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Chapter 1

Introduction

Transport is a fundamental necessity of individuals to access goods, services, recreation
and employment. Within the last century the rise and domination of motorized vehicles
has modified the distances travelled to access destinations and in the process dramatically
reshaped urban form and land use to meet demand (Docherty, Giuliano, and Houston,
2008). Motorized travel has however come with many negative consequences: the rapid
urbanization of arable land and wilderness, social inequality, environmental degradation,
increased energy consumption, automotive, cyclist and pedestrian fatalities and other
outcomes from a sedentary lifestyle (Knowles, Shaw, and Docherty, 2008; Stradling,
Meadows, and Beatty, 2000).

Within the context of conventional private car dominated transportation, technolog-
ical developments have recently introduced bicycle sharing systems, a form of shared
transport, into many of Europe’s, North America’s and Asia’s larger cities to address
some of the ills of existing urban transportation (DeMaio, 2009). Bicycle sharing sys-
tems (BSS) are autonomous systems of accessible bicycles that can be easily used for
one way trips between stations or points within an area. This thesis evaluates whether
BSS initiatives are e↵ective at beneficially transforming urban transportation socially,
environmentally or economically.

The historic reshaping of cities to accommodate car travel and parking has been
at the expense of other travel modes. Where a little over a century ago streets were
shared spaces for pedestrians, cyclists, horse carriages and trams, they have been re-
placed almost completely by private cars. With the increased speed of cars, equivalent
travel times allowed travel of much greater distance and access to existing arable land or
wilderness for residential development (Potter and Bailey, 2008). This increase in travel
distance also necessitated the development of roads, further consuming land. Over the
following decades the spread of populations required the creation of a network of roads
to connect services, employment and recreation where parking became ubiquitous (Jakle
and Sculle, 2004). Fundamentally cars require more space to travel and, at their destina-
tions, park. This has caused some urban residential cores, especially in North America,
to be demolished in exchange for highways to accommodate access to urban cores by
suburban car commuters (Benesh, 2014). Private cars, independently of their emissions,

1



2 CHAPTER 1. INTRODUCTION

are bound by geometric limitations that monopolize space and reducing alternative land
use possibilities (Handy, 2005). Public and shared transportation options, conversely,
with their more e�cient use of space, can reduce the need for large roads and parking,
shifting land-use back to more productive uses. Bicycle sharing systems, by their nature,
allow first and last-mile connections to other modes of transport, providing a possible
partial solution to existing car dependence.

Aside from the geometric constrains of car dependent transport, such urban societies
are unjust (Hine, 2008). Existing roads and urban structure prioritizing and facilitating
car access is based on demand. Demand, however, is largely determined by wealthier in-
dividuals who can a↵ord to travel and have cars (Martens, 2006). Additionally perceived
need for travel infrastructure is largely decided by elected or business elites less aware to
the requirements and realities of poorer individuals and areas (Benesh, 2014; Mercier,
2009). This can perhaps be best illustrated by the example of urban highway construc-
tion in North America, once again, that displaced lower income, typically non-white,
residents. Social injustice a↵ects lower income residents through the reallocation of land
to exclusive use types, such as roads, highways and parking but also due to contrasting
level of access to goods, services, employment and recreation. Households with one or
two cars make two to three more journeys than those without (Stradling, Meadows, and
Beatty, 2000). These additional journeys increase access to a larger selection of goods
and services that may provide economic, health (better food) and recreation alternatives
not as easily available to those without cars. An important promotion of BSS then, es-
pecially in North America, is the increased accessibility these systems provide. Bicycle
sharing systems, more economically accessible than cars, provide bicycles to residents so
that they can potentially reach destinations previously unattainable in the time or cost
an alternative transport method requires.

Car dominant cultures have global environment and social impacts as well. Globally,
transport is responsible for a seventh of global C02 emissions and the fastest growing
emissions sector (IPCC, 2014b). Beyond transportation, the construction of cars and
roads have significant energy and resource dependencies that further exacerbate their
environmental impacts (Potter and Bailey, 2008). In regards to social justice, the e↵ects
of climate change will a↵ect lower-income countries and individuals the most (IPCC,
2014a). Climate change impacts weather, temperature and fresh water supplies (among
others) modifying habitats with harmful or fatal consequences for species, and species
and societies dependent upon them, who cannot migrate or migrate su�ciently rapidly.
With existing globalization dependencies and linkages, climate change impacts will likely
be severe for all societies and individuals. Bicycle sharing systems provide an additional
alternative to motorized travel, thereby helping to reduce CO2 emissions. Additionally,
the availability of bicycles in a BSS, typically promoted by municipalities, help to nor-
malize the image of cycling for everyone, rather than for elitist recreational racers or risk
taking commuters, while potentially also decreasing the barrier to individuals simply
trying to cycle.

Cars have negative local impacts as well. Their exhaust can alter environments, such
as soil composition through acid rain, and harm human respiratory and cardiovascular



3

systems, among others (Cox, 2010; Schindler and Caruso, 2014). More explicit however
are the socially accepted fatalities and injuries to car passengers and other more vulner-
able street users such as pedestrians and cyclists. Alternatively, an insidious side a↵ect
of car dependence is the sedentary life style it promotes, increasing likelihood of drivers
and passengers become overweight or obese and experiencing cardiovascular diseases. As
part of a feedback loop, some pedestrians and cyclists fearing for their safety or their
children’s, drive as a result, further increasing the number of cars, congestion, emissions
and other negative aspects. So while BSS can provide an opportunity to exercise, with
many physical, sociological and mental health benefits (Garrard, Handy, and Dill, 2012),
other infrastructure changes may be required to provide a sense of safety to cyclists.

