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Abstract

Context. Simulink/Stateflow is an advanced system modeling platform which is prevalently used
in the Cyber Physical Systems domain, e.g., automotive industry, to implement software con-
trollers and plant, i.e., environment, models. Testing Simulink models is complex and poses sev-
eral challenges to research and practice. Simulink models often have mixed discrete-continuous
behaviors and their correct behavior crucially depends on time. Inputs and outputs of Simulink
models are signals, i.e., values evolving over time, rather than discrete values. Further, Simulink
models are required to operate satisfactorily for a large variety of hardware configurations. Finally,
developing test oracles for Simulink models is challenging, particularly for requirements captur-
ing their continuous aspects. In this dissertation, we focus on testing mixed discrete-continuous
aspects of Simulink models, an important, yet not well-studied, problem. Existing Simulink test-
ing techniques are more amenable to testing and verification of logical and state-based properties.
Further, they are mostly incompatible with Simulink models containing time-continuous blocks
and floating point and non-linear computations. In addition, they often rely on the presence of
formal specifications that are expensive and rare in practice, to automate test oracles.

Approach. In this dissertation, we propose a set of approaches based on meta-heuristic search and
machine learning techniques to automate testing of software controllers implemented in Simulink.
The work presented in this dissertation is motivated by Simulink testing needs at Delphi Auto-
motive Systems, a world leading part supplier to the automotive industry. To address the above-
mentioned challenges, we rely on discrete-continuous output signals of Simulink models and
provide output-based, black-box test generation techniques to produce test cases with high fault-
revealing ability. Our algorithms are black-box, hence compatible with Simulink/Stateflow mod-
els in their entirety. Further, we do not rely on the presence of formal specifications to automate
test oracles. Specifically, we propose two sets of test generation algorithms for closed-loop and
open-loop controllers implemented in Simulink: (1) For closed-loop controllers, test oracles can
be formalized and automated relying on the feedback received from the controlled system or
its model. We characterize the desired behavior of closed-loop controllers in a set of common
requirements, and then use search to identify the worst-case test scenarios of controllers with re-
spect to each requirement. (2) For open-loop controllers, we cannot automate test oracles since
the feedback is not available, and test oracles are manual. Hence, we focus on providing test
generation algorithms that develop small test suites with high fault revealing ability. We further
provide a test case prioritization algorithm to rank the generated test cases based on their fault
revealing ability and lower the manual oracle cost.

Our test generation and prioritization algorithms are evaluated with several industrial and
publicly available Simulink models. Specifically, we showed that fault revealing ability of our
approach outperforms that of Simulink Design Verifier (SLDV), the only test generation toolbox
of Simulink and a well-known commercial Simulink testing tool. In addition, using our approach,
we were able to detect several real faults in Simulink models from our industry partner, Delphi,
which had not been previously found by manual testing based on domain expertise and existing
Simulink testing tools.

Contributions. The main research contributions in this dissertation are:

1. An automated approach for testing closed-loop controllers that characterizes the desired
behavior of such controllers in terms of a set of common requirements and combines random



exploration and search to effectively identify the worst-case test scenarios of controllers with
respect to each requirement.

2. An automated approach for testing highly configurable closed-loop controllers by account-
ing for all their feasible configurations and providing strategies to scale the search to large
multi-dimensional spaces relying on dimensionality reduction and surrogate modeling

3. A black-box output-based test generation algorithm for open-loop Simulink models which
uses search to maximize the likelihood of presence of specific failure patterns (i.e., anti-
patterns) in Simulink output signals.

4. A black-box output-based test generation algorithm for open-loop Simulink models that
maximizes output diversity to develop small test suites with diverse output signal shapes
and, high fault revealing ability.

5. A test case prioritization algorithm that relies on output diversity of the generated test suites
as well as the dynamic structural coverage achieved by individual tests to rank test cases
and help engineers identify faults faster by inspecting a few test cases.

6. Two test generation tools, namely CoCoTest and SimCoTest, that respectively implement
our test generation approaches for closed-loop and open-loop controllers.

ii
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Chapter 1

Introduction

1.1 Context
This dissertation presents a set of approaches based on meta-heuristic search and machine learning
techniques to automate testing of software controllers and their plant/environment models imple-
mented in Simulink/Stateflow [The MathWorks Inc., 2003b]. The work presented in this dissertation
has been done in collaboration with Delphi Automotive Systems [Delphi, 2016], a world leading
part supplier company to the automotive industry, based in Luxembourg. Simulink/Stateflow is a
system modeling notation which is prevalently used by engineers to develop software controllers
in the Cyber-Physical Systems (CPS) domain, e.g., in automotive and avionics industries. In this
dissertation, we mainly focus on testing mixed discrete-continuous aspects of Simulink models, an
important–yet not well-studied–problem [Briand et al., 2016, Heimdahl et al., 2013, Zander et al.,
2012, Pretschner et al., 2007a].

Software development and testing in the CPS domain typically comprises three stages shown
in Figure 1.1: (1) Model-in-the-Loop (MiL): At MiL level, the control functions and environment
models are developed and tested in a system modeling notation. In many sectors and in particular
in the automotive domain, these models are created in Matlab/Simulink/Stateflow (or Simulink for
short) from Mathworks [The MathWorks Inc., 2003b]. The focus of MiL testing is to verify the
control behavior or logic and explore and compare alternative control design options, (2) Software-
in-the-Loop (SiL): At SiL level, the controller model is converted to code (partly auto coded and
partly manually). The focus of SiL testing is on controller code which can run on the target platform,
and (3) Hardware-in-the-Loop (HiL): At HiL level, the controller software is fully integrated into
the final control system (e.g., in automotive domain, the controller software is installed on Electrical
Control Units (ECUs)). The main objective of HiL testing is to verify the integration of hardware and
software in a more realistic environment.

In this thesis, among the above three levels, we focus on MiL testing. That is, testing Simulink
models which implement control functions used in embedded systems. Development and testing at
MiL level is relatively fast compared to SiL and HiL as the engineers can quickly modify the controller
model and immediately test the system. Furthermore, Simulink model testing is entirely performed in
a virtual environment, enabling execution of a large number of test cases where cost and time budget
are driven by available CPU time and there is no risk of hardware damage. Finally, test cases obtained
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Figure 1.1. Three stages of software development and testing in Cyber Physical Systems domain: Model-in-
the-Loop (MiL), Software-in-the-Loop (SiL), and Hardware-in-the-Loop (HiL). In this thesis, we focus on MiL
testing.

for Simulink models can later be used at SiL and HiL levels either directly or after some adaptations.

Currently, in most companies, testing Simulink models is limited to executing the models for
a small number of simulations, and manually inspecting the results of individual simulations. The
simulations are often selected based on the engineers’ domain knowledge and experience, but in a
rather unsystematic way. Our primary goal in this thesis is to develop automated test generation
techniques for testing Simulink/Stateflow models. Such automation should address the following
challenges:

1. Simulink models have mixed discrete-continuous behaviours. That is, they often process magnitude-
continuous and time-continuous input signals (i.e., real-valued functions over time) and produce
magnitude-continuous and time-continuous output signals.

2. Simulink models implement timed systems. The correct behavior of such systems crucially de-
pends on the time that is required for completion of a particular computation or for a particular
physical phenomenon.

3. The embedded software functions implemented by Simulink models are highly configurable
and are required to operate satisfactorily on a large variety of hardware/physical devices.

4. Developing test oracles, i.e., a procedure that distinguishes between the correct and incorrect
behaviors of the software, is challenging. Formalization and automation of test oracles are
specifically less studied for requirements capturing continuous aspects of embedded software
systems [Briand et al., 2016, Heimdahl et al., 2013, Pretschner et al., 2007a].

1.2 Approach
To address the above challenges, in our work we rely on discrete-continuous output signals of Simulink
models to generate test cases with high fault revealing ability. Simulink models have rich discrete-
continuous outputs, providing a useful source of information for fault detection. By inspecting output
signals, one can determine whether the model output reaches appropriate values at the right times,
whether the time period that the model takes to change its values is within acceptable limits, and
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whether the signal shape is free of erratic and unexpected changes that violate continuous dynamics
of physical processes or objects. In our work, we identified a set of heuristics based on output signals
of Simulink models that mimic the engineers’ intuition when they look for failures in output signals.
We then used search algorithms to generate fault revealing test cases for Simulink models relying on
the identified heuristics. Specifically, in this thesis, we propose two separate sets of test generation
techniques for closed-loop and open-loop controllers implemented in Simulink, as follows:

1. Closed-loop controllers are a class of embedded controllers where the goal is to control a system,
often called the plant, such that its output follows a reference control signal, called the desired
output. Closed-loop controllers are typically used when the control behavior of the plant is not
precisely known and any disturbance can significantly impact the result of the control process.
Figure 1.2(a) shows an abstract view of a closed-loop controller in a feedback loop with a plant
model.

For closed-loop controllers, the plant feedback and the desired controller output are both avail-
able. Hence, from the perspective of test generation, test oracles can be formalized and automated
in terms of desired output and actual output (feedback). In our approach, we characterize the de-
sired behavior of such controllers in a set of common requirements. We then use search to identify
the worst-case test scenarios of the controller with respect to each controller requirement. Fig-
ure 1.2(b) shows an example of the controller requirements, called smoothness. The smoothness
requirement states that the actual output shall not change abruptly when it is close to the desired
one. That is, the value of the controller overshoot/undershoot, indicated with a solid arrow in Fig-
ure 1.2(b), must always remain lower than a threshold value. To find the worst-case test scenario
with respect to smoothness requirement, we apply search to find the test scenario with the maxi-
mum value of controller overshoot/undershoot. Our approach for testing closed-loop controllers is
described in Chapter 3. We further extend this approach to include all the feasible configurations
of closed-loop controllers by providing strategies to scale the search to large multi-dimensional
spaces in Chapter 4.

2. Open-loop controllers are another class of embedded controllers that control the plant in the ab-
sence of environment feedback. Open-loop controllers are typically used when the possible dis-
turbances do not largely impact the control behavior or when it is too costly to implement the
feedback mechanism. Figure 1.2(c) shows an abstract view of an open-loop controller.

Our approach for testing closed-loop controllers fails to automate test oracles for open-loop con-
trollers, because the plant feedback is not available in open-loop controllers. As a result, we
assume that test oracles are manual for open-loop controllers and focus on providing test case
generation algorithms that develop small but effective test suites with high fault revealing abil-
ity. Our approach is hence able to effectively reduce the cost of manual test oracles. To develop
such test suites, we identified two heuristics based on output signals of Simulink models. The
first heuristic attempts to maximize the likelihood of failure patterns (i.e., anti-patterns) in the
Simulink output signals. Figure 1.2(d) shows two failure patterns in mixed discrete-continuous
outputs of Simulink models, namely instability and discontinuity. Presence of either of these fail-
ure patterns in Simulink outputs may have undesirable impact on physical processes or objects
that are controlled by or interact with the controller. Our failure-based test generation algorithm
uses search to maximize the likelihood of presence of these failure patterns in the output signals of
Simulink models. Our second heuristic attempts to maximize the diversity between output signals
of test cases within a test suite. Figure 1.2(e) provides an insight as to how our output diversity

3



Chapter 1. Introduction

(a) Closed-loop Control (c) Open-loop control

instability
failure pattern output diversity

(b) Smoothness requirement (d) Instability and discontinuity 
     failure patterns

desired output
actual output

PlantController
Desired 
Output

Actual output (feedback) 

System 
Output+

-

Control 
Signal

PlantController

System 
Output

Input
Signals

Output 
Signals

discontinuity
failure pattern

< threshold

(e) Output diversity

Figure 1.2. An overview of our output-based test generation approaches: (a) a closed-loop controller, (b)
an smoothness requirement for closed-loop controller,(c) an open-loop controller, (d) two failure patterns for
open-loop controllers, and (e) output diversity.

algorithm works. For output signals of test cases within a test suite (e.g., three output signals in
Figure 1.2(e)), we attempt to maximize the distances between output signals, aiming at generating
output signals with highly diverse shapes. Our intuition is that test cases that yield diverse output
signals are likely to reveal different types of faults in Simulink models. Our failure-based and
output diversity test generation algorithms for open-loop controllers are described in Chapters 5
and 6.

1.3 State of the art
The existing techniques that have been previously applied for testing and verification of Simulink
models can be broadly categorized into two groups: model-based testing techniques and model testing
or verification:

• Model-based testing relies on models to generate both test scenarios and test oracles for testing
implementation-level artifacts. A number of model-based testing techniques have been applied to
Simulink models with the aim of achieving high structural coverage or detecting a large number
of mutants. For example, search-based approaches [Windisch, 2009, Windisch, 2010], reachability
analysis [Mohalik et al., 2014, Hamon, 2008], guided random testing [Satpathy et al., 2008, Sims
and DuVarney, 2007], and a combination of these techniques [The MathWorks Inc., 2016g, Reac-
tive Systems Inc., 2016a, Satpathy et al., 2012, Peranandam et al., 2012, Gadkari et al., 2008, Bohr
and Eschbach, 2011] have been previously applied to Simulink models to generate coverage-
adequate test suites. Alternatively, some search-based [Zhan and Clark, 2005, Zhan and Clark,
2008] and bounded reachability analysis [Brillout et al., 2009] techniques have been used to gen-
erate mutant-killing test suites from Simulink models.
The model-based testing techniques aim to generate test inputs as well as test oracles from Simulink
models. That is, the Simulink models are considered to be correct. In reality, however, Simulink
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models might contain faults. Hence, in our work, we propose techniques to provide test inputs
with high fault-revealing ability to detect faults in complex discrete-continuous Simulink models
for which precise test oracles are not available.

• In contrast to model-based testing, model testing and model checking techniques aim to evaluate
the correctness of models. Specifically, they attempt (1) to exhaustively verify the correctness of
models against a given set of properties using model checking, (2) to provide probabilistic guar-
antees for the given properties using statistical model checking, or (3) to detect faults in models
by executing test inputs aiming at falsifying the given properties. Model checking has been previ-
ously used to detect faults in Simulink models [Cleaveland et al., 2008, Hamon, 2008, Barnat et al.,
2012, Mazzolini et al., 2010] by showing that a path leading to an error is reachable. To allevi-
ate the scalability problem of model checking, statistical model checking approaches check some
randomly sampled simulations from the space of all possible model simulations to estimate the
probability of the satisfaction or violation of the properties of interest [Zuliani et al., 2013, Legay
et al., 2010, Younes and Simmons, 2006]. Simulation-based testing techniques run a set of test
cases attempting to falsify assertions and properties instrumented into Simulink models [Reactive
Systems Inc., 2016b, Cleaveland et al., 2008, S-Taliro, 2016, Zutshi et al., 2015].
Similar to our approach, these techniques aim at detecting faults and verifying the correctness of
Simulink models. However, they all rely on the presence of formal specifications that characterize
the expected behaviors of Simulink models. Formal specifications are expensive and may not be
available in practice. Furthermore, existing formal specifications typically describe only discrete
system properties. As a result, even in the presence of some formal properties, engineers still
need to check output signals to detect more failures. In fact, in practice it is likely and common
that engineers assess output signals manually to detect failures. Hence, in our work, we do not
rely on the presence of formal specifications to automate test oracles. Instead, for closed-loop
controllers, we automate test oracle based on controller’s feedback, and for open-loop controllers
we assume that test oracles are manual. In the latter case, we generate small test suites with high
fault revealing ability that effectively reduce the manual oracle cost. We further provide a test
prioritization algorithm to lower the manual oracle cost.

In the beginning of Chapter 6, we discuss the challenges concerning the existing test generation
techniques for Simulink models, in more details. We further discuss the related work on Simulink
testing and other related topics in Chapter 7.

1.4 Research Contributions
In this dissertation, we addressed the challenges of testing Simulink/Stateflow models with mixed
discrete-continuous behaviors. Specifically, the main research contributions in this thesis are:

1. An automated approach for testing closed-loop controllers that characterize the desired behavior
of such controllers in a set of common requirements, and combines random exploration and
meta-heuristic search (1) to generate shaded diagrams, called HeatMaps [Grinstein et al., 2001],
visualizing the overall controller behavior with respect to the controller’s requirements, and (2)
to identify the worst-case test scenarios of the controller with respect to each requirement. This
contribution has been published in a conference paper [Matinnejad et al., 2013] and a journal
paper [Matinnejad et al., 2015a] and is discussed in Chapter 3.
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2. An automated approach for testing highly configurable closed-loop controllers by accounting
for all their feasible configurations in addition to input signals of the controller. Our approach
includes strategies to scale the search to large multi-dimensional spaces relying on dimensional-
ity reduction and surrogate modeling. Specifically, we use regression trees [Witten et al., 2011]
instead of HeatMaps to visualize the overall controller behavior in a multi-dimensional space,
composed of input variables and configuration parameters. In addition, we use sensitivity anal-
ysis [Campolongo et al., 2007] to identify configuration parameters with the most significant
impact on search fitness functions and focus on them. Finally, machine learning [Witten et al.,
2011] is applied to compute a surrogate function that can predict the output of controller model
with a reasonably high-degree of confidence without executing the model. This contribution has
been published in a conference paper [Matinnejad et al., 2014b] and is discussed in Chapter 4.

3. Two black-box output-based (failure-based and output diversity) test generation algorithms for
Stateflow models with mixed discrete-continuous behaviors. Our failure-based algorithm at-
tempts to maximize the likelihood of presence of specific failure patterns, i.e., instability and
discontinuity, in discrete-continuous output signals of Stateflow models. Our output diversity
algorithm maximizes the distance between output signals of test cases within a test suite to
develop small test suites with high fault revealing ability. The notion of signal distance in this
algorithm is defined based on the Euclidean distance between signal vectors, and hence we re-
fer to it as vector-based output diversity. This contribution has been published as a conference
paper [Matinnejad et al., 2015a] and is presented in Chapter 5.

4. An output diversity test generation algorithm based on a new notion of signal distance and a
test prioritization algorithm for Simulink/Stateflow models in their entirety. We distinguished
between the problem of testing simulation Simulink models with time-continuous behaviors and
code-generation Simulink models with time-discrete behaviors, and proposed test generation
algorithms applicable to both. Our output diversity algorithm uses a new notion of feature-
based output diversity defined based on a set of representative and discriminating signal feature
shapes, to enhance our vector-based output diversity algorithm. Our test prioritization algorithm
generates a ranked list of test cases such that the most fault-revealing test cases are ranked
higher in the list, helping engineers identify faults faster by inspecting a few test cases. We
further compared our test generation approach with Simulink Design Verifier (SLDV) [The
MathWorks Inc., 2016g], the only testing toolbox of Simulink and showed that our approach
outperforms SLDV in revealing faults. This contribution has been published published as a
conference paper at the 38th International Conference on Software Engineering (ICSE 2016)
[Matinnejad et al., 2016a] and is discussed in Chapter 6. We have also submitted an extension
of our ICSE paper to Transactions on Software Engineering (TSE) journal.

5. Continous Controller Tester (CoCoTest) [ Matinnejad, 2016] and Simulink Controller Tester
(SimCoTest) [Matinnejad, 2016] are tools that implement our test generation approaches for
closed-loop and open-loop controllers, respectively. CoCoTest and SimCoTest have been pub-
lished as two tool papers [Matinnejad et al., 2014a] and [Matinnejad et al., 2016a], and are
presented in Chapters 3 and 6.

6. Empirical evaluation of our proposed approaches by applying them to real industrial closed-
loop and open-loop Simulink/Stateflow controllers from our industry partner as well as publicly
available models.

6



1.5. Organization of the Dissertation

1.5 Organization of the Dissertation
Chapter 2 provides some foundational background on system modeling of dynamic systems, MAT-
LAB/Simulink/Stateflow models, and meta-heuristic search algorithms.

Chapter 3 describes our search-based test generation approach for closed-loop controllers imple-
mented in Simulink.

Chapter 4 describes our approach for testing highly configurable closed-loop controllers.

Chapter 5 describes our test generation algorithms for developing small and effective test suites for
mixed discrete-continuous Stateflow models that implement open-loop controllers.

Chapter 6 describes our test suite generation and test prioritization algorithms for testing Simulink/S-
tateflow models in their entirety.

Chapter 7 discusses related work.

Chapter 8 summarizes the thesis contributions and discusses perspectives on future work.

7





Chapter 2

Background

In this chapter, we present some foundational background related to system modeling of dynamic
systems described as MATLAB/Simulink/Stateflow models and single-state meta-heuristic search al-
gorithms. We will present the background related to supervised learning and surrogate modeling
techniques in Chapter 4 as they are used only in that chapter.

2.1 System modeling of dynamical systems
System modeling is the practice of creating mathematical descriptions of system properties and in-
teractions in the system, specified as a set of functions that describe the relations between those
properties [Wainer, 2009, Chaturvedi, 2009, Ledin, 2001]. When engineers are supposed to control
physical objects and processes, they create mathematical models of the controller software as well as
the system under control. These models capture the system behaviors and describe how the system is
monitored, controlled and regulated. In domains such as the CPS domain, the primary goal of system
modeling is simulation, i.e., design time testing of system models [Briand et al., 2016]. Simulation
aims to identify defects by testing models in early stages and before the system has been implemented
and deployed. The models usually go through several rounds of simulation and refinement, before
engineers gain enough confidence in their behaviors and prepare them for code generation.

In the CPS domain, we are interested in models that have dynamic behavior (i.e., models that
exhibit time-varying changes) [Lee and Seshia, 2011]. These models can be classified based on their
time-base (i.e., time-discrete versus time-continuous) and based on the values of their state variables
(i.e., magnitude-discrete versus magnitude-continuous). Specifically, these models might be time-
continuous magnitude-continuous, time-discrete magnitude-continuous, time-continuous magnitude-
discrete, and time-discrete magnitude-discrete [Wainer, 2009, Chaturvedi, 2009] (see Figures 2.1 (a)
to (d)).

Models built for the purpose of simulation are heterogeneous, encompassing software, network
and physical parts, and are meant to represent as accurately as possible the real world and its con-
tinuous dynamics. These models may build on one or a combination of the four different model-
ing paradigms shown in Figure 2.1. But most often, Simulation models include time-continuous or
magnitude-continuous abstractions to be able to capture plant models and the interactions between
software systems and plant models [Wainer, 2009, Chaturvedi, 2009]. Figure 2.2(a) shows an abstract
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Figure 2.1. Four different modeling paradigms for cyber physical systems.

overview of a simulation model. On the other hand, models built for the purpose of code generation
capture software parts only and are described using time-discrete magnitude-discrete models [The
MathWorks Inc., 2016b, Krizan et al., 2014]. This is because the generated software code from these
models receives sampled input data in terms of discrete sequences of events and has to run on plat-
forms that support discrete computations only. Figure 2.2(b) shows an abstract overview of a code
generation model. CPS development often starts with building simulation models capturing both con-
tinuous and discrete behaviors of a system [Wainer, 2009, Chaturvedi, 2009]. These models enable
engineers to explore and understand the system behavior, to compare alternative design options and
to start system testing very early. Simulation models are then discretized by replacing continuous cal-
culations with their corresponding discrete approximation calculations to develop models from which
software code can be automatically generated. Simulation models may, in addition, serve as test or-
acles (formal specifications) for testing and verification of software code. In this thesis we provide
effective verification and testing techniques to help engineers ensure correctness of simulation and
code generation models in the CPS domain.

2.2 MATLAB/Simulink/Stateflow
MATLAB/Simulink/Stateflow is an advanced platform for modeling, simulation and code-generation
of dynamic systems [The MathWorks Inc., 2003b], which is prevalently used in the CPS domain, e.g.,
in automotive industry. Simulink is a toolbox of MATLAB and provides a data-flow driven block
diagram notation for modeling control software. Figure 2.3 shows the Simulink model of a cruise
controller [The MathWorks Inc., 2016f]. Simulink models consist of blocks executing mathematical
functions and lines connecting the blocks to implement the desired flow of data between the functions.
Simulink models are structured into a hierarchy of subsystems, each one having a specific number of
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Figure 2.2. Simulation and Code generation models.

input and output signals. For example, the Controller subsystem in Figure 2.3(a) has six input and
two output signals. Each subsystem contains some Simulink blocks and may contain some other
subsystems. For example, the Controller subsystem contains another subsystem called PI Controller,
indicated by a red circle in Figure 2.3(b). Figure 2.3(c) shows inside the PI Controller subsystem.
The value of each model input goes through a sequence of computations performed by Simulink
blocks in different subsystems, and eventually contributes to the value of one or several outputs of the
model. In addition, Simulink models mostly incorporate a large number of configuration parameters,
which are used to adjust the controller behavior for the final hardware platform. For example, the two
configuration parameters KInc and KDec, indicated by dashed red circles in Figure 2.3(b), identify
the step values by which the cruise controller increases and decreases the car speed, respectively.

Simulink blocks can be broadly classified into stateless and stateful blocks. The output of state-
less blocks only depends on the current values of the block inputs. Examples of stateless blocks are
logical and mathematical operations and user-defined functions. On the other hand, output of the
stateful blocks depends on both the current input values as well as the state of the block. Unit Delay
is an example of stateful blocks which holds and delays its input by one simulation step. Discrete and
continuous integrator blocks are other examples of stateful blocks. The stateful blocks can further
be categorized into discrete and continuous blocks. In the discrete stateful blocks, the state does not
change between time steps. Hence, their output signals are magnitude-discrete, like the signal in Fig-
ure 2.1(d). The PI Controller in Figure 2.3(c) contains a time-discrete integrator. On the contrary, the
continuous stateful blocks update the state continuously according to specified differential equations.
Hence, their output signals are magnitude-continuous, like the signal in Figure 2.1(b). For example,
a continuous integrator block represents the differential equation dy

dt = x, where x and y are the block
input and output, respectively.

Stateflow [The MathWorks Inc., 2016h] is a hierarchical state machine language integrated into
Simulink to model and simulate event-driven behavior of reactive systems. Such systems transition
from one operating mode to another in response to input events and system conditions. Stateflow
charts model the mode changes as a transition system. Stateflow allows input and output data, events
for triggering other Stateflow charts,and actions and conditions that can be attached to states and
transitions. Figure 2.4 shows an example of a Stateflow model. The ShiftLogic Stateflow subsystem,
shown in Figure 2.4(a), implements part of an Auto Transmission Simulink controller. Figure 2.4(b)
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(a) Cruise Controller model (b) Controller subsystem 

(c) PI Controller subsystem 

Figure 2.3. A Simulink model example: (a) Cruise Controller model, (b) Controller subsystem, and (c) PI
Controller subsystem.

shows the ShiftLogic Stateflow model consisting of four states, each one representing one gear state.
Up and Down represent the events of shifting the gear up and down by the driver, respectively.

2.3 Single-State Meta-Heuristic Search
Meta-heuristic search is a randomized optimization method [Luke, 2013]. It has been applied to a
wide range of problems for finding the optimal solution, where no analytic or numerical approxima-
tion technique can be used and brute force search is inapplicable due to the large size of the input
space. To be able to apply meta-heuristic search to a given problem, all one needs is: (1) a way for
creating and modifying arbitrary solutions to the problem, and (2) a method to assess and compare
the quality of alternative solutions with respect to the optimization goal. The latter is usually called
the fitness or objective function. In general, all meta-heuristic search algorithms can be described in
terms of five steps [Luke, 2013]:

1. initialize step creates an initial set of solutions
2. tweak step creates a new set of solutions by randomly modifying the existing ones
3. assess step evaluates and compares the quality of the new and existing solutions
4. select step defines a new set of solutions by choosing a mix of old and new solutions
5. iterate step repeats steps 2-4 until maximum resources are spent or optimal solution is found

Single-state meta-heuristic search algorithms keep only one single candidate solution in the solu-
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(a) ShiftLogic Stateflow subsystem

(b) ShiftLogic Stateflow model

Figure 2.4. A Stateflow model example: (a) ShitfLogic Stateflow subsystem, and (b) ShitfLogic Stateflow
model.

tion set. Population-based search algorithms, on the other hand, keep multiple candidate solutions in
the solution set, called the population. In our work, evaluating fitness functions takes a relatively long
time. Each fitness computation requires us to execute the simulation of the given Simulink model.
Depending on the simulation time, the number of simulation steps, and the presence of feedback-loop
in the model, this can take up to several minutes for one single simulation. For this reason, in our work
we opt for single-state search methods in contrast to population-based search methods such as Ge-
netic Algorithms (GA) [Luke, 2013]. Note that in population-based algorithms, we have to compute
the fitness functions for the new and modified members of the solution set at each iteration.

Below, we describe three single-state meta-heuristic search algorithms that we use in our work:
Hill-Climbing (HC), Hill-Climbing with Random Restarts (HCRR), and Simulated-Annealing (SA).
We present each algorithm and highlight their differences between in terms of the five general steps
of meta-heuristic search described above.

2.3.1 Hill-Climbing
Figure 2.5(a) shows the Hill-Climbing (HC) algorithm. HC is the simplest form of single-state meta-
heuristic search that continuously loops in an uphill direction. Initially, a candidate solution S is
generated at line 1 (initialize step). Then, at each iteration, a new solution R is generated by slightly
modifying the current solution S at line 3 (tweak step). The tweak operation slightly modifies point S
by adding some random noise to S. For example, if the candidate solution S is encoded by a single
real value x, the Tweak operator shifts S in the input space by adding value x0 to x. For HC algorithm,
the x0 is typically selected from a normal distribution with mean µ = 0 and variance s2. Then, the
new solution R replaces the current solution S at line 5, only if Fitness(R) is larger than Fitness(S),
i.e., R fits better to the optimization goal (assess and select steps). Figures 2.5(b) and (c) illustrate
the two different situations which may occur when comparing the fitness of R and S at line 4. In
Figure 2.5(b), we have moved in an uphill direction after tweaking S, so the algorithm keeps R as the
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(a)
Algorithm. Hill-Climbing

1. Let S be an initial candidate solution
2. repeat:
3. R Tweak(S)
4. if Fitness(R) > Fitness(S) :
5. S R
6. until maximum resources spent
7. return S

(b)

S

R

(c)

S
R

Figure 2.5. (a) Hill-Climbing procedure and (b,c) two different situations which may occur when comparing
new (R) and current (S) solutions.

current solution and throws away S. In Figure 2.5(c), on the contrary, we have moved in a downhill
direction, so the algorithm keeps S as the current solution and ignores R. The algorithm terminates
either after a certain number of iterations or when the fitness function reaches a plateau, meaning no
neighbor with a higher value can be found.

2.3.2 Hill-Climbing With Random Restarts
The Hill-Climbing algorithm in Figure 2.5(a) is essentially a greedy algorithm [Cormen et al., 2001]
that always makes a locally optimal choice by picking a good neighbor as the current solution. As
a result, it often gets stuck at a local optimum since it may be unable to find its way off a plateau
in the fitness function. An attempt to solve this problem is provided by Hill-Climbing with Random
Restarts algorithm. HCRR is essentially a series of Hill-Climbing searches from different random
initial points. Specifically, it differs from HC only in the replace step. Like HC, HCRR replaces the
current solution with a new solution with a higher fitness function. In addition, HCRR replaces the
current solution with a random candidate solution from time to time. Figure 2.6(b) illustrates how
replacing S with a random candidate solution may help getting off the plateau in fitness function and
finding the global optimum. While Best has reached a local maximum in Figure 2.6(b), replacing
S with a random candidate solution moves the search to a region where climbing the hill yields the
global optimum.

2.3.3 Simulated Annealing
The success of Hill-Climbing with Random Restarts largely depends on the shape of the landscape.
Specifically, when the landscape contains a few local optima, as illustrated in Figure 2.7(a), HCRR is
likely to find a global optimum pretty quickly. However, when the landscape contains many needle-
like optima, as illustrated in Figure 2.7(b), HCRR becomes slow and inefficient and is likely to get
stuck at a local optimum. That is because for such a landscape, HCRR may need to make a large num-
ber of random restarts before the initial random candidate eventually moves to the region containing
the global optimum.

Simulated annealing algorithm attempts to provide a more efficient solution for noisy landscapes
with many needle-like optima. Figure 2.8 presents the Simulated Annealing (SA) algorithm. It differs
from HC only in the replacement strategy (replace step). Like HC, SA always replaces S with R
if R has a higher fitness function (lines 5� 6). However, SA may replace S with R even if S has
a better fitness function. This latter situation occurs only if another condition based on a random
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(a)

Algorithm. Hill-Climbing with Random Restarts

1. Let S be an initial candidate solution
2. Best S
3. repeat:
4. R Tweak(S)
5. if Fitness(R) > Fitness(S) :
6. S R
7. if Fitness(S) > Fitness(Best) :
8. Best S
9. Replace S with a random candidate solution from time to time
10. until maximum resources spent
11. return Best

(b)

Best

S

Random
Candidate
Solution

Figure 2.6. (a) Hill-Climbing with Random Restarts procedure and (b) the situation where random restart helps
getting off the plateau.

(a) (b)

Figure 2.7. Two different shapes of fitness landscape where HCRR performs (a) good and (b) poorly.

Algorithm. Simulated Annealing

1. Let S be an initial candidate solution
2. Best S
3. repeat:
4. R Tweak(S)
5. if Fitness(R) > Fitness(S) :
6. S R

7. elseif A random value chosen between 0 and 1 is less than e
Fitness(R)�Fitness(S)

t :
8. S R
9. Decrease t
10. if Fitness(S) > Fitness(Best) :
11. Best S
12. until maximum resources spent
13. return Best

Figure 2.8. The Simulated Annealing algorithm.

variable (called temperature t) holds. Specifically, S is replaced with R only if a randomly chosen
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value between 0 and 1 is less than a certain replacement probability RP(t,R,S) = e
Fitness(R)�Fitness(S)

t (line
7�8). Since t is always positive and Fitness(R) cannot be greater than Fitness(S) at line 7, RP(t,R,S)
is always less than or equal to one. Further, the replacement probability is higher when (1) there
exists a lager difference between Fitness(R) and Fitness(S), and (2) temperature t is higher. In SA
algorithm, temperature t is initialized to some value at the beginning of the search and decreases over
time, meaning SA replaces S with R more often at the beginning and less often towards the end of the
search. That is, SA is more explorative and looks at the entire search space during the first iterations,
but becomes more and more exploitative over time and focuses the search on the current solution’s
neighborhood.
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Chapter 3

Search-Based Automated Testing of
Continuous Controllers

In this chapter, we propose a search-based approach to automate generation of MiL level test cases for
continuous controllers. We identify a set of common requirements characterizing the desired behavior
of such controllers. We develop a search-based technique to generate stress test cases attempting to
violate these requirements by combining explorative and exploitative search algorithms [Luke, 2013].
Specifically, we first apply a purely explorative random search to evaluate a number of input signals
distributed across the search space. Combining the domain experts’ knowledge and random search
results, we select a number of regions that are more likely to lead to critical requirement violations
in practice. We then start from the worst-case input signals found during exploration, and apply
an exploitative single-state search [Luke, 2013] to the selected regions to identify test cases for the
controller requirements. Our search algorithms rely on objective functions created by formalizing the
controller requirements.

We have implemented our approach in a tool, called Continuous Controller Tester (CoCoTest).
We evaluated our approach by applying it to an automotive air compressor module and to a publicly
available controller model. Our experiments show that our approach automatically generates several
test cases for which the MiL level simulations indicate potential errors in the controller model or in the
environment model. Furthermore, the resulting test cases had not been previously found by manual
testing based on domain expertise. In addition, our approach computes test cases better and faster
than a random test case generation strategy. Finally, our generated test cases uncover discrepancies
between environment models and the real world when they are applied at the Hardware-in-the-Loop
(HiL) level.

Organization. This chapter is organized as follows. Section 3.1 precisely formulates the problem
we aim to address in this chapter. Section 3.2 outlines our solution approach and describes how we
cast our MiL testing approach as a search problem. The results of our evaluation of the proposed
MiL testing approach, and our MiL testing tool, CoCoTest, are presented in Sections 3.3 and 3.4,
respectively. Finally, Section 3.5 concludes the chapter.
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Figure 3.1. Continuous controllers: (a) A MiL level controller-plant model, and (b) a generic PID formulation
of a continuous controller.

3.1 Problem Formulation
Figure 3.1(a) shows an overview of a controller-plant model at the MiL level. Both the controller
and the plant are captured as models and linked via virtual connections. We refer to the input of the
controller-plant system as desired or reference value. For example, the desired value may represent the
location we want a robot to move to, the speed we require an engine to reach, or the position we need
a valve to arrive at. The system output or the actual value represents the actual state/position/speed
of the hardware components in the plant. The actual value is expected to reach or get as close as
possible to the desired value over a certain time limit. The task of the controller is to minimize the
Error, i.e., the difference between the actual and desired values.

The overall objective of the controller in Figure 3.1(a) may sound simple. In reality, however, the
design of such controllers requires calculating proper corrective actions for the controller to stabilize
the system within a certain time limit, and further, to guarantee that the hardware components will
eventually reach the desired state without oscillating too much around it and without any damage. A
controller design is typically implemented via complex differential equations known as proportional-
integral-derivative (PID) [Nise, 2004]. Figure 3.1(b) shows the generic (most basic) formulation of a
PID equation. Let e(t) be the difference between desired(t) and actual(t) (i.e., error). A PID equation
is a summation of three terms: (1) a proportional term KPe(t), (2) an integral term KI

s
e(t)dt, and

(3) a derivative term KD
de(t)

dt . Note that the PID formulation for real world controllers are more
complex than the formula shown in Figure 3.1(b). Figure 3.2 shows a typical output diagram of a PID
controller. As shown in the figure, the actual value starts at an initial value (here zero), and gradually
moves to reach and stabilize at a value close to the desired value.

