
of downstream TFs for a given phenotype. Nevertheless, even those re-
ceptors that are not differentially expressed can play a crucial role in reg-
ulating the target TFs for the stable maintenance of TRNs. Nevertheless,
given only gene expression data with limited number of replicates, it is
not feasible to quantitate absolute expression levels of genes without
resorting to differential gene expression. However, with the advance-
ments in single cell sequencing techniques, that can offer expression
levels at single cell resolution, one can more reliably quantitate absolute
gene expression levels for a given cell type. In such cases, our method
does not need to rely on differential gene expression and can take advan-
tage of absolute expression status of the receptors to infer the niche de-
terminants. Further, this could allow considering multiple phenotypes
simultaneously without the need for pair-wise comparison. Therefore,
the proposed method is flexible in its application to different kinds of
data including phosphoproteomics and single cell RNA sequencing.

In summary, we have proposed a computational method that sim-
plifies the complexity of stem cell-niche interactions and enables iden-
tification niche determinants of cellular phenotypic states. Given the
importance of the role played by deregulated niche components in sev-
eral diseases, our computational method could aid the identification of
novel therapeutic strategies for regenerative medicine by mimicking
the niche effect on the target stem cells.

4. Materials and methods

A schematic representation of ourmethod is shown in Fig. 1 and the
detailed description of the methods is provided in the Supplementary
Information.

4.1. Phenotype specific signaling pathway inference

A raw signaling interactome originating from DERs to DETFs in each
cell type is retrieved from MetaCore (GeneGo Inc. (Nikolsky et al.,
2005)) using the Trace Path algorithm. Then, we employed a PCST for-
malism to infer a minimal sub-network (Steiner tree) in the raw inter-
actome that connects the dummy niche node with the DETFs via
specific receptors. For this, we used a message-passing algorithm,
based on belief propagation for the inference of Steiner trees (Bailly-
Bechet et al., 2011). Formally, the PCST problem is defined as, given a
graph G = (V,E), representing the raw signaling interactome, with de-
fined edge costs (weights), ce and node prizes bv find a connected sub-
graph T = (V′,E’), V′ ⊆ V, E′ ⊆ E, that minimizes the following function:

T ¼ min
E0 ;V 0ð Þconnected

∑e∈E0ce−λ∑v∈V 0bvð Þ ð1Þ

The costs of the edge ce reflect the probability of the target node to be
differentially active for the given interaction (described in Supporting
Information). The node prizes are computed by bv = | log fold change
(V)| from the gene expression data. The constant λ determines the
tradeoff of adding new proteins to the inferred network by balancing
the cost of new edges and the prize gained by adding a new protein.
We chose λ = 0.01 for our simulations. Essentially, minimizing this
function implies, collecting the largest set of high prize nodes while
minimizing the set of high cost edges in a tradeoff tuned by λ that
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results in a connected subgraph. We employed a heuristic method
based on a message-passing algorithm to infer the PCSTs (Bailly-
Bechet et al., 2011).

Since our signaling interactome is differentially weighted to account
for the two phenotypes, the algorithmwas employed twice for inferring
sub-networks specific to each phenotype. This will result in two differ-
ent sub-networks from the upregulated receptors in each phenotype to
the entire set of DETFs (Fig. 1). The significance of the inferred receptors
in the sub-network were assessed by randomizing the edge weights it-
eratively, and z-scores for statistical significance of the sub-network
was calculated based on the number of TFs controlled by the receptor
under randomized edge weights. The z-score was calculated by (x−x
′)/σ, where x is the number of TFs regulated by a receptor in the original
weighted network and x’ is the average and σ is the standard deviation
of the number of TFs regulated by the same receptor with 100 random-
ized edge weights. Only those receptors with z-score greater than 2.5
were shortlisted for downstream analysis.

4.2. Integration of signaling with transcriptional network

Each receptor-to-target DETF path inferred from PCSTs is collapsed
into a single network edge, whose sign is defined as the product of the
signs in the original path. In parallel, the interaction network among
DETFs is retrieved from MetaCore (GeneGo Inc. (Nikolsky et al.,
2005)), which is then combined with the collapsed receptor-target
DETF signaling edges. To model the TRN stabilized by the niche effect
through intracellular signaling, this combined rawnetworkwas contex-
tualized (pruned) against the stable gene expression pattern using the
method proposed by (Crespo et al., 2013). Briefly, this algorithm as-
sumes that each cellular phenotype is a stable steady state attractor of
a given network, and removes edges that are inconsistent with the
Booleanized mRNA expression data. Receptor-target DETF edges are
treated as fixed interactions. The Boolean simulation is carried out
using the synchronous updating scheme. The node weights are set to
all 1. The inhibitor dominant logic rule is applied (i.e., the presence of
at least one inhibitory interaction is sufficient to suppress the target
gene expression).

4.3. Identification of sub-networks necessary for TRN stability

To identify sub-networks that play key roles in the maintenance of
TRN stability and therefore whose perturbation could trigger a signifi-
cant change in the TRN state, target DETFs in each sub PCST are
perturbed in the combined signaling–TRN. For each inferred sub-net-
work, the significance p-value is computed with the t-test on the num-
ber of genes whose Boolean states have changed after the perturbation.
The null distribution is formed by perturbing themedian number of tar-
get DETFs over all sub-networks in each cell type. This random pertur-
bation is repeated 100 times and sub-networks with the p-value
below 0.05 are considered significant (i.e., necessary for TRN stability).
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