Clearly cars have many advantageous as well, accessibility, comfort, convenience,
among others, but as we have presented, at a large scale, some of the benefits are
reduced, such as speed due to congestion, and the many other social, environmental
and economic externalities. Bicycle sharing systems, in this context, are brandished by
advertisers, cycling advocates and municipalities as tools to promote change in urban
transportation existing unjust and unsustainable practices. Although the rise in popu-
larity and deployment of BSS is recent, within the last decade, the idea was conceived
50 years ago. Previously BSS had been limited due to the anonymity between bicycle
providers and users, relying on trust for the return of the bicycle. New IT solutions
linking credit cards to bicycles ensure user accountability and the return of bicycles. In
the last ten years perception of BSS have shifted from novelty to requirement for any
city desiring to appear modern (Ó Tuama, 2015).

Decision makers and BSS operators, with very few exceptions, pronounce their sys-
tems as successful. With little access to data it is di�cult to evaluate glowing reports
quoting abstract statistics of distances travelled, CO2 emissions reduced, members regis-
tered, number of trips over arbitrary time periods or less verifiable claims, such as social
equity or congestion reduction. In addition, BSS deployments have been consistently ab-
sent of clear purpose or goals (Fishman, Washington, and Haworth, 2013; Ricci, 2015)
while repeatedly stating the many supposed benefits. Creating an objective measure of
success requires data, something that is typically unavailable. A typical component of
conventional BSS are public web maps providing the location and number of bicycles. In
aiming to determine the e↵ectiveness of BSS, this thesis, using publicly available data,
develops a methodology to estimate BSS trips in order to create a comparable metric of
performance.

While there exists lots of work describing how BSS are used (Ahillen, Mateo-Babiano,
and Corcoran, 2015; Beecham, Wood, and Bowerman, 2014; Borgnat et al., 2011; Fish-
man, Washington, and Haworth, 2013; O’Brien, Cheshire, and Batty, 2014; Parkes et al.,
2013; Ricci, 2015; Wood, Slingsby, and Dykes, 2011; Zhao, Deng, and Song, 2014), no
literature has been found describing how they are operated. Formalization of BSS data
to estimate trips exposes new data sets not previously studied, one of which is the moving
of bicycles to adjust to demand, often called rebalancing (Ahillen, Mateo-Babiano, and
Corcoran, 2015; Beecham, Wood, and Bowerman, 2014; Erdoğan, Battarra, and Calvo,
2015; Parkes et al., 2013; Regue and Recker, 2014; Wood, Slingsby, and Dykes, 2011;
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Zhao, Deng, and Song, 2014). The theoretical perspective has been thoroughly analysed
in a short time but not described in practice. This thesis explores BSS rebalancing
operations in relation to system purpose through data analysis and operator interviews.

Using estimated trips per day normalized by bicycles in the system, provides an
objective comparable measure of BSS performance, one measure of success, often re-
ported by decision makers and media. Integrating this metric with BSS attributes and
system compactness, urban structures, weather and transportation infrastructure allows
regression analysis to determine which factors influence performance. This thesis re-
veals performance for a large number of BSS as well as reporting which attributes are
e↵ective and, perhaps more importantly and contrary to recommendations by influential
practitioners, which are not.

This research was initiated by apparent use of BSS for ‘urban greening’ and to self
promote associated decision makers and municipalities, among other outcomes typical
of policy boosterism (McCann, 2013), rather than being part of a larger e↵ective cycling
initiative. Trip estimation and determinants of performance analysis show that many
systems are in fact little used and therefore have little of the promoted benefits. Rebal-
ancing analysis reveals how operations and the desired benefits of BSS by municipalities
do not align. Combining these findings with interviews and media analysis, this work
critically examines the many promoted positive aspects of BSS. The final objective of
this research is to apply a critical urban sustainability perspective to the existential
conflict surrounding BSS’ multiple actors, of contrasting desires, operating under the
pretence of environmental or social sustainability.

1.1 Research objectives

Contemporary media, politicians, advertisers, technology providers and some academic
research discuss BSS within an established narrative of success. While these systems
clearly have potential in transforming urban transportation from car dependence, BSS
are still largely unproven to be e↵ective. The primary goal of this research is
to evaluate BSS performance and determine whether these systems are suc-
cessful and achieve promoted social and environmental outcomes. This critical
analysis of the status quo applies quantitative and qualitative methods through four finer
research questions:

1. How can the number of daily trips be best estimated when no such public data is
consistently available.

2. How are operators managing BSS, specifically rebalancing aspects.

3. How does performance compare between BSS and what are the determining factors.

4. What are the purposes of the diverse actors involved with BSS and how do these
impact outcomes.
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The balance of this chapter summarizes BSS history, technological aspects and the
multitude of actors before describing the research methodology, applied research and
findings.

1.2 Bicycle sharing systems

1.2.1 BSS evolution

The evolution of BSS technology can be classified into multiple generations (Beatley,
2000; DeMaio, 2009) based on technological, information and usability. The earliest
generation, initiated by a Dutch counter-culture organization in Amsterdam opposing
consumerism and car pollution, simply consisted of bicycles painted white for free public
use. The system quickly collapsed from theft but also due to police confiscating unlocked
bikes (Teun Voeten, 1990). The idea however spread to La Rochelle in 1974, Cambridge
(UK) in 1994, Portland in 1994 and Boulder in 1995 (Beatley, 2000; DeMaio, 2009;
Shaheen, Guzman, and Zhang, 2010). While La Rochelle had some success (Shaheen,
Guzman, and Zhang, 2010) others were short lived due to vandalism or theft (Beroud
and Anaya, 2012; DeMaio, 2009).