Continuous controllers are characterized by a number of generic requirements discussed in Sec-
tion 3.1.1. Having specified the requirements of continuous controllers, we show in Section 3.1.2
how we define testing objectives based on these requirements, and how we formulate MiL testing of
continuous controllers as a search problem.

3.1.1 Testing Continuous Controller Requirements
To ensure that a controller design is satisfactory, engineers perform several simulations, and analyze
the output simulation diagram (Figure 3.2) with respect to a number of requirements. After careful
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Figure 3.2. A typical example of a continuous controller output ( Note that actual value does not reach desired
value in this example).

investigations, we identified the following requirements for controllers:

Stability (safety, functional): The actual value shall reach and stabilize at the desired value after t1
seconds. This is to make sure that the actual value does not divert from the desired value or does not
keep oscillating around the desired value after reaching it. 1

Smoothness (safety): The actual value shall not change abruptly when it is close to the desired one.
That is, the difference between the actual and desired values shall not exceed v2, once the difference
has already reached v1 for the first time. This is to ensure that the controller does not damage any
physical devices by sharply changing the actual value when the error is small.

Responsiveness (performance): The difference between the actual and desired values shall be at
most v3 within t2 seconds, ensuring the controller responds within a time limit.

The above three requirement templates are illustrated on a typical controller output diagram in
Figure 3.3 where the parameters t1, t2, v1, v2, and v3 are represented. The first three parameters
represent time while the last three are described in terms of the controller output values. As shown
in the figure, given specific controller requirements with concrete parameters and given an output
diagram of a controller under test, we can determine whether that particular controller output satisfies
the given requirements.

Having discussed the controller requirements and outputs, we now describe how we generate in-
put test values for a given controller. Typically, controllers have a large number of configuration
parameters that affect their behaviors. For the configuration parameters, we use a value assignment
commonly used for HiL testing because it enables us to compare the results of MiL and HiL testing.
In our approach, we focus on two essential controller inputs in our MiL testing approach: (1) the
initial actual value, and (2) the desired value. Among these two inputs, the desired value can be easily
manipulated externally. However, since the controller is a closed loop system, it is not generally pos-

1 Note that in our work we use step input signals as the desired value of the controller. Since the desired value is not
oscillating, the actual value shall not oscillate as well.
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Figure 3.3. The controller requirements illustrated on the controller output: (a) Stability, (b) Smoothness, and
(c) Responsiveness.

sible to modify the initial actual value and start the system from an arbitrary initial state. In general,
the initial actual state, which is usually set to zero, depends on the plant model and cannot be manip-
ulated externally. Assuming that the system always starts from zero is like testing a cruise controller
only for positive car speed increases, and missing a whole range of speed decreasing scenarios.

To eliminate this restriction, we provide a step signal for the desired value of the controller (see
examples of step signals in Figure 3.3 and Figure 3.4(a)). The step signal consists of two consecutive
constant signals such that the first one sets the controller at the initial desired value, and the second
one moves the controller to the final desired value. The lengths of the two signals in a step signal
are equal (see Figure 3.4(a)), and should be sufficiently long to give the controller enough time to
stabilize at each of the initial and final desired values. Figure 3.4(b) shows an example of a controller
output diagram for the input step signal in Figure 3.4(a).

3.1.2 Formulating MiL Testing as a Search Problem
Given a controller-plant model and a set of controller requirements, the goal of MiL testing is to
generate controller input values such that the resulting controller output values violate, or become
close to violating, the given requirements. Based on this description, any MiL testing strategy has
to perform the following common tasks: (1) It should generate input signals to the controller, i.e.,
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Figure 3.4. Controller input step signals: (a) Step signal. (b) Output of the controller (actual) given the input
step signal (desired).

step signal in Figure 3.4(a). (2) It should receive the output, i.e., Actual in Figure 3.4(b), from
the controller model, and evaluate the output against the controller requirements. Below, we first
formalize the controller input and output, and then, we derive four objective functions from the three
requirements introduced in Section 3.1.1. Specifically, we develop one objective function for each
of the stability and responsiveness requirements, and two objective functions for the smoothness
requirement.

Controller input and output: Let T = {0, . . . ,T} be a set of time points during which we observe
the controller behavior, and let min and max be the minimum and maximum values for the Actual

and Desired attributes in Figure 3.1(a). In our work, since input is assumed to be a step signal, the
observation time T is chosen to be long enough so that the controller can reach and stabilize within
T
2 at each of the two Desired position (e.g., see Figure 3.4(b)). Note that Actual and Desired

are of the same type and bounded within the same range, denoted by [min . . .max]. As discussed in
Section 3.1, the test inputs are step signals representing the Desired values (e.g. Figure 3.4(a)). We
define an input step signal in our approach to be a function Desired : T ! {min, . . . ,max} such that
there exists a pair Initial Desired and Final Desired of values in [min . . .max] that satisfy the
following conditions:

8t ·0 t < T
2 ) Desired(t) = Initial Desired

w

8t · T
2  t < T ) Desired(t) = Final Desired

We define the controller output, i.e., Actual, to be a function
Actual : T ! {min, . . . ,max} that is produced by the given controller-plant model, e.g., in MAT-
LAB/Simulink environment.

The search space in our problem is the set of all possible input functions, i.e., the Desired func-
tion. Each Desired function is characterized by the pair Initial Desired and Final Desired val-
ues. In control system development, it is common to use floating point data types at MiL level. There-
fore, the search space in our work is the set of all pairs of floating point values for Initial Desired
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and Final Desired within the [min . . .max] range.

Objective Functions: Our goal is to guide the search to identify input functions in the search space
that are more likely to break the properties discussed in Section 3.1.1. To do so, we create the follow-
ing four objective functions:

• Stability: Let t1 be the stability property parameter in Section 3.1.1. We define the stability
objective function Fst as:

StdDevt1+ T
2 <tT {Actual(t)}

That is, Fst is the standard deviation of the values of Actual function between t1 + T
2 and T .

• Smoothness: Let v1 be the smoothness property parameter in Section 3.1.1. Let tc 2 T be such
that tc > T

2 and
|Desired(tc)�Actual(tc)| v1

w

8t · T
2  t < tc) |Desired(t)�Actual(t)| > v1

That is, tc is the first point in time after T
2 where the difference between Actual and Final Desired

values has reached v1. We then define the smoothness objective function Fsm as:
maxtc<tT {|Desired(t)�Actual(t)|}

That is, the function Fsm is the maximum difference between Desired and Actual after tc.
Note that Fsm measures the absolute value of undershoot/overshoot. We noticed in our work that
in addition to finding the largest undershoot/overshoot scenarios, we need to identify scenarios
where the overshoot/undershoot is large compared to the step size in the input step signal. In
other words, we are interested in scenarios where a small change in the position of the controller,
i.e., a small difference between Initial Desired and Final Desired, yields a relatively large
overshoot/undershoot. These latter scenarios cannot be identified if we only use the Fsm function
for evaluating the Smoothness requirement. Therefore, we define the next objective function,
normalized smoothness, to help find such test scenarios.

• Normalized Smoothness: We define the normalized smoothness objective function Fns, by
normalizing the Fsm function:

Fns = Fsm
|Final Desired�Initial Desired|

Fns evaluates the overshoot/undershoot values relative to the step size of the input step signal.
• Responsiveness: Let v3 be the responsiveness parameter in Section 3.1.1. We define the re-

sponsiveness objective function Fr to be equal to tr such that tr 2 T and tr > T
2 and

|Desired(tr)�Actual(tr)| v3
w

8t · T
2  t < tr) |Desired(t)�Actual(t)| > v3

That is, Fr is the first point in time after T
2 where the difference between Actual and Final Desired

values has reached v3.

We did not use v2 from the smoothness and t2 from the responsiveness properties in definitions
of Fsm and Fr. These parameters determine pass/fail conditions for test cases, and are not required
to guide the search. Further, v2 and t2 depend on the specific hardware characteristics and vary from
customer to customer. Hence, they are not known at the MiL level. Specifically, we define Fsm to
measure the maximum overshoot rather than to determine whether an overshoot exceeds v2, or not.
Similarly, we define Fr to measure the actual response time without comparing it with t2.
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Figure 3.5. An overview of our automated approach to MiL testing of continuous controllers.

The above four objective functions are heuristics and provide quantitative estimates of the con-
troller requirements, allowing us to compare different test inputs. The higher the objective function
value, the more likely it is that the test input violates the requirement corresponding to that objective
function. We use these objective functions in our search algorithms discussed in the next section.

In the next section, we describe our automated search-based approach to MiL testing of controller-
plant systems. Our approach automatically generates input step signals such as the one in Fig-
ure 3.4(a), produces controller output diagrams for each input signal, and evaluates the four controller
objective functions on the output diagram. Our search is guided by a number of heuristics to identify
the input signals that are more likely to violate the controller requirements. Our approach relies on
the fact that, during MiL, a large number of simulations can be generated quickly and without break-
ing any physical devices. Using this characteristic, we propose to replace the existing manual MiL
testing with our search-based automated approach that enables the evaluation of a large number of
output simulation diagrams and the identification of critical controller input values.

3.2 Solution Approach
In this section, we describe our search-based approach to MiL testing of controllers, and show how
we employ and combine different search algorithms to guide and automate MiL testing of continuous
controllers. Figure 3.5 shows an overview of our automated MiL testing approach. In the first step, we
receive a controller-plant model (e.g., in MATLAB/Simulink) and a set of objective functions derived
from requirements. We partition the input search space into a set of regions, and for each region,
compute a value indicating the evaluation of a given objective function on that region based on random
search (exploration). We refer to the result as a HeatMap diagram [Grinstein et al., 2001]. HeatMap
diagrams are graphical 2-D or 3-D representations of data where a matrix of values are represented
by colors. In this work, we use grayscale 2-D HeatMap diagrams (see Figure 3.6(b) for an example).
These diagrams are intuitive and easy to understand by the users of our approach. In addition, our
HeatMap diagrams are divided into equal regions (squares), making it easier for engineers to delineate
critical parts of the input space in terms of these equal and regular-shape regions. Based on domain
expert knowledge, we select some of the regions that are more likely to include critical and realistic
errors. In the second step, we focus our search on the selected regions and employ a single-state
heuristic search to identify, within those regions, the worst-case scenarios to test the controller. Single-
state search optimizers only keep one candidate solution at a time, as opposed to population-based
algorithms that maintain a set of samples at each iteration [Luke, 2013].

In the first step of our approach in Figure 3.5, we apply a random (unguided) search to the entire
search space in order to identify high risk areas. The search explores diverse test inputs to provide an
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unbiased estimate of the average objective function values in different regions of the search space. In
the second step, we apply a heuristic single-state search to a selection of regions in order to find worst-
case test scenarios that are likely to violate the controller properties. In the following two sections,
we discuss these two steps.

3.2.1 Exploration
Figure 3.6(a) shows the exploration algorithm used in the first step. The algorithm takes as input a
controller-plant model M and an objective function F , and produces a HeatMap diagram (e.g., see
Figure 3.6(b)). Briefly, the algorithm divides the input search space S of M into a number of equal
regions. It then generates a random point p in S in line 4. The dimensions of p characterize an
input step function Desired which is given to M as input in line 6. The model M is executed in
Matlab/Simulink to generate the Actual output. The objective function F is then computed based on
the Desired and Actual functions. The tuple (p, f ) where f is the value of the objective function at
p is added to P. The algorithm stops when the number of generated points in each region is at least
N. Finding an appropriate value for N is a trade off between accuracy and efficiency. Since executing
M is relatively expensive, it is often not practical to generate many points (large N). Likewise, a small
number of points in each region is unlikely to give us an accurate estimate of the average objective
function for that region.

Input: The exploration algorithm in Figure 3.6(a) takes as input a controller-plant model M, an
objective function F , and an observation time T . Note that the controller model is an abstraction of
the software under test, and the plant model is required to simulate the controller model, and evaluate
the objective functions. The length of simulation is determined by the observation time T . Finally,
the objective function F is chosen among the four objective functions described in section 3.1.2.

Output: The output of the algorithm in Figure 3.6(a) is a set P of (p, f ) tuples where p is a point
in the search space and f is the objective function value for p. The set P is visualized as a HeatMap
diagram [Grinstein et al., 2001] where the axes are the initial and final desired values. In HeatMaps,
each region is assigned the average value of the values of the points within that region. The intervals
of the region values are then mapped into different shades, generating a shaded diagram such as the
one in Figure 3.6(b). In our work, we generate four HeatMap diagrams corresponding to the four
objective functions Fst , Fsm, Fns and Fr discussed in Section 3.1.2. The HeatMap diagrams generated
in the first step are reviewed by domain experts. They select a set of regions that are more likely
to include realistic and critical inputs. For example, the diagram in Figure 3.6(b) is generated based
on an air compressor controller model evaluated for the smoothness objective function Fsm. This
controller compresses the air by moving a flap between its open position (indicated by 0) and its
closed position (indicated by 1.0). There are about 10 to 12 dark regions, i.e., the regions with the
highest Fsm values in Figure 3.6(b). These regions have initial flap positions between 0.5 and 1.0,
and final flap positions between 0.1 and 0.6. Among these regions, domain experts tend to focus on
regions with initial values between 0.8 and 1.0, or final values between 0.8 and 1.0. This is because, in
practice, there is more probability of damage when a closed (or a nearly closed) flap is being moved,
or when a flap is about to be closed.

Algorithm: Figure 3.6(a) shows a generic description of our exploration algorithm. This algorithm
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(a)
Algorithm. Exploration

Input: A controller-plant model M with input search space S.
An objective function F .
An observation time T .

Output: An overview diagram (HeatMap) HM.
The set P of HM points.

1. Partition S into equal sub-regions
2. Let P = {}
3. repeat
4. Let p = (Initial Desired,Final Desired) be

a random point in S
5. Let Desired be a step function generated based on p and T
6. Run M with the Desired input to obtain the Actual output
7. f = F(Desired,Actual)
8. P = {(p, f )}[P
9. until there are at least N points in each region of S do
10. Create a HeatMap diagram HM based on P
11. Return HM and P

(b)
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Figure 3.6. The first step of our approach in Figure 3.5: (a) The exploration algorithm. (b) An example
HeatMap diagram produced by the algorithm in (a)

can be implemented in different ways by devising various heuristics for generating random points
in the input search space S (line 4 in Figure 3.6(a)). In our work, we use two alternative heuristics
for line 4 of the algorithm: (1) a simple random search, which we call naive random search, and
(2) an adaptive random search algorithm [Luke, 2013]. The naive random search simply calls a
random function to generate points in line 4 in Figure 3.6(a). Adaptive random search is an extension
of the naive random search that attempts to maximize the euclidean distance between the selected
points. Specifically, it explores the space by iteratively selecting points in areas of the space where
fewer points have already been selected. To implement adaptive random search, the algorithm in
Figure 3.6(a) changes as follows: Let Pi be the set of points selected by adaptive random search
at iteration i (line 8 in Figure 3.6(a)). At iteration i + 1, at line 4, instead of generating one point,
adaptive random search randomly generates a set X of candidate points in the input space. The search
computes distances between each candidate point p 2 X and the points in Pi. Formally, for each point
p = (v1,v2) in X , the search computes a function dist(p) as follows:

dist(p) = MIN(v01,v
0
2)2Pi

Ò
(v1� v01)2 +(v2� v02)2

The search algorithm then picks a point p 2 X such that dist(p) is the largest, and proceeds to the
lines 5 to 7. Finally, the selected p together with the value f of objective function at point p is added
to Pi to generate Pi+1 in line 8.

The algorithm in Figure 3.6(a) stops when at least N points have been selected in each region.
We anticipate the adaptive random heuristic reaches this termination condition faster than a naive
random heuristic because it generates points that are more evenly distributed across the entire space.
Our work is similar to quasi-random number generators that are available in some languages, e.g.,
MATLAB [The MathWorks Inc., 2003a]. Similar to our adaptive random search algorithm, these
number generators attempt to minimize the discrepancy between the distribution of generated points.
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We evaluate efficiency of naive random search and adaptive random search in generating HeatMap
diagrams in Section 3.3.

3.2.2 Single-State Search
Figure 3.7(a) presents our single-state search algorithm for the second step of the procedure in Fig-
ure 3.5. The single-state search algorithm starts with the point with the worst (highest) objective
function value among those computed by the random search in Figure 3.6(a). It then iteratively gen-
erates new points by tweaking the current point (line 6) and evaluates the given objective function on
the newly generated points. Finally, it reports the point with the worst (highest) objective function
value. In contrast to random search, the single-state search is guided by an objective function and
performs a tweak operation. Since the search is driven by the objective function, we have to run the
search four times separately for Fst , Fsm, Fns and Fr.

At this step, we rely on single-state exploitative algorithms. These algorithms mostly make local
improvements at each iteration, aiming to find and exploit local gradients in the space. In contrast,
explorative algorithms, such as the adaptive random search we used in the first step, mostly wander
about randomly and make big jumps in the space to explore it. We apply explorative search at the
beginning to the entire search space, and then focus on a selected area and try to find worst case
scenarios in that area using exploitative algorithms.

Input: The input to the single-state search algorithm in Figure 3.7(a) is the controller-plant model
M, an objective function F , an observation time T , a HeatMap region r, and the set P of points
generated by exploration algorithm in Figure 3.6(a). We already explained the input values M, F and
T in Section 3.2.1. Region r is chosen among the critical regions of the HeatMap identified by the
domain expert. The single-state search algorithm focuses on the input region r to find a worst-case
test scenario of the controller. The algorithm, further, requires P to identify its starting point in r, i.e.,
the point with the worst (highest) objective function in r.

Output: The output of the single-state search algorithm is a worst-case test scenario found by the
search after K iterations. For instance Figure 3.7(b) shows the worst-case scenario computed by our
algorithm for the smoothness objective function applied to an air compressor controller. As shown in
the figure, the controller has an undershoot around 0.2 when it moves from an initial desired value of
0.8 and is about to stabilize at a final desired value of 0.3.

Algorithm: The algorithm in Figure 3.7(a) represents a generic single-state search algorithm. Specif-
ically, there are two placeholders in this figure: Tweak() at line 6, and Replace() at line 13. To imple-
ment different single-state search heuristics, one needs to define how the existing point p should be
modified (the Tweak() operator), and to determine when the existing point p should be replaced with
a newly generated point newp (the Replace operator).

In our work, we instantiate the algorithm in Figure 3.7(a) based on three single-state search heuris-
tics: standard Hill-Climbing (HC), Hill-Climbing with Random Restarts (HCRR), and Simulated An-
nealing (SA). Specifically, the Tweak() operator for HC shifts p in the space by adding values x0 and y0

to the dimensions of p. The x0 and y0 values are selected from a normal distribution with mean µ = 0
and variance s2. The Replace operator for HC replaces p with newp, if and only if newp has a worse
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(a)
Algorithm. SingleStateSearch

Input: A controller-plant model M with input search space S.
A region r.
The set P computed by the algorithm in Figure 3.6(a).
An objective function F .
An observation time T .

Output: The worst-case test scenario testCase.

1. P0 = {(p, f ) 2 P | p 2 r}
2. Let (p, f ) 2 P0 s.t. for all (p0, f 0) 2 P0, we have f � f 0
3. worstFound = f
4. AdaptParameteres(r,P)
5. for K iterations :
6. newp = Tweak(p)
7. Let Desired be a step function generated by newp
8. Run M with the Desired input to obtain

the Actual output
9. v = F(Desired,Actual)
10. if v > worstFound :
11. worstFound = v
12. testCase = newp
13. p = Replace(p,newp)
14. return testCase

(b)
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Figure 3.7. The second step of our approach in Figure 3.5: (a) The single-state search algorithm. (b) An
example output diagram produced by the algorithm in (a)

(higher) objective function than p. HCRR and SA are different from HC only in their replacement
policy. HCRR restarts the search from time to time by replacing p with a randomly selected point.
Like HC, SA always replaces p with newp if newp has a worse (higher) objective function. However,
SA may replace p with newp even if newp has a better (lower) objective function. This latter situation
occurs only if another condition based on a random variable (temperature t) holds. Temperature is
initialized to some value at the beginning of the search and decreases over time, meaning that SA
replaces p with newp more often at the beginning and less often towards the end of the search. That
is, SA is more explorative during the first iterations, but becomes more and more exploitative over
time.

In general, single-state search algorithms, including HC, HCRR, and SA, have a number of con-
figuration parameters (e.g., variance s in HC, and the initial temperature value and the speed of
decreasing the temperature in SA). These parameters serve as knobs with which we can tune the de-
gree of exploitation (or exploration) of the algorithms. To be able to effectively tune these parameters
in our work, we visualized the landscape of several regions from our HeatMap diagrams. We noticed
that the region landscapes can be categorized into two groups: (1) Regions with a clear gradient be-
tween the initial point of the search and the worst-case point (see e.g., Figure 3.8(a)). (2) Regions
with a noisier landscape and several local optima (see e.g., Figure 3.8(b)). We refer to the regions in
the former group as regular regions, and to the regions in the latter group as irregular regions. As
expected, for regular regions, like the region in Figure 3.8(a), exploitative heuristics work best, while
for irregular regions, like the region in Figure 3.8(b), explorative heuristics are most suitable [Luke,
2013].

Note that the number of points generated and evaluated in each region in the first step (the ex-
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Figure 3.8. Diagrams representing the landscape for regular and irregular HeatMap regions: (a) A regular
region with a clear gradient between the initial point of the search and the worst-case point. (b) An irregular
region with several local optima.

ploration step) is not sufficiently large so that we can conclusively determine whether a given region
belongs to the regular group or to the irregular group above. Therefore, in our work, we rely on a
heuristic that attempts to predict the region group based on the information available in HeatMap
diagrams. Specifically, our observation shows that dark regions mostly surrounded by dark shaded
regions belong to regular regions, while dark regions located in generally light shaded areas belong
to irregular regions. Using this heuristic, we determine whether a given region belongs to a regular
group or to an irregular group. For regular regions, we need to use algorithms that exhibit a more ex-
ploitative search behavior, and for irregular regions, we require algorithms that are more explorative.
In Section 3.3, we evaluate our single-state search algorithms, HC, HCRR and SA, by applying them
to both groups of regions, and comparing their performance in identifying worst-case scenarios in
each region group.

3.3 Evaluation
In this section, we present the research questions that we set out to answer (Sections 3.3.1), relevant
information about the industrial case study (Section 3.3.2), and the key parameters in setting our ex-
periment and tuning our search algorithms (Section 3.3.3). We then provide answers to our research
questions based on the results obtained from our experiment (Section 3.3.4). Finally, we discuss prac-
tical usability of the HeatMap diagrams and the worst-case test scenarios generated by our approach
(Section 3.3.5).

3.3.1 Research Questions

RQ1: How does adaptive random search perform compared to naive random search in generating
HeatMap diagrams?
RQ2: How do our single-state search algorithms (i.e., HC, HCRR, and SA) compare with one another
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in identifying the worst-case test scenarios? How do these algorithms compare with random search
(baseline)?
RQ3: Does our single-state search algorithm (step 2 in Figure 3.5) improve the results obtained by
the exploration step (step 1 in Figure 3.5)?
RQ4: Does our MiL testing approach help identify test cases that are useful in practice?

Any search-based solution should be compared with random search which is a standard “baseline”
of comparison. If a proposed search-based solution does not show any improvement over random
search, either something is wrong with the solution or the problem is trivial for which a random search
approach is sufficient. In RQ1 and RQ2, we respectively compare, with random search, our adaptive
random search technique for HeatMap diagram generation, and our single-state search algorithms in
finding worst-case test scenarios. In RQ2, in addition to comparing with random search, we compare
our three single-state search algorithms with one another to identify if there is an algorithm that
uniformly performs better than others for all the HeatMap regions. In RQ3, we argue that the second
step of our approach (the search step) is indeed necessary and improves the results obtained during
the exploration step considerably. In RQ4, we compare our best results, i.e., test cases with highest
(worst) objective function values, with the existing test cases used in practice.

3.3.2 Case Studies
To perform our experiments, we applied our approach in Figure 3.5 to two case studies: A simple
publicly available case study (DC Motor controller), and a real case study from Delphi (SBPC).
Having one publicly available case study allows other researchers to compare their work with ours
and to replicate our study. This is the main reason we included the DC Motor case study, even if it is
simpler and less interesting than SBPC.

• DC Motor Controller: This case study consists of a Simulink PID Controller block (controller
model) connected to a simple model of a DC Motor (plant model). The case study is taken
from a Matlab/Simulink tutorial provided by MathWorks [The MathWorks Inc., 2009]. The
controller model in this case study essentially controls the speed of a DC Motor. Specifically,
the controller controls the voltage of the DC Motor so that it reaches a desired angular velocity.
Hence, the desired and actual values (see Figure 3.1(a)) represent the desired and actual angular
velocities of the motor, respectively. The angular velocity of the DC Motor is a float value
bounded within [0...160].

• Suppercharger Bypass Position Controller: Supercharger is an air compressor blowing into a
turbo-compressor to increase the air pressure supplied to the engine and, consequently, increase
the engine torque at low engine speeds. The air pressure can be rapidly adjusted by a mechanical
bypass flap. When the flap is completely open, supercharger is bypassed and the air pressure
is minimum. When the flap is completely closed, the air pressure is maximum. Supercharger
Bypass Flap Position Controller (SBPC) is a component that determines the position of the
bypass flap to reach to a desired air pressure. In SBPC, the desired and actual values (see
Figure 3.1(a)) represent the desired and actual positions of the flap, respectively. The flap
position is a float value bounded within [0...1] (open when 0 and closed when 1.0).

The DC Motor controller, the SBPC controller, and their corresponding plant models are all imple-
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Table 3.1. Size and complexity of our case study models.

Model features DC Motor (M) SBPC (M)
Controller Plant Controller Plant

Blocks 8 13 242 201
Levels 1 1 6 6
Subsystems 0 0 34 21
Input Var. 1 1 21 6
Output Var. 1 2 42 7
LOC 150 220 8900 6700

Table 3.2. Requirements parameters and simulation time for the DC Motor and SBPC case studies
Requirements Parameters DC Motor SBPC
Stability t1 = 3.6s t1 = 0.8s
Smoothness Normalized
Smoothness

v1 = 8 v1 = 0.05

Responsiveness v3 = 4.8 v3 = 0.03
Observation Time T = 8s T = 2s
Actual Simulation Running
Time on Amazon

50ms 31s

mented in Matlab/Simulink. Table 3.1 provides some metrics representing the size and complexity
of the Simulink models for these two case studies. The table shows the number of Simulink blocks,
hierarchy levels, subsystems, and input/output variables in each controller and in each plant model. In
addition, we generated C code from each model using Matlab auto-coding tool [The MathWorks Inc.,
2011], and have reported the (estimated) number of lines of code (excluding comments) generated
from each model in the last row of Table 3.1.

Note that the desired and actual angular velocities of the DC Motor, and the desired and actual
bypass flap positions are among the input and output variables of the controller and plant models. Re-
call that desired values are input variables to controller models, and actual values are output variables
of plant models. SBPC models have several more input/output variables representing configuration
parameters.

3.3.3 Experiments Setup.
Before running the experiments, we need to set the controller requirements parameters introduced in
Figure 3.3. Table 3.2 shows the requirements parameter values, the observation time T used in our
experiments, and the actual simulation times of our case study models. For SBPC, the requirements
parameters were provided as part of the case study, but for DC Motor, we chose these parameters
based on the maximum value of the DC Motor speed. Specifically, T is chosen to be large enough
so that the actual value can stabilize at the desired value. Note that as we discussed in Section 3.1.2,
since we do not have pass/fail conditions, we do not specify v2 from the smoothness and t2 from the
responsiveness properties.

We ran the experiments on Amazon micro instance machines which are equal to two Amazon EC2
compute units. Each EC2 compute unit has a CPU capacity of a 1.0-1.2 GHz 2007 Xeon processor.
A single 8-second simulation of the DC Motor model and a single 2-second simulation of the SBPC
Simulink model (e.g., Figure 3.7(b)) respectively take about 50 msec and 31 sec on the Amazon
machine (See Table 3.2 last row).
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Table 3.3. Parameters for the Exploration step
Parameters for Exploration DC Motor SBPC
Size of search space [0..160]⇥ [0..160] [0..1]⇥ [0..1]
HeatMap dimensions 8⇥8 10⇥10
Number of points per region
(N in Figure 3.6(a))

10 10

We now discuss the parameters of the exploration and search algorithms in Figures 3.6(a) and
3.7(a). Table 3.3 summarizes the parameters we used in our experiment to run the exploration al-
gorithm. Specifically, these include the size of the search space, the dimensions of the HeatMap
diagrams, and the minimum number of points that are selected and simulated in each HeatMap region
during exploration. Note that the input search spaces of both case studies are the set of floating point
values within the search spaces specified in Table 3.3 first row.

We chose the HeatMap dimensions and the number of points per region, i.e., the value of N, (lines
2 and 3 in Table 3.3) by balancing and satisfying the following criteria: (1) The region shades should
not change across different runs of the exploration algorithms. (2) The HeatMap regions should
not be so fine grained such that we have to generate too many points during exploration. (3) The
HeatMap regions should not be too coarse grained such that the points generated within one region
have drastically different objective function values.

For both case studies, we decided to generate at least 10 points in each region during exploration
(N = 10). We divided the search space into 100 regions in SBPC (10⇥ 10), and into 64 regions in
DC Motor (8⇥8), generating a total of at least 1000 points and 640 points for SBPC and DC Motor,
respectively. We executed our exploration algorithms a few times for SBPC and DC Motor case
studies, and for each of our four objective functions. For each function, the region shades remained
completely unchanged across the different runs. In all the resulting HeatMap diagrams, the points
in the same region have close objective function values. On average, the variance over the objective
function values for an individual region was small. Hence, we conclude that our selected parameter
values are suitable for our case studies, and satisfy the above three criteria.

Table 3.4 shows the list of parameters for the search algorithms that we used in the second step of
our work, i.e., HC, HCRR, and SA. Here, we discuss these parameters and justify the selected values
in Table 3.4:

Number of Iterations (K): We ran each single-state search algorithm for 100 iterations, i.e., K =
100 in Figure 3.7(a). This is because the search has always reached a plateau after 100 iterations
in our experiments. On average, iterating each of HC, HCRR, and SA for 100 times takes a few
seconds for DC Motor and around one hour for SBPC on the Amazon machine. Note that the
time for each iteration is dominated by the model simulation time. Therefore, the time required
for our experiment was roughly equal to multiplying 100 by the time required for one single
simulation of each model identified in Table 3.2 (50 msec for DC Motor and 31 sec for SBPC).

Exploitative and Explorative Tweak (s ): Recall that in Section 3.2.2, we discussed the need for
having two Tweak operators: One for exploration, and one for exploitation. Specifically, each
Tweak operator is characterized by a normal distribution with µ (mean) and s (variance) values
from which random values are selected. We set µ = 0 in our experiment. For an exploitative
Tweak, we choose s = 2.0 for DC Motor, and s = 0.01 for SBPC. As intended, with a proba-
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Table 3.4. Parameters for the Search step
Single-State Search Parameters DC Motor SBPC
Number of Iterations (HC, HCRR, SA) 100 100
Exploitative Tweak (s ) (HC, HCRR, SA) 2 0.01
Explorative Tweak (s ) (HC) - 0.03
Distribution of Restart Iteration Intervals (HCRR) U(20,40) U(20,40)

Initial Temperature (SA)

Stability 0.0220653 0.000161
Smoothness 12.443589 0.0462921
Normalized
Smoothness

0.08422266 0.1197671

Responsiveness 0.0520161 0.0173561

Schedule (SA)

Stability 0.0002184 0.0000015940594
Smoothness 0.12320385 0.00045833762
Normalized
Smoothness

0.00083388772 0.0011858129

Responsiveness 0.00051501089 0.00017184257

bility of 99% the result of tweaking a point in the center of a HeatMap region stays inside that
region in both case studies. Obviously, this probability decreases when the point moves closer
to the borders. In our search, we discard the result of Tweak when it generates points outside
of the regions, and never generate simulations for them. In addition, with these values for s ,
the search tends to be exploitative. Specifically, the Tweak has a probability of 70% to modify
individual points’ dimensions within a range defined by s .
To obtain an explorative Tweak operator, we triple the above values for s . Note that in our work,
we use the explorative Tweak option only with the HC algorithm. HCRR and SA are turned
into explorative search algorithms using restart and temperature options discussed below. In
addition, in the DC Motor case study, we do not need an explorative Tweak operator because
all the HeatMap regions belong to regular regions for which an exploitative Tweak is expected
to work best.

Restart for HCRR: HCRR is similar to HC except that from time to time it restarts the search from
a new point in the search space. For this algorithm, we need to determine how often the search
is restarted. In our work, the number of iterations between each two consecutive restarts is
randomly selected from a uniform distribution between 20 and 40, denoted by U(20,40).

Initial Temperature and Schedule: The SA algorithm requires a temperature that is initialized at
the beginning of the search, and is incremented iteratively based on the value of a schedule
parameter. The values for the temperature and schedule parameters should satisfy the fol-
lowing criteria [Luke, 2013]: (1) The initial value of temperature should be comparable with
differences between the objective function values of pairs of points in the search space. (2)
The temperature should converge towards zero without reaching it. We set the initial value of
temperature to be the standard deviation of the objective function values computed during the
exploration step. The schedule is then computed by dividing the initial value of temperature by
101, ensuring that the final value of temperature after 100 iterations does not become equal to
zero.

3.3.4 Results Analysis
RQ1. How does adaptive random search perform compared to naive random search in generat-
ing HeatMap diagrams? To answer this question, we compare (1) the HeatMap diagrams generated
by naive random search and adaptive random search, and (2) the time these two algorithms take to
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(b) Smoothness
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160.0140.0120.0100.080.060.040.020.00.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

160.0140.0120.0100.080.060.040.020.00.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

160.0140.0120.0100.080.060.040.020.00.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

160.0140.0120.0100.080.060.040.020.00.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

Figure 3.9. HeatMap diagrams generated for DC Motor for the (a) Stability, (b) Smoothness, (c) Normalized
Smoothness and (d) Responsiveness requirements. Among the regions in these diagrams, we applied our single-
state search algorithms to the region specified by a white dashed circle.

generate their output HeatMap diagrams.

For each of our case studies, we compared three HeatMap diagrams randomly generated by naive
random search with three HeatMap diagrams randomly generated by adaptive random search. Specif-
ically, we compared the region colors and value ranges related to each color. We noticed that all the
HeatMap diagrams related to DC Motor (resp. SBPC) were similar. Hence, we did not observe any
differences between these two algorithms by comparing their generated HeatMap diagrams.

Figures 3.9 and 3.10 represent example sets of HeatMap diagrams generated for DC Motor and
SBPC case studies, respectively. In each figure, there are four diagrams corresponding to our four
objective functions. Note that as we discussed above, because the HeatMap diagrams generated by
random search and adaptive random search were similar, we have shown only one set of diagrams for
each case study here.

In order to compare the speed of naive random and adaptive random search algorithms in generat-
ing HeatMap diagrams, we ran both algorithms 100 times to account for their randomness. For each
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Figure 3.10. HeatMap diagrams generated for SBPC for the (a) Stability, (b) Smoothness, (c) Normalized
Smoothness and (d) Responsiveness requirements. Among the regions in these diagrams, we applied our single-
state search algorithms to the two regions specified by white dashed circles.

run, we recorded the number of iterations that each algorithm needed to generate at least N points
in each HeatMap region. Figure 3.11(a) shows the distributions of the number of iterations obtained
by applying these two algorithms to DC Motor, and Figure 3.11(b) shows the distributions obtained
when the algorithms are applied to SBPC. As shown in the figures, in both case studies, adaptive
random search was considerably faster (required fewer iterations) than naive random search. On av-
erage, for DC Motor, it took 1244 iterations for naive random search to generate HeatMap diagrams,
while Adaptive random search required 908 iterations on the same case study. For SBPC, the aver-
age number of iterations for naive random search and adaptive random search were 2031 and 1477,
respectively.

Recall from Table 3.2 that a single model simulation for DC Motor takes about 50 ms. Hence, an
average run of adaptive random search is about a few seconds faster than that of naive random search
for DC Motor. This speed difference significantly increases for SBPC, which is a more realistic case,
where the average running time of naive random search is about five hours more than that of adaptive
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Figure 3.11. Comparing execution times of naive random search and adaptive random search algorithms for
HeatMap diagram generation (the Exploration step).

random search. Based on results, given realistic cases and under time constraints, adaptive random
search allows us to generate significantly more precise HeatMap diagrams (if needed), within a shorter
time.

RQ2. How do our single-state search algorithms (i.e., HC, HCRR, and SA) compare with one
another in identifying the worst-case test scenarios? How do these algorithms compare with
random search (baseline)? To answer this question, we compare the performance of our three
different single-state search algorithms, namely HC, HCRR, and SA, which we used in the search
step of our framework. In addition, we compare these algorithms with random search which is used
as a baseline of comparison for search-based algorithms. Recall that in section 3.2.2, we identified
two different groups of HeatMap regions. Here, we compare the performance of HC, HCRR, SA, and
random search in finding worst-case test scenarios for both groups of HeatMap regions, separately.
As shown in Figure 3.7(a) and mentioned in section 3.2.2, for each region, we start the search from
the worst point found in that region during the exploration step. This not only allows us to reuse the
results from the exploration step, but also makes it easier to compare the performance of the single-
state search algorithms as these algorithms all start the search from the same point in the region and
the same objective function value.

We selected three regions from the set of high risk regions of each one of the HeatMap diagrams
in Figures 3.9 and 3.10, and applied HC, HCRR, SA, and random search to each of these regions. In
total, we applied each single-state search algorithm to 15 regions from DC Motor and to 15 regions
from SBPC. For DC Motor, we selected the three worst (darkest) regions in each HeatMap diagram,
and for SBPC case study, the domain expert chose the three worst (darkest) regions among the critical
operating regions of the SBPC controller.

