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Context: Soft-tissue biomechanics simulations
with uncertainty

» Uncertainty in parameters (material properties, loading, geometry, etc.) In
biomechanics problems can influence the outcome of simulation results.
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» Objective: propagate and visualise this uncertainty with non or partially-
intrusive methods.



GGeneral framework

» Stochastic non-linear system: F(fu,, w) — ()
» Probability space: (Q2, F, P)

» Random parameters: W = (wl, W, ... ,wM)

» Objective: provide statistical data for the solution of the problem.

» Integration (to determine the expected value of a quantity of interest):



Direct integration

Monte-Carlo method [Caflisch 1998]:
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» choose randomly Wy.
» evaluate U (u(w,)).

» add the contribution to the sum.



Convergence

» Converge «in law»: 1% for 10000 realisations, slow but independent of the
dimension !
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[EM [p(w)] = E [ ()] ||z2(0,) ~ N(0,1)

» Necessity to improve the convergence.

Work done:

» Low discrepancy sequences (Sobol, Hamilton, ...): quasi MCM [Caflisch 1998],

» Multi Level Monte-Carlo techniques [Giles 2015, Matthies 2008].

» MC methods by using sensitivity iInformation (SD-MC) [Cao et. al 2004, Liu et al. 2013],



MC methods by using sensitivity information

Estimator [Cao et. al 2004, Liu et al. 2013]:
Z
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This variance reduction method increases the accuracy of sampling
methods. Here we only consider the case of the first-order sensitivity
derivative enhanced Monte-Carlo method. By using sensitivity information

computational workload can be reduced by one order of magnitude over
commonly used schemes.

Main difficulty:
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Numerical implementation

Implementation (DOLFIN/FEniICS) [Logg et al. 2012], advantages:
» UFL (Unified Form Language).
» Most existing FEM codes are not able to compute the tangent linear model and

the sensitivity derivatives. However, it is possible with DOLFIN for a wide range of
models with very little effort [Alnzs 2012, Farrell et al. 201 3].

» Complex models with only few lines of Python code.
Parallel computing:

» Ipyparallel and mpi4py software tools to massively parallelise individual forward
model runs across a cluster and to reduce the workload.

Python package for uncertainty quantification:

» Chaospy [Feinberg and Langtangen 2015] to provide different stochastic objects.



DOLFIN/FENICS implementation: an example

» Forward problem, generalized Burgers equation with stochastic viscosity:

1 1
Fv,u; @) := / vV - Vﬁ—§Vu2 Ut Vu-tidr =0 Vi€ H;(9)
Q2

S

nu_var = variable(Constant(omega))
F = nu_var*u_.dx(@)*u_t.dx(0)*dx + 0.5*u_.dx(0)*u_t*dx\
- 0.5*%Cu_**2).dx(@)*u_t*dx

» The standard Newton method:
J(w,u®; 6u; ) = —F(v,u®; ) Va e Hi ()

wkFtl =k Su

J = derivative(F, u_, u)
solve(F == @, u_, bcs, 1J=])




DOLFIN/FENICs implementation: an example

» The tangent linear system:

OF (u,w) du OF (u,w)
O d — o U: size of the deterministic problem
* \",d./ * M: number of random parameters

UxU UXxM  UxM

VIFu = derivative(F, u, du) .

Fd = — diff(F, omega)e....-

dudomega = Function(V)

A, b = assemble_system(Fu, Fd, bcs=bcs)
solve(A, dudomega.vector(), b, “lu")

inear system to solve to evaluate du/dm !



Stochastic FE analysis of brain deformation

» Different hyper-elastic models implemented (Mooney-Rivlin, Neo-Hookean,
Holzapfel and Ogden [Holzapfel and Ogden 2009]).

» Random variables/fields to model parameters [Adler 2007].

» Strain energy function for the Holzapfel and Ogden model:

a afs
Wiso = 5 exp [b(ly — 3)] + zf: —= exp [bi(Is; — 1)°] + befs (exp [bysI3ss] — 1)
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Stochastic FE analysis of brain deformation
Numerical results (8 RV, Holzapfel model)
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Numerical results: convergence
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Numerical results (8 RV, Holzapfel model)
ML Monte-Carlo technigue: ML-PCE

0.30

MC N

ML-PCE Z1I&
1 \

N\

0.25

0.20
0.15
0.10
0.05

0.00 —
26 28 30 32 34 36 38 40

Histogram (MC and MC-PCE methods).
13



Global sensitivity analysis
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Conclusion

Stochastic modelling:

» Random variables/fields to model parameters with a degree of uncertainty:
application to brain deformation.

Partially-intrusive Monte-Carlo methods to propagate uncertainty:
» By using sensitivity information and multi-level methods with polynomial chaos
expansion we demonstrate that computational workload can be reduced by one
order of magnitude over commonly used schemes.

» Global and local sensitivity analysis.

Numerical implementation:
» Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015].

» Non-linear hyper-elastic models (Mooney-Rivlin, Neo-Hookean, Holzapfel and
Ogden [Holzapfel and Ogden 2009]).

» Ipyparallel and mpi4py to massively parallelise individual forward model runs accros
a cluster.
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