The second generation of BSS aimed to reduce theft by using custom bicycle com-
ponents incompatible with general bicycles and coin operated locks. This generation
expanded in the early 1990’s in Europe and later in the decade in the United States
(DeMaio, 2009; Shaheen, Guzman, and Zhang, 2010). Unlike the earlier generation,
bicycles needed to be taken and returned at stations. Copenhagen’s 1995 system stands
out due to its size and duration of operation, only closing in 2012. Despite Copenhagen’s
system also experiencing theft and vandalism, it has been strongly used (Beatley, 2000).
With 17 years of operations it is the longest running of any BSS to date.

The third generation largely solved bicycle theft and vandalism by removing anonymity
due to linking users with credit cards. Early examples, such as Portsmouth’s (UK) in
1996, did not yet have the physical and information usability that has become standard.
Whereas earlier generations typically name their systems after a colour, branding be-
came an important component of third generation BSS (Shaheen, Guzman, and Zhang,
2010). Rennes’ (France) system, launched in 1998, was important as it was the first BSS
provided and operated by an advertiser, Clear Channel, in exchange for billboard ad-
vertising rights. Something that became common in many European countries over the
next decade. A few other municipalities deployed small systems, testing their potential
(DeMaio and Gi↵ord, 2004), but it was Lyon’s and Paris’ 2005 and 2007 launches that
spurred a decade of rapid global BSS deployments. The number of BSS in the world
grew from 11, all in Europe, in 2004 to 160 in 2009 (DeMaio, 2009; DeMaio and Gi↵ord,
2004). Determining the current number of operating BSS has become burdensome, but
as of 2016 there are likely more than a 1000, over a hundred of which are in the United
States alone (Firestine, 2015).

The literature defines a fourth generation of BSS based on improved rebalancing,
ease of station installation, power sources (e.g., solar, battery, underground), tracking,
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electric bicycles and integration with public transport (DeMaio, 2009; Shaheen, Guzman,
and Zhang, 2010). Previous generational changes have greatly modified how residents
interact with the bicycles, mainly in terms of ease of use. Definitions of a fourth gen-
eration of BSS are incremental, focusing on the operations and technology, rather than
providing a new user experience. This research doesn’t distinguish between third or
fourth generation BSS, simply referring to them as conventional.

Not all BSS fit nicely into these generational categories. Germany was one of the
earliest countries to have a large number of systems due to being operated by the semi-
private national rail company. Their BSS didn’t use stations. Bicycles were operated
by calling an automated service, identifying yourself and getting the unlock code for
the bicycle. Locking the bike required a similar process. Many of these services have
now shifted to using stations as well as only requiring smart cards for the transactions,
greatly simplifying usage.

Most conventional BSS have four main components: bicycles, docks, kiosks and
information systems. Not all BSS have these components. We distinguish between
three types of conventional BSS: station based, flex and station free. Station based BSS
(Figure 1.1) are the most common in Europe and North America. These are produced
by JCDecaux, PBSC, BCycle and Clear Channel, among others. A station based system
has bicycles that lock into docks, controlled by electronics in the kiosk. These ’smart
stations’ di↵er from ’smart bikes’. Smart bikes provide all the interaction necessary to
use a bike on-board the bicycle (Figure 1.2), providing resilience in case the kiosk is
inoperable due to battery failure or connection issues.

Smart bikes are sometimes used with station systems, but always for flex and station
free BSS. Flex systems provide stations as well but users are able, for a fee, to drop
o↵ their bicycle anywhere within a zone (Figure 1.3). Station free BSS simply do not
have stations or docks, the bicycles lock their wheels or are locked using public bicycle
racks. While the flexibility has advantages, allowing users to leave these ’public’ bikes,
that are exclusive and sometimes privately operated, has caused conflict due to blocking
pedestrian sidewalk use (Nitschke, 2015) or cyclist access to public bicycle racks (CBS
New York, 2016).

While kiosks are responsible for securing and releasing bicycles and communicating
with the central service, they provide interactive displays for existing or new members
to use the bicycles (Figure 1.4). New daily, weekly, monthly or annual memberships can
often be purchased with a credit card. The ability and purpose of kiosks vary. Some
BSS require memberships be requested by mail or online, others dispense access keys
or cards directly at the kiosks. Kiosks often have maps showing the surrounding urban
area and other station locations. For advertiser operated BSS, the backs of kiosks serve
as advertising billboards (Figure 1.4).

Docks, for those systems using them have a variety of designs (Figure 1.2). Dock
designs are a compromise between preventing theft and vandalism, size and perhaps
existing patents. Docks can also be distinguished as ’smart’ or not. Checking out a
bicycle at a station in Luxembourg requires a relatively lengthy interaction with a kiosk
to select and unlock a bicycle while in Paris simply placing a membership card on the
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Figure 1.1: Components of Chicago’s bicycle sharing system. (Photo by Julia A↵older-
bach)
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Figure 1.2: Types of bicycle sharing system docks and locking mechanisms. Clockwise
from left: Luxembourg’s JCDecaux side mounted lock, Dijon’s Clear Channel pins lock,
Cologne’s nextbike with stationless smart-bike, and London’s BIXI pass through dock.
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Figure 1.3: A variety of information systems displaying the location of stations or bicycles
depending on the system type.
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dock achieves the same outcome instantly (Figure 1.5). Some docks allow a variety of
devices such as smart cards and fob keys (Figure 1.1). Smart bikes have dock like options
implanted on the bicycle (Figure 1.2).