We noticed that all the HeatMap regions in the DC Motor case study were from group regular
with a clear gradient from light to dark. Therefore, for the DC Motor regions, we ran our single-state
search algorithms only with the exploitative parameters in Table 3.4. For the SBPC case study, we
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Figure 3.12. The result of applying HC, HCRR, SA and random search to a regular region from DC Motor
(specified by a dashed white circle in Figure 3.9(a)): (a) The averages of the output values (i.e., the highest
objective function values) of each algorithm obtained across 100 different runs over 100 iterations. (b) The
distributions of the output values obtained across 100 different runs of each algorithm after completion, i.e., at
iteration 100.

ran the search algorithms with the exploitative parameters for nine regions (regions from smoothness,
normalized smoothness, and responsiveness HeatMap diagrams), and with the explorative parameters
for three other regions (regions from stability HeatMap diagrams).

Figure 3.12 shows the results of comparing our three single-state search algorithms as well as
random search using a representative region from the DC Motor case study. Specifically, the results
in this figure were obtained by applying these algorithms to the region specified by a white dashed
circle in Figure 3.9(a). The results of applying our algorithms to the other 14 HeatMap regions
selected from the DC Motor case study were similar. As before, we ran each of these algorithms
100 times. Figure 3.12(a) shows the averages of the highest (worst) objective function values for 100
different runs of each of our algorithms over 100 iterations. Figure 3.12(b) compares the distributions
of the highest (worst) objective function values produced by each of our algorithms on completion
(i.e., at iteration 100) over 100 runs.

Figure 3.13 represents the results of applying our algorithms to two representative HeatMap re-
gions from the SBPC case study. Specifically, Figures 3.13(a) and (b) show the results related to
a regular region, (i.e., regions with clear gradients from light to dark), and Figures 3.13(c) and (d)
represent the results related to an irregular region, (i.e., regions with several local optima and no clear
gradient landscape). The former region is from Figure 3.10(c), and the latter is from Figure 3.10(a).
Both regions are specified by a white dashed circle in Figures 3.10 (c) and (a), respectively. For the
regular region, we executed HC, HCRR, and SA with the exploitative tweak parameter in Table 3.4,
and for the irregular region, we used the explorative tweak parameter for HC from the same table.

Similar to Figure 3.12(a), Figures 3.13(a) and (c) represent the averages of the algorithms’ out-
put values obtained from 100 different runs over 100 iterations, and similar to Figure 3.12(b), Fig-
ures 3.13(b) and (d) represent the distributions of the algorithms’ output values obtained from 100
different runs. As before, the results in Figures 3.13(a) and (b) were representative of the results we
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Figure 3.13. The result of applying HC, HCRR, SA and random search to a regular and an irregular region
from SBPC: (a) and (c) show the averages of the output values (i.e., the highest objective function values) of
each algorithm obtained across 100 different runs over 100 iterations. (b) and (d) show the distributions of
the output values obtained across 100 different runs of each algorithm over 100 iterations. Diagrams (a,b) are
related to the region specified by a dashed white circle in Figure 3.10(c), and Diagrams (c,d) are related to the
region specified by a dashed white circle in Figure 3.10(a).

obtained from other eight SBPC regular regions in our experiment, while the results in Figures 3.13(c)
and (d) were representative for the other five SBPC irregular regions.

The diagrams in Figures 3.12 and 3.13 show that HC and HCRR perform better than random
search and SA for regular regions. Specifically, these two algorithms require fewer iterations to find
better output values, i.e., higher objective function values, compared to SA and random search. HC
performs better than HCRR on the regular region from DC Motor. As for the irregular region from
SBPC, HCRR performs better than other algorithms.

To statistically compare the algorithms, we performed a two-tailed, student t-test [Capon, 1991]
and other non-parametric equivalent tests, but only report the former as results were consistent. The
chosen level of significance (a) was set to 0.05. Applying t-test to the regular region from DC Motor
(Figures 3.12 (a) and (b)) resulted in the following order for the algorithms, from best to worst, with
significant differences between all pairs: HC, HCRR, random search, and SA. The statistical test for
both regular and irregular regions from SBPC (Figures 3.13(a) to (d)) showed that the algorithms
are divided into two equivalence classes: (A) HC and HCRR, and (B) random search and SA. The
p-values between pairs of algorithms in the same class are above 0.05, and the p-values between
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Figure 3.14. The distribution of the highest objective function values found after 100 iterations by HC and
HCRR related to the region specified by a dashed white circle in Figure 3.10(a)

those in different classes are below 0.05. Table 3.5 provides the p-values comparing HC with other
algorithms for regular regions, and comparing HCRR with other algorithms for an irregular region
from SBPC. In addition, to computing p-values, we provide effect sizes comparing HC and HCRR
with other algorithms for regular and irregular regions, respectively. In [Arcuri and Briand, 2012],
it was noted that it is inadequate to merely show statistical significance alone. Rather we need to
determine whether the effect size is noticeable. Therefore, in Table 3.5, we show effect sizes computed
based on Cohen’s d [Cohen, 1977]. The effect sizes are considered small for 0.2 d < 0.5, medium
for 0.5 d < 0.8, and high for d � 0.8.

To summarize, for regular regions exploitative algorithms work best. Specifically, HC, which is
the most exploitative algorithm, performs better than other algorithms on regular regions from DC
Motor. For the regular region from SBPC, HCRR manages to be as good as HC because it can reach
its plateau early enough before it is restarted from a different point. Hence, HCRR and HC perform
the same on the regular regions from SBPC.

For irregular regions, search algorithms that are more explorative do better. Specifically, HCRR is
slightly better than HC on irregular regions from SBPC. The histogram diagrams in Figure 3.14 com-
pare the distributions of the highest objective function values found by HC and HCRR. Specifically,
with 50% probability, HCRR finds an objective function value larger than 0.00933. If we run HCRR
for three times, with a probability of 87.5%, HCRR finds at least one value around or higher than
0.00933. For HC, however, the probability of finding an objective function value higher than 0.00933
is less than 20% in one run, and less than 49% in three runs. That is, even though we do not observe
a statistically significant difference between the results of HC and HCRR for the irregular region of
SBPC, by running these algorithms three times, we have a higher chance to find a larger value by
HCRR than by HC. Finally, even though we chose SA parameters according to the guidelines in the
literature (see Section 3.3.3, and [Luke, 2013]), on our case study models, SA is never better than ran-
dom. This can be due to the fact that SA merely explores the space at the beginning of its search and
becomes totally exploitative at the end of its search, but the exploitation is not necessarily performed
close to a local optimum. However, HCRR periodically spends a number of iterations improving its
candidate solution (exploitation) after each random restart (exploration). As a result, HCRR is more
likely to perform some exploitation in parts of the search space close to a local optimum.
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Table 3.5. The p-values obtained by applying t-test to the results in Figures 3.12 and 3.13 and the effect sizes
measuring the differences between these results: Each algorithm is compared with HC (i.e., the best candidate
for regular regions) for the regular DC Motor and SBPC regions, and with HCRR (i.e., the best candidate for
irregular regions) for the irregular SBPC region.

Algorithm DC Motor Regular
Region

SBPC Regular Re-
gion

SBPC Irregular
Region

p-value with HC (effect size)
HCRR <0.0001(High) 0.2085(Low) -
SA <0.0001(High) <0.0001(High) -
Random <0.0001(High) <0.0001(High) -

p-value with HCRR (effect size)
HC - - 0.0657(Medium)
SA - - 0.0105(High)
Random - - 0.0014(High)

RQ3. Does our single-state search algorithm (step 2 in Figure 3.5) improve the results obtained
by the exploration step (step 1 in Figure 3.5)? To answer this question, we compare the output
of single-state search algorithm with the output of exploration step for two regular regions from DC
Motor and SBPC, and one irregular region from SBPC. Relying on RQ1 and RQ2 results, for this
comparison, we use the adaptive random search algorithm for the exploration step, HC for the single-
state search in regular regions, and HCRR for the single-state search in irregular regions.

Let A be the highest objective function value computed by adaptive random search in each region,
and let Bi be the output (highest objective function value) of HC and HCRR at run i on regular and
irregular regions, respectively. We compute the relative improvement that the search step could bring
about over the results of the exploration step for run i of the search by Bi�A

A . Figure 3.15 shows the
distribution of these relative improvements for the three selected regions and across 100 different
runs.

The results show that the final test cases computed by our best single-state search algorithm have
higher objective function values compared to the best test cases identified by adaptive random search
during the exploration step. The maximum relative improvement, for regular regions, is around 5.8%
for DC Motor, and 7.9% for SBPC, which is a larger and more realistic case study and has a more
complex search space. This value for the irregular region from SBPC is about 3.9%.

RQ4. Does our MiL testing approach help identify test cases that are useful in practice? To
demonstrate practical usefulness of our approach, we show that the test cases generated by our MiL
testing approach had not been previously found by manual testing based on domain expertise. Specifi-
cally in our industry-strength case study (SBPC), we were able to generate 12 worst-case test scenarios
for the SBPC controller. Figure 3.7(b) shows the simulation for one of these test scenarios concerning
smoothness. Delphi engineers reviewed the simulation diagrams related to these worst-case scenarios
to determine which ones are acceptable as they exhibit small deviations that can be tolerated in prac-
tice, and which ones are critical and have to be further investigated. Among the 12 worst-case test
scenarios, those related to stability requirements were considered acceptable by the domain expert.
The other nine test scenarios, however, indicated violations of the controller requirements. None of
these critical test cases had been previously found by manual, expertise-based MiL testing by Delphi
engineers. For example, Figure 3.7(b) shows an undershoot scenario around 0.2 for the SBPC con-
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Figure 3.15. The distribution of the improvements of the single-state search output compared to the exploration
output across 100 different runs of the search algorithm: (a) and (b) show the improvements obtained by
applying HC to two regular regions from DC Motor and SBPC, and (c) shows the improvements obtained by
applying HCRR to an irregular region from SBPC. The results are related to the three regions specified by
dashed white circles in Figures 3.9(a), 3.10(a), and 3.10(c), respectively.

troller. The maximum undershoot/overshoot for the SBPC controller identified by manual testing was
around 0.05. Similarly, for the responsiveness property, we found a scenario in which it takes 150ms
for the actual value to get close enough to the desired value while the maximum corresponding value
in manual testing was around 50ms.

3.3.5 Practical Usability
To better understand practical usability of our work, we made our case study results and tool support
available to Delphi engineers through interactive tutorial sessions and our frequent meetings with
them. In general, the engineers believe that our approach can help them effectively identify bugs in
their controller models, and in addition, can be seen as a significant aid in designing controllers.

To receive feedback on specific output items of our work, we presented HeatMap diagrams shown
in Figure 3.10 to Delphi engineers. They found the diagrams visually appealing and useful. They
noted that the diagrams, in addition to enabling the identification of critical regions, can be used in
the following ways: (1) The engineers can gain confidence about the controller behaviors over the
light shaded regions of the diagrams. (2) The diagrams enable the engineers to investigate potential
anomalies in the controller behavior. Specifically, since controllers have continuous behaviors, we
expect a smooth shade change over the search space going from white to black. A sharp contrast such
as a dark region immediately neighboring a light shaded region may potentially indicate an abnormal
behavior that needs to be further investigated.

As discussed in response to RQ4, we identified 12 worst case scenarios (test cases) for SBPC in
total. Nine out of these 12 test cases indicated requirements violations at the MiL level. According
to Delphi engineers, the violations revealed by our nine test cases could be due to a lack of precision
or errors in the controller or plant models. In order to determine whether these MiL level errors arise
in more realistic situations, Delphi engineers applied these nine test scenarios at the Hardware-in-the-
Loop (HiL) level where the MiL level plant model is replaced with a combination of hardware devices
and more realistic HiL plant models running on a real-time simulator. This study showed that:

40



3.4. Tool Support

1. Setup

HeatMap

2. Exploration

generates

Random
exploration

Single-state
search

finds

3. Search

Test case list

creates

Controller model
under test

Test workspace

Plant �

Controller

Test setup by 
the user

Figure 3.16. An overview of the MiL testing approach for controllers implemented in CoCoTest.

• Three (out of nine) errors that were related to the responsiveness requirement disappeared at
the HiL level. This indicates that the responsiveness MiL level errors were due to lack of
precision or abstractions made in the plant model, as they do not arise in a more realistic HiL
environment.

• Six (out of nine) errors that were related to the smoothness and normalized smoothness require-
ments repeated at the HiL level. Since Delphi engineers were not able to identify defects in the
controller model causing these errors, they conjecture that these errors might be due to configu-
ration parameters of the controllers, and disappear once the controller is configured with proper
parameters taken from real cars. As discussed in Section 3.1.1, we do not focus on controller
configuration parameters in this chapter.

In addition, we also applied at the HiL level the six test cases out of the original 12 test cases
that had passed the MiL testing stage. These six test cases were related to stability. The HiL testing
results for these test cases were consistent with those obtained on MiL. That is, these test cases passed
the HiL testing stage as well. To summarize, our approach is effective in finding worst-case scenarios
that cannot be identified manually. Furthermore, such scenarios constitute effective test cases to detect
potential errors in the controller model or in the plant model or in controller configuration parameters.

3.4 Tool Support
We have fully automated and implemented our approach in a tool called CoCoTest (https://
sites.google.com/site/cocotesttool/). Figure 3.16 shows an overview of test gener-
ation process implemented by CoCoTest. Specifically, CoCoTest provides users with the following
main functions: (1) Creating a workspace for testing a desired Simulink model. (2) Specifying the
information about the input and output of the model under test. (3) Specifying the number of regions
in a HeatMap diagram and the number of test cases to be run in each region. (4) Allowing engineers
to identify the critical regions in a HeatMap diagram. (5) Generating HeatMap diagrams for each
requirement. (6) Reporting a list of worst-case test scenarios for a number of regions. (7) Enabling
users to run the model under test for any desired point in the input search space. In addition, CoCoTest
can be run in a maintenance mode, allowing an advanced user to configure sophisticated features of
the tool. This, in particular, includes choosing and configuring the algorithms used for the exploration
and single-state search steps. Specifically, the user can choose between random search or adaptive
random search for exploration, and between Hill-Climbing, Hill-Climbing with Random Restarts and
Simulated Annealing for single-state search. Finally, the user can configure the specific parameters
of each of these algorithms as discussed in Section 3.2.2.
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As shown in Figure 3.5, the input to CoCoTest is a controller-plant model implemented in Mat-
lab/Simulink and provided by the user. We have implemented the five generic objective functions
discussed in Section 3.1.2 in CoCoTest. The user can retrieve the HeatMap diagrams and the worst-
case scenarios for each of these objective functions separately. In addition, the user can specify the
critical operating regions of a controller under test either by way of excluding HeatMap regions that
are not of interest, or by including those that he wants to focus on. The worst-case scenarios can be
computed only for those regions that the user has included, or has not excluded. The user also spec-
ifies the number of regions for which a worst-case scenario should be generated. CoCoTest sorts the
regions that are picked by the user based on the results from the exploration step, and computes the
worst-case scenarios for the ones that are top in the sorting depending on the number of worst-case
scenarios requested by the user. The final output of CoCoTest is five HeatMap diagrams for the five
objective functions specified in the tool, and a list of worst-case scenarios for each HeatMap diagram.
The user can examine the HeatMap diagram and run worst-case test scenarios in Matlab individually.
Further, the user can browse the HeatMap diagrams, pick any point in the diagram, and run the test
scenario corresponding to that point in Matlab.

Figure 3.17 shows the architectural view of CoCoTest. CoCoTest adopts a three-tier architecture
with an extra service layer which handles the configuration management. The exploration and search
algorithms are implemented in MATLAB scripts. The scripts execute model simulations to compute
the objective function values. CoCoTest calls MATLAB from command line to run the MATLAB
scripts. It redirects MATLAB output to a file and periodically reads the file to know when the test
execution is finished and the test results are ready.

CoCoTest is implemented in Microsoft Visual Studio 2010 and Microsoft .NET 4.0. It is an object-
oriented program in Visual C# with 65 classes and roughly 30K lines of code excluding comments.
The main functionalities of CoCoTest have been tested with a test suite containing 200 test cases.
CoCoTest requires Simulink to be installed and operational on the same machine to be able to execute
controller-plant model simulations. We have tested CoCoTest on Windows XP and Windows 7, and
with MATLAB 2007b. MATLAB 2007 was selected due to compatibility with Delphi models.
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3.5 Conclusions
In this chapter, we identified and formalized a set of common requirements for closed-loop contin-
uous controllers. Our proposed technique relies on a combination of explorative and exploitative
search algorithms, which aim at finding worst-case scenarios in the input space with respect to the
controller requirements. Our technique is implemented in a tool, named CoCoTest. We evaluated our
approach by applying it to an automotive air compressor module and to a publicly available controller
model. Our experiments showed that our approach automatically generates several worst-case sce-
narios, which can be used for testing purposes, that had not been previously found by manual testing
based on domain expertise. The test cases indicated potential violations of the requirements at the
MiL level, and were applied by Delphi engineers at the HiL level to identify potential discrepancies
between plant models, and the HiL plant model and hardware. In addition, we demonstrated the ef-
fectiveness and efficiency of our search strategy by showing that our approach computes significantly
better test cases and is significantly faster than a pure random test case generation strategy.
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Chapter 4

MiL Testing of Highly Configurable
Continuous Controllers: Scalable Search
Using Surrogate Models

In this chapter, we extend our approach in the previous chapter to support MiL testing of all feasi-
ble configurations of continuous controllers. Specifically, we use a combination of dimensionality
reduction [Campolongo et al., 2007] and surrogate modeling techniques based on supervised learn-
ing [Jin, 2011, Ong et al., 2003, Caballero and Grossmann, 2008, Douguet, 2010] to scale our search
to large multi-dimensional spaces. Given an objective function, we first use dimensionality reduction
techniques to identify the input variables that do not have a significant impact on the output of the
objective functions, i.e., varying the values of those variables does not cause a significant change in
the objective function output. We then apply an explorative random search [Arcuri and Briand, 2011]
and focus the explorative search only on significant variables. Using the exploration results, we select
some partitions of the input space that are more likely to include worst case input scenarios. We then
apply a single-state search [Luke, 2013] to the selected partitions to identify worst case scenarios in
each partition. Our objective functions require us to simulate Simulink models and are computation-
ally expensive. Therefore, for each objective function and for each partition, we use the exploration
results to build a surrogate model [Jin, 2011] based on supervised learning techniques [Witten et al.,
2011]. The surrogate model is faster to compute than the objective function, and is able to predict its
output within some confidence interval. Our single-state search uses the surrogate model to predict
the output of the objective function when the decision as to which point the search should move to
can be made based on the surrogate model.

We evaluated our approach by applying it to a complex, industrial controller, consisting of 443
Simulink blocks from the automotive domain. Our experiment showed that applying dimensional-
ity reduction prior to exploration helps generate more accurate and predictive surrogate models for
two out of three requirements. In addition, combining single-state search with surrogate modeling
remarkably improves our approach for the same two requirements. Specifically, for one requirement,
the search combined with surrogate modeling is eight times faster than the search without surrogate
modeling, and for the other requirement, the search with surrogate modeling computes higher output
values that could not be computed by the search without surrogate modeling. Finally, our approach
identified critical violations of the controller requirements that had been found neither by our earlier
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Input Space

Controller

Figure 4.1. Controller objective functions and the ranges of the input variables and configuration parameters
for our industrial controller.

work [Matinnejad et al., 2015a] nor by manual testing based on domain expertise.

Organization. This chapter is organized as follows. Section 4.1 describes our extend MiL test-
ing approach for continuous controllers to include their configuration parameters. Our experiment
design and the results of our evaluation are presented in Sections 4.2 and 4.3, respectively. Finally,
Section 4.4 concludes the chapter.

4.1 MiL Testing Using Search
In this Section, we describe our extended MiL testing approach to include not only initial desired (ID)
and final desired (FD) variables, but also the controller configuration parameters. For example, the
industrial controller used as a case study in this chapter has six configuration parameters referred to
as Cal1 to Cal6, respectively. The type of variables ID, FD, and Cal1 to Cal6 is float. We denote
the range of variables ID and FD by RID and RFD respectively, and the range of each Cali by RCali.
Figure 4.1 provides value ranges for each of the configuration variables and ID and FD variables in our
industrial controller. To compute highest values of Fst , Fsm and Fr for any controller configuration,
our search algorithm has to handle the search space size of |RID⇥RFD⇥RCal1⇥ . . .⇥RCal6|. Due to sheer
size of the search space, we cannot effectively solve our problem by simply applying existing search
algorithms. Instead, we combine dimensionality reduction and surrogate modeling techniques (based
on supervised learning) to perform search in large and multi-dimensional input spaces and to reduce
the cost of computing our objective functions for individual points in the search space.

Figure 4.2 shows an overview of our search-based approach to MiL testing of continuous con-
trollers. Similar to our previous work [Matinnejad et al., 2015a], our approach is composed of an
exploration and a search step. The input to our approach includes a set of objective functions, and
a controller Simulink model required to compute the objective functions. Specifically, in our work,
objective functions are Fst , Fsm and Fr as described in Chapter 3. The input spaces of these functions
are the same and equal to the cross product of the ranges for ID and FD variables and the config-
uration variables. For example, the input space (objective function domains) in our case study is
RID⇥RFD⇥RCal1⇥ . . .⇥RCal6 (See Figure 4.1). The range of the objective functions is the set of real
numbers R.

In the exploration step (Figure 4.2(a)), we apply a random (unguided) search to the entire input
space of the objective functions, and then based on the results we build a regression tree [Witten
et al., 2011] partitioning the input space such that the variance of the objective function values within
each partition is minimized. Before performing exploration, for each objective function, we use a
dimensionality reduction strategy to identify dimensions that have the most impact on that objective
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Figure 4.2. An overview of our automated approach to MiL testing of different configurations of continuous
controllers: (a) Exploration step, (b) Search step.

function. This allow us to focus the exploration step only on dimensions with most impact on the ob-
jective functions, and hence, increase the scalability of our approach. The regression tree built based
on the exploration results enables us to divide the space into partitions such that, for each partition,
the value of the objective function is predictable within a certain confidence interval. In addition, re-
gression trees allow the engineers to visualize partitions from a multidimensional space. We then use
regression trees to identify higher risk partitions, i.e., those partitions that contain input values that
are likely to violate controller requirements. Regression trees replace the heatmap diagrams we used
in the previous chapter, which can no longer be used for a space that has more than three dimensions.
From the regression trees, we select the partitions with the highest mean for the objective function,
which are considered to be higher risk as they are more likely to contain critical errors.

In the search step (Figure 4.2(b)), we focus our search on the selected partitions and employ
single-state search algorithms to identify, within those partitions, the worst case scenarios to test the
controller. In this step, we build surrogate models to minimize the need for running simulations of
Simulink controller models so as to make the search more scalable. Based on our previous experience,
the main cause of computation time of our search is such simulations. Recall that to compute objective
functions, we have to simulate the input controller model. In this work, for each objective function and
for each input space partition, we create a surrogate model that predicts the objective function values
within that partition. We use the exploration results related to each partition to build surrogate models.
A surrogate model built for an objective function is able to predict the output of that function within
a confidence interval. Using this model, our single-state search can determine whether the decision
as to which point the search has to move to can be made without resorting to running simulations or
not. In Sections 4.1.1 (Exploration) and 4.1.2 (Search), we describe the first and second steps of our
approach, respectively.
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4.1.1 Exploration
Figure 4.2(a) shows the exploration step of our approach. The input of this step is an objective
function F : R1⇥ . . .⇥Rd ! R. Function F can be any of the objective functions in Figure 4.1. The
goal of this step is to efficiently select a set of points in the space of R1⇥ . . .⇥Rd and compute the
output of F for each point in this set. The output of this step is used to identify critical parts of the
R1⇥ . . .⇥Rd space (i.e., those partitions for which F produces the most critical (highest) values), and
further, to create a surrogate model for individual critical partitions that can estimate as precisely as
possible the output of F for any arbitrary point in that partition.

Given an objective function F , we first use dimensionality reduction techniques to identify search
input dimensions that have the least impact on the output of F . A dimension i (1  i  d) has a low
impact on the output of F if varying the input vector (v1, . . . ,vi, . . . ,vd) of F by varying vi within the
range Ri does not yield a significant change in the output of F .

In addition, this step uses adaptive random search [Luke, 2013] to explore the input space of F by
focusing on the dimensions with most impact on F . Here, we briefly discuss adaptive random search
applied to the entire input space without considering dimensionality reduction. In Section 4.1.1.2, we
show how this algorithm is modified to focus on significant search dimensions only. Adaptive random
search is an extension of the naive random search that attempts to maximize the euclidean distance
between the selected points. Adaptive random search explores the space by iteratively selecting points
in areas of the space where fewer points have already been selected. Let R1⇥ . . .⇥Rd be the input
space, and let Pi be the set of points selected by adaptive random search at iteration i. At iteration i+1,
adaptive random search randomly generates a set P of candidate points in the input space. The search
computes distances between each candidate point p and points already selected in Pi. Formally, for
each point p = (v1, . . . ,vd) in P, the search computes a function dist(p,Pi) as follows:

dist(p,Pi) = MIN(v01,...,v
0
d)2Pi

Òqd
j=1(v j� v0j)2

The search algorithm then adds to Pi a point p in P such that dist(p,Pi) is the largest. The algorithm
terminates after generating a specific number of points. Adaptive random search is similar to quasi-
random number generators that are available in some languages, e.g., MATLAB [The MathWorks
Inc., 2003a]. Similar to our adaptive random search algorithm, these number generators attempt to
generate points that are evenly distributed across the entire space. Below, we describe how we use
dimensionality reduction and adaptive random search to efficiently select a set of points in the input
space of F that can be utilized in the search step (Figure 4.2(b)) for building an effective surrogate
model.

4.1.1.1 Dimensionality Reduction

Using dimensionality reduction, we identify the dimensions of the domain of F that have the most
impact on the output of F . To do so, we rely on sensitivity analysis which is the study of how the
variations in the outputs of a function are related to the variations in its inputs [Campolongo et al.,
2007]. An application of sensitivity analysis is identifying input variables with the most and the
least significant impact on a given function. Among different sensitivity analysis techniques, we
use the elementary effects method [Morris, 1991]. This method is intuitive, and compared to other
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Figure 4.3. The elementary effect analysis results for the stability objective function (Fst) with an eight-
dimension input space.

techniques such as variance-based methods [Campolongo et al., 2007], requires fewer number of
function evaluations, and hence, is well-suited for functions that are expensive to compute.

The elementary effects method works as follows: Using adaptive random search, we generate r
points in the input space of R1⇥ . . .⇥Rd . For each dimension i (1  i  d), and for each point j,
we vary vi in the input vector (v1, . . . ,vd) of F by a parameter D and measure the resulting variation
di j in the output of F . We then compute the sample mean di, and the sample standard deviation Sdi
for each input space dimension i to assess the impact of that dimension on F . Figure 4.3 shows an
example output of the elementary effects method for the stability objective function Fst with an eight-
dimension input space. Provided with this diagram, engineers choose the dimensions with significant
impact on Fst . For example, they may decide that Cal1, Cal2, Cal4, and Cal6 (which have sample
means and standard deviations close to zero) are not significant.

4.1.1.2 Exploration in the Reduced Dimensional Space

To explore the input space, we use the adaptive random search algorithm as described at the beginning
of Section 4.1.1. The difference is that we modify the dist function to ensure that the search maximizes
diversity along the dimensions with significant effect on F . Otherwise, note that exploration with and
without dimensionality reduction take about the same time and operate in the same space. Let Dr be
the set of dimensions with significant impact on F , e.g., Dr in Figure 4.3 is {ID,FD,Cal3,Cal5}. For
each candidate point p, we compute distDr(p,Pi) as follows:

distDr(p,Pi) = MIN(v01,...,v
0
d)2Pi

Òq
j2Dr(v j� v0j)2

In contrast to the dist function presented at the beginning of Section 4.1.1, in distDr , we consider
only the values related to the dimensions in Dr. That is, we focus on maximizing the diversity of the
selected points along the dimensions in Dr, and the values of the variables along the dimensions in
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Figure 4.4. An example of a regression tree generated for Fst .

{1, . . . ,d}\Dr can either be fixed or set arbitrarily. This allows us to intensively explore parts of the
space that results in the most variations in the output of F .

Having selected N points in the input space of F and having computed F for each point, we build
a regression tree based on these points, e.g., see Figure 4.4. The regression tree represents a step-
wise partition of the input space aimed at getting increasingly homogeneous partitions with respect
to F . Such a representation is a convenient and intuitive way to visualize the impact of input space
dimensions on F [Witten et al., 2011].

Figure 4.4 shows an example of the regression tree generated from the exploration results for Fst
(N = 1000). Each node in the tree corresponds to a space partition and is labeled by the number of the
points in that partition as well as the mean and standard deviation of the values of Fst for those points.
For example, the highlighted node in Figure 4.4 corresponds to a partition where minFD  FD <
0.43306 and 0.020847 < Cal5maxCal5, and it includes 182 points selected during exploration. The
mean and standard deviation of Fst for these points are 0.0134555 and 0.0052883, respectively.

We select the partition with the highest mean value for the objective function among the leaf nodes
of the regression tree. The partition with the highest mean is more likely to include errors and critical
scenarios. We denote input space partitions by R✓, and define it as R✓ = R✓1 ⇥ . . .⇥R✓d such that
R✓i ✓ Ri for 1  i  d. For example, in Figure 4.4, we select the highlighted partition that has the
highest mean value, and denote it by

R✓ = R✓ID⇥R✓FD⇥R✓Cal1⇥R✓Cal2⇥R✓Cal3⇥R✓Cal4⇥R✓Cal5⇥R✓Cal6

such that R✓FD = [minFD..0.43306), R✓Cal5 = (0.020847..maxCal5], and
R✓v = Rv = [minv..maxv] for every other variable v. After selecting a partition R✓, this partition together
with the points generated during exploration inside this partition are passed to step 2.
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4.1.2 Search
Figure 4.2(b) shows the search step of our approach. The search step takes as input a function F , a
partition R✓, and a set P of (p,F(p)) pairs computed during the exploration step. Specifically, the
space R✓ is a critical input space partition identified in the previous step, and P includes pairs of
(p,F(p)) where p is a point in R✓ that was selected by the adaptive random search in step 1.2, and
F(p) is the output of F applied to p. We refer to P as an observation set. In step 2.1 in Figure 4.2(b),
we first build a surrogate model M̂ using supervised learning techniques [Witten et al., 2011]. The
surrogate model M̂ consists of two functions: A predictive function F̂ : R✓ ! R that estimates the
output of F for any point in R✓, and an error function F̂e : R✓⇥ [0..100]!R. For each point p2R✓
and a given confidence level cl, F̂e(p,cl) is the prediction error indicating that, with a confidence level
of cl, the actual value of F(p) is within F̂(p)± F̂e(p,cl).

In step 2.2, we search the points in R✓ to find a point that maximizes F . Since computing F
is expensive, we expedite the search by checking whether we can conclusively decide the next point
that the search should move to using F̂ . Specifically, the output of F̂ is conclusive, if the prediction
error F̂e is less than the difference between the output of F̂ and the existing highest value found by the
search. Otherwise, we have to compute the actual output of F by simulating the Simulink controller
related to F .

4.1.2.1 Surrogate Modeling

We use supervised learning techniques to build a surrogate model of the function F . Given a point
p, supervised learning predicts F(p) using a set P of observations with known output values [Witten
et al., 2011]. We divide the observation set P into a training set and a test set. The training set is used
to infer a predictive function F̂ . This is done by estimating the parameters of F̂ such that F̂ fits the
training data as well as possible, i.e., for the observations in the training set, the differences between
the output of F and that of F̂ are minimized. The test set is then used to evaluate the accuracy of the
predictions produced by F̂ when applied to observations outside the training set.

Supervised learning techniques are categorized into regression and classification techniques where
the goal is to predict real-valued and categorical outputs, respectively. We use regression techniques
because F is a real-valued function. Specifically, we use the following regression techniques:

Linear Regression (LR). Linear regression assumes that F is linear. Given an observation point
p = (v1, . . . ,vd), linear regression infers F̂ as a linear function

F̂(v1, . . . ,vd) = b0 +b1v1 +b2v2 + . . .+bdvd

Exponential Regression (ER). Exponential regression assumes that F is non-linear but monotonic,
and infers F̂ in the following form:

F̂(v1, . . . ,vd) = b0vb1
1 vb2

2 . . .vbd
d
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Polynomial Regression (PR). Polynomial regression assumes that F is neither linear nor monotonic.
The inferred function F̂ takes the form of an nth-degree polynomial:

F̂(v1, . . . ,vd) = b0 +
dq

i=1
bi1vi +bi2v2

i + . . .+binvn
i

In this chapter, we consider PR(n = 2,3) because based on our experiments the predictability
of our surrogate models decreases for n > 3. In the above three regression methods, parameters bi
(0  i  d) and bi j (1  i  d and 1  j  n) have to be estimated using the training data. The
goal is to estimate these parameters such that the sum squared error of the predicted outputs for the
training points is minimized. That is,

qm
i=1(F(pi)� F̂(pi))2 where m is the number of observations

in the training set, is minimized. In addition, we use step-wise regression to build F̂ in the above
three regression methods [Witten et al., 2011]. Instead of including all variables v1 to vd at once,
step-wise regression aims at selecting a minimal subset of variables that are statistically significant at
explaining the variation in F . The variables may be selected in a forward or backward way. In the
forward selection, variables are iteratively selected and added as long as the sum squared error over
the training data decreases, i.e., the predictive power of F̂ improves. At each iteration, a statistical
test (F-test) is used to determine which variable best improves the predictive power of F̂ [Capon,
1991]. Dually in the backward elimination, variables are iteratively removed as long as the predictive
power of F̂ over training data does not decrease. Most implementations of step-wise regression, e.g.,
stepwiselm in MATLAB [The MathWorks Inc., 2003c], combine the backward and forward methods
by iteratively switching between them. That is, they add variables using forward selection for some
iterations, and then switch to backward elimination after a while to remove unnecessary variables.

In addition to function F̂ , all the above regression methods provide a function F̂e : R✓⇥ [0..100]!
R. Function F̂e(p,cl) estimates the prediction error for a point p based on a given confidence level cl,
which is a percentage value between 0 and 100, usually above 80%. For example the input cl = 95
implies that the actual value of F(p) lies in the interval of F̂(p)± F̂e(p,cl) with a confidence level of
95%.

4.1.2.2 Single-State Search Using Surrogate Model

As discussed in the previous chapter to compute highest values of our objective functions, among the
existing meta-heuristic search techniques, we opt for single-state algorithms as opposed to population-
based ones. This is because population-based search algorithms compute fitness functions for a set
of points (a population) at each iteration [Luke, 2013]. Hence, they are less likely to scale when
objective functions are computationally expensive.

We propose a new Hill Climbing (HC) single-state search algorithm [Luke, 2013] extended to use
surrogate models. Our algorithm speeds up the search by avoiding simulations when it is possible to
decide the next move for search, based on the surrogate model predictions. The algorithm is shown
in Figure 4.5. It takes as input the function F , the set P of observations in the partition R✓1 ⇥ . . .⇥R✓d ,
the surrogate model M̂ = (F̂ , F̂e), and a confidence level cl . The output of the algorithm is a point w
with the highest output of F found in Ts seconds.
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The algorithm first identifies the observation (p,F(p)) 2 P such that F(p) is the largest in P, and
sets the variable highest to F(p) (lines 1, 2). At the beginning of each iteration of this algorithm,
highest is the highest output of F computed so far. The algorithm then iteratively generates a new
point newp by tweaking the current point p (line 4). The tweak operator is similar to the one used
in the previous chapter. That is, we tweak a point p = (v1, . . . ,vd) by shifting each vi with a value x
randomly selected from a normal distribution with mean µ = 0 and variance s2 = 0.1⇥ |R✓i |. In our
previous work, we showed that this tweak operator yields effective results for two dimension input
space functions [Matinnejad et al., 2015a]

For each new point newp, the algorithm computes surrogate model functions F̂(newp) and F̂e(newp,cl)
(lines 5, 6). At line 7, the algorithm determines whether it needs to compute the actual value
of F(newp), or it can decide the next move only using F̂(newp). Figure 4.6 depicts the condi-
tions under which we have to compute F(newp). Specifically, if highest is less than or equal to
F̂(newp)� F̂e(newp,cl), or more than or equal to F̂(newp) + F̂e(newp,cl), with a confidence level
of cl, highest is less or greater than F(newp), respectively. In the case of highest greater than
F̂(newp)+ F̂e(newp,cl), the search does not move to newp, and hence, no need to compute F(newp).
In the case of highest less than F̂(newp)� F̂e(newp,cl), the search may move to newp depending on
the value of F(newp). Thus, we compute F(newp). If highest is between F̂(newp)� F̂e(newp,cl) and
F̂(newp) + F̂e(newp,cl), we cannot confidently compare highest with the actual value of F(newp)
using F̂(newp), and hence, have to compute F(newp).

Line 7 in Figure 4.5 summarizes the condition for determining whether F(newp) has to be com-
puted or not. If yes, the algorithm computes F(newp), and refines the surrogate model M̂ using the
new observation (newp,F(newp)) (lines 8–10). Otherwise, at line 11, the algorithm decides the next
point that the search should move to. When it decides to move (lines 12, 13), it updates the current
point p with newp, and highest with the highest value of F computed so far and stored in y. In ad-
dition, it keeps a copy of newp. Finally, once the loop at line 3 terminates, the algorithm reports the
point w with the highest output of F found in Ts seconds.