Information systems, accessible through smart phones or internet browser show the
location of BSS stations, their number of available bicycles and docks. Some systems also
allow the reservation of individual bicycles. Depending on the type of system, whether it
is station based, flex or stationless, the maps are di↵erent. Figure 1.3 depicts Cologne’s
stationless system, NYC and Montreal’s station systems and Hamilton’s flex system.

Bicycles are the component with the least variability between systems. They all have
sturdy heavier frames, thicker tires, lighting, large seats and adjustable seat heights.
Bicylce components are typically abnormal sizes making theft fruitless due to incompat-
ibility. Electric bicycles have begun to appear in the last few years but are still quite
rare. Some systems have a mix of regular and electric bikes while others use electric
bikes exclusively.

So within the context of conventional BSS, there still exists a wide variety of features
a↵ecting ease and manner of use. Many technology providers focus on the sophistication
of their systems rather than its ease of use. Within the diversity of BSS technology
some systems are much faster and easier to use, providing greater flow between modes
of transportation. Perhaps technology providers believe cities and riders desire wielding
status symbols above a more easily functional BSS.

1.2.2 Actors

There exists a variety of actors involved in the deployment of BSS, often with di↵erent
desired outcomes. Technology manufacturers, such as PBSC and BCycle, produce all
BSS components, others collaborate, such as 8D and Arcade Cycles. The municipality is
always included in the process of locating stations on public land, but systems without
stations sometimes omit their involvement. An operator, typically a private company
but sometimes the local transport authority, takes care of day to day maintenance and
customer service. The system owner and manager is often the same. In North America
and the UK, sponsors play an important role in providing subsidy for the BSS.

Most BSS have actors play multiple roles. Seattle’s system was owned by a non-profit,
operated by Motivate, using technology from 8D and Arcade Cycles while working with
the City of Seattle for station placement and securing a grant to help the non-profit
purchase assets. Seattle’s, Toronto’s and Montreal’s BSS are some of the ones purchased
by their municipalities when they encountered financial di�culties. Boston owns its
BIXI infrastructure, operated by Motivate. Finally, for any BSS owned by JCDecaux
or Clear Channel, such as those in Antwerp, Dublin, Luxembourg City, Milan or Paris,
the technology and operations are carried out by the advertiser.

Ownership of BSS infrastructure varies. In dealings with advertisers such as JCDe-
caux and Clear Channel, all the infrastructure belongs to them. In North America cities,
non-profits and Universities often purchase the infrastructure but there are exceptions
such as New York City where the operator, Motivate, owns it.
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Figure 1.4: Bicycle sharing system kiosk in Luxembourg, front with terminal and map
and back with advertisement.



12 CHAPTER 1. INTRODUCTION

Figure 1.5: JCDecaux docks in Paris, left, and Luxembourg, right, a↵ording di↵erent
usability.
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The rise of BSS has created new opportunities but also instability and conflict be-
tween actors. Lawsuits have repeatedly occurred between advertisers and advertisers
and cities regarding system contracts. In North America instability in rapidly growing
businesses has led to bankruptcies of BSS, technology providers and operators.

1.3 Thesis outline and main results

Mayors, operators and advertisers evaluate their BSS as successful for varied reasons
independent of a stated purpose. This thesis focuses on creating an objective success
metric while also describing the political and business behaviours encouraging the pro-
motion of BSS. Chapter 2 provides a technical description of BSS information systems,
used to create our metric, and data collection methodology. A formalization of various
BSS data sets and their relationships yields new potential for analysis and estimating
trips from open data (Chapter 3). A deep analysis of how BSS are being used and how
operators rebalance the system, dictating which trips can occur, follows (Chapter 4).
Using extensive data collection we provide performance scores for 75 BSS and determine
what factors are and are not responsible for system performance (Chapter 5). Finally we
focus on the purpose of BSS and how politics and business sometimes use these systems
for alternative, and sometimes contradictory outcomes to those promoted (Chapter 6).

Chapters 3 - 6 are written to stand independently with their own literature review
and conclusions. Some repetition exists as a result. We provide an overall conclusion
reiterating their findings in Chapter 7.

Chapter 2 - Data collection and analysis methods. This Chapter details the
creation of four data gathering and organisational programs. The data to be gathered
in large quantities was the availability of bicycles over time, specifically the change. A
complex but resilient data collection system was developed to gather and clean data
into a structured format every 10 minutes for all the case studies. Data collection
was carried out for over a year on 80 BSS. Aside from this data, metadata and BSS
attributes were organized into a wiki for documentation. Over time with the number of
BSS growing this wiki became time consuming to extract information from and keep up
to date. A collaborative and structured portal was developed to simplify analysis but
also encourage broader participation in the documenting of BSS for research purposes.
Another program was created to collect publicly submitted data for station suggestions
of new and expanding systems. Finally we describe the tools used for general analysis
as well as programming of the data gathering systems.

Chapter 3 - Trip estimation and data formalization. This methodological
chapter describes the formalization of the di↵erent BSS data sets available and how their
combination allows new insights into BSS operations. Station level data, the availability
of bikes, is openly available for all conventional BSS. The number of trips, as well as origin
and destination are not. A few select operators share trip data. This chapter describes
how aggregating and merging these two data sets allows the extraction of rebalancing, the
moving of bicycles to adjust to demand, as well as other interactions impacting station
levels. This formalization allows a better comprehension of the factors di↵erentiating
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station level data from number of trips. The second portion of this chapter focuses on the
creation of three estimation models based on various temporal and spatial aggregations.
Results show that trip estimates using one model are superior and su�ciently reliable
for other purposes. Publicly available station level data can therefore be used to make
estimates of BSS usage, something not typically available, for an objective evaluation of
system performance or success.

Chapter 4 - Rebalancing strategies, patterns and purpose. Rebalancing, the
moving of bicycles to or from stations to meet demand, is a necessary aspect of BSS
operations to maintain system functionality. This chapter details rebalancing analysis
through spatio-temporal data and operator interviews. Importantly, we relate rebalanc-
ing to the purpose of the BSS, stating that rebalancing behaviour alters outcomes. While
extensive literature focuses on theoretical optimal rebalancing aspects, this analysis de-
scribes the practice, showing how intertwined BSS use and rebalancing are, requiring
that both be analysed in concert otherwise leading to potentially incorrect conclusions.
This chapter provides innovative methods of representing system and station usage be-
fore focusing on rebalancing. We describe the vehicles, facilities, labour, software and
strategies used for rebalancing. Analysis allows the formalization of two types of re-
balancing. Our findings show that disproportionate expenditures are allocated to the
provisionment of BSS as a commuter service, in the process requiring intense rebalancing
with associated CO2 emissions. Many aspects of rebalancing impact BSS outcomes, we
provide policy recommendations based on desired outcomes of environmental sustain-
ability, equity, private utility cycling and profit. We conclude that municipalities expect
BSS to bring benefits without considering how rebalancing and service level agreements
shape outcomes.

Chapter 5 - Success determinants of bicycle sharing systems. By having a
way of estimating BSS trips it is possible to use trips per day per bike as a comparable
measure of success or performance. This chapter provides performance measures for
75 BSS. By gathering for each case study local attributes of the BSS, station density,
geographic features, weather and transport infrastructure, we apply these independent
variables to multiple regression models using performance as the dependent variable.
Results show that a third of our sampled BSS are used less than once per day per
bicycle. Operator type, station density, helmet requirement, population and cycling
infrastructure are some of the variables found to influence performance, supporting ex-
isting findings. Alternatively results also show that larger systems with more stations
are not related to higher performance. This finding contravenes best practices promoted
by industry operators and BSS associations. Our performance estimates show that some
systems are little used and therefore derive little of the, already contested, benefits in-
tended. We use these findings to recommend that municipalities consider what purpose
their BSS is meant to serve and whether alternatives may be more e↵ective.

Chapter 6 - A critical perspective of bicycle sharing system politics, busi-
ness and purpose. This chapter brings an alternative perspective, critical of success
metrics such as those we present in the other chapters as being too narrow. We de-
scribe the less positive aspects of BSS history and development from a critical urban
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sustainability perspective. Initially conceived as a tool to fight against pollution and
consumerism, BSS have been co-opted to increase urban outdoor advertising and pro-
moting consumerism. Bicycle sharing systems are promoted as bringing social and en-
vironmental sustainability yet both can be contested as the demographic distribution
of the benefits is skewed to the already privileged. While BSS as a new technology are
promoted as solving urban problems, this chapter describes how they are used more
as vehicles for advertisement and promotional tools to boost local pride, city image
and policy makers while stimulating the economy through expenditures on technological
solutions. Beyond sustainability, we describe how rapid adoption of BSS by decision
makers has allowed private corporations to control the newest form of public transport
while conflicts between technology providers and advertisers reduce the system e�cacy.
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Chapter 2

Data collection and analysis
methods

Outline

This chapter describes the data collection and analysis performed for the quantitative
sections of this work. Large amounts of data where collected at repeated and frequent
intervals for over a year. This required a large data capacity and redundancy solution.
In addition to raw data, large amounts of metadata were collected requiring di↵erent
solutions. A total of four automated data collection or storage systems were created
to facilitate this research. We detail their purpose, design and suggest alternatives for
similar future work. We briefly describe software and programming languages used for
analysis.

2.1 Introduction

Determining whether bicycle sharing systems (BSS) are successful or not depends on the
goal. Using the number of trips or performance, such as the number of trips per day per
bike, are objective measures to begin comparison. The problem, as of 2012 when this
research began, was that such data was unavailable. Requests for data from operators
such as JCDecaux were ignored. One successful method was to form a partnership with
the municipality and request data through their BSS manager. This provided data but
at great e↵ort and after long delays. Alternative data sources existed however for those
with some knowledge in web scraping.

One of the hallmarks of conventional BSS are web-based maps showing the locations
of stations and the availability of bicycles and free docks to park a bicycle (Figure 2.1).
Any data that is visible to the user can be repeatedly gathered at set intervals by a
program. This is web scraping.

Data collection for this research started in 2011 with the gathering of Luxembourg’s
station levels, the number of bicycles and spaces available over time (Figure 2.1). Initially

17



18 CHAPTER 2. DATA AND METHODS

Figure 2.1: Web map of stations for JCDecaux’s Luxembourg BSS.
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Figure 2.2: Station level data for one of Luxembourg’s bicycle sharing system stations
showing bicycles and docks available.

this was an intensive task as each station in a system required a request. So every ten
minutes a simple script would individually request the state of Luxembourg’s 70 or so
stations. Initially companies such as JCDecaux resisted having people gather this data
but in 2013 made the process much simpler by only requiring one request per system.

Data collection for most case studies began in early 2013. Only the 50 or so larger
BSS (25 stations or more) in Europe, North America and Australia were tracked. At
the time most of these were in Europe. The number of system has since grown at a rate
making it di�cult to track new systems let alone gather their data. The evolution of
the number and types of BSS required adapting how these were tracked. This chapter
begins by documenting the four methods of data collection (Section 2.2) followed by
programming languages and software used (Section 2.3) for the quantitative analysis of
Chapters 3, 4 and 5.