Note that the higher the value of cl, the algorithm in Figure 4.5 is more likely to compute the actual
value of F by running simulations. For cl = 100, the interval of F̂(newp)± F̂e(newp,cl) is equal to
(�•,+•), and hence, the algorithm behaves like a conventional Hill Climbing algorithm and runs
a simulation at each iteration. For cl = 0, we have F̂e(newp,cl) = 0, and hence, the algorithm runs
fewer simulation, i.e., only when highest < F̂(newp) (see Figure 4.6).

4.2 Experiment Setup
In this section, we present the research questions, some information about our industrial subject, the
metrics used to evaluate surrogate models, and information about our experiment design.

4.2.1 Research Questions
RQ1 How do the different surrogate modeling techniques perform compared to one another?

RQ2 Does dimensionality reduction improve prediction accuracy of the best surrogate modeling
technique identified in RQ1?
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Algorithm.
SingleStateSearch

Input: F : R✓1 ⇥ . . .⇥R✓d ! R.
The set P of (p,F(p)) pairs.
The surrogate model M̂ : (F̂ , F̂e) .
A confidence level cl.

Output: Point w = (v1, . . . ,vd) with the highest output of F .

1. Let (p, f ) 2 P s.t. for all (p0, f 0) 2 P, we have f � f 0

2. highest = f
3. for Ts seconds do:
4. newp = Tweak(p)
5. y = F̂(newp)
6. e = F̂e(newp,cl)
7. if highest < (y+ e) : /*If highest is less than F̂(newp)+ F̂e(newp,cl), we
8. y = F(newp) simulate and compute F(newp), as shown in Figure 4.6.
9. P = P[ (newp,y) Otherwise, we bypass simulation.*/
10. (F̂ , F̂e) = BuildSurrogateModel(P)
11. if y > highest :
12. highest = y
13. p = w = newp
14. return w

Figure 4.5. Single-state Hill Climbing (HC) search algorithm with surrogate modeling.
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highest F (newp)   and
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Figure 4.6. Depicting the conditions used by the algorithm in Figure 4.5 to perform or to bypass simulations.

RQ3 How do our single-state search algorithms, with and without surrogate modeling, perform
compared to each other?

RQ4 Does our approach help identify testing results that are useful in practice?

In RQ1, for each objective function, we identify, among the four regression methods discussed in
Section 4.1.2.1, the method that yields a surrogate model with highest prediction accuracy. For each
objective function, we then use this best surrogate model for the single-state search. In RQ2, we de-
termine whether focusing exploration on significant dimensions of each fitness function improves the
prediction accuracy of the surrogate models. Recall that exploration with and without dimensionality
reduction take about the same time and operate in the same space. However, the exploration results
with dimensionality reduction are more diversely distributed along the dimensions with significant
impact on the objective functions. The question is whether this gives rise to more accurate and pre-
dictive surrogate models? In RQ3, we compare the performance and results of our single state search
algorithms with and without surrogate modeling, in order to determine whether our new approach
scales better in large search spaces. Finally, in RQ4, we compare our best results, i.e., test cases with
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highest objective function values, with those obtained in our previous work [Matinnejad et al., 2015a]
as well as the existing test cases used in practice.

4.2.2 Industrial Subject
Supercharger is an air compressor blowing into a turbo compressor to increase the air pressure sup-
plied to the engine. The air pressure is controlled by a mechanical bypass flap: When the flap is
completely open (resp. closed), the air pressure is minimum (resp. maximum). Our industrial subject
is the Supercharger Bypass Flap Position Controller (SBPC) which determines the position of the by-
pass flap to achieve a desired air pressure. SBPC is one of the most complex controllers among those
dedicated to engine management. In SBPC, the desired and actual variables represent the desired and
actual positions of the flap, respectively. The flap position is bounded within [0..1] (0 for open and
1.0 for closed), i.e., RID=RFD=[0..1] in our experiments. The SBPC controller and plant models are
both implemented in Simulink and include 443 blocks in total. SBPC has six configuration parame-
ters Cal1 to Cal6 impacting the PID controller terms, and hence, the controlling behavior of SBPC.
Figure 4.1 shows the ranges for the SBPC configuration parameters.

4.2.3 Surrogate Modeling Evaluation Metrics
To assess the goodness of fit and predictive power of the generated surrogate models, we use two
well-known evaluation metrics for supervised learning methods: (1) coefficient of determination or
R2 [Witten et al., 2011] and (2) Mean of Relative Prediction Error or MRPE [Park and Stefanski,
1998]. Specifically, R2 measures the proportion of the total variance of F explained by F̂ for the
observations in the training set. In other words, R2 is a measure of goodness of fit on the training set.
The value of R2 is always less than 1. The higher the value of R2, the higher the goodness of fit of F̂
predictions.

The Mean of Relative Prediction Error (MRPE) [Park and Stefanski, 1998] measures the predic-
tive power of F̂ using the observations from the test set. Let k be the number of observations in the
test set. We compute the MRPE as follows:

1
k ⇥

qk
i=1 |F(pi)�F̂(pi)

F(pi)
|

That is, MRPE measures the average of the relative prediction errors of F̂ for the observations in
the test set. The lower the value of MRPE, the higher the predictive power of F̂ . Note that a surrogate
model F̂ with high R2 may not yield low MRPE values due to overfitting, i.e., when F̂ is excessively
tailored to the training observations, but does not generalize well to the test observations. Therefore,
to compare different surrogate models, we have to take into account both R2 and MRPE metrics.

In theory, both R2 and MRPE can be computed on either the training set or the test set. When
applied to the training set, they measure the goodness of fit, and when applied to the test set, they
assess the prediction accuracy. However, it is more common to use R2 to measure goodness of fit, to
get an idea of how much variance remains unexplained in the data used to fit the model, and MRPE to
address prediction accuracy as it is more readily interpretable to assess the applicability of a prediction
model. Therefore, we chose to compute R2 on the training set and MRPE on the test set.
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4.2.4 Experiment Design and Analysis Strategy
We implemented the elementary effect analysis, adaptive random search, surrogate modeling tech-
niques including LR, ER, and PR(n = 2,3), and our single-state search algorithm in MATLAB. Both
adaptive random search and single-state search are required to call simulations of the SBPC Simulink
model. The latter, in addition, may resort to surrogate modeling by calling and refining surrogate
models. We ran each Simulink simulation for 2 sec to give SBPC enough time to stabilize. We ran all
the experiments on Amazon micro instance machines which is equal to two Amazon EC2 Compute
Units. Each unit has a CPU capacity of a 1.0-1.2 GHz 2007 Xeon processor. Each 2-sec Simulink
simulation of SBPC takes about 31 sec on the Amazon machine. While calling the surrogate models
is negligible (less than 5ms) and rebuilding them takes about 2 sec on average.

To investigate RQ1-RQ4, we designed and performed the following experiments. Below, we use
abbreviations DR and SM for dimensionality reduction and surrogate models, respectively.

EXP-I. To answer RQ1 and RQ2, we computed the output of exploration once with and once without
DR. To compute exploration results with DR, we applied the elementary effect analysis to our three
objective functions with parameters r = 20 and D = 0.556. Recall from Section 4.1.1 that r is the
number of points, and D is the size of the modification applied to each dimension of each point. These
values are selected based on the guidelines in [Campolongo et al., 2007]. To account for randomness
we repeated the elementary effect analysis 10 times. The results across different repetitions were
consistent, and out of the eight input space dimensions, four were significant for Fst , and three were
significant for Fr and Fsm. We then applied our adaptive random search to each of these functions
by focusing the exploration on their significant dimensions only. We let N = 1000, and executed
our adaptive random search to generate 1000 points for Fst , and 1000 points for Fr and Fsm. Note
that since Fr and Fsm have the same significant dimensions, we generated the same points for both
functions, but kept two output values for each point.

To compute exploration results without DR, we let N = 2000, and generated 2000 points across
the eight dimensions of the input space, but computed Fst , Fr, and Fsm separately for each point. Note
that the total number of points generated during exploration with and without DR was the same and
equal to 2000.

For each objective function, we built two regression trees: one from the exploration results with
DR, and one from the exploration results without DR. Each regression tree node corresponds to an
input space partition. Suppose that s and µ respectively denote the standard deviation and mean
values related to each partition. We expand each regression tree until s

µ for every leaf node falls
below 0.1. Expanding the trees further often results in leaf nodes containing very few observations
and corresponding to very small space partitions. By expanding the tree, the variance of the objective
function values (s ) in leaf node partitions decrease. In each tree, among all the leaf nodes with
s
µ < 0.1, we select the one that has the highest µ for further search of worst case scenarios.

For the partitions with the highest µ , based on their observation points, we created four surrogate
models (SMs) using LR, ER, and PR (n = 2,3) techniques. To effectively apply surrogate modeling
techniques, we want to have at least 200 points in the selected partitions. If lower, we generate
additional points before building a SM. We then use these 200 points as training data to build SMs.
For the test sets, we generate an additional 50 points using a naive random selection technique. That
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is, the test points are chosen the same way irrespective of the use of DR. This allows us to use the
same test sets to facilitate the comparison of the SMs generated with and without DR.

In total, to obtain the exploration results with and without DR, we performed 24 experiments (3
objective functions, 4 surrogate modeling techniques, with/without DR). To account for randomness,
we repeated each of the 24 experiments 10 times.

EXP-II. To answer RQ3 and RQ4, we performed single state search, for a given input space partition,
once with and once without using SMs. To compute the search results with SM, we first built a SM
using the best technique identified in RQ1. Then, for each objective function, we applied our SM-
based single state search algorithm in Figure 4.5 to a given input space partition. We ran this algorithm
for three confidence levels (cl): 80, 90, and 95. For each objective function and each confidence level,
we ran the search for 3000 sec.

To compute the search results without SM, for each objective function, we applied a Hill Climbing
(HC) algorithm similar to that used in our previous work [Matinnejad et al., 2015a] to a given input
space partition.We let the search run for 3000s, i.e., the total search budget time for the single state
search with and without SM was the same and equal to 3000s. We refer to our SM-based single state
search algorithm in Figure 4.5 as HC-SM, and to our single-state search algorithm without SM as
HC-NoSM.

In total, to obtain the search results with and without SM, we performed 9 experiments with SM (3
objective functions, 3 confidence levels), and 3 experiment corresponding to the 3 objective functions
without SM. To account for randomness, we repeated each of the 12 experiments 30 times.

4.3 Experiment Results
This section provides responses, based on our experiments, for research questions RQ1 to RQ4 de-
scribed in Section 4.2.1.

RQ1. To answer RQ1, we use the SMs generated by the EXP-I experiments (Section 4.2.4). Since
EXP-I includes 24 experiments, and each experiment was repeated 10 times, we obtain 24 different
groups of SMs where each group consists of 10 different SMs. For all the SMs, we compute R2

and MRPE values. Figure 4.7(a) shows the average R2 and average MRPE values for 12 SM groups
generated for Fsm, Fst , and Fr based on the exploration results with DR. As shown in Figure 4.7(a),
the SMs built using PR (n = 3) have the best goodness of fit (highest R2) and best predictive accuracy
(lowest MRPE). The results for the other 12 SM groups generated from the exploration results without
DR are consistent with those shown in Figure 4.7(a). Specifically, our results confirm that, compared
to LR, ER and PR(n = 2), PR (n = 3) generates the most accurate SMs for our objective functions.

In addition, the results in Figure 4.7(a) show that while the surrogate models generated by PR
(n = 3) for Fsm and Fr have high goodness of fit and predictive power, this is not the case for Fst .
Additionally, though due to space constraints this cannot be shown here, we observed that applying
PR with n > 3 results in less accurate SMs, i.e., lower R2 and higher MRPE.

RQ2. To answer RQ2, we focus on the best SMs in the EXP-I experiments, i.e., the SMs generated
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(b) Distribution of MRPE for three objective functions with and without DR
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Figure 4.7. Experiment results for RQ1 and RQ2: (a) Comparing different surrogate modeling techniques,
and (b) comparing exploration results with and without dimensionality reduction (DR).

by PR(n = 3). Figure 4.7(b) shows the MRPE distributions related to the best SMs generated from
the exploration results both with and without DR, and for each of Fsm, Fr and Fst . To statistically
compare the MRPE values, we performed the non-parametric pairwise Wilcoxon Pairs Signed Ranks
test [Capon, 1991], and calculated the effect size using Cohen’s d [Cohen, 1977]. The level of signif-
icance (a) was set to 0.05, and, following standard practice, d was labeled small for 0.2  d < 0.5,
medium for 0.5 d < 0.8, and high for d � 0.8 [Cohen, 1977]. Testing differences in MRPE distri-
butions shows that for Fsm and Fr, the SMs built with DR have significantly better predictive power
than those built without DR. In addition, the effect size is “high” for both Fsm and Fr. For Fst , how-
ever, there is no statistically significant difference between the MRPE values of the SMs generated
with and without DR. Specifically, focusing exploration on a reduced-dimension space significantly
improves (with a high effect size) the predictive power of the SMs for Fsm and Fr, but does not have
a significant impact on the predictive power of the SMs related to Fst . This may be due to the SMs
for Fst being less accurate than those for Fsm and Fr. Since based on our results, DR never decreases
the predictive power of the resulting SMs, our results suggest to focus exploration on the significant
dimensions identified by DR.

RQ3. To answer RQ3, we use the EXP-II experiments (Section 4.2.4). Recall that in EXP-II, each
run of each algorithm was executed for 3000 sec. In each run, we recorded the value of the variable
highest, i.e., the highest found output of the objective function (see Figure 4.5), at every 100 sec time
interval. Figure 4.8 compares the value distributions of highest obtained from HC-SM with cl = 80,
90, and 95, and from HC-NoSM at some selected (representative) time points for each of the objective
functions Fsm, Fst , and Fr. Specifically, Figure 4.8(a) shows the value distributions of highest for Fsm
at 800s, 1500s, 2500s, and 3000s. Figure 4.8(b) shows the value distributions of highest for Fr at
200s, 300s, and 3000s, and Figure 4.8(c) shows the value distributions of highest for Fst at 3000s.
Time points, for each fitness function, were selected to make the overall trends visible for HC-SM
and HC-NoSM.
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Figure 4.8. Boxplots for single-state search output values with and without surrogate modeling at some selected
time points and applied to: (a) Smoothness (Fsm), (b) Responsiveness (Fr), and (c) Liveness (Fst).

Figures 4.9(a) and (b) respectively represent the differences between the mean values found for
Fsm and Fr by each of the HC-SM algorithms and by HC-NoSM over 3000s of time. For Fsm, as
shown in both Figures 4.8(a) and 4.9(a), within 3000s, all the HC-SM algorithms are able to find
higher values compared to those found by HC-NoSM. Among the HC-SM algorithms, cl = 80 finds
highest values for Fsm at 2500s with a mean of 23% and a median of 23.4%. HC-SM with cl = 90 and
cl = 95 reach slightly lower values for Fsm at around 3000s. HC-NoSM, however, is not able to go
higher than 22.3% (both mean and median) in the 3000s allotted time. That is, in 3000s and across
30 different runs, half of the values computed by HC-SM indicate an over/undershoot of 23.4% or
higher, while the highest smoothness violation found by HC-NoSM is about 22.3%.

The one percent improvement of HC-SM over HC-NoSM is important in practice. This is because,
depending on the hardware configuration, engineers specify a maximum over/undershoot that can
be tolerated for the smoothness requirement. Exceeding this value, even slightly, is not in general
acceptable. In the particular case of our case study (SBPC), slight deviation for the smoothness
causes the flap to hit other hardware parts, generating noise and damaging hardware over time. We
note that, even after running HC-NoSM for 5000s, its average and median output remained at around
22.3%. In general, the overall increase in the output of HC-NoSM over 5000s was very small.

For Fr, as shown in both Figures 4.8(b) and 4.9(b), the HC-SM algorithms find their highest values
within the first 300s of time with cl = 80 being the fastest again. Specifically, at 300s, on average,
HC-SM identifies a worst response time of 167s, while the average output of HC-NoSM indicates a
response time of 163s. In contrast to the results of Fsm, for Fr, HC-NoSM is able to match the HC-SM
algorithms in around 2500s of time (see the area shown by a dashed circle in Figure 4.9(b)). That is,
the HC-SM algorithms are about 8 times faster than HC-NoSM. Finally, for Fst (Figure 4.8(c)), we did
not observe any noticeable difference between the values found by the HC-SM algorithms and those
found by HC-NoSM within 3000s of time. That is, within this time, all the algorithms behaved the
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Figure 4.9. Differences of mean output values of search with surrogate modeling (HC-SM with cl = 80, 90,
95) and search without surrogate modeling (HC-NoSM).

same. This is due to the SM for Fst , which is clearly less accurate than those for Fsm and Fr. Hence,
for Fst , the HC-SM algorithms almost run Simulink simulations at every search iteration, producing
the same results as HC-NoSM.

We conclude that for accurate SMs with high predictive power (i.e., those built for Fsm and Fr),
HC-SM outperforms HC-NoSM. Specifically, for Fsm, HC-SM computes higher output values that
could not be computed by HC-NoSM, and for Fr, HC-SM is about eight times faster than HC-
NoSM in finding the same output. This is because, compared to HC-NoSM, HC-SM runs fewer
Simulink simulations, relying on the SM output in many search iterations. In addition, HC-SM with
cl = 80 is slightly faster than HC-SM with cl = 90 and 95 because it runs fewer simulations.

RQ4. To demonstrate practical usefulness of our approach, we argue that MiL testing for different
configurations of the SBPC controller finds requirements violations that have neither been identified
via MiL testing of fixed configurations, nor by manual testing based on domain expertise.

Figure 4.10 compares our results with the results of our previous work on MiL testing with fixed
configuration parameters [Matinnejad et al., 2015a, Matinnejad et al., 2013], and the results of man-
ual expertise-based MiL testing. As shown in the figure, by extending our approach to test different
configurations within some given ranges, we were able to identify a critical violation of the stability
requirement with a deviation of 2.2%. Note that our previous results [Matinnejad et al., 2015a, Matin-
nejad et al., 2013] as well as the results from manual testing never indicated any stability error in
SBPC. In addition, for smoothness and responsiveness, our current work found more critical viola-
tions: Specifically, the maximum observed over/undershoot was 24% compared to the 20% found by
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Figure 4.10. Comparing our MiL testing results with the results of MiL testing fixed controller configura-
tions [Matinnejad et al., 2015a], and the results of manual MiL testing.

our previous work, and 5% found by manual testing. Finally, we computed a worst response time of
170ms compared to 80ms found by our previous work and 50ms identified via manual testing.

We conclude our results by noting that, due to limitations of manual testing, MiL testing in practice
mostly focuses on a single controller configuration which is typically the one specified based on HiL
configuration parameters. This obviously falls short when the controller is configured and deployed
on a hardware with parameters that differ from those used on HiL. Since existing MiL testing does not
consider different configurations, the errors that could have been found at MiL level go unnoticed until
the very late development stages. Our work attempts to alleviate this shortcoming by enabling MiL
testing for various configurations obtained by varying configuration parameters within their given
ranges.

4.4 Conclusions
In this chapter we proposed an approach for MiL testing of closed-loop continuous controllers in large
configuration spaces, based on meta-heuristic search, with respect to smoothness, responsiveness, and
stability requirements. The main challenge is to scale search to large multi-dimensional input spaces
made up of possibly many configuration parameters. To scale search, we combined techniques for
dimensionality reduction and supervised learning to build surrogate models that accurately predict
simulation results without resorting to simulation in many cases. Our evaluation shows that our
approach is able to identify critical violations of the controller requirements that had neither been
found by our test generation algorithm in chapter three nor by manual testing. Further, we showed
that combining search with surrogate modeling remarkably improves our approach for two out of
three requirements. Specifically, for one requirement, the search combined with surrogate modeling
is eight times faster than the search without surrogate modeling, and for the other requirement, the
search with surrogate modeling computes more critical requirements violations than what could be
detected by the search without surrogate modeling.
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Chapter 5

Effective Test Suites for Mixed
Discrete-Continuous Stateflow Controllers

In this chapter, we focus on providing test case generation algorithms for Stateflow models. Given
that test oracles for Stateflow models are not amenable to full automation mostly due to their complex
continuous-time behaviors [Zander et al., 2012], our algorithms help engineers develop small test
suites with high fault revealing power for continuous behaviors, effectively reducing the cost of human
test oracles [Barr et al., 2015, McMinn et al., 2010]. Note that our approach for testing closed-
loop controllers fails to automate test oracles for Stateflows because for closed-loop controllers, the
environment (plant) feedback and the desired controller output (setpoint) are both available [Heimdahl
et al., 2013] . Hence, test oracles could be formalized and automated in terms of feedback and
setpoint. For Stateflow models, which typically implement open-loop controllers [Nise, 2004], the
plant feedback is not available.

We present and evaluate six test generation algorithms for mixed discrete-continuous Stateflow
models: A black-box adaptive random input-based algorithm, two white-box adaptive random coverage-
based algorithms, a black-box adaptive random output-based algorithm, and two black-box search-
based output-based algorithms. Our adaptive random input-based algorithm simply attempts to gen-
erate a test suite by diversifying test inputs. Our two white-box adaptive random coverage-based
algorithms aim to achieve high structural coverage. Specifically, we consider the well-known state
and transition coverage criteria [Binder, 2000] for Stateflow models. Our black-box adaptive random
output-based algorithm aims to maximize output diversity, i.e., diversity in continuous outputs of
Stateflow models. Output diversity is an adaptation of the recently proposed output uniqueness cri-
terion [Alshahwan and Harman, 2012, Alshahwan and Harman, 2014] to output signals of Stateflow
models. Output uniqueness has been studied for web applications and has shown to be a useful sur-
rogate to white-box generation techniques. We consider this criterion in our work because Stateflows
have rich time-continuous outputs, providing a useful source of information for fault detection.

Our black-box search-based output-based algorithms rely on meta-heuristic search [Luke, 2013]
and aim to maximize objective functions capturing the degree of presence of continuous output failure
patterns. Inspired by discussions with control engineers, we propose and formalize two continuous
output failure patterns, referred to as instability and discontinuity. The instability pattern is character-
ized by quick and frequent oscillations of the controller output over a time interval, and the disconti-
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nuity pattern captures fast, short-duration and upward or downward pulses (i.e., spikes [Wikipedia.,
2016]) in the controller output. Presence of either of these failure patterns in Stateflow outputs may
have undesirable impact on physical processes or objects that are controlled by or interact with a
Stateflow model.

Organization. This chapter is organized as follows. Section 5.1 presents a mixed discrete-
continuous Stateflow example that motivates our work. Section 5.2 presents our test generation algo-
rithms for Stateflow models. Sections 5.3 and 5.4 describes our experiments setup and experiments
results, respectively. Finally, Section 5.5 concludes the chapter.

5.1 Background and Motivation
Motivating example. We motivate our work using a simplified Stateflow from the automotive do-
main which controls a supercharger clutch and is referred to as the Supercharger Clutch Controller
(SCC). Figure 5.1(a) represents the discrete behavior of SCC specifying that the supercharger clutch
can be in two quiescent states: engaged or disengaged. Further, the clutch moves from the disengaged
to the engaged state whenever both the engine speed engspd and the engine coolant temperature tmp
respectively fall inside the specified ranges of [smin..smax] and [tmin..tmax]. The clutch moves back
from the engaged to the disengaged state whenever either the speed or the temperature falls outside
their respective ranges. The variable ctrlSig in Figure 5.1(a) indicates the sign and magnitude of the
voltage applied to the DC motor of the clutch to physically move the clutch between engaged and dis-
engaged positions. Assigning 1.0 to ctrlSig moves the clutch to the engaged position, and assigning
�1.0 to ctrlSig moves it back to the disengaged position. To avoid clutter in our figures, we use
engageReq to refer to the condition on the Disengaged! Engaged transition, and disengageReq

to refer to the condition on the Engaged! Disengaged transition.

The discrete transition system in Figure 5.1(a) assumes that the clutch movement takes no time,
and further, does not provide any insight on the quality of movement of the clutch. Figure 5.1(b)
extends the discrete transition system in Figure 5.1(a) by adding a timer variable, i.e., time, to ex-
plicate the passage of time in the SCC behavior. The new transition system in Figure 5.1(b) includes
two transient states, engaging and disengaging, specifying that moving from the engaged to the dis-
engaged state and vice versa takes 600 ms. Since this model is simplified, it does not show handling
of alterations of the clutch state during the transient states. In addition to adding the time variable,
we note that the variable ctrlSig, which controls physical movement of the clutch, cannot abruptly
jump from 1.0 to �1.0, or vice versa. In order to ensure safe and smooth movement of the clutch,
the variable ctrlSig has to gradually move between 1.0 and �1.0 and be described as a function
over time, i.e., a signal. To express the evolution of the ctrlSig signal over time, we decompose the
transient states engaging and disengaging into sub-state machines. Figure 5.1(c) shows the sub-state
machine related to the engaging state. The one related to the disengaging state is similar. At beginning
(state OnMoving), the function ctrlSig has a steep grade (i.e., function f ) to move the stationary
clutch from the disengaged state and accelerate it to reach a certain speed in 300 ms. Afterwards
(state OnSlipping), ctrlSig decreases the speed of clutch based on the gradual function g for 200
ms. This is to ensure that the clutch slows down as it gets closer to the crankshaft. Finally, at state
OnCompleted, ctrlSig reaches value 1.0 and remains constant, causing the clutch to get engaged
in about 100 ms. When the car is stationary, i.e., vehspd is 0, the clutch moves based on the steep
grade function f for 400 ms, and does not have to go to the OnSlipping phase to slow down before it
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Figure 5.1. Supercharge Clutch Controller (SCC) Stateflow.

reaches the crankshaft at state OnCompleted.

Input and Output. The Stateflow inputs and outputs are signals (functions over time). Each in-
put/output signal has a data type, e.g. boolean, enum or float, specifying the range of the signal. For
example, Figure 5.2 shows an example input (dashed line) and output (solid line) signals for SCC. The
input signal is related to engageReq and is boolean, while the output signal is related to ctrlSig and
is a float signal. The simulation length, i.e., the time interval during which the signals are observed,
is two sec for both signals. In theory, the input signals to Stateflow models can have complex shapes.
In practice, however, engineers mostly test Stateflow models using constant or step input signals over
a fixed time interval. This is because developing manual test oracles for arbitrary and complex input
signals is difficult and time consuming.

Stateflow outputs might be either discrete or continuous. A discrete output is represented by a
boolean or an enum signal that takes a constant value at each state. A continuous output is represented
by a float signal that changes over time based on a difference or differential equation (e.g., ctrlSig
in Figure 5.1(c)). Our focus in this chapter is on Stateflows with some continuous outputs.

Stateflow requirements. The specification of Stateflow controllers typically includes the following
kinds of requirements: (1) Requirements that can be specified as assertions or temporal logic proper-
ties over pure discrete behavior (e.g., the state machine in Figure 5.1(a)). For example, If engine speed
engspd and temperature tmp fall inside the ranges [smin..smax] and [tmin..tmax], respectively, the
clutch should eventually be engaged. (2) Requirements that focus on timeliness of the clutch behavior
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Figure 5.2. An example input (dashed line) and output (solid line) signals for SCC in Figure 5.1. The input
signal represents engageReq, and the output signal represents ctrlSig.
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Figure 5.3. The output signals (ctrlSig) for two faulty versions of SCC: (a) an unstable output, and (b) a
discontinuous output.

and rely on the time variable (see Figure 5.1(b)). For example, moving the clutch from disengaged
to engaged or vice versa should take 600 ms. Note that SCC is an open-loop controller [Nise, 2004]
and it does not receive any information from the clutch to know its whereabouts. Hence, engineers
need to estimate the position (state) of the clutch using timing constraints. (3) Requirements char-
acterizing continuous dynamics of controlled physical objects. For example, the clutch should move
smoothly without any oscillations, and it should not bump into the crankshaft or other physical com-
ponents close to it. Engineers need to evaluate the continuous ctrlSig signal to ensure that it does
not exhibit any erratic or unexpected change with any undesirable impact on physical processes or
objects.

Existing literature such as model checking and formal verification [Clarke et al., 1999] largely
focuses on properties that fall in groups one and two above [Nardi, 2014]. The third group of re-
quirements above, although of paramount importance for correct dynamic behavior of controllers, are
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lesser studied in the software testing literature compared to the requirements in the first and second
groups. To evaluate outputs with respect to the requirements in the third group, engineers have to eval-
uate the changes in the output over a time period. In contrast, model checkers focus on discrete-time
behaviours only, and evaluate outputs at a few discrete time instances (states), ignoring the pattern of
output changes over time.

Failure patterns. Figure 5.3 shows two specific patterns of failures in continuous output signals,
violating requirements on desired physical behaviors of controllers (group three). The failure in
Figure 5.3(a) shows instability, and the one in Figure 5.3(b) refers to discontinuity. Specifically, the
former signal shows quick and frequent oscillations of the controller output in the area marked by
a grey dashed rounded box, and the latter shows a very short-duration pulse in the controller output
at point A. In Section 5.2, we provide a number of test generation algorithms to generate test cases
that reveal failures in mixed discrete-continuous Stateflow outputs including the two failure patterns
in Figure 5.3.

5.2 Test Generation Algorithms
In our work, we propose the following test case generation algorithms to develop test suites that can
reveal erroneous continuous outputs of Stateflow models:

Black-box input diversity (ID). Our input diversity generation algorithm is adaptive random and
attempts to maximize diversity of test inputs selected from the input search space. Adaptive random
test generation [Arcuri and Briand, 2011, Chen et al., 2010] is a simple strategy that is commonly
used as a baseline for comparison. A generation algorithm has to perform at least better than adaptive
random to be considered worthwhile.

White-box coverage-based. Structural coverage criteria have been extensively studied in software
testing as a method for measuring test suite effectiveness [Namin and Andrews, 2009, Inozemtseva
and Holmes, 2014]. We consider the two well-known state coverage (SC) and transition coverage
(TC) criteria for Stateflows [Binder, 2000] mostly as another baseline of comparison.

Black-box output diversity (OD). In the context of web applications, recent studies have shown that
selecting test cases based on outputs uniqueness, i.e., selecting test cases that produce highly diverse
or distinct outputs, enhance fault finding effectiveness of test suites [Alshahwan and Harman, 2012,
Alshahwan and Harman, 2014]. Stateflow outputs provide a primary source of data for engineers to
find faults. Hence, in our work, we adapt the output uniqueness proposed by [Alshahwan and Harman,
2012, Alshahwan and Harman, 2014] and define a notion of output diversity over continuous control
signals.

Black-box failure-based. The goal of failure-based test generation algorithms is to select test inputs
that are able to reveal common failures specific to a particular domain [Pretschner et al., 2013]. We
identify two failure patterns related to continuous dynamics of controllers: instability and discontinu-
ity. Based on these two patterns, we define two failure-based and output-based generation algorithms,
output stability (OS) and output continuity (OC). Output stability aims to select test inputs that are
likely to produce outputs exhibiting a period of instability, particularly in response to a sudden change
in input. An example of an output with instability failure is shown in Figure 5.3(a). A period of insta-
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bility in this signal, which is applied to a physical device, may result in hardware damage and must
be investigated by engineers.

In contrast, output continuity attempts to select test inputs that are likely to produce discontinuous
outputs. The control output of a Stateflow is a continuous function with some discrete jumps at state
transitions. For example, for both the control signals in Figures 5.2 and 5.3(b), there is a discrete jump
at around time 1.0 sec (i.e., point A0 in Figure 5.2, and point A in Figure 5.3(b)). At discrete jumps,
and in general at every simulation step, the control signals are expected to be either left-continuous
or right-continuous, or both. For example, the signal in Figure 5.2 is right-continuous at point A0 due
to the slope from A0 to C0, and hence, this signal does not exhibit any discontinuity failure at point
A0. However, the signal in Figure 5.3(b) is neither right-continuous nor left-continuous at point A.
This signal, which is obtained from a faulty version of SCC, shows a very short duration pulse (i.e.,
a spike) at point A. This behavior is unacceptable because it may damage the clutch by imposing
an abrupt change in the voltage applied to the clutch [Wikipedia., 2016]. Specifically, the failure
shown in Figure 5.3(b) is due to a fault in a transition condition in the SCC model. Due to this faulty
condition, the controller leaves a state immediately after it enters that state and modifies the control
signal value from B to A.

In the remainder of this section, we first provide a formal definition of the test generation problem,
and we then present our test generation algorithms.

Test generation Problem. Let SF = (S,Q,G,o) be a Stateflow model where S = {s1, . . . ,sn} is the
set of states, Q = {r1, . . . ,rm} is the set of transitions, G = {i1, . . . , id} is the set of input variables,
and o is the controller output of the Stateflow model based on which we want to select test cases.
Typically, embedded software controllers have one main output, i.e., the control signal, applied to the
device under control. If a Stateflow model has more than one output, we can apply our approach to
select test cases for each individual output separately.

Note that Stateflow models can be hierarchical or may have parallel states. Among our generation
algorithms, only state and transition coverage algorithms, SC and TC, are impacted by the Stateflow
structure. In our work, we assume that S and Q, respectively, contain the states and transitions in
flattened Stateflow models [Satpathy et al., 2008]. However, our SC and TC algorithms do not require
to statically flatten Stateflow models as these algorithms dynamically identify the (flattened) states
and (flattened) transitions that are actually executed during simulation of Stateflow models.

Each input/output variable of SF is a signal, i.e., a function of time. When SF is simulated, its
input/output signals are discretized and represented as vectors whose elements are indexed by time.
Assuming that the simulation time is T , the simulation interval [0..T ] is divided into small equal time
steps denoted by Dt1. For example for SCC, we set T = 2s and Dt = 1ms. We define a signal sg as
a function sg : {0,Dt,2 ·Dt, . . . ,k ·Dt}!Rsg, where Dt is the simulation time step, k is the number of
observed simulation steps, and Rsg is the signal range. In our example, we have k = 2000. We further
denote by minRsg and maxRsg the min and the max of Rsg. For example, when sg is a boolean, Rsg

1In case a variable-step solver is used to simulate SF , we choose the least common divisor (lcd) of simulation steps as
Dt. Note that according to Nyquist-Shannon sampling theorem [Gold et al., 1969], with a Dt of 1ms, continuous signals
with a frequency up to 500 HZ can be discretized without any information loss. In this thesis, we mostly deal with
input/output signals that are aperiodic, e.g., driver’s commands, and do not have high frequencies. Studying scalability of
our approach to systems involving signals with very large frequencies is left for future work.
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is {0,1}, and when sg is a float signal, Rsg is the set of float values between minRsg and maxRsg . As
discussed in Section 5.1, to ensure the feasibility of the generated input signals, in this chapter, we
only consider constant or step input signals.

Our goal is to select a test suite TS = {I1, . . . , Iq} of q test inputs where q is determined by the
human test oracle budget. Each test input I j is a vector (sg1, . . . ,sgd) of signals for the SF input
variables i1 to id . By simulating SF using each test input I j, we obtain an output signal sgo for the
continuous output o of SF.

5.2.1 Input Diversity Test Generation
The input diversity generation algorithm (ID) generates a test suite with diverse test inputs. Given
two test inputs I = (sg1, . . . ,sgd) and I0 = (sg01, . . . ,sg0d), we define the normalized Euclidean distance
between each pair sg j and sg0j of signals as follows:

ˆdist(sg j,sg0j) =

Û
kq

i=0
(sg j(i·Dt)�sg0j(i·Dt))2

p
k+1⇥(maxRsg�minRsg)

(5.1)

Note that sg j and sg0j are alternative assignments to the same SF input i j, and hence, they have the
same range. Further, we assume that the values of k and Dt are the same for sg j and sg0j. It is easy to
see that ˆdist(sg,sg0) is always between 0 and 1.

We define the distance between test inputs I = (sg1, . . . ,sgd) and I0 = (sg01, . . . ,sg0d) as the sum of
the normalized distances between each signal pair:

dist(I, I0) =
dq

j=1
ˆdist(sg j,sg0j) (5.2)

Figure 5.4 shows the ID-Generation algorithm which, given a Stateflow model SF, generates a
test suite TS with size q and with diverse test inputs. The algorithm first randomly selects a single test
input and stores it in TS (line 1). Then, at each iteration, it randomly generates c candidate test inputs
I1, . . . , Ic. It computes the distance of each test input Ii from the existing test suite TS as the minimum
of the distances between Ii and the test inputs in TS (line 6). Finally, the algorithm identifies and
stores in TS the test input among the c candidates with the maximum distance from the test inputs in
TS (lines 7�9).

5.2.2 Coverage-based Test Generation
In order to generate a test suite TS based on the state/transition coverage criterion, we need to simulate
SF using each one of the candidate test inputs and compute the state and the transition coverage reports
for each test input simulation. The state coverage report S is a subset of S = {s1, . . . ,sn} containing the
states covered by the test input I, and the transition coverage report R is a subset of Q = {r1, . . . ,rm}
containing the transitions covered by I.
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Algorithm. ID-Generation

Input: Stateflow model SF.
Output: Test suite TS = {J1, . . . ,Jq}.

1. Let TS = {I} where I is a random test input of SF
2. for q�1 times do:
3. MaxDist = 0
4. Let C = {I1, . . . , Ic} be a candidate set of random test inputs of SF
5. for each Ii 2C do:
6. Dist = MIN8I02TSdist(Ii, I0)
7. if Dist > MaxDist :
8. MaxDist = Dist,J = Ii
9. TS = TS[ J
10. return TS

Figure 5.4. The input diversity test generation algorithm (ID).

Algorithm. SC-Generation

Input: Stateflow model SF.
Output: Test suite TS = {J1, . . . ,Jq}.