2.2 Data collection systems

2.2.1 DokuWiki

Due to qualitative nature of this research, in addition to the quantitative, we needed
a method to gather and organize links to reports, media articles, BSS operator pages,
corporate pages, press releases, quoted statistics and contact information for the case
studies. The variety of information and cross linkages between BSS’ multiple actors
(technology provider, municipality, operator, cycling organizations, among others) re-
quired flexible organization. The DokuWiki program, a similar but lighter version of the
software used by Wikipedia, was used to build richly intertwined connections simply.
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The wiki was crucial in managing interview contacts to track the individual state of
conversations between email, telephone and interview exchanges. Quantitatively, early
data scraping was complex, requiring the discovery of the source and protocol necessary
to gather the data, all of which was documented in the wiki.

Over time the quantity of information, while regularly structured, became time con-
suming to compare between the many and growing case studies. The system was re-
placed in 2015 with an open and participatory but structured system where individual
attributes could be requested for all case studies (Section 2.2.4).

2.2.2 Hub and Spoke

Station level data was gathered from early 2013 to the summer of 2014, for over a hundred
case studies, is the backbone of this thesis research. Our data collection system consisted
of five servers (spokes) connected to a dispatch hub (Figure 2.2.2). The hub distributes
di↵erent parts of the list to the five servers every 10 minutes. The servers where located in
five separate locations. Servers individually completed their data collection tasks, parsed
the relevant data and passed it back to the two redundant storage servers. Servers would
then communicate with the hub to indicate if any errors occurred or whether the server
was down. This design of the data collection system addresses multiple issues.

Rather than collecting data roughly every ten minutes our system aimed to collect
data exactly every ten minutes on the hour. This meant that a large number of requests
had to be made in a very short period of time. The problem with this is the quantity of
data requested but also the number of requests. One server was not su�cient. By using
five servers more data request could be initiated closer to the desired time and take the
remaining time, before the next requests in 10 minutes, to parse the data and send it to
the two main data storage servers.

Some operators did not appreciate the toll on their systems of systematic data col-
lection. While we requested station states every 10 minutes, some BSS data enthusiasts
and researchers have done so at higher frequency. This resulted in some operators block-
ing requests from servers repeatedly requesting data. To prevent this from happening,
using five servers at di↵erent locations gave the appearance of our individual servers
requesting data every 50 minutes rather than 10, reducing the likelihood of the requests
being blocked.

As servers occasionally fail for periods of various duration, sometimes requiring man-
ual intervention, each server communicates its status with the hub. In the case a server
is not responsive the task list is redistributed equally among the remaining servers. This
insured a more complete data set with fewer gaps.

Originally collected data for JCDecaux’s systems was extremely burdensome. A
separate request was required for each station, meaning the individual request of over a
1000 small files for Paris alone. As many of our case studies were operated by JCDecaux
this meant data collection was quite burdensome. In the summer of 2013 JCDecaux
provided a friendlier application programming interface (API) that allowed all the data
for each BSS to be retrieved in one request, reducing much of the burden. Other case
studies continued to have the same requirements however.
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Figure 2.3: Hub and Spoke data collection server system.
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Each operator has its own data syntax to provide data for their web maps. For some
systems it is heavily embedded and di�cult to extract and for other much simpler. For
each syntax we had to customize distinct data collection and parsing protocols.

The central hub design provided a useful feature of summarizing any errors that
occurred within the spokes. Data syntax for some systems changed over time requiring
rapid response to reduce data loss. A central status page presented any errors to facilitate
monitoring and sent emails in the case of serious errors. The technology has evolved since
and in 2016 the standard syntax called the General Bikeshare Feed Specification (GBFS)
was formalized. Adoption has slowly spread in North America, greatly simplifying data
collection for future researchers.

The creation of a similar data collection system today would be much simpler due to
the simpler collection and parsing of data. The evolution in cloud computing has also
reduced costs and complexity in hosting multiple servers if they are still required. The
use of four di↵erent types of servers (multiple Linux distributions and Windows server)
for our Hub and Spoke system created additional complexities relating to multiprocessing
and data transmission protocols.

This data collection system was also used to gather data that was not used in the
thesis. Many German systems, that do not have stations, were also tracked to compare
station and non-station based system performance. Car sharing car locations were also
gather for multiple cities where BSS were also present in order to analyse how it con-
trasted in direction and distance. Neither of these data sets were used due to lack of
time.

2.2.3 Public participation

A separate but much simpler data collection system has been ongoing since 2013, gath-
ering station suggestions. Many North American BSS before launch or when pondering
an expansion, deploy web-based public participation GIS (PPGIS) to allow submission
of station location suggestions as well as comments and votes on other’s suggestions.

Data was collected repeatedly for Austin, Chicago, Los Angeles, New York City,
Philadelphia, Portland, San Francisco, Washington and Vancouver between 2013 and
2016. Again due to time constraints analysis was not completed.

2.2.4 Collaborative API

During successive analyses, with the growing number of case studies, having unstructured
or non-queryable data within the DokuWiki system became burdensome. There exists
limited BSS research spanning multiple case studies likely because of the e↵ort required
to primarily find the data source and then gather the data. In order to facilitate this
research, but also future research, a structured, open and participatory BSS database
was created (bikeshare-research.org) allowing anyone to submit, edit and download data.