1. Let TS = {I} where I is a random test input of SF
2. Let TSC = {S} where S is the state coverage reports of executing SF with I
3. for q�1 times do:
4. MaxAddCov = 0
5. Let C = {I1, . . . , Ic} be a candidate set of random test inputs of SF
6. Let CC = {S1, . . . ,Sc} be the state coverage reports of executing SF with I1 to Ic
7. for each Si 2 CC do:
8. AddCov = |Si�[S02TSCS0|
9. if AddCov > MaxAddCov :
10. MaxAddCov = AddCov
11. P = Si, J = Ii
12. if MaxAddCov = 0 :
13. Let P = S j, J = I j where S j 2 CC and |S j| = MAXS02CC|S0|
14. TSC = TSC[P, TS = TS[ J
15. return TS

Figure 5.5. The state coverage (SC) generation algorithm. The algorithm for transition coverage, TC, is
obtained by replacing S (state coverage report) with T (transition coverage report).

The state coverage test generation algorithm, SC-Generation, is shown in Figure 5.5. The algo-
rithm for transition coverage, TC-Generation, is obtained by replacing S (state coverage report) with
T (transition coverage report). At line 1, the algorithm selects a random test input I and adds it to
TS. At line 2, it simulates SF using I and adds the corresponding state coverage report to a set TSC.
At each iteration the algorithm generates c candidate test inputs and keeps their corresponding state
coverage reports in a set CC. It then computes the additional coverage that each one of the test inputs
among the c candidates brings about compared to the coverage obtained by the existing test suite TS
(line 8). At the end of the iteration, the test input that leads to the maximum additional coverage is
selected and added to TS (line 14). More precisely, a test input I brings about maximum additional
coverage, if, compared to other c test input candidates, it covers the most number of states that are
not already covered by the test suite TS. Note that if none of the c candidates yields an additional
coverage, i.e., MaxAddCov is 0 at line 12, we pick a test input with the maximum coverage among
the c candidates (line 13).
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Algorithm. OD-Generation

Input: Stateflow model SF.
Output: Test suite TS = {J1, . . . ,Jq}.

1. Let TS = {I} where I is a random test input of SF
2. Let TSO = {sgo} where sgo is the output signal of executing SF with I
3. for q�1 times do:
4. MaxDist = 0
5. Let C = {I1, . . . , Ic} be a candidate set of random test inputs of SF
6. Let CO = {sg1, . . . ,sgc} be the output signals of executing SF with I1 to Ic
7. for each sgi 2 CO do:
8. Dist = MIN8sg02TSOdisto(sgi,sg0)
9. if Dist > MaxDist :
10. MaxDist = Dist
11. p = sgi, J = Ii
12 TSO = TSO[ p, TS = TS[ J
13. return TS

Figure 5.6. The output diversity test generation algorithm (OD).

5.2.3 Output Diversity Test Generation
The output diversity (OD) algorithm aims to generate a test suite TS such that the diversity among con-
tinuous output signals produced by different test inputs in TS is maximized [Alshahwan and Harman,
2014]. In order to formalize this algorithm, we define a measure of diversity (disto) between pairs of
control output signals (sgo,sg0o). Specifically, we define the diversity between sgo and sg0o based on
normalized Euclidean distance and as defined by Equation 5.1 (i.e., disto(sgo,sg0o) = ˆdist(sgo,sg0o)).

Figure 5.6 shows the OD algorithm, i.e., OD-Generation. The algorithm first selects a random test
input I and simulates SF using I. It adds I to TS (line 1) and the output corresponding to I to another
set TSO (line 2). Then, at each iteration, the algorithm first randomly generates c candidate test inputs
(line 5) together with their corresponding test outputs and store the outputs in set CO (line 6). Then,
in line 8, it uses disto to compute the distance between each test output sgi in CO and the test outputs
corresponding to the existing test inputs in TS. Among the test outputs in CO, the algorithm keeps
the one with the highest distance from the test outputs in TSO (line 11), and adds such a test output to
TSO and its corresponding test input to TS (line 12).

5.2.4 Failure-based Test Generation
The goal of failure-based test generation algorithms is to generate test inputs that are likely to produce
output signals exhibiting specific failure patterns. We develop these algorithms using meta-heuristic
search algorithms [Luke, 2013] that generate test inputs maximizing the likelihood of presence of
failures in outputs.

We propose two failure-based test generation algorithms, output stability and output continuity
that respectively correspond to instability and discontinuity failure patterns introduced in Section 5.1.
We first provide two heuristic (quantitative) objective functions that estimate the likelihood for each
of these failure patterns to be present in control signals. We then provide generation algorithms that
guide the search to identify test inputs that maximize these objective functions, and hence, are more
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likely to reveal faults.

Output stability.2 Given an output signal sgo, we define the function stability(sgo) as the sum of the
differences of signal values for consecutive simulation steps:

stability(sgo) =
kq

i=1
|sgo(i ·Dt)� sgo((i�1) ·Dt)|

Specifically, function stability(sgo) provides a quantitative approximation of the degree of insta-
bility of sgo. The higher the value of the stability function for a signal sgo, the more certain we can be
that sgo exhibits some instability failure. For example, the value of the stability function applied to the
signal in Figure 5.3(a) is higher than that of the stability function applied to the signal in Figure 5.3(b)
since, due to oscillations in the former signal, the values of |sgo(i · Dt)� sgo((i� 1) · Dt)| are larger
than those values for the latter signal. An alternative way to define the stability function is to count
the number of ups and downs in the signal. That is, to count the number of times the signal changes
from being ascending to descending, and vice versa. Such a function, however, does not take the
magnitude of oscillations into account. In our work, we opt for the above definition of the stability
function which incorporates the magnitude of oscillations in the definition of the stability function.

Output continuity. As discussed earlier, control signals, at each simulation step, are expected to be
either left-continuous or right-continuous, or both. We define a heuristic objective function to iden-
tify signals that are neither left-continuous nor right-continuous at some simulation step. Since in our
work simulation time steps (Dt) are not infinitesimal, we cannot compute derivatives for signals, and
instead, we rely on discrete change rates that approximate derivatives when time differences of observ-
able changes cannot be arbitrarily small. Given an output signal sgo, let
lci = |sgo(i·Dt)�sgo((i�dt)·Dt)|

Dt be the left change rate at step i, and let rci = |sgo((i+dt)·Dt)�sgo(i·Dt)|
Dt be the

right change rate at step i. We define the function continuity(sgo) as the maximum of the minimum
of the left and the right change rates at each simulation step over all the observed simulation steps:

continuity(sgo) =
3max

dt=1
(

k�dtmax
i=dt

(min(lci,rci))))

Specifically, we first choose a value for dt indicating the maximum expected time duration of a
spike. Then for a fixed dt, for every step i such that dt  i  k�dt, we take the minimum of the left
change rate and the right change rate at step i. Since we expect the signal to be either left-continuous
or right-continuous, at least one of the right or left change rates should be a small value. We then
compute the maximum of all the minimum right or left change rates for all the simulation steps to
find a simulation step with the highest discontinuity from both left and right sides. Finally, we obtain
the maximum value across the time intervals up to length dt. For our work, we pick dt to be between
1 and 3. For example, the signal in Figure 5.3(b) yields high right and left change rates at point A. As
a result, function continuity produces a high value for this signal, indicating that this signal is likely
to be discontinuous. In contrast, the value of function continuity for the signal in Figures 5.2 is lower
than that in Figure 5.3(b) because at every simulation step, either the right change rate or the left
change rate yields a relatively low value.

As discussed earlier, we provide a meta-heuristic search algorithm to generate test suites based
on our failure patterns. Specifically, we use the Hill-Climbing with Random Restarts (HCRR) algo-

2We note that the stability function defined here is different from the stability objective function defined for testing
closed-loop controllers in Chapters 3 and 4.
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Algorithm. OS-Generation

Input: Stateflow model SF.
Output: Test suite TS = {J1, . . . ,Jq}.

1. Let I be a random test input of SF and sgo the output of executing SF with I
2. Let All = {I}
3. highestFound = stability(sgo)
4. for (q�1)⇤ c iterations do:
5. newI = Tweak(I)
6. Let sgo be the output of executing SF with newI
7. All = All[{newI}
8. if stability(sgo) > highestFound :
9. highestFound = stability(sgo)
10. I = newI
11. if TimeToRestart() :
12. Let I be a random test input of SF and sgo the output of executing SF with I
13. highestFound = stability(sgo)
14. All = All[{I}
15. Let TS be the test inputs in All with the q-highest values of stability function
16. return TS

Figure 5.7. The test generation algorithm based on output stability. The algorithm for output continuity, OC-
Generation, is obtained by replacing stability(sgo) with continuity(sgo).

rithm [Luke, 2013]. In our earlier work on computing test cases violating stability, smoothness, and
responsiveness requirements for closed-loop controllers [Matinnejad et al., 2015a], HCRR performed
best among a number of alternative single-state search heuristics. Figure 5.7 shows our output stabil-
ity test generation algorithm, OS-Generation, based on HCRR. The algorithm for output continuity,
OC-Generation, is obtained by replacing stability(sgo) with continuity(sgo) in OS-Generation. At
each iteration, the algorithm tweaks the current solution, i.e., the test input, to generate a new solu-
tion, i.e., a new test input, and replaces the current solution with the new solution if the latter has
higher value for the objective function. Similar to standard Hill-Climbing, the HCRR algorithm in-
cludes a Tweak operator that shifts a test input I in the input space by adding values selected from a
normal distribution with mean µ = 0 and variance s2 to the values characterizing the input signals
(line 5), and a replace mechanism (lines 8-10) that replaces I with newI, if newI has a higher objec-
tive function value. In addition, HCRR restarts the search from time to time by replacing I with a
randomly selected test input (lines 11-13). We run the algorithm for (q� 1) ⇤ c iterations where q is
the size of the test suites, and c is the size of candidate sets in the greedy generation algorithms in
Figures 5.4 to 5.6. This is to ensure that OC-Generation spends the same test execution budget as the
other generation algorithms. The OC-Generation algorithm keeps all the test inputs generated during
the execution in a set All (lines 2, 7 and 14). At the end of the algorithm, from the set All, we pick
q test inputs that have the highest objective function values (line 15) and return them as the selected
test suite.

5.3 Experiment Setup
In this section, we present the research questions, and describe our study subjects, our metric to
measure fault revealing ability of different generation algorithms, and our experiment design.
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5.3.1 Research Questions
RQ1 (Fault Revealing Ability). How does the fault revealing ability of our proposed test generation
algorithms compare with one another? We start by comparing the ability of the test suites generated
using the different test generation algorithms discussed in Section 5.2 in revealing faults in Stateflow
models. In particular, we are interested to know (1) if our generation algorithms outperform input
diversity (baseline)? and (2) if there is any generation algorithm that consistently reveals the most
faults across different study subjects and different fault types?

RQ2 (Fault Revealing Subsumption) Is any of our generation algorithms subsumed by other algo-
rithms? or for each generation algorithm, are there some faults that can be found by that algorithm,
but not by others? This question investigates if any of the generation algorithms discussed in Sec-
tion 5.2 is subsumed by other algorithms, i.e., if any generation algorithm does not find any additional
faults missed by other algorithms.

RQ3 (Fault Revealing Complementarity). What is the impact of different failure types on fault reveal-
ing ability of our test generation algorithms? This question investigates whether any of our generation
algorithms has a tendency to reveal a certain type of failures better than others. This shows whether
our generation algorithms are complementary to each other. That is, they reveal different types of
failures, thus suggesting they may be combined.

RQ4 (Test Suite Size). What is the impact of the size of test suites generated by our generation
algorithms on their fault revealing ability? With this question, we study the impact of size on fault
revealing ability of test suites, and investigate whether some generation algorithms already perform
well with small test suite sizes, while some may require to enlarge test suites to better reveal faults.

5.3.2 Study Subjects
We use three Stateflow models in our experiments: Two industrial models from Delphi, namely, SCC
(discussed in Section 5.1) and Auto Start-Stop Control (ASS); and one public domain model from
Mathworks website [The MathWorks Inc., 2016d], (i.e., Guidance Control System (GCS)). Table 5.1
shows key characteristics of these models. All of these three models have a continuous control output
signal. Specifically, the continuous control signal in SCC controls the clutch position, in ASS, it
controls the engine torque, and in GCS, it controls the position of a missile. These models have a
large number of input variables. SCC and ASS have hierarchical states (OR states) and GCS is a
parallel state machine. The number of states and transitions reported in Table 5.1 are those obtained
after model flattening.

We note that our industrial subject models are representative in terms of the size and complexity
among Stateflow models developed at Delphi. The number of input variables, transitions and states
of our industrial models is notably more than that of the public domain models from Mathworks [The
MathWorks Inc., 2016i]. Further, most public domain Stateflows are small exemplars created for
the purpose of training and are not representative of the models developed in industry. Specifically,
while discrete-continuous controllers are very common in many embedded industry sectors, among
the models available at [The MathWorks Inc., 2016i], only GCS was a discrete-continuous Stateflow
controller and had a continuous control signal, and hence, we chose it for our experiment. But since
GCS continuous behavior was too trivial, we modified it before using it in our experiments by adding
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Table 5.1. Characteristics of our study subject Stateflow models.

Publicly 
AvailableName No. of 

Inputs
Hierarchical

States
Parallel
States

No. of 
States

SCC
ASS

No
No

23
42

13
16

2 No
1 No

GCS Yes 8 10 0 Yes

No. of 
Transitions

25
53

27

some configuration parameters and some difference equations in some states. We have made the
modified version available at [Matinnejad, 2016].

5.3.3 Measuring Fault Revealing Ability
In our study, we measure the fault revealing ability of test suites generated by different generation
algorithms. To automate our experiments, we use fault-free versions of our subject models to generate
test oracles (i.e, the ground truth oracle [Barr et al., 2015]). Let TS be a test suite generated by one
of our generation algorithms and for a given (faulty) model SF. For the purpose of this experiment,
we assume that SF contains a single fault only. We measure the ability of TS in revealing the fault
in SF using a boolean measure. Our measure returns true if there exists at least one test input in TS
for which the output of SF sufficiently deviates from the grand truth oracle such that a manual tester
conclusively detects a failure. Otherwise, our measure returns false. Formally, let O = {sg1, . . . ,sgq}
be the set of output signals obtained by running SF for the test inputs in TS = {I1, . . . , Iq}, and let
G = {g1, . . . ,gq} be the corresponding test oracle signals. The fault revealing rate, denoted by FRR,
is computed as follows:

(1) FRR(SF,TS) =

Y
]

[
1 91iq ˆdist(sgi,gi) > THR
0 81iq ˆdist(sgi,gi) <= THR

where ˆdist(sgi,gi) is defined by Equation 5.1, and THR is a given threshold. If we set THR to zero,
then a test suite detects a given fault (i.e., FRR = 1), if it is able to generate at least one output that
deviates from the oracle irrespective of the amount of deviation. For continuous dynamic systems,
however, the system output is acceptable when the deviation is small and not necessarily zero. Fur-
thermore, for such systems, it is more likely that manual testers recognize a faulty output signal when
the signal shape drastically differs from the oracle. In our work, we set THR to 0.2. As a result, a
test suite detects a given fault (i.e., FRR = 1), if it is able to generate at least one output that diverges
from the oracle such that the distance between the oracle and the faulty output is more than 0.2. We
arrived at this value for THR based on our experience and discussions with domain experts. In our
experiments, in addition, we obtained and evaluated the results for THR = 0.25 and THS = 0.15 and
showed that our results were not sensitive to such small changes in THR.

5.3.4 Experiment Design
Figure 5.8 shows the overall structure of our experiments consisting of the following two steps:
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Figure 5.8. Our experiment design: Step 2 was repeated for 100 times due to the randomness in our generation
algorithms.

Step1: Fault Seeding. We asked a Delphi engineer to seed 30 faults in each one of our two industry
subject models (z = 30), generating 30 faulty versions of SCC and ASS, i.e, one fault per each faulty
version. The faults were seeded before our experiments took place. The engineer was asked to choose
the faults based on his experience in Stateflow model development and debugging. In addition, we
required the faults to be seeded in different parts of the Stateflow models and to be of different types.
We categorize the seeded faults into two groups: (1) Wrong Output Computation which indicates a
mistake in the equations computing the continuous control output, e.g., replacing a min function with
a max function or a � operator with a + operator in the equations. (2) Wrong Stateflow Structure
which indicates a mistake in the Stateflow structure, such as wrong transition conditions or wrong
priorities of the transitions from the same source. As for the publicly available model (GCS), since it
was smaller and less complex than the Delphi models, we seeded 15 faults into the model to create 15
faulty versions (z = 15). Among all the faulty models for each case study, around 40% and 60% of the
faults belong to the wrong output computation and wrong Stateflow structure categories, respectively.

Step2: Test Case Generation. As shown in Figure 5.8, after seeding faults, for each faulty model,
we ran our six generation algorithms, namely Input Diversity (ID), State Coverage (SC), Transition
Coverage (TC), Output Diversity (OD), Output Stability (OS), and Output Continuity (OC) test gen-
eration algorithms. For each faulty model and each generation algorithm, we created a test suite of
size q where q took the following values: 3, 5, 10, 25, and 50. We repeated the test generation step of
our algorithm for 100 times to account for the randomness in the generation algorithms. In summary,
we created 75 faulty models (30 versions for SCC and ASS, and 15 versions of GCS). For each faulty
model and for each generation algorithm, we created five different test suites with sizes 3, 5, 10, 25
and 50. That is, we sampled 2250 different test suites and repeated each sampling for a 100 times
(i.e., in total, 225,000 different test suites were generated for our experiment). Overall, our experi-
ment took about 1600 hours time on a notebook with a 2.4GHz i7 CPU, 8 GB RAM, and 128 GB
SSD.

5.4 Results and Discussions
This section provides responses, based on our experiment design, for research questions RQ1 to RQ4
described in Section 5.3.

RQ1 (Fault Revealing Ability). To answer RQ1, we ran the experiment in Figure 5.8 with test
suite sizes q = 5, 10, 25, and 50, and for all the 75 faulty models (i.e., z = 30 for SCC, z = 30
for ASS, and z = 15 for GCS). We computed the fault revealing rates FRR with three thresholds
THR=0.2, 0.15 and 0.25. Figure 5.9(a) shows four plots comparing the fault revealing ability of
the test generation algorithms discussed in Section 5.2 with THR=0.2. Each plot in Figure 5.9(a)
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(a) Average FRR values for different test suite sizes and threshold THR = 0.2
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(b) Average FRR values for test suite size q = 10 and three different thresholds
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Figure 5.9. Boxplots comparing fault revealing abilities of our test generation algorithms for different test suite
sizes and different thresholds.
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compares six distributions corresponding to our six test generation algorithms. Each distribution
consists of 75 points. Each point relates to one faulty model, and represents the average fault revealing
ability of the 100 different test suites with a fixed size and obtained by applying one of our test
generation algorithms to that faulty model. For example, a point with (x = SC) and (y = 0.32) in the
(q = 5) plot of Figure 5.9(a) indicates that among the 100 different test suites with size 5 generated
by applying SC to one faulty model, 32 test suites were able to reveal the fault (i.e., FRR = 1) and 68
could not reveal that fault (i.e., FRR = 0).

To statistically compare the fault revealing ability of different generation algorithms, we per-
formed the non-parametric pairwise Wilcoxon Pairs Signed Ranks test [Capon, 1991], and calculated
the effect size using Cohen’s d [Cohen, 1977]. The level of significance (a) was set to 0.05, and,
following standard practice, d was labeled “small” for 0.2  d < 0.5, “medium” for 0.5  d < 0.8,
and “high” for d � 0.8 [Cohen, 1977].

Comparison with Input Diversity. Testing differences in FRR distributions with THR=0.2 shows
that, for all the test suite sizes, all the test generation algorithms perform significantly better than ID.
In addition, for all the test suite sizes, the effect size is “high” for OD, OS and OC, and “medium” for
SC and TC.

Coverage achieved by coverage-based algorithms. In our experiments, on average for the 100
different test suites obtained by SC/TC generation algorithms and for our three subject models, we
achieved 81/65%, 88/71%, 93/76% and 97/81% state/transition coverage for the test suites with size 5,
10, 25 and 50, respectively. Further, we noticed that the largest test suites generated by our coverage-
based generation algorithms (i.e., q = 50) were able to execute the faulty states or transitions of 73
out of the 75 faulty models.

Comparing output-based and coverage-based algorithms. For all the test suite sizes, statistical
test results indicate that OD, OS, and OC perform significantly better than SC and TC. For OS and for
all the test suite sizes, the effect size is “high”. For OD with all the test suite sizes except for q = 50,
the effect size is “medium”, and for q = 50, the effect size is “high”. For OC with all the test suite
sizes except for q = 50, the effect size is “medium”, and for q = 50, the effect size is “low”.

Comparing output-based algorithms. For q = 5 and 10, OS is significantly better than OD and
OC with effect sizes of “medium” (for q =5) and "low" (for q =10). However, neither of OC and OD
is better than the other for q =5 and 10. For q =25, OS is better than OD with a "low" effect size,
with no significant difference between OS and OC or OC and OD. Finally, for q = 50, there is no
significant difference between OS, OC and OD.

Modifying THR. The above statistical test results were consistent with those obtained based on
FRR values computed with THR=0.25 and 0.15. As an example, Figure 5.9(b) shows average FRR
values for q=10, for THR=0.15, 0.2 and 0.15. Increasing the threshold from 0.15 to 0.25 decreases
the FRR values but, however, does not change the relative differences in FRR values across different
generation algorithms.

In summary, the answer to RQ1 is that the test suites generated by OD, OS, OC, SC, and TC, have
significantly higher fault revealing ability than those generated by ID. Further, even though coverage-
based algorithms (SC and TC) were able to achieve a high coverage and execute the faulty states or
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Figure 5.10. The best generation algorithm(s) for each of the 75 faulty models.

transitions of 73 faulty models, the failure-based and output diversity algorithms (OS, OC, and OD)
generate test suites with significantly higher fault revealing ability compared to those generated by SC
and TC. For smaller test suites (q < 25), OS performs better than OC and OD, while for q = 50, we
did not observe any significant differences among the failure-based and output diversity algorithms
(OS, OC, and OD). Finally, our results are not impacted by small modifications in the threshold values
used to compute the fault revealing measure FRR.

RQ2 (Fault Revealing Subsumption). To answer RQ2, we consider the results of the experiment
in Figure 5.9(a). We applied the Wilcoxon test to identify, for each of the 75 faulty models, which
generation algorithm yielded the highest fault revealing rate (i.e., the highest average FRR over 100
runs). Figure 5.10 and Table 5.2 show the results. Figure 5.10 shows which algorithms are best in
finding each of the 75 faults (30 for SCC, 30 for ASS, and 15 for GCS) for each test suite size (q
= 5, 10, 25 and 50). In this figure, an algorithm A is marked as best for a fault F (denoted by •),
if, based on the Wilcoxon test results for F, there is no other algorithm that is significantly better
than A in revealing F. Table 5.2 shows two numbers I/E for each algorithm and for each test suite size.
Specifically, given a pair I/E for an algorithm A, I indicates the number of faults that are best found by
A and possibly by some other algorithms (i.e., inclusively found by A), while E indicates the number
of faults that are best found by A only (i.e., exclusively found by A). For example, when the test suite
size is 5, OD is among the best algorithms in finding 20 faults, and among these 20 faults, OD is the
only best algorithm for 8 faults.

Coverage algorithms. As shown in Table 5.2, SC is subsumed by the other algorithms for every
test suite size (E = 0). That is, SC does not find any fault exclusively, and any fault found by SC is
also found with the same or higher probability by some other algorithm. TC is able to find one fault
exclusively for q < 25, but is subsumed by other algorithms for q� 25. Further, based on Figure 5.10,
SC and TC together are able to find three faults exclusively for q = 5 (11 of ASS, and 10 and 14 of
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Table 5.2. The number of faults (out of 75) found inclusively (I) and exclusively (E) by each algorithm and for
each test suite size.

q=5

SC

q=10
8 / 0
8 / 0
11 / 0q=25

q=50

TC OD OS OC

8/1 20 / 8 51 / 32 28 / 8

24 / 0 23 / 0 59 / 3 63 / 7 50 / 2

9/1 28 / 8 51 / 24 32 / 8
13/0 41 / 6 55 / 10 44 / 7

(I / E) (I / E) (I / E) (I / E) (I / E)

GCS), and two faults exclusively for q = 10 (11 of ASS, and 14 of GCS). However, for q� 25, they
are subsumed by OD.

Output-based algorithms. As shown in Table 5.2, OS fares best as it finds the most number of
faults both inclusively and exclusively for different values of q. In contrast, OD shows the highest
growth in the number of inclusively and exclusively found faults as q increases compared to OS and
OC.

In summary, the answer to RQ2 is that coverage algorithms find the least number of faults both ex-
clusively and inclusively, and as test suite size increases, these algorithms are subsumed by the output
diversity (OD) algorithm. The output-based algorithms are complementary (i.e., are not subsumed by
one another) and while output stability (OS) finds the highest number of faults both inclusively and
exclusively, output diversity (OD) shows the highest improvement in fault finding as the test suite size
increases.

RQ3 (Fault Revealing Complementarity). To answer RQ3, we first divide the 75 faulty models
in our experiments based on the failure type that they exhibit. To determine the failure type exhibited
by a faulty model, we inspect the output that yields the highest FRR among the outputs produced by
the test suites related to that model. We identified three types of failures in these outputs and divided
the 75 faulty models into the following three groups: (1) the faulty models exhibiting instability failure
(20 models), (2) the faulty models exhibiting discontinuity failure (7 models), and (3) the other models
that neither show instability nor discontinuity (48 models). Figures 5.11(a) to (c) compare the fault
revealing ability of our test generation algorithms for test suite sizes q = 5, 10, 25, and 50 and for each
of the above three categories of failures (i.e., instability, discontinuity, and other).

Instability and discontinuity. The statistical test results show that, for the instability failure, OS has
the highest fault revealing rate for q = 5, 10, and 25. Similarly for the discontinuity failure, OC has
the highest fault revealing rate for q = 5 and 10. However, for larger test suites (q = 50 for instability,
and q = 25 and 50 for discontinuity), OS, OC and OD are equally good at finding the instability and
discontinuity failures.

Other. As for the “other” failures, OS and OD are better able to find these failures compared to
other algorithms for q = 5, 10, and 50. For q = 25, there is no significant difference between OS, OD
and OC in revealing these failures. However, as shown in Figure 5.11(c), for q = 50, the FRR value
distribution for OD has the highest average compared to other algorithms. Further, the variance of

80



5.4. Results and Discussions

q = 5
(a) Average FRR values with THR =0.2 and for instability failures (20 failures)

0.0

1.0
Av

er
ag

e 
FR

R
 v

al
ue

s

0.5

(b) Average FRR values with THR =0.2 and for discontinuity failures (7 failures)
SC TC OD OS OC

(c) Average FRR values with THR =0.2 and for other failures (48 failures)

q = 10

0.0

1.0

Av
er

ag
e 

FR
R

 v
al

ue
s

0.5

0.0

1.0

Av
er

ag
e 

FR
R

 v
al

ue
s

0.5

q = 25

SC TC OD OS OC SC TC OD OS OC

q = 50

SC TC OD OS OC

q = 5 q = 10 q = 25 q = 50

SC TC OD OS OC SC TC OD OS OC SC TC OD OS OC SC TC OD OS OC

SC TC OD OS OC SC TC OD OS OC SC TC OD OS OC SC TC OD OS OC

q = 5 q = 10 q = 25 q = 50

Figure 5.11. The average FRR values for different types of failures and for different test suite sizes.

FRR values for OD in Figure 5.11(c) with q = 50 is the lowest, making OD the best algorithm for
finding failures other than instability and discontinuity when large test suites are available.

In summary, the answer to RQ3 is that when test suites are small, OS and OC show a clear
tendency to, respectively, reveal the instability and discontinuity failures better than other types of
failures and better than other algorithms. With large test suites, however, OS, OC and OD are equally
good at finding the instability and discontinuity failures. Further, with small test suites, OS and OD
are better than other algorithms in revealing failures other than instability and discontinuity. For large
test suites, however, OD shows a tendency to perform better for the “other” types of failures since by
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Figure 5.12. The impact of test suite size on the average FRR over 100 test suites of different faulty models.

diversifying outputs it increases the chances of finding failures not following any specific pattern.

RQ4 (Test Suite Size). To answer RQ4, we extended the experiment in Figure 5.9 to include
q = 3, as well. Figure 5.12 shows how the average of FRR over 100 test suites for different faulty
models and in different failure groups is impacted by increasing the test suite size. Specifically, for
Figure 5.12, the 75 faulty models are divided based on the failure type they exhibit (20 for instability,
7 for discontinuity, and 48 for others).

According to Figure 5.12, OS performs best in revealing instability failures even with small test
suite sizes where its average FRR is very close to one (0.97). Similarly, OC performs best in revealing
discontinuity failures and its average FRR for small test suites is already very high, i.e., 0.95. For
“other” kinds of failures, OS performs best for very small test suites, but for q� 10, OD performs the
best. Finally, for instability and discontinuity, OS, OD and OC perform better than SC and TC for all
test suite sizes, while for other failures, OS and OD perform better than OC, SC and TC for all the
test suite sizes.

In summary, the answer to RQ4 is that the fault revealing ability of OS (respectively, OC) for
instability (respectively, discontinuity) failures is very high for small test suites and almost equal to
the highest possible fault revealing rate value. For failures other than instability and discontinuity, the
ability of OD in revealing failures rapidly improves as the test suite size increases, making OD the
best algorithm for such failures for test suite sizes more than or equal to 10.

Discussion. We present our observations as to why the coverage algorithms are less effective than the
output-based algorithms for generating test suites for mixed discrete-continuous Stateflows. Further,
we outline our future research direction on effective combination of our output-based test generation
algorithms.

Why coverage algorithms are less effective? Overall, our results show that, compared to output-
based algorithms, coverage algorithms are less effective in revealing Stateflow faults, and as discussed
in RQ2, they are subsumed by the output diversity algorithm. Based on our experiments, even though
test suites generated by SC and TC cover the faulty parts of the Stateflow models, they fail to generate
output signals that are sufficiently distinct from the oracle signal, hence yielding a low fault revealing
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rate. That is, a discrete notion of state or transition coverage does not help reveal continuous output
failures. Note that these failures depend on the value changes of outputs over a continuous time in-
terval. The poor performance of coverage algorithms might be due to the fact that state and transition
coverage criteria do not account for the time duration spent at each state or for the time instance at
which a transition is triggered. For example, an objective to cover states while trying to reduce the
amount of time spent in each state may better help reveal discontinuity failures (see Figure 5.3(b)).

Combining output-based generation algorithms. Our results show that for large test suites and
for all failure types, the fault revealing ability of OS, OC and OD are the same with an average
FRR of 0.75 to 0.87. However, for smaller test suites and for specific failures, some algorithms
(i.e., OS for instability and OC for discontinuity) perform remarkably well with an average FRR
higher than 0.95. This essentially eliminates the need to use large test suites for those specific failure
types. These findings offer the potential for engineers to combine our output-based algorithms to
achieve a small test suite with a high fault revealing rate. Recall that test oracles for mixed discrete-
continuous Stateflows are manual, and hence the test suite size has to be kept as low as possible
(typically q 100). For example, given our results on fault revealing ability of OS, OC, and OD, and
assuming that a test suite size budget of q is provided, we may allocate a small percentage of the test
suite size to OC to find discontinuity failures, and share the rest of the budget between OS and OD by
giving OD a higher share. This is because OS is able to find instability failures with small test suites,
but also, it performs well at finding other failures. However, only OD was able to subsume SC/TC
with large test suites, and given that OD’s performance increases with the test suite size, a larger test
suite size might be allocated to OD. This suggests future work to investigate guidelines on dividing
the test suite size budget across different output-based test generation algorithms.

5.5 Conclusions
Embedded software controllers are largely developed using discrete-continuous Stateflows. To re-
duce the cost of manual test oracles associated with Stateflow models, test case generation algorithms
are required. These algorithms aim at providing minimal test suites with high fault revealing power.
We proposed and evaluated six test generation algorithms for discrete-continuous Stateflows: three
output-based (OD, OS, OC), two coverage-based (SC, TC), and one input-based (ID). Our exper-
iments based on two industrial and one public domain Stateflow models showed that the output-
based algorithms consistently outperform the coverage-based algorithms in revealing faults in mixed
discrete-continuous Stateflows. Further, for test suites larger than 25, the output-based algorithms
were able to find with the same or higher probability all the faults revealed by the coverage-based
algorithms, and hence subsumed them. In addition, OS and OC generation algorithms had very high
fault revealing rates, even with small test suites, for instability and discontinuity failures, respectively.
For the other failures, OD outperformed the other algorithms in finding faults for test suite sizes
larger than 10, and further, its fault detection rate kept improving at a faster rate than the others when
increasing the test suite size.
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Chapter 6

Test Generation and Test Prioritization for
Simulink Models with Dynamic Behavior

In this chapter we focus on providing effective testing techniques to help engineers ensure correctness
of Simulink/Stateflow models in their entirety. Recall from Section 2.1, that Simulink models are de-
veloped either for simulation or for code generation purposes. We propose a test generation algorithm
and a test prioritization algorithm that are applicable to both continuous simulation as well as discrete
code generation Simulink models. First, we discuss the key challenges of the existing techniques for
testing simulation and code generation Simulink models and then discuss how our approach addresses
these challenges.

Drawing on our combined experiences and knowledge from research and practice, we have identi-
fied three key challenges concerning existing testing and verification techniques for Simulink models
that we discuss below.

The Incompatibility Challenge. The existing approaches to testing and verification of Simulink
models entirely focus on magnitude-discrete time-discrete models, i.e., code generation models [Zan-
der et al., 2012, Pretschner et al., 2007a, Pretschner et al., 2007b], and are not compatible, and hence
not applicable, to Simulink models with continuous behaviors (i.e., simulation models) [Zander et al.,
2012, Pretschner et al., 2007a, Pretschner et al., 2007b]. This is because these techniques often require
to translate Simulink models into an intermediate discrete behavior model to be analyzed by model
checkers (e.g., DiVine [Barnat et al., 2006], KLEE [Cadar et al., 2008] and JavaPathFinder [JPF,
2016]) or by SAT/Constraint/SMT solvers (e.g., PVS [Owre et al., 1996], Prover [Prover Technology,
2016])). The incompatibility challenge even extends to some features that are commonly used in the
Simulink code generation models [Rao et al., 2011, Zander et al., 2012]. More specifically, exist-
ing techniques have difficulties to handle library code or system functions (implemented as Matlab
S-functions) and floating point and non-linear arithmetic operators (e.g. square root or trigonometry
functions). In particular, Simulink Design Verifier (SLDV) [The MathWorks Inc., 2016g], a com-
mercial Simulink testing tool that is a product of Mathworks and a Simulink toolbox, can handle
only some restricted forms of S-functions. Finally, due to limitations of existing constraint/SAT/SMT
solvers [Lakhotia et al., 2010], techniques that rely on these solvers to verify or test Simulink [The
MathWorks Inc., 2016g, Hamon, 2008, Balasubramanian et al., 2011, Holling et al., 2014, Cleaveland
et al., 2008] often fall short when the underlying model contains floating point and non-linear math
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operators.

The Oracle Challenge. The second challenge mostly has to do with unrealistic assumptions about
test oracles for Simulink models in practical settings. Several existing techniques rely on automatable
test oracles such as assertions (explicit oracles [Barr et al., 2015, McMinn et al., 2010]) or run-time
errors (implicit oracles [Barr et al., 2015, McMinn et al., 2010]) to identify faults in Simulink mod-
els [Nardi et al., 2013, Nardi, 2014]. However, formal specifications from which assertions can be
derived, are expensive and may not be available in practice. Run-time errors such as integer over-
/underflows are not sufficient as many faults may not lead to run-time crashes. Furthermore, several
important CPS requirements concern continuous dynamics aspects of systems under analysis [Heim-
dahl et al., 2013, Pretschner et al., 2007a, Pretschner et al., 2007b]. For example, these requirements
may constrain the time it takes for a controlled variable to stabilize sufficiently close to a reference
value (set-point), or they may constrain the frequency and the amount of changes of a controlled vari-
able over a continuous period of time. There is little work on verifying or testing Simulink models
against CPS continuous dynamics requirements, or on developing automated test oracles for such
requirements [Heimdahl et al., 2013, Pretschner et al., 2007a, Pretschner et al., 2007b]. Finally, in
practice, it is likely and common that engineers assess system outputs manually to identify failures
(i.e., test oracles are manual). In this situation, existing tools focus on generating test suites that fulfill
some notion of structural coverage [The MathWorks Inc., 2016j, The Reactive Systems Inc., 2016].
Several recent studies, however, demonstrate that structural coverage criteria alone may not be effec-
tive in finding faults in software code [Inozemtseva and Holmes, 2014, Staats et al., 2012, Namin and
Andrews, 2009]. Therefore, effectiveness of these criteria for Simulink model testing has yet to be
ascertained and empirically evaluated.

The Scalability Challenge. There are almost no study that focuses on demonstrating scalability
of existing testing and verification Simulink tools to large industrial models. Even commercial tools
such as SLDV do not scale well to large and complex models, an issue that is already recognized
by Mathworks [Hamon, 2008]. Further, as models grow larger and become more complicated, it is
more likely that they contain features that are not supported by existing tools (the incompatibility
challenge). In addition, existing tools may fail to effectively identify faults in practical settings due
to their unrealistic test oracle assumptions (the oracle challenge). Hence, scalability remains to be an
open problem for Simulink testing and verification.

In this chapter, we provide automated techniques to generate effective test suites for Simulink/S-
tateflow models in their entirety. Our goal is to alleviate the above three challenges:

First, in order to deal with the incompatibility challenge, we focus on Simulink models consisting
of both continuous and discrete behaviors, and generate test inputs as signals, i.e., functions over
time. Our test generation algorithm is black-box and builds on a combination of a single-state search
optimizer [Luke, 2013] and the whole test suite generation approach [Fraser and Arcuri, 2013, Fraser
and Arcuri, 2011].

Second, in our work, we assume that test oracles are manual. Instead of focusing on structural
coverage alone as done in existing tools, we propose and evaluate a test generation approach that aims
to maximize diversity in output signals of Simulink models. Output signals provide a useful source of
information for detecting faults in Simulink models as they not only show the values of variables at
discrete time instants, but they also capture continuous aspects, i.e., they show how variables change
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over a time interval. By inspecting output signals, one can determine whether the model output
reaches appropriate values at the right times, whether the time period that the model takes to change its
values is within acceptable limits, and whether the amount and the frequency of changes of variables
over time are acceptable and do not violate continuous dynamics requirements. Our intuition is that
test cases that yield diverse output signals may likely reveal different types of faults in Simulink
models. We introduce a new notion of diversity for output signals that is defined based on a set of
representative and discriminating signal feature shapes. We show how this notion guides our heuristic
search-based test generation algorithm to generate test suites with diversified output signals.

In our work, in order to lower the cost of manual test oracle, we propose a test prioritization
algorithm to automatically rank test cases generated by our test generation algorithm. Engineers can
then inspect the test outputs starting from the top ranked test cases in the ranking. We take a greedy
test prioritization approach that uses the dynamic test execution information to prioritize the tests.
Specifically, we take into account the output diversity of the generated test suites, in addition to the
amount of structural coverage achieved by individual test cases, to predict how likely it is for each test
case to reveal a fault. This enables test cases with slightly lower coverage but coming from test suites
with higher output diversity to rank higher, and may likely increase the likelihood of detecting faults
early in the execution of the tests. Note that this is not the case with a test prioritization technique
solely driven by structural coverage. Further, in our algorithm the notion of dynamic test coverage
is specific to a Simulink model output. That is, for a given model output and a given test case, the
test coverage includes Simulink blocks or Stateflow states that are executed by the test case and, in
addition, from which the output is reachable.

Third, we evaluate our test generation and our test prioritization algorithms using four industrial
and public-domain Simulink models. Our evaluation assesses fault revealing ability of our test gener-
ation and effectiveness of our proposed test prioritization. We systematically compare our algorithms
with baseline, state-of-the-art and commercial approaches. In particular, we compare our test genera-
tion approach with a random test generation baseline, with a coverage-based test generation algorithm
and with the Simulink Design Verifier (SLDV), a commercial tool for testing Simulink models. We
compare our test prioritization algorithm with a random test prioritization baseline and a state-of-the-
art prioritization technique proposed based on structural coverage [Zhang et al., 2013].

Contributions. Our contributions are as follows:

(1) We propose a Simulink testing approach consisting of a test generation algorithm and a test
prioritization algorithm for Simulink models. Our approach is applicable to Simulink models devel-
oped for both purposes of simulation and code generation. Our approach does not rely on automatable
test oracles and is guided by heuristics that build on continuous dynamic aspects of Simulink outputs.

(2) We propose a new notion of diversity for output signals and develop a novel algorithm based
on this notion to generate test suites for Simulink models. We show that our test generation approach
based on output diversity outperforms random baseline testing and coverage-based testing.

(3) We propose a test prioritization algorithm that combines test coverage and test suite output
diversity to rank test cases. Our algorithm generalizes the existing coverage-based test prioritization
based on total and additional structural coverage [Yoo and Harman, 2012, Zhang et al., 2013]. We
show that our test prioritization algorithm outperforms random test prioritization and a state-of-the-art
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coverage-based test prioritization [Zhang et al., 2013].

(4) We compare our approach with the Simulink Design Verifier (SLDV), the only testing toolbox
of Simulink. In contrast to our approach, SLDV supports a subset of Simulink models. We show
that, when considering the SLDV-compatible subset, our output diversity approach is able to reveal
significantly more faults compared to SLDV, and further, it subsumes SLDV in revealing faults: In
our experiments, any fault identified by SLDV is also identified by our approach.

Organization. This chapter is structured as follows. Section 6.1 presents examples of simula-
tion and code generation models and motivates our output diversity approach in comparison with
coverage-based test generation. Section 6.2 provides background on test input generation and fixes
our formal notation. Sections 6.3 and 6.4 describe our output diversity test suite generation and our
test case prioritization algorithms, respectively. Section 6.5 explains how we estimate the test oracle
cost in our approach. Our test generation and prioritization tool, called SimCoTest, is presented in
Section 6.6. Sections 6.7 and 6.8 describe our experiments setup and experiments results, respectively.
Finally, Section 6.9 concludes the chapter.

6.1 Motivation
In this section, we provide examples of simulation and code generation models. We then introduce
SimuLink Design Verifier (SLDV) as an state-of-the-art commercial tool for testing Simulink models.
We then provide some intuition for our output diversity test generation approach by contrasting it with
the test generation approach of SLDV using an illustrative example.

6.1.1 Simulation and code generation models

We motivate our work using a simplified Fuel Level Controller (FLC) which is an automotive software
component used in cars’ fuel level management systems. FLC computes the fuel volume in a tank
using the continuous resistance signal that it receives from a fuel level sensor mounted on the fuel
tank. The sensor data, however, cannot be easily converted into an accurate estimation of the available
fuel volume in a tank. This is because the relationship between the sensor data and the actual fuel
volume is impacted by the irregular shape of the fuel tank, dynamic conditions of the vehicle (e.g.,
accelerations and braking), and the oscillations of the indication provided by the sensors. Hence, FLC
has to rely on complex filtering algorithms involving algebraic and differential equations to accurately
compute the actual fuel volume [The MathWorks Inc., 2016e].

Simulation models. Figure 6.1(a) shows a very simplified simulation model for FLC adopted from [Zan-
der et al., 2012] and implemented in Simulink. This model captures the behavior of a software com-
ponent that receives continuous resistance signals from a fuel level sensor and computes the level of
fuel in the tank. The model in Figure 6.1(a) exhibits time-discrete magnitude-continuous behavior.
More specifically, this model receives continuous signals from sensors. However, since the model
represents a piece of software, signal values should be sampled at discrete time steps and the sampled
values are passed to the model in Figure 6.1(a). As shown in the figure, this model contains a (contin-
uous) integral operator (

s
) to accurately compute the fuel level. The Simulink model in Figure 6.1(a)

is executable. Engineers can run the model for any desired input signal and inspect the output. Exam-
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ples of input and output signals for this model are shown in Figures 6.1(c) and (e), respectively. Note
that both signals represent continuous functions sampled at discrete time steps. Automotive engineers
often rely on their knowledge of mechanics and control theory to design simulation models. These
models, however, need to be verified or systematically tested as they are complex and may include
several hundreds of blocks.

(d) FLC Code Generation Model Input 
(Fuel Level Sensor)

0 5 10

50

150

250

(c) FLC Simulation Model Input 
(Fuel Level Sensor)

0 5 10

Fu
el

 L
ev

el
 S

en
so

r

(f) FLC Code Generation Model Output 
(Fuel Level)

Time (s)

Time (s)

B

A

Fu
el

 L
ev

el

50

100

60

70

80

90

(a) FLC Simulation Model (b) FLC Code Generation Model 

(e) FLC Simulation Model Output 
(Fuel Level)

Fu
el

 L
ev

el

0 5 10

50

100

Time (s)

60

70

80

90

0 5 10

50

150

250

Fu
el

 L
ev

el
 S

en
so

r

Time (s)

Figure 6.1. A Fuel Level Controller (FLC) example: (a) A simulation model of FLC; (b) a code generation
model of FLC; (c) an input to FLC simulation model; (d) an input to FLC code generation model; (e) output of
(a) when given (c) as input; (f) output of (b) when given (d) as input.

Code generation models. Figure 6.1(b) shows an example FLC code generation model, (i.e., the
model from which software code can be automatically generated). The code generation model is
time-discrete and magnitude-discrete. Further, note that the continuous integrator block (

s
) in the
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Figure 6.2. Comparing outputs of (a) continuous integral
s

and (b) discrete integral sum from models in
Figures 6.1 (a) and (b), respectively.

simulation model is replaced by a discrete integrator (sum) in the code generation model. Examples
of input and output signals for the code generation model are shown in Figures 6.1(d) and (f), respec-
tively. Both signals represent discrete functions sampled at discrete time steps. Due to the conver-
sion of magnitude-continuous signals to magnitude-discrete signals, the behavior of code generation
models may deviate from that of simulation models. Typically, some degree of deviations between
simulation and code generation model outputs are acceptable. The level of acceptable deviations,
however, have to be determined by domain experts.

Simulation and code generation model behaviors. Figure 6.1(c) shows a continuous input signal for
the simulation model in Figure 6.1(a) over a 10 sec time period. Figure 6.1(d) shows the discrete ver-
sion of the signal in Figure 6.1(c) that is used as input for the code generation model in Figure 6.1(b).
Models in Figures 6.1(a) and (b) produce the outputs in Figures 6.1(e) and (f) once they are provided
with the inputs in Figures 6.1(c) and (d), respectively. As shown in the figures, the percentages of
fuel level in the continuous output signal (Figure 6.1(e)) differ from those in the discrete output signal
(Figure 6.1(f)). For example, after one second, the output of the simulation model is 91.43, while that
of the code generation model is 88.8. As is clear from this example, we lose precision as we move
from simulation models (with continuous behavior) to code generation models (with discrete behav-
ior). For our specific FLC example, we explain the loss of precision using the diagrams in Figure 6.2.
The grey area in Figure 6.2(a) shows the value computed by the continuous integral (

s
) used in the

FLC simulation model after three seconds, while the value computed by the discretized sum operator
used in the FLC code generation model corresponds to the grey area in Figure 6.2(b).

Conclusion. As the FLC example shows, due to discretization, simulation and code generation mod-
els of the same component are likely to exhibit different behaviors. It is important to have verification
and testing techniques that are applicable to both kinds of models because (1) verifying one kind does
not necessarily imply correctness of the other kind, and (2) for non-software components (e.g., physi-
cal components), only simulation models are available. In this chapter, we provide a testing technique
that is applicable to both simulation and code generation models.
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6.1.2 Limitations of Existing Simulink Testing Tools
In this chapter, we systematically compare our Simulink testing approach with existing alternative
tools and techniques. In particular, we compare our work with SimuLink Design Verifier (SLDV)
that is distributed by Mathworks and is among the most well-known commercial tools for testing
and verification of Simulink models in industry. In this section, we introduce SLDV and contrast
its underlying approach with our work. In Sections 6.7 and 6.8, we will provide an empirical study
comparing our technique with SLDV as well as other alternative baseline approaches (i.e., random
and coverage-based testing).

SimuLink Design Verifier (SLDV) is a product of Mathworks and a Simulink toolbox. It is the
only Simulink toolbox that is dedicated to test generation. It automatically generates test input sig-
nals for Simulink models using constraint solving and model-checking techniques [The MathWorks
Inc., 2016g]. SLDV provides two usage modes corresponding to two different assumptions about
test oracles: (1) The first usage mode assumes that automatable test oracles are not available. SLDV
then generates test suites to achieve some form of structural coverage (i.e., Decision, Condition,
and MC/DC) [The MathWorks Inc., 2016j]. (2) The second usage mode assumes that automatable
test oracles are available either as assertions or run-time errors. SLDV then generates test scenarios
(counter-examples) violating some given assertions or leading to some run-time error. In the first us-
age mode, SLDV creates a test suite satisfying a given structural coverage criterion [The MathWorks
Inc., 2016j]. In the second usage mode, SLDV tries to prove that assertions/run-time crashes cannot
be reached, or otherwise, it generates inputs triggering the assertions/errors.

As discussed in the beginning of this chapter, in our work we assume that automatable test oracles
are not available. Hence, we systematically compare the fault revealing ability of our test generation
algorithm with that of the first usage mode of SLDV, i.e., test generation guided by structural coverage.

We note that another well-known commercial tool for Simulink testing called Reactis [Reactive
Systems Inc., 2016b] has several commonalities with SLDV. In particular, both tools rely on for-
mal/exhaustive verification techniques to generate test cases [Cleaveland et al., 2008]. Further, they
both rely on structural coverage to generate test cases when automatable test oracles are absent. In
this paper, we chose to compare our approach with SLDV as it is available as a Simulink toolbox, but
Reactis is a standalone tool independent from Mathworks products. Large experiments with SLDV
can be fully automated using MATLAB APIs, while Reactis lacks such APIs, hence large experiments
cannot be properly automated.

Structural Coverage versus Output Diversity. Main limitations of SLDV fall under the three high-
level categories of challenges discussed in the beginning of this chapter. Specifically, SLDV supports
a subset of the Simulink language (i.e., discrete fragment of Simulink) [Chaturvedi, 2009], and is
not applicable to continuous blocks of Simulink such as the continuous integrator in Figure 6.1(a).
Further, it is not applicable to Simulink models containing floating point and non-linear arithmetic
operations, and supports only some restricted forms of S-Functions. These issues make SLDV inap-
plicable to many industry and real-world models.

In this chapter, in order to compare SLDV with our approach, we focus on the Simulink subset
that is supported by SLDV. Considering this subset, the main difference between our approach and
that used by SLDV then lies in their underlying test generation algorithms. While SLDV aims to
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(a) Faulty FLC Model Output (TC1) (b) Faulty FLC Model Output (TC2)

Faulty Model Output
Correct Model Output

Faulty Model Output
Correct Model Output

Figure 6.3. (a) A test output of a faulty version of model in Figure 6.1(a); and (b) another test output of the
same faulty version of model in Figure 6.1(a).

maximize structural coverage, we focus on diversifying output signals. Here, we use an example to
illustrate the workings of these two different test generation strategies. Consider a faulty version of
the simulation model in Figure 6.1(a) where the line connected to point A is mistakenly connected to
point B. Suppose we use SLDV to generate a test case (TC1) for this faulty model. Since the model
in Figure 6.1(a) does not have any control behavior, a single test case can achieve full structural
coverage. Figure 6.3(a) shows the output of TC1 along with the expected behavior where the actual
output is shown by a solid line and the correct one by a dashed line. As shown in the figure, the
output of TC1 is very close to the expected behavior, making it very difficult for engineers to notice
any failure. Given that in this domain small deviations from oracle are acceptable, engineers are
unlikely to identify any fault when they use TC1.

Now suppose we use our proposed output diversity approach to generate test cases. In our algo-
rithm, the test suite size is not determined by structural coverage and is set independently. Suppose
we choose to generate three test cases for the given faulty model. Figure 6.3(b) shows the output of
one of the generated test cases (TC2). As shown in the figure, the output of TC2 drastically deviates
from the expected behavior, making the presence of a fault in the model quite visible to the engineer.
When the goal is to achieve maximum structural coverage, TC1 and TC2 are equally desirable. But
TC2 is more fault revealing than TC1. Our approach attempts to generate test cases that yield di-
verse output signals to increase the probability of generating outputs that noticeably diverge from the
expected result.

6.2 Background and Notation
This section provides background on our test generation approach for Simulink models. We further
fix our formal notation in this section.
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6.2.1 Models and Signals
Let M = (I,N ,O) be a Simulink/Stateflow model where I = {i1, . . . , in} is a set of input variables,
N = {n1, . . . ,nb} is a set of nodes (i.e., Simulink blocks or Stateflow states), and O = {o1, . . . ,ol}
is a set of output variables.

Each input/output variable of M, irrespective of M being a simulation or a code generation model,
is a signal, i.e., a function of time. Assuming that the simulation time is T , we define a signal sg as
a function sg : [0..T ]!R where R is the signal range. The signal range R is bounded by its min and
max values denoted by minR and maxR, respectively.

As discussed in Section 6.1, in order to execute (simulate) a model M, a time step (Dt) should be
given. Let k be the number of time steps in the simulation time interval [0..T ]. To specify a signal sg,
one has to provide the signal values at time points 0, Dt, 2 · Dt ,. . . , k · Dt. We denote these values by
sg0, sg1, sg2, . . . , sgk, respectively. As for input/output signals of a simulation model M, sg(t) takes
all the real values between sgi and sgi+1 for i ·Dt < t < (i+1) ·Dt. In contrast, for input/output signals
of a code generation model M, sg(t) is equal to sgi for i ·Dt  t < (i+1) ·Dt.

For the example in Figure 6.1, we have T = 10s, Dt = 1s, and k = 10. Note that in that example,
to better illustrate the input and output signals, Dt is chosen to be larger than normal (e.g., in our
experiment, we set Dt = 0.001s, T = 2s, and k = 2000). The signal in Figure 6.1(e) represents a
signal for a simulation model, and the signal in Figure 6.1(f) represents a signal for a code generation
model. The main difference between signals for simulation and code generation models is that signals
for simulation models are continuous, i.e., their values are taken from a real interval (an infinite set),
while signals for code generation models are discrete, i.e., their values are taken from a finite set of
numbers.

6.2.2 Test Inputs
Simulink models typically have multiple outputs. For a given test case, engineers may inspect signal
values for some or all of the outputs to assess the model behavior. Our goal is to generate test cases
that diversify output signals as much as possible. In our work, we focus on diversifying signal values
for each output individually and independently from other model outputs. Specifically, we generate
one test suite TS for each Simulink model output o such that the test cases in TS generate diverse
output signals for o. In total, for a Simulink model with l outputs, we generate l test suites TS1 to TSl
such that each test suite TSi focuses on diversifying output signals for oi. In our work, we consider
the size of test suites TS1 to TSl to be the same and be equal to q.

Each test suite TSi contains q test inputs I1 to Iq such that each test input I j is a vector (sgi1 , . . . ,sgin)
of signals for the input variables i1 to in of M. To test the model behavior with respect to output oi,
engineers simulate M using each test input I j 2 TSi and inspect the signals generated for output oi.
Typically, all input and output signals generated during testing a model M share the same simulation
time interval and simulation time steps, i.e., the values of Dt, T , and k are the same for all of the
signals.

To generate test inputs for Simulink models, we need to generate signals sgi1 to sgin . As discussed
in Section 6.2.1, each signal sgi j is characterized by a set of values sg0

i j
, sg1

i j
, sg2

i j
, . . . , sgk

i j
specifying
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the values of signal sgi j at time steps 0, Dt, 2 ·Dt, . . . , k ·Dt, respectively. To generate an input signal
sgi j , it is sufficient to generate values sg0

i j
, sg1

i j
, sg2

i j
, . . . , sgk

i j
. The signal is then determined based on

definitions in Section 6.2.1 depending on whether the signal is used for simulation models or for code
generation models, respectively.

6.3 Test Generation Algorithms
We propose a search-based whole test suite generation algorithm for Simulink models. We define two
notions of diversity among output signals: vector-based and feature-based. We first introduce our
two notions of output diversity and will then describe our test generation algorithm. In this section,
we focus on generating a test suite for a single output of M. For a model with multiple outputs, we
apply our test generation algorithm to each output of the model separately to generate a test suite for
each model output.

6.3.1 Vector-based Output Diversity
This diversity notion is defined directly over output signal vectors. Let sgo and sg0o be two signals
generated for output variable o by two different test inputs of M. In our earlier work [Matinnejad
et al., 2015a], we defined the vector-based diversity measure between sgo and sg0o as the normalized
Euclidean distance between these two signals. We define the vector-based diversity between sgo and
sg0o as follows.

ˆdist(sgo,sg0o) =

Û
kq

i=0
(sgo(i·Dt)�sg0o(i·Dt))2

p
k+1⇥(maxR�minR)

(6.1)

where minR and maxR are the min and max values of the range of signals sgo and sg0o. Note that sgo
and sg0o are both generated for output o, and hence, they have the same range. It is easy to see that

ˆdist(sgo,sg0o) is always between 0 and 1.

Our vector-based notion, however, may have a drawback. A search driven by vector-based dis-
tance may generate several signals with similar shapes whose vectors happen to yield a high Euclidean
distance value. For example, for two constant signals sgo and sg0o, ˆdist(sgo,sg0o) is relatively large
when sgo is constant at the maximum of the signal range while sg0o is constant at the minimum of the
signal range. A test suite that generates several output signals with similar shapes may not help with
fault finding.

6.3.2 Feature-based Output Diversity
In machine learning, a feature is an individual measurable and non-redundant property of a phe-
nomenon being observed [Witten et al., 2011]. Features serve as a proxy for large input data that
is too expensive to be directly processed, and further, is suspected to be highly redundant. In our
work, we define a set of basic features characterizing distinguishable signal shapes. We then describe
output signals in terms of our proposed signal features, effectively replacing signal vectors by feature
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Figure 6.4. Signal Features: (a) Our signal feature classification, and (b)–(f) Examples of signal features from
the classification in (a).

vectors. Feature vectors are expected to contain relevant information from signals so that the desired
analysis can be performed on them instead of the original signal vectors. To generate a diversified
set of output signals, instead of processing the actual signal vectors with thousands of elements, we
maximize the distance between their corresponding feature vectors with tens of elements.

Figure 6.4(a) shows our proposed signal feature classification. Our classification captures the typ-
ical, basic and common signal patterns described in the signal processing literature, e.g., constant,
decrease, increase, local optimum, and step [Porat, 1997]. The classification in Figure 6.4(a) iden-
tifies three abstract signal features: value, derivative and second derivative. The abstract features
are italicized. The value feature is extended into: “instant-value” and “constant-value” features that
are respectively parameterized by (v) and (n,v). The former indicates signals that cross a specific
value v at some point, and the latter indicates signals that remain constant at v for n consecutive
time steps. These features can be instantiated by assigning concrete values to n or v. Specifically,
the “constant-value(n,v)” feature can be instantiated as the “one-step constant-value(v)” and “always
constant-value(v)” features by assigning n to one and k (i.e., the simulation length), respectively.
Similarly, specific values for v are zero, and max and min of signal ranges (i.e., maxR and minR).

The derivative feature is extended into sign-derivative and extreme-derivative features. The sign-
derivative feature is parameterized by (s,n) where s is the sign of the signal derivative and n is the
number of consecutive time steps during which the sign of the signal derivative is s. The sign s
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can be zero, positive or negative, resulting in “constant(n)”, “increasing(n)”, and “decreasing(n)”
features, respectively. As before, specific values of n are one and k. The extreme-derivatives feature
is non parameterized and is extended into one-sided discontinuity, one-sided discontinuity with local
optimum, one-sided discontinuity with strict local optimum, discontinuity, and discontinuity with
strict local optimum features.

The second derivative feature is extended into sign-second-derivative parameterized by (s,n)
where s is the sign of the second derivative, and n is the number of consecutive steps during which
the sign of the second derivative remains s. The sign s can be zero, positive or negative, resulting in
“derivative-constant(n)”, “derivative-increasing(n)”, and “derivative-decreasing(n)” features, respec-
tively. We set n to k to instantiate these features to “always derivative-constant”, “always derivative-
increasing”, and “always derivative-decreasing” features, respectively. Note that the second derivative
is undefined over a signal with one time-step length and, hence, n = 1 does not yield a signal feature.

Figures 6.4(b) to (f) respectively illustrate the “instant-value(v)”, the “increasing(n)”, the “one-
sided discontinuity with local optimum”, the “discontinuity with strict local optimum”, and the
“derivative-decreasing(n)” features. Specifically, the signal in Figure 6.4(b) takes value v at point
A. The signal in Figure 6.4(c) is increasing for n steps from B to C. The signal in Figure 6.4(d) is
right-continuous but discontinuous from left at point D. Further, the signal value at D is more than
the values at its adjacent point, hence making D a local optimum. The signal in Figure 6.4(e) is dis-
continuous from both left and right at point E. It is also decreasing on one side of E and increasing on
the other side, making E a strict local optimum. Finally, the derivative of the signal in Figure 6.4(f) is
decreasing, i.e., the second derivative is negative, for n steps from G to H.

We define a function Ff for each (non-abstract) feature f in Figure 6.4(a). We refer to Ff as
feature function. The output of function Ff when given signal sg as input is a value that quantifies
the similarity between shapes of sg and f . More specifically, Ff determines whether any part of sg is
similar to feature f .

We provide two feature function examples related to the signal features in Figures 6.4(b) and (c).
Specifically, the feature function Ffb related to the signal feature “instant-value(v)” in Figure 6.4(b) is
defined as follows:

Ffb(sg,v) =
k

min
i=0

|sg(i ·Dt)� v)|

This function computes the minimum difference between a given value v and the values of signal
sg at every simulation step. The lower Ffb , the closer the shape of sg to the feature in Figure 6.4(b).
Particularly, if Ffb becomes zero for some v, it implies that signal sg exhibits the feature instant-
value(v).

As another example, the feature function Ffc related to the signal feature “increasing(n)” in Fig-
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ure 6.4(c) is defined as follows:

Ffc(sg,n) =
kmax

i=n
(

iq

j=i�n+1
lds(sg, i))

where lds(sg, i) denotes the sign of the left derivative of sg at step i. Specifically, lds(sg, i) is zero
when sg is constant at step i when compared with its left point at step i� 1, one when its value at
i is more than its value at i� 1, and -1 when its value at i is less than its value at i� 1. Function
Ffc computes the largest sum of the left derivative signs of sg over any segment of sg consisting
of n consecutive simulation steps. The higher the value of Ffc , the more likely that sg exhibits the
increasing(n) feature (i.e., the more likely that sg contains a segment of size n during which its values
are increasing). The formal definitions for all the features in Figure 6.4 are available at [Matinnejad,
Reza, 2016].

Having defined features and feature functions, we now describe how we employ these functions
to provide a measure of diversity between output signals sgo and sg0o. Let f1, . . . , fm be m fea-
tures that we choose to include in our diversity measure. We compute feature vectors Fv(sgo) =
(Ff1(sgo), . . . ,Ffm(sgo)) and Fv(sg0o) = (Ff1(sg0o), . . . ,Ffm(sg0o)) corresponding to signals sgo and sg0o,
respectively. Since the ranges of the feature function values may vary widely, we standardize these
vectors before comparing them. Specifically, we use feature scaling which is a common standardiza-
tion method for data processing [Witten et al., 2011]. Having obtained standardized feature vectors
F̂v(sgo) and F̂v(sg0o) corresponding to signals sgo and sg0o, we compute the normalized Euclidean
distance between these two vectors, (i.e., ˆdist(F̂v(sgo), F̂v(sg0o))), as the measure of feature-based
diversity between signals sgo and sg0o. In the next section, we discuss how our diversity notions are
used to generate test suites for Simulink models.

6.3.3 Whole Test Suite Generation Based on Output Diversity
We propose a meta-heuristic search algorithm to generate a test suite TS = {I1, . . . , Iq} for a given
model M to diversify the set of output signals generated by TS for a specific output of M. As discussed
in Section 6.2.2, we generate a separate test suite containing q test inputs for each output of M. We
will then apply our test prioritization algorithm (see Section 6.4) to generate a ranking of all the
generated test inputs to help engineers identify faults by inspecting a small number of test outputs.

We denote by TSO = {sg1, . . . ,sgq} the set of output signals generated by TS for an output o of
M. We capture the degree of diversity among output signals in TSO using objective functions Ov and
O f that correspond to vector-based and feature-based notions of diversity, respectively:

Ov(TSO) =

qq
i=1

MIN8sg2TSO\{sgi}
ˆdist(sgi,sg)

q (6.2)

Of (TSO) =

qq
i=1

MIN8sg2TSO\{sgi}
ˆdist(Fv(sgi),Fv(sg))

q (6.3)
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Function Ov computes the average of the minimum distances of each output signal vector sgi from
the other output signal vectors in T SO. Similarly, O f computes the average of the minimum distances
of each feature vector Fv(sgi) from feature vectors of the other output signals in T SO. Our test
generation algorithm aims to maximize functions Ov and O f to increase diversity among the signal
vectors and feature vectors of the output signals, respectively.

Our algorithm adapts the whole test suite generation approach [Fraser and Arcuri, 2013] by gen-
erating an entire test suite at each iteration and evolving, at each iteration, every test input in the test
suite. The whole test suite generation approach is a recent and preferred technique for test data gen-
eration specially when, similar to Ov and O f , objective functions are defined over the entire test suite
and aggregate all testing goals. Another benefit of this approach for our work is that it allows us to
optimize our test objectives while fixing the test suite size at a small value due to the cost of manual
test oracles.

Our algorithm implements a single-state search optimizer that only keeps one candidate solution
(i.e, one test suite) at a time, as opposed to population-based algorithms that keep a set of candidates
at each iteration [Luke, 2013]. This is because our objective functions are computationally expensive
as they require to simulate the underlying Simulink model and compute distance functions between
every test input pair. When objective functions are time-consuming, population-based search may
become less scalable as it may have to re-compute objective functions for several new or modified
members of the population at each iteration.

Figure 6.5 shows our output diversity test generation algorithm for Simulink models. We refer to it
as OD. The core of OD is based on an adaptation of the Simulated Annealing search algorithm [Luke,
2013]. Specifically, the algorithm generates an initial solution (lines 1-3), iteratively tweaks this
solution (line 9), and selects a new solution whenever its objective function is higher than the current
best solution (lines 13-15). The objective function O in OD is applied to the output signals in TSO that
are obtained from test suites. The objective function can be either O f or Ov, respectively generating
test suites that are optimized based on feature-based and vector-based diversity notions. The tweak
operator (line 10) is similar to the one used in (1+1) EA algorithm [Luke, 2013]. It receives as
input the current test suite TS and a tweak parameter s . For every test input I 2 TS such that I =
(sgi0 , . . . ,sgin), the tweak operator shifts every signal sgi j by adding values x jl ’s to signal values
sgi j(l · Dt) such that 0  l  k where k is the number of simulation steps. The x jl values are selected
from a normal distribution with mean µ = 0 and variance s ⇥ (maxR�minR) where R is the range
of sgi j .

Like the simulated annealing search algorithm, our OD algorithm in Figure 6.5 is more explorative
at the beginning and becomes more exploitative as the search progresses. In the simulated annealing
search, the degree of exploration/exploitation is adjusted using a parameter called temperature. Typi-
cally, the temperature is set to a high value at the beginning of the search, making the search behaves
similar to a random explorative search. As the time proceeds, the temperature is lowered, eventually
to zero, turning the search into a exploitative search algorithm such as Hill Climbing [Luke, 2013].
We take a similar approach in our OD algorithm where the parameter s acts like the temperature
parameter in simulated annealing. The difference is that the value of s in our algorithm is adjusted
based on the accumulative structural coverage achieved by all the generated test suites.
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Algorithm. The test generation algorithm applied to output
o of a Simulink model M.

1. TS GenerateInitialTestSuite(q) /*Test suite size q */
2. TSO signals obtained for output o by simulating M for every test input in T S
3. BestFound O(TSO)
4. whole-test-suite-coverage coverage achieved by test cases in TS over M
5. initial-coverage whole-test-suite-coverage
6. accumulative-coverage initial-coverage
7. s  s -exploration /*Tweak parameter s 2 [s -exploitation . . .s -exploration]
8. repeat
9. newTS = Tweak(TS, s ) /* generating new candidate solution */
10. TSO signals obtained for output o by simulating M for every test input in newTS
11. whole-test-suite-coverage coverage achieved by test cases in newTS over M
12. accumulative-coverage accumulative-coverage + whole-test-suite-coverage
13. if O(TSO) > highestFound :
14. highestFound = O(TSO)
15. TS = newTS
16. Reduce s proportionally from s -exploration to s -exploitation as

accumulative-coverage increases over initial-coverage
17. until maximum resources spent
18. return TS

Figure 6.5. Our output diversity (OD) test generation algorithm for Simulink models.

The reason that we opt for such search solution is that, based on our existing experience of ap-
plying search algorithms to continuous controllers [Matinnejad et al., 2015b], a purely explorative or
a purely exploitative search strategy is unlikely to lead to desirable optimal solutions. Given that the
search space of input signals is very large, if we start by a purely exploitative search (i.e., s = 0.01),
our result will be biased by the initially randomly selected solution. To reduce this bias, we start by
performing a more explorative search (i.e., s = 0.5). However, if we let the search remain explo-
rative, it may reduce to a random search. Hence, we reduce s iteratively in OD such that the amount
of reduction in s is proportional to the increase in the accumulative structural coverage obtained by
the generated test suites (line 16).

To conclude this section, we discuss the asymptotic time complexity of individual iterations of
the OD algorithm when we use Ov and O f functions, respectively. Let q be the size of the generated
test suites, k the number of simulation steps, and TM be the time it takes to simulate the underlying
Simulink model for k steps. In general, TM depends on the size of the model, the number of model
inputs and outputs, and the number of simulation steps. The time complexity of one iteration of OD
with Ov is O(q⇥TM)+O(q2⇥ k)1.

The time complexity of one iteration of OD with O f is O(q⇥TM)+ O(q⇥m⇥ k)+ O(q2⇥m)
where m is the number of signal features that we use to compute feature vectors. Note that the time
complexity of computing features in Figure 6.4 is O(k). This is mainly because in those features we
consider the parameter n to be either one or k. In our problem, k is considerably larger than m and
larger than q. For example, in our experiment, we have k = 2000, while we use 23 features (m = 23),
and we typically choose q to be less than 10. In Section 6.8, we will provide average time that it takes
to perform model simulations (TM) and to execute one iteration of the OD algorithm using Ov and O f
functions based on our empirical evaluation.

1Note that the O here refers to the bigO time complexity and should not be mistaken by objective function O used in
the OD algorithm.
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6.4 Test Prioritization Algorithm
Our OD test generation algorithm discussed in Section 6.3 generates a test suite (with q test cases) for
each model output. To help engineers effectively inspect model behavior with respect to all the gen-
erated test cases, we provide a test prioritization technique. The goal of our prioritization algorithm
is to generate a ranked list of test cases such that the most fault-revealing test cases are ranked higher
in the list, helping engineers identify faults faster by inspecting a few test cases.

We take a dynamic test prioritization approach based on greedy algorithms to rank test cases. This
choice is driven based on the following two main considerations: First, in our work, test prioritization
occurs after the test generation step where all the test cases are already executed. Hence, dynamic
test coverage information is already available. Therefore, to prioritize test cases, we do not need to
resort to static techniques that, due to unavailability of dynamic test coverages, are restricted to static
analysis of code or other artifacts [Qi Luo and Poshyvanyk, 2016, Thomas et al., 2014]. Second,
based on our experience, typical industrial Simulink models have less than 50 outputs, and in our
work, we consider to generate less than 10 test cases per each output. Hence, the total number of
test cases that we need to rank is relatively small (less than 500). Therefore, we chose to consider
greedy-based prioritization algorithms. These algorithms iteratively compare all the test cases with
one another to identify the best locally optimal choice at each iteration. Other implementation alter-
natives include adaptive random test prioritization and search-based test prioritization [Qi Luo and
Poshyvanyk, 2016]. These are mainly proposed to improve efficiency by comparing only a subset
(not all) of test cases or test case rankings at each iteration. Neither of these approaches, however,
outperform the greedy approach in terms of the ability to find faults faster [Li et al., 2007, Qi Luo and
Poshyvanyk, 2016].

Our test case prioritization algorithm is shown in Figure 6.6. The algorithm generates an ordered
list Rank of test cases in T C where T C is the union of all the generated test suites for a given Simulink
model M. In addition to the aggregated test suite T C and the model M, the algorithm receives the
following three functions as input and uses them to compute the test case ranking: (1) The dynamic
test coverage information for each individual test case tc 2 T C, denoted by function covers : T C !
2N . (2) The fault revealing probability of test cases in T C, denoted by FRP : T C ! [0..1]. (3) The
faultiness probability of individual Simulink nodes of M, denoted by faultiness : N ! [0..1]. Below,
we first discuss these three functions. We then describe how our proposed prioritization algorithm
works.

Dynamic Test Coverage. Recall from Section 6.3 that each test suite TS generated by the OD
algorithm is related to a specific output o of the underlying Simulink model. Let tc 2 TS be a test case
generated for an output o. We write test(tc,o) to denote that test case tc is related to output o. Note
that each test case is related to exactly one output, but an output is related to a number of test cases
(i.e., q test cases). Dynamic test coverage refers to the set of Simulink nodes (i.e., Simuilnk blocks
or Stateflow states) executed by a given test case tc to generate results for the output o related to tc.
Given a Simulink model M = (I,N ,O) and a test case tc 2 T C, we denote the dynamic test coverage
of tc by covers(tc) and define it as follows:

covers(tc) = {n | n 2 static_slice(o)^ test(tc,o)^ tc executes n}

where o 2O and static_slice(o) is referred to as the static backward slice of output o and is the set of
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Algorithm. Test case prioritization algorithm

Input: – M = (I,N ,O): Simulink Model
– T C: A test suite for M
– covers : T C! 2N : Dynamic test coverage of test cases
– FRP : T C! [0..1]: Fault revealing probability of test cases
– faultiness : N ! [0..1]: Simulink node faultiness probabilities

Output: – Rank: A ranked list of the test cases in T C

1. Rank = []
2. Ranked = 0
3. while (T C 6= /0) do

/* Lines 4-5: For each test case tc, compute the summation of the probabilities that tc
can find a fault in a Simulink node that it covers.*/

4. for (tc 2 T C) do
5. P(tc) = FRP(tc)⇥q

n2covers(tc) faultiness(n)
/* Select the test case tc that yields the highest aggregated fault revealing probabilities*/
and add it to Rank*/

6. Let tc 2 T C yield the largest P(tc)
7. Rank[Ranked] = tc

/* Lines 8-10: Update the faultiness probability of Simulink nodes covered by tc
for the remaining unranked test cases*/

8. for (n 2 covers(tc)) do
9. old = faultiness(n)
10. faultiness(n) = old⇥ (1�FRP(tc))
11. T C = T C \{tc}
12. Ranked ++
13. returen Rank

Figure 6.6. Our test prioritization algorithm that is used to rank test cases generated for all the Simulink
outputs.

all nodes in N from which o is reachable.