The ability to download data in a structured format facilitated the organization of
success determinants in chapter 5. An API was created allowing researchers to directly
download the locations of BSS station level data feeds as well as metadata such as when
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the system launched, the type, the number of bikes and stations, the operator. The site
also provides a historical record of changes to BSS. As they rapidly evolve the number of
bicycles, stations and their location rapidly disappear preventing longitudinal studies. In
addition to these quantitative metrics, links to news articles, reports and other resources
are also available.

The comprehension of how BSS are being used requires a large and diverse set of
data which is a barrier to research. This site aims to facilitate future BSS comparative
research.

2.3 Quantitative analysis

While individual chapters describe the theoretical methodology, we present in this section
the applied methods used for statistical, spatial and data analysis.

The hub and spoke and PPGIS data collections system were entirely programmed
using Python. Python was imperative (especially the Python Data Analysis Library
- pandas) for memory intensive processing tasks, particularly those involved in trip
estimation (Chapter 3). The R programming language (R Core Team, 2015) was the
dominant tool for most data and statistical analysis. While ArcGIS and QGIS were used
for some minor analysis, R quickly proved to be the easiest and most e�cient for spatial
analysis and cartographic production of multiple case studies in a regular manner. The
collaborative API was developed using PHP and Javascript as well as the Bootstrap
framework.

2.3.1 Rebalancing geovisualization application

A comprehensive geovisualization system was developed for rebalancing analysis of the
nine case studies analysed in Chapter 4. Stations, trips and rebalancing quantities
were overlaid on a variety of web-based maps showing transit, cycling infrastructure,
roads and satellite imagery. For each station further analysis was displayable showing
temporal tendencies in trip and rebalancing types and outage (full or empty stations)
frequency. The application, and other analysis, can be viewed online (https://bikeshare-
research.org/rebalancing/).

2.4 Methodological conclusions

In the span of this research the number of BSS has dramatically increased and the types
of systems has diversified. Data and metadata collection, as can be seen by the evolution
of our data collections strategies, has had to evolve accordingly. While in 2014 it may
have still been possible to compare most existing BSS, the number of systems, thought
to be above a 1000 has now become burdensome to track and update as they evolve.
The diversity of BSS types also makes comparison more di�cult. A rise in the number
of BSS being station free, allowed to float within areas, as has the number of electric
systems. The durations of usage time has more variation, with some systems allowing



24 CHAPTER 2. DATA AND METHODS

60 minute usage or even multiple hours, greatly modifying expected usage compared
to the typical 30 minute free use period. Finally, some systems do not meet the strict
definition of BSS of allowing deposit at a separate destination than the origin or not
being automated.

As BSS research continues, comparative work will become selective rather than ex-
pansive, as was attempted with this data collection, due to the expanding number and
types of systems. The intent of the participatory BSS API (bikeshare-research.org),
developed as part of this work, is that it provides necessary resources to facilitate and
encourage future comparative research.



Chapter 3

Trip estimation and data
formalization

Outline

Bicycle sharing systems (BSS) have increased in number rapidly since 2007. The po-
tential benefits of BSS, mainly sustainability, health and equity, have encouraged their
adoption through support and promotion by mayors in Europe and North America
alike. In most cases municipal governments desire their BSS to be successful and, with
few exceptions, state them as being so. New technological improvements have dramat-
ically simplified the use and enforcement of bicycle return, resulting in the widespread
adoption of BSS. Unfortunately little evaluation of the e↵ectiveness of di↵erently dis-
tributed and managed BSS has taken place. Comparing BSS systems quantitatively is
challenging due to the limited data made available. The metrics of success presented
by municipalities are often too general or incomparable to others making relative eval-
uations of BSS success arduous. This chapter presents multiple methodologies allowing
the estimation of the number of daily trips, the most significant measure of BSS usage,
based on data that is commonly available, the number of bicycles available at a station
over time. Results provide model coe�cients as well as trip count estimates for select
cities. Of four spatial and temporal aggregate models the day level aggregation is found
to be most e↵ective for estimation. In addition to trip estimation this work provides a
rigorous formalization of station level data and the ability to distinguish spatio-temporal
rebalancing quantities as well as new characteristics of BSS station use.1

3.1 Introduction

Bicycle sharing systems (BSS) are the first new form of public transportation in over a
hundred years to be widely adopted. The earliest growth of conventional BSS occurred
in Europe (DeMaio, 2009). Paris’ celebrated and highly used BSS eclipsed attention of

1This chapter is based on (Médard de Chardon and Caruso, 2015)
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the development of the many systems in Europe, even those that were costly failures
(e.g., Aix-en-Provence). Australian BSS adoption in 2010 has experienced much lower
usage due to safety concerns, system accessibility, limited infrastructure and mandatory
helmet legislation (Fishman, 2015; Fishman, Washington, and Haworth, 2012; Fishman
et al., 2014; Fishman et al., 2015). The expansion of BSS in China in terms of number
of systems and bicycles largely outnumbers other countries (Fishman, 2015). Only since
2010, late relative to Europe, have BSS expanded in North America (Fishman, 2015;
Parkes et al., 2013). In 2013 New York City, Chicago, San Francisco, and Columbus de-
ployed BSS. As of early 2015, nineteen of the 25 most populous cities in the United States
have a BSS with the remaining six planning to launch soon or exploring the feasibility.
The phenomenal growth of BSS in the US is attributed, in the popular media (Economist
2013) and literature (Fishman, Washington, and Haworth, 2013; Shaheen, Guzman, and
Zhang, 2010), to the same benefits associated with cycling, namely flexibility, health,
equity and sustainability. Bicycle sharing systems address many contemporary issues
making its adoption politically justifiable. Throughout the literature and mass media,
mayors figure prominently as supporters (DeMaio, 2009; Parkes et al., 2013; Tironi,
2014) in bike share discussions. This tight relationship between mayor and BSS creates
the necessity for success of the BSS lest its failure and potential economic consequences
be associated with its promoters. Determining the success of a BSS is di�cult as the
data necessary for such an evaluation is typically not publicly available. This chapter
formalizes BSS data sources to create a method of estimating the number of trips a
system experiences, one potential metric for measuring success.