Note that our notion of dynamic test coverage is specific to a model output. The set covers(tc)
includes only those nodes that are executed by tc, and further, appear in the static backward slice of the
output related to tc. The nodes that cannot reach that output (via Simulink control or data dependency
links) are not included in covers(tc) even if they happen to be executed by tc. Our notion of dynamic
test coverage is the same as the notion of test execution slices defined in our previous work on fault
localization of Simulink models [Liu et al., 2015]. There, we provided a detailed discussion on how
the sets static_slice(o) and covers(tc) can be computed for Simulink models. Therefore, we do not
discuss the implementations of these concepts for Simulink models in this paper.

Fault revealing probability. Given a test case tc, the fault revealing probability of tc, denoted by
FRP(tc), is the probability of tc being able to reveal faults successfully. The fault revealing probabil-
ities are not modified during test case prioritization.

Faultiness probability. Given a Simulink node n, the faultiness probability of n, denoted by
faultiness(n), is the probability of n containing a fault that is not yet detected by the currently ranked
test cases. The faultiness probability is the highest at the beginning when Rank is empty and decreases
as the size of Rank increases.

Having discussed the three input functions, we now describe the algorithm in Figure 6.6. As dis-
cussed earlier, this algorithm takes a greedy approach to rank test cases. At each iteration, it identifies
the test case that yields the highest aggregated fault revealing ability among the unprioritized test
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cases and adds it to the top of the ranked list Rank (lines 4–7). In particular, the algorithm first com-
putes the aggregated fault revealing probabilities for every unprioritized test case tc by multiplying
the fault revealing probability of tc and the summation of faultiness probabilities of the nodes that are
covered by tc. Note that the fault revealing probability of a test case and the faultiness probability
of a node are independent, and their cross product indicates the probability that a test case reveals a
fault in a node. The test case that yields the highest aggregated fault revealing probability is added to
the ranked list Rank as the best locally optimal choice (line 7). After that, the algorithm updates the
faultiness probabilities of the nodes covered by the test case that was just added to Rank (lines 8–10).
Specifically, the faultiness probabilities of each of the nodes covered by that test case is multiplied by
(1�FRP), i.e., the probability that the test case fails to reveal a fault. The algorithm terminates when
all the test cases in T C are ranked.

We assume that faults are evenly distributed in the underlying Simulink models and assign faultiness(n)
to one for every n 2N . We consider the notion of output diversity defined in Section 6.3 as a proxy
for the fault revealing ability of test cases, i.e., FRP. In particular, suppose that tc 2 T C belongs to
a test suite TS generated by the algorithm in Figure 6.5. We set FRP(tc) to be equal to O(TS) where
O can be either the vector-based Ov or the feature-based O f output diversity functions described in
Equations 6.2 and 6.3, respectively.

Our proposed test prioritization algorithm (Figure 6.6) generalizes and extends the existing dy-
namic test prioritization techniques [Zhang et al., 2013, Yoo and Harman, 2012, Qi Luo and Poshy-
vanyk, 2016]. These techniques rank test cases using either total or additional structural coverages
achieved by individual test cases. Specifically, in the case of total coverage, a test case is ranked
higher if it yields higher structural coverage independently from other test cases. However, in the
case of additional coverage, a test case is ranked higher if it produces larger additional structural cov-
erage compared to the accumulative structural coverage achieved by the already ranked test cases.
Our algorithm in Figure 6.6 turns into a test prioritization algorithm based on additional coverage if
we set FRP(tc) to one for every tc 2 T C. If, in addition, we remove lines 8 to 10 from our algorithm
in Figure 6.6 (i.e., the part related to updating faultiness with respect to the already ranked test cases),
the result will be a test prioritization algorithm based on total coverage.

6.5 Test Oracle
As discussed in the beginning of this chapter and Section 6.1, in our work, we make two important as-
sumptions about test oracles: First, we assume that no automatable test oracle is available, a common
situation in practice. Second, the correctness of a test output is not only determined by evaluating dis-
crete output values at a few discrete time instances, but the correctness also depends on the frequency
and the amount of changes of output values over a continuous period of time. These two assumptions
have the following two implications on our approach that we discuss in this section.

First, since we assume that test oracles are evaluated manually, we need to provide a way to
estimate the oracle cost pertaining to a test suite generated by a test generation technique. This
is particularly important for comparing different test generation strategies. Specifically, test suites
generated by two different strategies can be used as a basis for comparing the strategies only if the
test suites have similar test oracle costs, i.e., evaluating those test suites requires the same amount of
effort. The oracle cost of a test suite depends on the following:
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• The total number of outputs that are generated by that test suite and are required to be inspected
by engineers. For example, our test generation algorithm (Figure 6.5) generates a test suite TS
with size q to exercise a specific model output o. Let T C =

t
TS be the union of all such test

suites. Assuming that the underlying model M has l outputs, the number of output signals that are
generated by T C and need to be inspected is l⇥q. Alternatively, another technique may generate
a test suite TS0 containing q test inputs for model M such that all the output signals generated by
each test input in TS0 are expected to be inspected by engineers. In this case, the number of output
signals that are generated by TS0 and need to be inspected is the same as that number for T C, i.e.,
l⇥q.

• The complexity of input data. Recall from Section 6.2 that a test input signal is characterized by
values sg0, sg1 . . . sgk. If sg0 = sg1 = . . . = sgk, the resulting test input is a constant signal. If
sg0 = sg1 = . . . = sgi, sgi+1 = . . . = sgk and sgi 6= sgk, the resulting test input is a step signal. If
sg0 = sg1 = . . . = sgi, sgi+1 = . . . = sg j, sg j+1 = . . . = sgk and sgi, sg j and sgk are all different, the
resulting test input is a two-step signal, and so on. In the automotive domain, constant signals are
considered the least complex and the most common test inputs for Simulink models. It is relatively
easy for engineers to inspect the output signals generated by constant input signals. Moving from
constant input signals to one-step input signals and from one-step input signals to multiple-step
input signals, the resulting output signals become more complex and the cost of manual test oracle
typically increases. To ensure that test suites T S = {I1, . . . Iq1} and T S0 = {I01, . . . I

0
q2

} have the same
input complexity, the input signals in T S and T S0 should have the same number of steps. That
is, for every test input Ii = (sg1, . . . ,sgn) in T S (respectively T S0), there exists some test input
I j = (sg01, . . . ,sg0n) in T S0 (respectively T S) such that sgl and sg0l (for 1  l  n) have the same
number of steps.

In our experiments described in Section 6.7.5, we ensure that the test suites used to compare
different test generation algorithms have the same test oracle costs, i.e., (1) the number of outputs
generated by these test suites and are required to be inspected by engineers are the same, and (2) the
signals related to their test inputs have the same number of steps.

Second, our test oracle takes into account all the output values obtained over the entire simulation
time interval as opposed to focusing on discrete properties over outputs (e.g., invariants). Our aim is
to design a test oracle that imitates the reasoning of domain experts when they inspect Simulink model
output signals. Let sgo be a test output signal. We define a (heuristic) test oracle function, denoted by
oracle, that maps a given output signal to a value in [0..1]. The higher the value of oracle(sgo), the
signal sgo is more likely to reveal a fault in the underlying Simulink model. In our work, we compute
oracle(sgo) as the normalized Euclidean distance between sgo and the ground truth oracle signal
denoted by g. That is, oracle(sgo) = ˆdist(sgo,g) (see Equation 6.1 for definition of ˆdist). The ground
truth oracle is a conceptual oracle that always gives the “right answer” [Barr et al., 2015]. In our work,
it encompasses the knowledge of domain expert about the expected model behavior. In Section 6.7.3,
we will use our heuristic oracle function, oracle, to provide a metric to measure fault revealing ability
of test generation techniques. Our fault revealing measure attempts to capture impacts of faults on
output signal shapes over the entire simulation time interval as opposed to focusing on violation of
discrete properties over model outputs.
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Figure 6.7. An overview of test suite generation for Simulink/Stateflow models in SimCoTest.

6.6 Tool Support
We have implemented our approach in a tool called Simulink Controller Tester (SimCoTest) (https:
//sites.google.com/site/simcotesttool/) [Matinnejad et al., 2016b]. Figure 6.7 shows
an overview of SimCoTest. Specifically, SimCoTest takes a Simulink/Stateflow model M as input. It,
then, (1) automatically extracts the information required for test generation from the model including
the names, data types and data ranges of the input and output variables of the model (data extraction),
(2) generates one test suite for each output of model M using our output diversity test generation algo-
rithm in Figure 6.5 (test generation), and (3) prioritizes the generated test cases obtained for different
model outputs based on our prioritization algorithm in Figure 6.6 (prioritization).

Figure 6.8 shows the Test Generation Results form where different outputs of the model are listed
in the left-hand side of the form (i.e., the Prioritized Test Suites list) based on the order specified by
our prioritization algorithm. Users can click on each output, i.e., o1 to ol , to obtain the corresponding
test suite in the right side of the form (i.e., the Test Cases list). Further, for each test case within a
test suite, users can see the information about signals assigned to input variables and values assigned
to configuration parameters. Finally, SimCoTest enables users to run each test case in Simulink and
generate the simulation results. In particular, SimCoTest automatically plots output signals for each
corresponding output variable.

SimCoTest is implemented in Microsoft Visual Studio 2010 and Microsoft .NET 4.0. It is an
object-oriented program in C# with 92 classes and roughly 25K lines of C# code. In addition, the
key functions of SimCoTest, including the data extraction and test generation, are partly implemented
using MATLAB script functions, which are called from SimCoTest using the MLApp COM inter-
face [The MathWorks Inc., 2016c]. Specifically, 64 MATLAB functions are implemented in roughly
7K lines of MATLAB script and are called from SimCoTest. The main functionalities of SimCoTest
have been tested with a test suite containing 300 test cases. SimCoTest requires Matlab/Simulink to
be installed and operational on the same machine to be able to execute Simulink/Stateflow models and
generate test suites. We have tested SimCoTest on Windows XP and Windows 7, and with Matlab
2011b and Matlab 2015b. Matlab 2011b was selected to ensure backward compatibility of our tool
with (legacy) industry models. We have made SimCoTest available to Delphi, and have presented it
in a hands-on tutorial to Delphi function engineers.
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Figure 6.8. SimCoTest test generation results form.

6.7 Experiment Setup
In this section, we present the research questions and our study subjects. We further describe met-
rics to measure fault revealing ability and effectiveness of our test generation and test prioritization
algorithms. Finally, we provide our experiment design.

6.7.1 Research Questions

RQ1 (Comparing Test Generation with State-of-the-art). How does the fault revealing ability of
the OD test generation algorithm compare with that of a random test generation strategy? How does
the fault revealing ability of the OD algorithm compare with that of a coverage-based test generation
strategy? We investigate whether OD test generation is able to perform better than random testing
which is a baseline of comparison, or whether OD is able to perform better than a coverage-based test
generation strategy. For coverage-based test generation, we replace the objective function O in our
OD algorithm in Figure 6.5 with an objective function that computes the accumulative dynamic test
coverages of all the test cases in T S. In both comparisons, we consider the fault revealing ability of
the test suites generated by OD when used with each of the Ov and O f objective functions.

RQ2 (Comparing Ov and O f ). How does the O f diversity objective perform compared to the Ov
diversity objective? We compare the ability of the test suites generated by OD with Ov and O f in
revealing faults in Simulink models. In particular, we are interested to know if, irrespective of the
size of the generated test suites, any of these two diversity objectives is able to consistently reveal
more faults across different study subjects and different fault types than the other.

RQ3 (Comparing Test Prioritization with State-of-the-art). How does the effectiveness of our test
prioritization algorithm compare with that of a random test prioritization strategy? How does the
effectiveness of our test prioritization algorithm compare with that of coverage-based test prioriti-
zation strategies? We compare the effectiveness of our test prioritization technique with a random
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test prioritization algorithm (baseline) and with the state-of-the-art coverage-based test prioritization.
Specifically, we investigate whether engineers can identify faults faster by inspecting the test case
rankings generated by our algorithm compared to inspecting test case rankings generated randomly
or by coverage-based techniques. As for the coverage-based test prioritization, we compare with both
the additional and total coverage-based test prioritization alternatives [Zhang et al., 2013].

RQ4 (Comparing Test Generation with Commercial Tools). How does the fault revealing ability
of the OD test generation algorithm compare with that of SLDV? With this question, we compare
our output diversity test generation approach (OD) with SLDV in generating effective test suites for
Simulink models. Our comparison is performed under the assumption that test oracles are manual.
This question enables us to provide evidence that our approach is able to outperform the most widely
used industry strength Simulink model testing tool. Further, in contrast to RQ1 and RQ2, where
we applied OD to continuous Simulink models, this question has to focus on discrete models be-
cause SLDV is only applicable to discrete code-generation models. Hence, this question allows us to
investigate the capabilities of OD in finding faults for discrete Simulink models, as well.

6.7.2 Study Subjects
We use four Simulink models in our experiments: Two industrial models, Clutch Position Controller
(CPC) and Flap Position Controller (FPC), from Delphi Automotive Systems, our industry partner,
and two public domain models, Cruise Controller (CC) [The MathWorks Inc., 2016f] and Clutch
Lockup Controller (CLC), from the Mathworks website [The MathWorks Inc., 2016a]. Table 6.1
shows key characteristics of these models. CPC and CC include Stateflows, and FPC and CLC are
Simulink models without Stateflows. FPC and CPC are continuous models and incompatible with
SLDV. The CC model, which is the largest model from the SLDV tutorial examples, is compatible
with SLDV. Since the other tutorial examples of SLDV were small, we modified the CLC model
from the Mathworks website to become compatible with SLDV by replacing the continuous and
other SLDV-incompatible blocks with their equivalent or approximating discrete blocks. We have
made the modified version of CLC available at [Matinnejad, Reza, 2016]. Note that we were not
able to make CPC, FPC or any other Delphi Simulink models compatible with SLDV since they
contained complex continuous operations and S-Function blocks, and hence, they have to be almost
re-implemented before SLDV can be applied to them. In order to compare our approach with SLDV,
we considered two widely used coverage criteria for Simulink models, namely decision coverage
and modified condition/decision coverage (MC/DC), for test generation function of SLDV. Decision
coverage [The MathWorks Inc., 2016j], also known as branch coverage, aims to ensure that each
one of the possible branches from each decision point is executed at least once and thereby ensuring
that all reachable blocks are executed. Examples of decision points in Simulink models are switch
blocks and Stateflow states. MC/DC [The MathWorks Inc., 2016j] is a stronger coverage criterion
and aims to ensure that a change in the outcome of each condition, independent of any other inputs,
causes a change in the outcome of the corresponding decision. Table 6.1 reports the total number
of decision points in our study subjects, and the number of MC/DC goals for the models we used in
our comparison with SLDV. In addition, we report the total number of Simulink blocks and Stateflow
states as well as input/output variables and configuration parameters for each model. CPC and FPC
are representative models from the automotive domain with many input variables and blocks. In order
to compare OD with SLDV, we use CC from the Mathworks website and the modified version of CLC
as both models are reasonably large and complex, and yet compatible with SLDV.
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Table 6.1. Characteristics of our study subject Simulink models.

Publicly 
AvailableName No. 

Inputs
No. Blocks/

States

CPC No 10 590

No. Decision
Points

126
FPC
CC

CLC

No

Yes

No. 
Configs

41
8106521 120

6 4 43

Yes

12

2 0 81 10

No. 
Outputs

15
35

2

4

No. MC/DC
Goals

Not Used
Not Used

29

18

6.7.3 Measuring Fault Revealing Ability
We use our heuristic test oracle function, oracle, defined in Section 6.5 to automatically assess and
compare the fault revealing ability of test suites in our experimental setting. For the purpose of
experimentation, we use fault-free versions of our subject models to produce the ground truth oracle
signals (i.e., signal g in Section 6.5). Let T C be the set of all generated test cases for a given Simulink
model M by a particular test generation technique, and let SG be the set of all signals sgtc

o that are
generated by a test case tc 2 T C for an output o of M and are required to be inspected by engineers.
We define an aggregated oracle function Oracle over the set T C as follows:

Oracle(T C) = MAXsg2SGoracle(sg)

That is, the aggregated oracle function, Oracle, returns the largest deviation between the ground
truth oracle signal and all the output signals that are generated by T C and are expected to be checked
by engineers. When we use our test generation approach introduced in Section 6.3, each test case in
T C is related to a specific output of M. So, we only consider signals sgtc

o where test case tc 2 T C
is generated for output o. In contrast, when we use SLDV (or other baseline techniques) to generate
T C, the set SG contains output signals generated by every test case in T C and for every output of
M. In any case and as discussed in Section 6.5, to compare different test generation approaches, we
ensure that the size of SG, i.e., the number of signals that are generated by T C and are required to be
inspected by engineers, for different test generation approaches are the same.

We use a threshold value THR to translate the aggregated oracle Oracle into a boolean fault re-
vealing measure denoted by FR. Specifically, FR returns true (i.e, Oracle(T C) > THR) if some output
signal in SG sufficiently deviates from the ground truth oracle such that a manual tester conclusively
detects a failure. Otherwise, FR returns false. In our work, we set THR to 0.2. We arrived at this
value for THR based on our experience and discussions with domain experts. In our experiments, in
addition, we obtained and evaluated the results for THR = 0.15 and THS = 0.25 and showed that our
results were not sensitive to such small changes in THR.

6.7.4 Measuring Test Prioritization Effectiveness
To compare the effectiveness of different prioritization algorithms, we measure how early faults are
detected when engineers inspect the test case rankings generated by alternative test prioritization
algorithms. We use a metric, referred to as the Number of Tests to be Evaluated (NTE), that computes
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the number of test cases that need to be evaluated by engineers so that they can identify a fault. Lower
NTE values denote faster fault detection, hence, more effective test prioritization. NTE directly counts
the number of tests that need to be evaluated to find a fault, and provides a more intuitive measure
to compare different test case rankings than existing evaluation metrics for test prioritization, such
as APFD measure [Yoo and Harman, 2012]. Finally we note that similar to fault revealing measure
FR, NTE values also depend on the fault revealing threshold THR. Hence, in our experiments we
computed NTE values based on three different thresholds of 0.2, 0.15 and 0.25.

6.7.5 Experiment Design
We developed a comprehensive list of Simulink fault patterns and have made it available at [Matin-
nejad, Reza, 2016]. Examples of fault patterns include incorrect signal data type and incorrect math
operations for Simulink models, and incorrect transition condition for Stateflow models. We identified
these patterns through our discussions with senior engineers from Delphi Automotive and by review-
ing the existing literature on mutation operators for Simulink models [Zhan and Clark, 2005, Brillout
et al., 2009, Binh et al., 2012, Yin et al., 2014]. We note that these fault patterns represent the faults
observed in practice. We have developed an automated fault seeding program to automatically gen-
erate 44 faulty versions of CPC, 30 faulty versions of FPC, 15 faulty versions of CC, and 15 faulty
versions of CLC (one fault per each faulty model). In order to achieve diversity in terms of the loca-
tions and the types of faults, our automation seeded faults of different types and in different parts of
the models. We also ensured that every faulty model remains executable (i.e., no syntax error).

Having generated the fault-seeded models, we performed three experiments, EXP-I to EXP-III,
to answer RQ1 to RQ4, described below.

EXP-I focuses on answering RQ1 and RQ2 using the 74 faulty versions of the time-continuous
models from Table 6.1, i.e., CPC and FPC. Figure 6.9(a) shows the overall structure of EXP-I. We
ran the OD algorithm in Figure 6.5 with vector-based (Ov) and feature-based (O f ) objective functions.
We also ran random test generation and coverage-based test generation algorithms. As discussed in
Section 6.5, input signals with fewer steps produce simpler output signals and have lower manual
oracle cost. However, they may fail to cover a large part of the underlying Simulink model. Hence,
in EXP-I, we start by generating constant input signals in our algorithms and gradually increase
the number of steps in input signals to increase structural coverage until adding more steps in input
signals does not bring about additional structural coverage. Also, as mentioned in Section 6.7.1,
for the coverage-based algorithm, we replace the objective function O in our OD algorithm with a
coverage-based objective function that computes the dynamic test coverage obtained by test cases in
T S. Recall from Section 6.4 that the notion of test coverage in our work is specific to model outputs.
Accordingly, our coverage-based objective function considers the dynamic test coverages related to
the output for which we are generating the tests. As shown in Figure 6.9(a), the OD and coverage-
based algorithms generate l separate test suites for l outputs of the model under test, while random test
generation generates one test suite for all the model outputs. As indicated in Table 6.1, the number of
outputs, l, is equal to 15 for CPC and 37 for FPC models.

For each faulty model and each objective function, we ran OD and our coverage-based algorithm
for 600 sec and created test suites of size q where q took the following values: 3, 5, and 10. We
also used random test generation to generate test suites with the same size. We chose to examine
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Figure 6.9. Our experiment design: test generation algorithms are repeated for 20 times to account for their
randomness. EXP-II is repeated for all the fault revealing OD test suites from EXP-I. Further, random prioriti-
zation is repeated for 20 times.

the fault revealing ability of small test suites to emulate current practice where test suites are small
so that the test results can be inspected manually. We repeated the test generation algorithms in
EXP-I for 20 times to account for their randomness. Specifically, for 44 faulty versions of CPC
model with 15 outputs and 30 faulty versions of FPC model with 37 outputs, we sampled 16152 (i.e.,
44⇥3⇥3⇥15+30⇥3⇥3⇥37+74⇥3) different test suites and repeated each sampling 20 times
(i.e., in total, 323040 different test suites were generated for EXP-I). Overall, EXP-I took around 20
days to run on our High Performance Clusters (HPC) [Varrette et al., 2014]. Thanks to our HPC,
we were able to parallelize EXP-I execution. Otherwise, it would have taken more than four years to
complete EXP-I on a single core CPU system.

EXP-II answers the research question RQ3 and evaluates our test prioritization algorithm. Fig-
ure 6.9(b) shows the overall structure of EXP-II. We used our prioritization algorithm in Figure 6.6
to rank the test cases generated by the OD test generation algorithm for 74 faulty versions of CPC and
FPC models. We also used random prioritization as well as total and additional coverage-based test
prioritization strategies [Zhang et al., 2013] to rank the same test cases. We repeated EXP-II for all
the fault revealing test suites obtained by the 20 different runs of OD in EXP-I and ignored those test
suites obtained in EXP-I that were not able to detect any fault since test prioritization is irrelevant for
them.
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We ran random prioritization for 20 times to account for its randomness. Recall from Section 6.4
that our prioritization algorithm in Figure 6.6 turns into an additional coverage-based prioritization
algorithm by setting the fault revealing probability function to one for all the test cases. If, in addition,
we remove the part updating the faultiness probabilities of coverage nodes, the algorithm turns into
a total coverage-based prioritization algorithm. When multiple test cases are equally desirable with
respect to coverage, we select a test case randomly. Further, additional coverage strategy usually
reaches a point where each coverage node is covered by at least one of the prioritized test cases
and none of the remaining test cases can add any additional coverage. At this point, we reset the
accumulative coverage and reapply the additional coverage strategy to order the remaining test cases.
Overall, EXP-II took around half an hour to run on our HPC clusters. It would have taken more
than a month on a single node. Note that, all the test cases were already executed during EXP-I
and their dynamic test execution information, including coverage and output signals, were available
before running EXP-II. We also note that the two other models from Table 6.1 have a few outputs.
Further, the test suites are small in our experiments. As a result, test prioritization can have only a
slight impact on the manual test oracle for these models. So, we chose to not run test prioritization
for them.

EXP-III answers RQ4 and is performed on the SLDV-compatible subject models from Table 6.1, i.e.,
CC and CLC. Figure 6.9(c) shows the overall structure of EXP-III. To answer RQ4, we compare the
fault revealing ability of the test suites generated by SLDV with that of the test suites generated by
OD test generation algorithm. We give SLDV and OD the same execution time budget (200 sec in our
experiment). This time budget was sufficient for SLDV to achieve a high level of structural coverage
over the subject models. Further, we ensure that the generated test suites have the same test oracle
cost. Specifically, for each faulty model M, we first use SLDV to generate a test suite TSM based on
both the decision and the MC/DC coverage criteria within the time allotted (200 sec). We then apply
OD to M to generate a test suite TS0M such that TSM and TS0M have the same test oracle cost (see
Section 6.5). We have implemented a Matlab script that enables us to extract the size of the test suites
as well as the number of steps in input signals for each individual test input of TSM. Further, we have
modified the OD algorithm in Figure 6.5 so that it generates input signals containing a desired number
of steps. Also note that, while SLDV generates one test suite for all model outputs, OD generates one
test suite per each output. Nevertheless, the total number of output signals that need to be inspected
by engineers is the same for both techniques, and hence, they have the same oracle cost. Finally, we
note that while SLDV is deterministic and is executed once per each faulty model, OD is randomized,
and hence, we rerun it 20 times for each faulty model. Overall, EXP-III took around 3.4 hours to run
on our HPC clusters to generate test cases using both SLDV and our OD algorithm. It would have
taken more than two months on a single node.

6.8 Results
This section provides responses, based on our experiment design, for research questions RQ1 to RQ4
described in Section 6.7.

RQ1 (Comparing Test Generation with State-of-the-art). To answer RQ1, we ran EXP-I to com-
pare our OD algorithm with random and coverage-based test generation. Figures 6.10(a) to (c) show
the fault revealing ability of random test generation (R), coverage-based test generation (Cov), and
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OD with the objective functions Ov and O f . Each distribution in Figures 6.10(a) to (c) contains 74
points. Each point relates to one faulty model and represents either the average aggregated oracle
Oracle or the average fault revealing measure FR over 20 different sets of test suites with a fixed size
and obtained by applying a test generation algorithm to that faulty model. Note that the FR values are
computed based on three different thresholds THR of 0.2, 0.15, and 0.25. For example, a point with
(x = R) and (y = 0.149) in the Oracle plot of Figure 6.10(a) indicates that the 20 different random
test suites with size 3 generated for one faulty model achieved an average aggregated oracle Oracle
of 0.149. Similarly, a point with (x = OD(Of )) and (y = 0.85) in any of the FR plots of Figure 6.10(b)
indicates that among the 20 different sets of l test suites with size 5 generated by applying OD with
objective function Of to l outputs of one faulty model, for 17 sets at least one test case was able to
reveal the fault (i.e., FR = 1) while for 3 sets none of the test cases could reveal the fault (i.e., FR =
0).

To statistically compare the Oracle and FR values, we performed the non-parametric pairwise
Wilcoxon Pairs Signed Ranks test [Capon, 1991], and calculated the effect size using Cohen’s d [Co-
hen, 1977]. The level of significance (a) was set to 0.05, and, following standard practice, d was
labeled “small” for 0.2  d < 0.5, “medium” for 0.5  d < 0.8, and “high” for d � 0.8 [Cohen,
1977].

Testing differences in the average Oracle and FR distributions, for all the three thresholds and
with all the three test suite sizes, shows that OD with both objective functions O f and Ov performs
significantly better than both random and coverage-based test generation. Further, for all the compar-
isons between OD and random, the effect size is consistently “high” for OD with both O f and Ov. As
for the comparisons between OD and coverage-based, the effect size is “high” for all the comparisons
except for the comparisons of FR distributions for OD(Ov) with test suite sizes 5 and 10, where the
effect size is “medium”. To summarize, the fault revealing ability of OD significantly outperforms
that of random testing and coverage-based test generation.

Comparing coverage-based and random. Using the results in Figure 6.10, we can also compare the
fault revealing ability of coverage-based (Cov) and random (R) test generation. Testing differences
in the average Oracle and FR distributions, for all the three test suite sizes and with all the three
thresholds, indicates that coverage-based test generation performs significantly better than random
test generation with one exception. Only for test suite size 3 and threshold 0.25, there is no statistically
significant difference between their average FR distribution, though Cov still achieves higher mean
and median FR values. Further, the effect size is consistently “small” for all the comparisons where
there exist a statistically significant difference between Cov and random. To summarize, the fault
revealing ability of coverage-based test generation outperforms that of random test generation.

Comparing dynamic test coverage. In Section 6.1, we motivated our output diversity approach by
comparing two different test outputs of a faulty model which were equally desirable with respect to
structural coverage but yielded highly different fault revealing abilities. Here, we report the structural
coverages achieved by different test generation algorithms to provide evidence that achieving higher
structural coverage does not necessarily lead to better fault revealing ability. Figure 6.11 compares
the average of dynamic test coverage percentages obtained by 20 different runs of different test gen-
eration algorithms over the faulty CPC and FPC models. Recall from Section 6.4 that in our work
the notion of dynamic test coverage is specific to a model output. Hence, in Figure 6.11 we compute
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Figure 6.10. Boxplots comparing average aggregated oracle values (Oracle) and fault revealing measures (FR)
of OD (with both diversity objectives), coverage-based (Cov) and random test suites (R) for different thresholds
and different test suite sizes.

the percentages of structural coverage obtained by each test suite over the backward static slice of
the output related to that test suite. That is, for a test suite T S related to an output o, we compute the
percentage of branches in static_slice(o) which are covered by test cases in T S. For each faulty model
and each test generation algorithm, we report the average of dynamic test coverages obtained by fault
revealing test suites generated for that faulty model. As shown in the figure, coverage-based test gen-
eration was able to achieve higher structural coverages than other algorithms across all test suite sizes.
Specifically, it achieved, on average, 89%, 91% and 93% of decision coverage for test suite sizes 3, 5
and 10, respectively. As shown in the figure, this is at least 3% higher than the structural coverages
achieved by other test generation algorithms, across all test suite sizes.

RQ2 (Comparing Of with Ov). The results in Figure 6.10 also compares the average Oracle and
FR values for the feature-based, OD(Of ), and the vector-based, OD(Ov), output diversity algorithms.
As for the average Oracle distributions, the statistical test results indicate that OD(Of ) performs sig-
nificantly better than OD(Ov) for test suite sizes 5 and 10 with a “small” effect size. For test suite
size 3, there is no statistically significant difference, but OD(Of ) achieves higher mean and median
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Figure 6.11. The percentages of dynamic test coverage achieved by different test generation algorithms over
the faulty versions of CPC and FPC subject models for different test suite sizes.

Oracle values compared to OD(Ov). As for the FR distributions, the improvements of OD(Of ) over
OD(Ov) are not statistically significant. However, for all the three thresholds and with all the test
suite sizes, OD(Of ) consistently achieves higher mean and median FR values compared to OD(Ov).
Specifically, with threshold 0.2, the average FR is .63, .66 and .71 for OD(Of ), and .51, .52 and .61
for OD(Ov) for test suite sizes 3, 5, and 10, respectively. That is, across all the faults and with all test
suite sizes, the average probability of detecting a fault is at least %10 higher when we use OD(Of ) in-
stead of OD(Ov). To summarize, the fault revealing ability of the OD algorithm with the feature-based
diversity objective is higher than that of the OD algorithm with the vector-based diversity objective.

Why does OD(Of ) perform better than OD(Ov)? Here, we provide more insight as to why OD(Of )
achieves higher fault revealing ability than OD(Ov). Specifically, our investigation of OD execution
in our experiments indicated that OD with both Ov and Of ran for the same number of iterations in the
given test execution budget. Recall that in Section 6.3.3, we discussed the asymptotic time complexity
of individual iterations of OD(Of ) and OD(Ov) algorithms. Our investigation showed that executing
the model with the given q test inputs takes the largest part of the execution time of each iteration.
Specifically, executing a single model simulation in our experiments using the Matlab cvsim function
2 took 1.1 sec, on average, while computing Of and Ov took only 12 and 5 msec, on average. Given
that both OD(Of ) and OD(Ov) are given the same test execution budget in EXP-I, they almost always
ran for the same number of iterations in our experiments. As a result, we conjecture that the reason
for better fault revealing ability of OD(Of ) lies in providing a better landscape for the search. That is,
the feature-based diversity objective function provides a better surrogate for fault revealing ability of
the generated test suites compared to vector-based output diversity objective function.

RQ3 (Comparing Test Prioritization with State-of-the art). To answer RQ3, we performed EXP-
II with the fault revealing samples of test suites generated in EXP-I by OD with the better diversity
objective (i.e., OD with the feature-based diversity). We used different prioritization algorithms to
prioritize the combined set of all test cases generated by OD(Of ) for 15 outputs of CPC model as well
as 37 outputs of FPC model. Figures 6.12 and 6.13 compare the average NTE distributions obtained
by random prioritization (R), total (Tot) and additional (Add) coverage-based prioritization, and our

2cvsim function executes a Simulink model and computes the structural coverage at the same time.
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test prioritization algorithm (PrioAlg) for CPC and FPC models, respectively. Note that in contrast
to Oracle and FR measures used in EXP-I, NT E measure is not normalized. Hence, we present the
results of EXP-II in separate plots for CPC and FPC case studies. Each distribution in Figures 6.12(a)
to (c) (resp. in Figures 6.13(a) to (c)) contains 44 (resp. 30) points. Each point relates to one faulty
model and represents the average NT E values obtained by applying a test prioritization algorithm
to combined set of test cases generated by OD(Of ) for that faulty model. Further, the results for
random prioritization represent the average NT E values obtained over 20 different runs of random
prioritization algorithm. For example, a point with (x = Tot) and (y = 12.35) in any of the plots in
Figure 6.12(c) indicates that among the 150 (i.e., 15⇥10) test cases generated for 15 outputs of CPC
model, on average, 12.35 test cases need to be evaluated to find the fault when test cases are prioritized
using total coverage algorithm. Similarly, a point with (x = PrioAlg) and (y = 9.8) in any of the plots
in Figure 6.13(b) indicates that among all 185 (i.e., 37⇥5) test cases generated for 37 outputs of FPC
model, on average, 9.8 test cases need to be evaluated to find the fault when test cases are prioritized
using our test prioritization algorithm.

To statistically compare the NTE values, we used the same setting as in EXP-I. Recall that lower
NTE values denote faster fault detection, hence, more effective test prioritization. Testing differences
in the average NTE distributions for both CPC and FPC models, for all the three thresholds, and with
all the three test suite sizes, shows that our prioritization algorithm performs significantly better than
the other three prioritization algorithms. In addition, for all the comparisons between our prioritization
algorithm and both random and total coverage-based prioritization, the effect size is consistently
“high”. For the comparisons between our prioritization algorithm and additional coverage-based
prioritization, the effect size is “high” for test suite sizes 5 and 10, and “medium” for test suite size
3. To summarize, our prioritization algorithm significantly outperforms random and both total and
additional coverage-based prioritization, as it yields significantly smaller NTE values compared to the
other algorithms.

Comparing manual test effort. Using NT E measure enables us to directly compare the manual test
effort when different test prioritization algorithms are used to order the tests. Specifically, for CPC
model and with threshold 0.2, the average NTE is 19.5, 32.2, and 65.3 with random prioritization,
12.6, 17.7, and 27.7 with total coverage prioritization, 9.1, 13.8, and 19.9 with additional coverage
prioritization, and 5.6, 5.9, and 10.3 with our prioritization algorithm, for test suite sizes 3, 5 and
10, respectively. Similarly, for FPC model and with threshold 0.2, the average NTE is 55.9, 90.4,
and 166.4 with random prioritization, 27.0, 47.6, and 88.7 with total coverage prioritization, 19.7,
31.2, and 56.2 with additional coverage prioritization, and 9.3, 14.8, and 31.3 with our prioritisation
algorithm, for test suite sizes 3, 5 and 10, respectively. That is, across all the faults and with all test
suite sizes, the average number of tests that need to be evaluated is at least %45 less when we order
the tests using our prioritization algorithm. Further, on average, 12.1 less test cases need be checked
when our prioritization algorithm is used compared to additional coverage-based prioritization which
is the second best algorithm. Our experience shows that inspecting output signals by engineers may
take up to one or two hours for a single test case. Given that, our prioritization algorithm brings
significant improvement in terms of the manual test effort.

RQ4 (Comparing Test Generation with Commercial Tools). To answer RQ4, we used the better
diversity objective from RQ2 (i.e., OD with the feature-based diversity objective) and performed
EXP-III on 30 faulty models of CC and CLC. Recall that in EXP-III, we first use SLDV to generate
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suite sizes for CPC case study.
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Figure 6.13. Boxplots comparing average number of tests to be evaluated (NTE) by our prioritization algorithm,
coverage-based (total and additional) and random test prioritization with different thresholds and different test
suite sizes for FPC case study.

116



6.8. Results

test suites based on Decision and MC/DC coverage criteria, and then run OD to generate test suites
with the same oracle cost, i.e., with the same size and test input complexity. We evaluate the fault
revealing ability of SLDV and OD by comparing the aggregated oracle Oracle and the fault revealing
measure FR values obtained over these 30 faulty models. In addition, we investigate if any of SLDV
and OD subsumes the other technique (fault revealing subsumption). That is, we determine if any of
OD and SLDV does not find any additional faults missed by the other technique. Finally, we compare
the structural coverage achieved by each of SLDV and OD over these 30 faulty models. We report
coverage results for two reasons: (1) We confirm our earlier claim that with the timeout of 120 sec
used in EXP-III, SLDV has been able to achieve high structural coverage. (2) We provide further
evidence that achieving higher structural coverage does not necessarily lead to better fault revealing
ability.

Comparing fault revealing ability. We computed Oracle and FR values with three THR values of
0.15, 0.20, and 0.25 over the test suites generated by SLDV and OD. Figures 6.14(a) and (b) compare
the distributions obtained for the 30 faulty models of CC and CLC, when SLDV was used with
decision and MC/DC coverage criteria, respectively. Recall that SLDV is deterministic, while OD
is randomized. So, in Figure 6.14, each point in distributions related to SLDV shows the value of
Oracle or FR obtained for one and the only one test suite generated by SLDV for each faulty model.
In contrast, each point in distributions related to OD shows the average value of Oracle or FR for 20
different sets of test suites generated by OD for different outputs of each faulty model. Further, for
each faulty model, SLDV yields a FR value of one or zero, respectively indicating whether SLDV
reveals the fault or not. However, for OD, we compute an average FR value over 20 different runs,
which is between zero and one, indicating an estimated probability for OD to reveal a fault.

As shown in Figures 6.14(a) and (b), the Oracle and FR values obtained for SLDV are very small
compared to those obtained by OD. Testing differences in Oracle and FR distributions with all the
three thresholds shows that OD performs significantly better than SLDV for both coverage criteria.
In addition, for all the eight comparisons depicted in Figure 6.14, the effect size is “high”.

Fault revealing subsumption. Tables 6.2 to 6.3 compare performance of OD and SLDV for individual
faults. Specifically, Tables 6.3 and 6.4 show, for each faulty model, the distribution of Oracle values
obtained by OD and the single value of Oracle obtained by SLDV, when SLDV was used with Deci-
sion and MC/DC coverage, respectively. Note that x̄ shows the mean, and Q1, Q2, and Q3 refer to the
three quartiles of the QO distribution obtained by 20 different runs of OD (i.e., Q1, Q2, and Q3 are the
25th, 50th, and 75th percentiles, respectively). In addition, we report (as denoted by P in Tables 6.3
and 6.4) the percentages of OD runs that achieve a QO value greater than or equal to that obtained
by SLDV. For example, for faults 1 and 5 in Table 6.3, 100% and 90% of the OD runs, respectively,
yield QO values that are not worse than those generated by SLDV when it was used with Decision
coverage. Similarly, for the same faults in Table 6.4, 100% of the OD runs yield QO values that are
not worse than those generated by SLDV when it was used with MC/DC coverage. Table 6.2 shows,
for each faulty model and when considering FR with threshold 0.2, whether SLDV is able to identify
the fault (denoted by Yes) or not (denoted by No). Further, the table shows, out of the 20 runs, how
many times OD is able to find the fault. Note that the results for the thresholds 0.15 and 0.25 were
similar to those in Table 6.2.

Based on Tables 6.3 and 6.4, 9 and 6 faults go undetected by SLDV irrespective of the threshold
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Figure 6.14. Boxplots comparing aggregated oracle values (Oracle) and fault revealing measures (FR) of OD
and SLDV for different thresholds.

Table 6.2. The number of fault revealing runs of OD (out of 20) for our 30 faulty models, and the fault(s) that
SLDV is able to find with a threshold (THR) of 0.2.

Fault No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
20

SLDV

OD 14 16 20 12 13 20 13 19 17 19 147 16 8

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SLDV

OD 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Fault No.

No No No No No No No No No No No No No No No

No No No No No No No No Yes No No No No No No

SDLV was used with Decision coverage

SDLV was used with MC/DC coverage
Fault No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

20
SLDV

OD 14 20 20 18 18 20 18 20 20 20 159 18 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SLDV

OD 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Fault No.

No No No No No No No No No No No No No No No

No No Yes No No No No No Yes No No No No No No
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Table 6.3. Aggregated oracle Oracle distributions for OD and single Oracle values for SLDV per each faulty
model, when SLDV was used with decision coverage.

OD SLDV
1

x̄
Q1

Q2

Q3

0.772
0.667
0.762
0.923

0.012

OD SLDV
2

0.419
0.189
0.406
0.594

0

OD SLDV
3

OD SLDV
4

OD SLDV
5

0.096

OD SLDV
6

OD SLDV
7

OD SLDV
8

OD SLDV
9

x̄
Q1

Q2

Q3

OD SLDV
10

OD SLDV
11

OD SLDV
12

OD SLDV
13

OD SLDV
14

OD SLDV
15

OD SLDV
16

OD SLDV
17

x̄
Q1

Q2

Q3

OD SLDV
18

OD SLDV
19

OD SLDV
20

OD SLDV
21

OD SLDV
22

OD SLDV
23

OD SLDV
24

OD SLDV
25

x̄
Q1

Q2

Q3

OD SLDV
26

OD SLDV
27

OD SLDV
28

OD SLDV
29

OD SLDV
30

0.256
0.166
0.272
0.361

0

0.714
0.614
0.759
0.841

0

0.288
0.178
0.296
0.389

0.259
0.192
0.217
0.361

0.096

0.764
0.674
0.782
0.867

0.096

0.297
0.025
0.22

0.561
0.096

0.526
0.356
0.482
0.771

0.213

0.316
0.217
0.335
0.386

0.096

0.402
0.357
0.385
0.482

0.095

0.203
0.365
0.039

0
0

0.275
0.385
0.289
0.110

0.096

0.268
0.361
0.289
0.192

0.096

0.198
0.330
0.128
0.046

0

0.398
0.374
0.394
0.435

0

0.539
0.531
0.547
0.547

0.087

0.534
0.520
0.541
0.547

0.087

0.536
0.529
0.544
0.547

0.087

0.531
0.518
0.535
0.547

0.087

0.541
0.534
0.547
0.547

0.087

0.403
0.376
0.407
0.437

0

0.544
0.546
0.547
0.546

0.113

0.538
0.536
0.547
0.547

0.087

0.536
0.530
0.546
0.547

0.113

0.533
0.521
0.540
0.547

0

0.528
0.512
0.537
0.547

0.087

0.533
0.524
0.541
0.547

0.087

0.532
0.513 
0.547
0.547

0.087

0.526
0.515 
0.530 0

P

P

P

P

1.0 1.0 1.0 0.7

1.0

1.0

0.9 0.95 1.0

0.85 0.95 1.0 1.0 0.85 1.0 1.0

1.0 1.0

1.0 1.0 1.0 1.0

1.01.0 1.01.01.0

1.0 1.0

1.0

0.547

value (i.e., for these faults we have QO = 0 for SLDV), when SLDV was used with decision and
MC/DC coverage, respectively. There is no fault that SLDV can possibly detect (QO > 0) but OD
cannot. For 24 and 25 faults, all 20 runs of OD yield results that are at least as good as those of SLDV
(P = 1), when SLDV was used with decision and MC/DC coverage, respectively. For all the faults in
Table 6.3 and 6.4, the average of QO obtained by OD (denoted by x̄) is higher than the value of QO
obtained by SLDV. Based on Tables 6.2, SLDV identifies only one fault with a threshold of 0.2, and
that particular fault is also detected by all the 20 runs of OD. The results for thresholds 0.15 and 0.25
are similar.

Comparing coverage. Figure 6.15 compares the structural coverage percentages (i.e., decision and
MC/DC coverage) achieved by test suites generated by OD and SLDV over the faulty models of CC
and CLC. As before, the distribution for SLDV shows the percentages of structural coverage achieved
by individual test suites generated for individual faulty models, while the distribution for OD shows
the average of structural coverage percentages obtained by 20 different runs of OD for each faulty
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Table 6.4. Aggregated oracle Oracle distributions for OD and single Oracle values for SLDV per each faulty
model, when SLDV was used with MC/DC coverage.

OD SLDV
1

x̄
Q1

Q2

Q3

0.839
0.751
0.873
0.936

0.012

OD SLDV
2

0.384
0.147
0.360
0.603

0

OD SLDV
3

OD SLDV
4

OD SLDV
5

0.096

OD SLDV
6

OD SLDV
7

OD SLDV
8

OD SLDV
9

x̄
Q1

Q2

Q3

OD SLDV
10

OD SLDV
11

OD SLDV
12

OD SLDV
13

OD SLDV
14

OD SLDV
15

OD SLDV
16

OD SLDV
17

x̄
Q1

Q2

Q3

OD SLDV
18

OD SLDV
19

OD SLDV
20

OD SLDV
21

OD SLDV
22

OD SLDV
23

OD SLDV
24

OD SLDV
25

x̄
Q1

Q2

Q3

OD SLDV
26

OD SLDV
27

OD SLDV
28

OD SLDV
29

OD SLDV
30

0.415
0.385
0.433
0.482

0

0.759
0.691
0.755
0.864

0

0.381
0.289
0.4
0.481

0.342
0.048
0.232
0.615

0.096

0.814
0.771
0.819
0.867

0.096

0.481
0.250

0.574
0.675

0.096

0.638
0.482
0.676
0.867

0.213

0.421
0.385
0.408
0.482
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0.315
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0.193

0.096 0.096

0.308
0.386
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0.542
0.269
0.179
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0.431
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0.421
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0.523
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0.123

0.521
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0.529
0.547

0.123

0.510
0.479
0.515
0.547

0.087

0.531
0.524
0.544
0.547

0

P

P

P

P

1.0 1.0 1.0 0.85

1.0

1.0

1.0 0.65 1.0

0.9 1.0 1.0 0.55 0.95 1.0 1.0

1.0 1.0

1.0 1.0 1.0 1.0

1.01.0 1.01.01.0

1.0 1.0

1.0

0.245
0.561
0.105
0

model. As shown in the figure, SLDV was able to achieve, on average, 89% decision and 94%
MC/DC coverage over CC and CLC models. In contrast, OD achieved, on average, 81% decision
and 83% MC/DC coverage. In addition, SLDV and OD have been able to cover all fault-seeded
blocks. This shows that within 200 sec, SLDV had sufficient time to cover the structure of the 30
faulty models. Indeed, for 44 out of 60 runs of SLDV, it terminated before the timeout period elapsed.
Hence, by increasing the execution time, it is unlikely that SLDV’s fault revealing ability would be
impacted.

In summary, our comparison of SLDV and OD shows that: (1) For both studied models and both
coverage criteria, OD is able to reveal significantly more faults compared to SLDV. (2) OD subsumes
SLDV in revealing faults with both decision and MC/DC coverage: Any fault identified by SLDV is
also identified by OD. (3) SLDV was able to cover a large part of the underlying models within the
given timeout period (including all the fault-seeded blocks), and further, it achieved slightly higher
decision and MC/DC coverage over study subjects compared to OD. However, covering a fault does
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Figure 6.15. The percentages of decision and MC/DC coverages achieved by OD and SLDV over the 30 faulty
versions of CC and CLC subject models.

not necessarily lead to detecting that fault. In particular, SLDV was able to reveal only one and two
faults that it could cover, when used with decision and MC/DC coverage. (4) Finally, our results on
comparing SLDV and OD are not impacted by small modifications in the threshold values used to
compute the fault revealing measure FR.

Discussion. Why does SLDV perform poorly compared to OD? Our results in RQ4 show that, com-
pared to the output diversity (OD) algorithm, SLDV is less effective in revealing faults in Simulink
models. In our experiment, even though test suites generated by SLDV cover most faulty parts of the
Simulink models, the outputs produced by these test suites either do not deviate or only slightly devi-
ate from the ground truth oracle, hence yielding very small QO values. In contrast, OD generates test
suites with output signals that are more distinct from the ground truth oracle. Note that, as discussed
in Section 6.1, any deviation should exceed some threshold to be conclusively deemed a failure. For
example, Figures 6.16(b) and (d) show two output signals (solid lines) of a faulty model together with
the oracle signals (dashed lines) generated by OD and SLDV, respectively. Note that the range of the
Y-axis in Figure 6.16(b) is 1000 times larger than that in Figure 6.16(d). Hence, the deviation from
the oracle in Figure 6.16(b) is much larger than that in Figure 6.16(d). In particular, the signals in
Figures 6.16(b) and (d) respectively produce QO values of 0.43 and 0.01. Therefore, the output in
Figure 6.16(b) is more fault revealing than the one in Figure 6.16(d).

Since SLDV is commercial and its technical approach description is not publicly available, we
cannot precisely determine the reasons for its poor performance. We conjecture, however, that the
reason for SLDV’s poor fault finding lies in its input signal generation strategy. Specifically, all
value changes in the input signals generated by SLDV typically occur during the very first simulation
steps, and then, the signals remain constant for the most part and until the end of the simulation
time. In contrast, changes in the input signals generated by OD can occur at any time during the
entire simulation period. For example, Figures 6.16(a) and (c) show two examples of input signals
generated by OD and SLDV, respectively. In both case, the signal value changes from one to zero.
However, for the signal in Figure 6.16(a), the change occurs almost in the middle of the simulation
(at 6 sec), while in Figure 6.16(c), the change occurs after the first step (at 0.01 sec). Signals in
Figures 6.16(a) and (c) happen to cover exactly the same branches of the underlying model. However,
they, respectively, yield the outputs in Figures 6.16(b) and (d) with drastically different fault revealing
ability.
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Figure 6.16. Examples of test inputs and output signals generated by SLDV and OD algorithm.

6.9 Conclusions
In this chapter, we identified the key challenges concerning existing testing and verification tech-
niques for Simulink models, and explained how we deal with them in our work. We distinguished
Simulink simulation and code generation models and illustrated differences in their behaviors using
examples. In contrast to the existing testing approaches that are only applicable to code generation
Simulink models, we proposed a test generation and a test prioritization algorithm for both kinds of
Simulink models based on our notion of feature-based output diversity for signals. Our test genera-
tion algorithm is implemented using a meta-heuristic search approach that is guided to produce test
outputs exhibiting a diverse set of signal features. Our prioritization algorithm combines test coverage
and test suite output diversity to rank the generated test cases. Our evaluation is performed using two
industrial and two public domain Simulink models and showed that (1) Our test generation algorithm
significantly outperforms random and coverage-based test generation. (2) Our test generation algo-
rithm when used with the feature-based notion of output diversity generates higher fault revealing
rates compared to when output diversity is measured based on the Euclidean distance between signal
vectors. (3) Our test prioritization algorithm significantly outperforms random and coverage-based
test prioritization. (4) Our approach is able to reveal significantly more faults compared to Simulink
Design Verifier (SLDV), and further, it subsumes SLDV, as it is able to find the faults identified by
SLDV with a 100% probability.
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Chapter 7

Related Work

In this chapter, we focus on comparing our approach with the most related research threads to our
work on controller testing and signal processing, surrogate modeling, Simulink model testing, source
code testing, and test case prioritization.

7.1 Controller testing and Signal Generation
Recent work in the intersection of Simulink testing and signal processing has focused on test input sig-
nal generation using evolutionary search methods [Baresel et al., 2003, Windisch and Al Moubayed,
2009a, Windisch and Al Moubayed, 2009b, Lindlar et al., 2010, Wilmes and Windisch, 2010]. Com-
plex continuous input signals are generated either by sequencing parameterized base signals [Bare-
sel et al., 2003, Windisch and Al Moubayed, 2009a], or by modifying parameters of Fourier se-
ries [Windisch and Al Moubayed, 2009b]. These techniques, however, assume automated oracles,
e.g., assertions, are provided. Since test oracles are automated, they do not pose any restriction on
the shape of test inputs. In our work, however, we restrict variations in input signal shapes as more
complex inputs increase the oracle cost. Similar to our work, the work of [Zander-Nowicka, 2008]
proposes a set of signal features. These features are viewed as basic constructs which can be com-
posed to specify test oracles. In our work, since oracle descriptions do not exist, we use features to
improve test suite effectiveness by diversifying feature occurrences in test outputs.

Continuous controllers have been widely studied in the control theory domain [Nise, 2004, Araki,
2002, Wescott, 2000], where the focus has been to optimize the controller behavior for a specific ap-
plication by design optimization [Nise, 2004], or a specific hardware configuration by configuration
optimization [Araki, 2002]. Overall existing work in control theory deals with optimizing the con-
troller design or configuration rather than testing. They normally check and optimize the controller
behavior over one, or a few number of test cases and cannot substitute systematic testing as addressed
by our approach. Robust control toolbox [Mathworks, 2016] from Mathworks is an example of con-
troller analysis tools used in control engineering. Robust is a Matlab toolbox that provides functions
for analyzing and tuning performance and robustness of closed-loop control systems in the presence
of uncertainty in plant models. The robust toolbox, however, tunes the plant model parameters only
over a step signal input. Further, it is only applicable if the underlying model, i.e., the plant in this
case, implements a Linear Time-Invariant (LTI) dynamic system. In reality, many controllers are
neither linear not time-invariant.
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7.2 Surrogate modeling
Surrogate modeling has been used to scale up computation in various application domains such as
avionics [Ong et al., 2003], chemical systems [Caballero and Grossmann, 2008], and medical do-
main [Douguet, 2010]. Similar to our work, they use surrogate models in the context of evolutionary
algorithms, and their goal is to approximate complex mathematical models with faster-to-compute
models, i.e., surrogate models, to speed up highly time-consuming and costly simulations and experi-
ments. Our work is the first to apply surrogate models for testing continuous controllers. Furthermore,
our Hill Climbing (HC) single-state search algorithm represents a new combination of surrogate mod-
eling and evolutionary algorithms by precisely showing when the search has to run real simulations
and when the surrogate model is sufficient. Finally, our algorithm continuously refines surrogate
models using the real simulations performed during the search.

In Chapter 4, we applied surrogate modeling in conjunction with dimensionality reduction to
test controllers. Dimensionality reduction in our work differs from input domain reduction used in
software code testing where the goal is to remove irrelevant variables prior to test case generation via
static analysis [Harman et al., 2007, McMinn et al., 2012]. By dimensionality reduction, we mean
identifying significant dimensions of each fitness function to focus exploration on those dimensions.

7.3 Simulink Model Testing
In this section, we compare our work with testing approaches that rely or relate to testing Simulink
models. In particular, we consider model-based testing, and model checking and testing techniques.

7.3.1 Model-based testing
Model-based testing relies on software models to generate both test scenarios and test oracles for
testing implementation-level artifacts. A number of model-based testing techniques have been applied
to Simulink models with the aim of achieving high structural coverage or detecting a large number of
mutants. Below, we discuss these approaches in detail.

Coverage-based techniques. Various model-based testing tools have been developed to generate
coverage-adequate test suites for Simulink/Stateflow models [Peranandam et al., 2012, Gadkari et al.,
2008, Bohr and Eschbach, 2011]. Search-based techniques have been applied to minimize a fitness
function that approximates how far a given test input is from covering a specific Simulink block or
Stateflow state [Windisch, 2009, Windisch, 2010, Zhan and Clark, 2004]. Such fitness functions are
typically defined in terms of metrics measuring the distance between input values and conditions
characterizing the targeted block/state.

Reachability analysis is used to generate coverage-adequate test inputs or to provide proofs of
correctness by showing unreachability of the faulty model parts [Hamon, 2008, Mohalik et al., 2014,
Satpathy et al., 2012]. For each coverage goal, a boolean assertion is instrumented into the model
in such a way that violation of the assertion ensures coverage of the desired coverage goal and vice
versa. The reachability analysis (e.g., using model checkers) either yields a counterexample (test
scenario) demonstrating that the assertion under analysis is violated or it proves that the assertion is
never violated, hence the underlying model is correct.
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Reactis tester [Reactive Systems Inc., 2016a, Cleaveland et al., 2008], a well-known commercial
tool for model-based testing of Simulink models, adapts a guided random test generation strategy
consisting of two steps [Satpathy et al., 2008, Sims and DuVarney, 2007]. First, test inputs are gener-
ated randomly. Second, the coverage goals that are not covered by the randomly generated inputs are
attempted to be covered either using constraint solvers or heuristic-based strategies.

Mutant-killing techniques. Another group of model-based testing techniques focus on generating
mutant-killing test suites from Simulink models. These techniques assess the adequacy of test inputs
by measuring the number of mutants that are detected by a given test suite. A mutant is detected by
a test input if the test input yields different values for some output when applied to both the mutant
model and the original model. Mutant-based test generation is done either using search techniques or
behavioral analysis techniques (e.g., bounded reachability). Search techniques can be used to produce
different outputs between the mutant model and the original model by generating different values at
the fault seeded points and propagating those values to outputs [Zhan and Clark, 2005, Zhan and
Clark, 2008]. Alternatively, bounded reachability analysis techniques [Brillout et al., 2009, He et al.,
2011] can be used to detect mutants by checking k-step (bi)similarity [Kuehlmann and van Eijk, 2002]
between the original and the mutant models. The k-step (bi)similarity either asserts that the original
and the mutant models are equivalent for the first k simulation steps or provides a test input showing
that the models differ in some outputs.

Almost all existing model-based test generation approaches applied to Simulink/Stateflow con-
sider only models with discrete behaviors. The work in [Philipps et al., 2003] is one of the few ex-
ceptions and proposes a model-based testing approach for mixed discrete-continuous Simulink mod-
els. That work, however, focuses on generating test inputs from the discrete fragments of Simulink
models. These test inputs are then applied to the original model to obtain test oracles in terms of
continuous signals.

All the model-based testing techniques described above aim to generate test suites as well as
oracles from models that are considered to be correct. In reality, however, Simulink models might
contain faults. Hence, in our work, we propose techniques to help testing complex Simulink models
for which automated and precise test oracles are not available. Further, even though in Simulink,
every variable is described using signals, unlike our work, none of the above techniques generate test
inputs in terms of signals.

7.3.2 Model testing or verification
In contrast to model-based testing that focuses on deriving test cases from models to test implementation-
level artifacts, model testing and model checking techniques aim to evaluate the correctness of models.
We consider three categories of such techniques: (1) Model checking techniques that exhaustively
verify correctness of models against some given formal properties, (2) Statistical model checking
techniques that aim to provide probabilistic guarantees that some given formal properties holds for
a model, and (3) Model testing techniques that attempt to identify faults in models by simulating
models.

Model checking. Model checking is an exhaustive verification technique that explores the reach-
able states of a model in order to determine whether some given formal properties are satisfied or
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not [Clarke et al., 1999]. It has a long history of application in software and hardware verifica-
tion. It has been previously used to detect faults in Simulink models [Hamon, 2008, Barnat et al.,
2012] by showing that a path leading to an error (e.g., an assertion or a run-time error) is reach-
able. To solve the reachability problem, these techniques often need to translate Simulink models
as well as the given properties into the input languages of some existing model checkers [Miller,
2009, Meenakshi et al., 2006, Scaife et al., 2004, Araiza-Illan et al., 2015]. For example, Barnat
et al. [Barnat et al., 2012] transform Simulink models into the DiVinE model checker’s input lan-
guage [Barnat et al., 2006] to verify Simulink models against some linear temporal logic properties.
Whalen et al. [Whalen et al., 2007, Miller, 2009] first translate Simulink models into the LUSTRE
formal specification language [Halbwachs et al., 1991] and then transform the LUSTRE specifica-
tions into the input languages of several well-known model checkers such as NuSMV [Cimatti et al.,
2000] and the SAL tool suite [Bensalem et al., 2000]. Finally, Simulink Design Verifier [Hamon,
2008] translates and feeds Simulink models into a commercial SMT-based model checker, called
Prover [Prover Technology, 2016]. Some alternative techniques [Holling et al., 2014, Balasubrama-
nian et al., 2011, Venkatesh et al., 2012] translate Simulink models into code and use existing code
analysis tools to detect faults in the models. 8Cage [Holling et al., 2014] marks the Simulink models
in places where specific fault models [Pretschner et al., 2013] are detected. It then converts the models
into c-code and directs KLEE [Cadar et al., 2008] toward those markers to generate test inputs that
raise failures corresponding to the fault models. Polyglot [Balasubramanian et al., 2011] transforms
Stateflow models into java code and uses JavaPathFinder [JPF, 2016] to analyze and check properties
on the generated java code.

Statistical model checking. Model checking approaches, being exhaustive, suffer form the state explo-
sion problem [Clarke et al., 1999]. To alleviate the scalability problems of exhaustive model checking,
statistical model checking approaches have been proposed. These approaches try to achieve scalabil-
ity by checking some randomly sampled simulations from the space of all possible model simula-
tions [Younes and Simmons, 2006, Legay et al., 2010]. They use statistical inference methods to
answer whether the sampled simulations provide a statistical evidence for the satisfaction or viola-
tion of the properties of interest [Younes and Simmons, 2006, Zuliani et al., 2013]. Statistical model
checking has been previously applied to Simulink models to estimate the probability that properties
specified in temporal logic hold over models [Zuliani et al., 2013, Clarke and Zuliani, 2011]. Note
that in contrast to model checking, statistical model checking does not guarantee to produce exact
results (i.e., true/false results) and only estimate the probability of property satisfaction/violation.

Simulation-based testing. Simulation-based testing techniques run a set of test cases attempting to
falsify assertions and properties instrumented into Simulink models [Reactive Systems Inc., 2016b,
S-Taliro, 2016]. Reactis validator [Reactive Systems Inc., 2016b, Cleaveland et al., 2008] adapts
such an approach by running the coverage-adequate test suites generated by Reactis tester [Reactive
Systems Inc., 2016a] and tracking whether any assertions are violated by the test cases. S-Taliro
toolbox [S-Taliro, 2016, Annpureddy et al., 2011, Zutshi et al., 2015] has usage modes that rely on
meta-heuristic search to falsify Metric Temporal Logic properties [Koymans, 1990] instrumented into
Simulink models. Note that though these techniques look for possibility of assertion violations, they
provide no guarantee to uncover all assertion violations.

Model checking techniques are applicable only to code-generation models with discrete behav-
iors. Further, they inherit the limitations of constraint/SAT/SMT solvers in handling floating point
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and non-linear math operations. In our work, we generate test inputs as continuous signals and use
black-box output-based algorithms which are applicable to both simulation Simulink models with
mixed discrete-continuous behaviors as well as code generation models. In addition, all the model
verification and testing approaches discussed above rely on the presence of formal specifications that
characterize the expected behaviors of Simulink models and from which assertions can be derived.
Formal specifications are expensive and may not be available in practice. Furthermore, existing formal
specifications typically describe discrete system properties. Capturing continuous dynamic aspects of
Simulink models using formal specifications is still an open problem [Pretschner et al., 2007a, Heim-
dahl et al., 2013]. Moreover, no completeness criteria exist for testing based on model properties. As
a result, even in the presence of some model properties, engineers still need to check output signals to
detect more failures. In fact, in practice it is likely and common that engineers assess system outputs
manually to detect failures. Hence, in our work, we do not rely on the presence of formal specifica-
tions and assume that test oracles are manual. We generate small test suites with high fault revealing
ability that effectively reduce the manual oracle cost. We also provide a test prioritization algorithm
to further lower the manual oracle cost. Finally, we note that, in contrast to our work presented in this
article, none of the papers discussed above include a systematic empirical evaluation of the proposed
approach involving industrial Simulink models nor do they provide a systematic comparison with
alternative techniques.

7.4 Source Code Testing
A large part of existing test automation techniques rely on program analysis and focus on testing
software implementation (source code). Our work, in contrast, aims to test models capturing both
software and its environment. Having said that, we have used the following two specific ideas from
the research focused on testing software code: (1) Whole test suite generation: Our algorithm uses
whole test suite generation [Fraser and Arcuri, 2013] that was proposed for testing software code.
This approach evolves an entire test suite, instead of individual test cases, with the aim of covering all
structural coverage goals at the same time. Our algorithm, instead, attempts to diversify test outputs
by taking into account all the signal features at the same time. (2) Output uniqueness/diversity: The
notion of output diversity in our work is inspired by the output uniqueness criterion [Alshahwan
and Harman, 2012, Alshahwan and Harman, 2014]. As noted in [Alshahwan and Harman, 2014],
effectiveness of this criterion depends on the definition of output difference and differs from one
context to another. While in [Alshahwan and Harman, 2012, Alshahwan and Harman, 2014], output
differences are described in terms of the textual, visual or structural aspects of HTML code, in our
work, output differences are characterized by signal shape features.

7.5 Test Case Prioritization
Test case prioritization algorithms have been mostly studied in the context of regression testing where
the goal is to identify an optimal ranking of test cases to help detect faults that might be introduced
after a change as quickly as possible [Qi Luo and Poshyvanyk, 2016, Yoo and Harman, 2012, Rother-
mel et al., 2001]. These techniques are broadly categorized into dynamic techniques that use test
execution information, and static techniques that rely on static analysis of source code or other arti-
facts such as test code [Qi Luo and Poshyvanyk, 2016]. In our prioritization algorithm in chapter 6,
we take a greedy dynamic test prioritization algorithm to rank the generated test cases. We made this
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choice based on the following two contextual factors: First the number of test cases is relatively small
in our work. Hence, a greedy algorithm will not be too expensive. Second, we have access to test
execution information.

Existing dynamic test prioritization technique typically rank test cases by relying on on total or
additional structural coverage achieved by individual test cases [Qi Luo and Poshyvanyk, 2016, Yoo
and Harman, 2012]. To unify the total and additional coverage-based strategies, Zhang et al. [Zhang
et al., 2013] proposed an algorithm that provides a knob to control the amount of feedback from pre-
viously prioritized test cases incorporated in prioritization of the remaining tests. No feedback from
the previous iteration is equivalent to prioritization based on total coverage, and maximum feedback
yields an additional coverage algorithm. Our test prioritization algorithm generalizes and extends
this algorithm by explicitly considering the fault revealing probability of individual test cases in test
prioritization. To compute the probability that a test case reveals a fault, we take into account the
output diversity of the generated test suites in addition to structural coverage achieved by individual
test cases. As a result, test cases with slightly lower coverage but coming from test suites with higher
output diversity are ranked higher when compared with existing approaches. Further, in our algorithm
the notion of dynamic test coverage is specific to a Simulink model output. That is, for a given model
output and a given test case, the test coverage includes the model nodes that are connected to that
output by control/data dependencies and are executed by that test case.
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Conclusions and Future Work

In this chapter we summarize the contributions of this dissertation and discuss some perspectives on
potential future work in this area.

8.1 Summary
In this dissertation, we proposed several test generation techniques aimed at addressing the chal-
lenges of testing Simulink/Stateflow controllers with mixed discrete-continuous behaviors. The work
presented in this dissertation has been done in collaboration with Delphi Automotive Systems [Del-
phi, 2016], a world leading part supplier company to the automotive industry, based in Luxembourg.
Simulink models often have mixed discrete-continuous behaviors and their correct behavior crucially
depends on time. Their inputs and outputs are signals rather than discrete values. Further, Simulink
models are required to operate satisfactorily for a large variety of hardware configurations. In addi-
tion, developing test oracles for Simulink models is challenging, particularly for requirements captur-
ing their continuous aspects.

In our work, we relied on discrete-continuous output signals of Simulink models to generate test
cases with high fault revealing ability. Our algorithms are black-box and therefore applicable to
Simulink/Stateflow models in their entirety. Further, we do not rely on the presence of formal specifi-
cations to automate test oracles. We presented two sets of test generation algorithms for closed-loop
and open-loop controllers implemented in Simulink. For closed-loop controllers, test oracles can be
formalized and automated relying on the controlled system’s feedback. We identified a set of com-
mon requirements for closed-loop controllers, and used search to find the worst-case test scenarios
of the controller with respect to each requirement. For open-loop controllers, the feedback is not
available and, hence, test oracles are manual. As a result, we provide test generation algorithms to
produce small effective test suites with high fault revealing ability. Our test generation algorithms
either attempt to maximize the likelihood of specific failure patterns in the output signals or diversity
between output signals of test inputs within a test suite. In order to lower the manual oracle cost, we
further proposed a test prioritization algorithm to automatically rank test cases generated by our test
generation algorithm.

Chapter three presented our automated test generation approach and our MiL testing tool (Co-
CoTest) for closed-loop controllers. We identified and formalized a set of common requirements for
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closed-loop continuous controllers. Our proposed technique relies on a combination of explorative
and exploitative search algorithms, which aim at finding worst-case scenarios in the input space with
respect to the controller requirements. We evaluated our approach by applying it to an automotive
air compressor module and to a publicly available DC motor controller. Our experiments showed
that our approach automatically generates several worst-case scenarios, which can be used for testing
purposes, that had not been previously found by manual testing based on domain expertise.

Chapter four described our approach for MiL testing of closed-loop controllers in large configu-
ration spaces with respect to controller requirements. To scale search to large multi-dimensional, we
combined techniques for dimensionality reduction and supervised learning to build surrogate models
that accurately predict simulation results without resorting to simulation in many cases. Our eval-
uation shows that our approach is able to identify critical violations of the controller requirements
that had neither been found by our algorithm in chapter three nor by manual testing. Further, we
showed that combining search with surrogate modeling increases the search speed and enables search
to compute more critical requirements violations than what could be detected by the search without
surrogate modeling.

Chapter five presented our test generation algorithms focused on open-loop controllers that aim
at providing minimal test suites with high fault revealing power. We proposed and evaluated six test
generation algorithms for discrete-continuous Stateflows: three output-based, two coverage-based,
and one input-based. Our experiments based on two industrial and one public domain Stateflow mod-
els showed that the output-based algorithms consistently outperform the coverage-based algorithms
in revealing faults in mixed discrete-continuous Stateflows. Further, for larger test suites, the output-
based algorithms were able to find with the same or higher probability all the faults revealed by the
coverage-based algorithms, and hence subsumed them. In addition, output stability and output dis-
continuity test generation algorithms had very high fault revealing rates, even with small test suites,
for instability and discontinuity failures, respectively. For the other failures, output diversity outper-
formed the other algorithms in finding faults for larger test suite sizes and, further, its fault detection
rate kept improving at a faster rate than the others when increasing the test suite size.

In Chapter six we distinguished Simulink simulation and code generation models and illustrated
differences in their behaviors using examples. We described the challenges corresponding to the
existing testing approaches that are only applicable to code generation Simulink models, and proposed
a test suite generation algorithm for both kinds of Simulink models based on our notion of feature-
based output diversity. Our algorithm adapts the whole test suite generation approach and uses meta-
heuristic search to produce test outputs exhibiting a diverse set of signal features. We further provided
a test prioritization algorithm to autonomically rank the generated tests and lower manual oracle
cost. Our evaluation was performed using two industrial and two public domain Simulink models
and shows that (1) Our approach significantly outperforms random test generation and coverage-
based test generation. (2) Our algorithm when used with the feature-based notion of output diversity
generates higher fault revealing rates compared to when output diversity is measured based on vector-
based output diversity. (3) Our prioritization algorithm outperforms random and coverage-based
prioritization. (4) Our approach is able to reveal significantly more faults compared to Simulink
Design Verifier. Further, it subsumes SLDV, as it is able to find the faults identified by SLDV with a
100% probability. Using our SimCoTest tool, which implements our test generation and prioritization
algorithms, we were able to generate test cases that identified two real faults in representative SL/SF
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models from our industry partner, Delphi. These faults had not been previously found by manual
testing based on domain expertise or other Simulink testing tools used at Delphi.

8.2 Future Work
In this dissertation we focused on testing Simulink controllers developed in the automotive domain.
To better assess the applicability and effectiveness of our approaches, future studies need to be made
considering testing software controllers (1) developed in other CPS domains, e.g., avionics, commu-
nications, and medical systems, or (2) implemented in other system modeling notations, e.g., Labview
from National Instruments [Instruments, 2016], SCADE Suite from ESTEREL Technologies [Tech-
nologies, 2016], or open-source alternatives such as SciLab [Scilab, 2016]. As an example, our input
test generation strategy is geared towards the specific needs of the automotive domain where the dy-
namic behavior of the system is tested using sequences of step signals as input. This is sufficient
for capturing automotive environment events, which are largely aperiodic, e.g., driver’s commands.
However, for other domains our test generation strategy may need to be adapted to effectively capture
periodic signals with high frequency.

Developing coverage-adequate test inputs for Simulink models with time-continuous behaviours,
and floating-point and non-linear operations remains an open problem. The existing coverage-based
test generation tools are not compatible with time-continuous Simulink models and fall short when the
models contain floating-point and non-linear computations. Further research is necessary to evaluate
the applicability of search-based techniques to generate coverage-adequate test inputs for Simulink/S-
tateflow models in their entirety. We may also draw on reachability analysis techniques for hybrid
automata [Frehse et al., 2011] and verification techniques studied in the control theory domain [Abate
et al., 2010] to generate such coverage-adequate test inputs. This can further be combined with our
output diversity algorithm, relying on multi-objective search to generate coverage-adequate test inputs
with diverse output shapes.

Matlab simulator has several settings including the simulation time, the solver type (fixed-step or
variable-step), the model solver (ode45 solver, ode23 solver, discrete solver, ...), and so on. In our
work, we used the discrete solver for code-generation models and the ode45 solver for simulation
models, as ode45 solver is the most accurate continuous solver in the version of Matlab used by
Delphi. As for the simulation time and other simulation settings, we used the values recommended
by Delphi engineers. In future, we plan to conduct experiments to examine the sensitivity of our test
generation results to simulation settings.

In Simulink model testing, as in the more general case of automated testing, test oracle automation
is the most difficult challenge. Formal specifications are expensive and rare, and not all faults lead to
run-time errors. Moreover, engineers often bypass runtime errors in Simulink models by saturating
the block output when overflow or division by zero errors occur. In our work, we focused on produc-
ing small test suites with high fault revealing ability when test oracles are manual. Further research
is necessary to enhance the effectiveness of the test suites generated by our approach. For example,
identifying more failure patterns, in addition to instability and discontinuity, in discrete-continuous
outputs of Simulink models can help increase the fault revealing ability of our test generation algo-
rithms. Further, the applicability of metamorphic testing can be studied in the context of Simulink
testing. Metamorphic testing verifies the correctness of metamorphic relations between test cases to
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automatically detect faults in the absence of automated test oracles.

Finally, we note that we plan to explore the possibility of building a commercial Simulink testing
tool based on our approach. Delphi has already shown interest to use a commercial version of our
SimCoTest tool. We were also awarded a Proof-of-Concept (POC) grant from National Research
Fund Luxembourg (FNR) [FNR, 2016], which provides financial support for us within the next 16
months to build and commercialize the tool.
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