Overstating the e↵ectiveness and benefits of BSS can also be in the best interest of
private corporations operating the BSS. In Europe, with its much larger ratio of ad-
vertisement provisioned BSS, corporations, such as JCDecaux and ClearChannel, often
provide the infrastructure, maintenance and servicing in exchange for rights to commod-
ify municipal public space through advertising billboards. These BSS mutually benefit
contract holders and municipalities. Advertiser provide the municipality a new fashion-
able, environmentally and health conscious mode of public transport with little or no
public investment, while winning the advertiser a lucrative contract and a green polish
for their corporate image (Tironi, 2014).

Media regularly refer to specific BSS as being successful with little or no critical or
quantitative comparison. Success reported from municipalities (Julien Kohnen et al.,
2014; Ville de Luxembourg, 2014) or provisioners (JCDecaux, 2011) are being defined
using overstated, arbitrary and incomparable measures such as number of members,
trips completed over a period, carbon dioxide reductions (Fishman, Washington, and
Haworth (2014) show that some BSS may increase overall emissions due to rebalancing
vehicle operation), calories burned or distances travelled. The dearth of available trip
data or comparable statistics between BSS does not allow e↵ective comparisons, keeping
statements of success safe from criticism.

A large proportion of the existing bicycle sharing literature can be grouped into
two fields, the mathematical models focusing on rebalancing (Erdoğan, Laporte, and
Calvo, 2014; Forma, Raviv, and Tzur, 2015; Kaspi, Raviv, and Tzur, 2014; Kloimüllner
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et al., 2014; Labadi et al., 2014; Pfrommer et al., 2014) and those characterizing BSS
through analysis. Most of the latter focus on individual case studies (Basch et al., 2014a;
Beecham, Wood, and Bowerman, 2014; Béland, 2014; Bordagaray et al., 2014; Borgnat
et al., 2011; Chow and Sayarshad, 2014; Corcoran et al., 2014; Faghih-Imani et al., 2014;
Fuller et al., 2011; Fuller et al., 2012; Gebhart and Noland, 2014; Jäppinen, Toivonen,
and Salonen, 2013; Jensen et al., 2010; Kaltenbrunner et al., 2010; Lathia, Ahmed,
and Capra, 2012; Molina-Garcia et al., 2013; Murphy and Usher, 2014; Nakamura and
Abe, 2014; Ogilvie and Goodman, 2012; Vogel et al., 2014; Wood, Slingsby, and Dykes,
2011; Woodcock et al., 2014). While a few comparisons of the number of subscribers,
stations, bicycles and modal share changes exist (DeMaio and Gi↵ord, 2004; Jurdak and
Samoilov, 2013; Martin and Shaheen, 2014; Midgley, 2009; Ravalet and Bussière, 2012;
Shaheen, Guzman, and Zhang, 2010; Zhang et al., 2014; Zhao, Deng, and Song, 2014)
only a few broader studies have been carried out (Fishman, 2015; Fishman, Washington,
and Haworth, 2013; O’Brien, Cheshire, and Batty, 2014; Parkes et al., 2013; Zaltz
Austwick et al., 2013) by making quantitative evaluations of a selection of BSS based
on system size, connectivity, shape, flows and temporality of concurrent bicycle use
as well as trips per day per bicycle. The di�culty in obtaining data and infrequency
of publicly published equivalent metrics are the main causes making BSS comparison
di�cult (Corcoran et al., 2014; Fishman, Washington, and Haworth, 2013).

Municipalities having genuine desires to improve local sustainability, health and eq-
uity through the adoption of a BSS and improved infrastructure are challenged by a
means of evaluating their systems due to the same lack of comparative measures. Parkes
et al. (2013) and Fishman, Washington, and Haworth (2013) both recognize the need for
better e�ciency measures of BSS. The media, when data is available, uses the number of
trips as a measure of BSS success (Bialick, 2013; Cripps, 2013; Goodyear, 2013; Paris.fr,
2013). This value is sometimes normalized by the population of the city or the number
of bicycles in the system. Accessible daily values are only available for a few cities, most
of which are in the United States. The number of trips for most BSS is sporadically
available and using di↵erent scales of measurement. This chapter provides a model for
estimating trips, based on publicly available data for all conventional BSS, thus allowing
their comparison. The estimated number of trips would provide a meaningful measure
for evaluation not presented in O’Brien, Cheshire, and Batty (2014) and at a wider BSS
scale than Fishman, Washington, and Haworth (2013).

Conventional BSS, typically referred to as third generation BSS (DeMaio, 2009),
consist of four components: i) sturdy bicycles with custom sized components to deter
theft, ii) automated docks which secure bicycles, iii) stations, i.e., groups of docks, and
iv) the information system (IS) which provides the location of stations and the current
quantity of bicycles and free docks at each. The IS is typically accessible on-line or
through mobile applications. We analyse in this chapter how one can use this data
source, i.e., station levels, to estimate BSS number of trips per day and how robust the
method is to temporal and spatial aggregations.

The availability of BSS data beyond that shown on IS is limited. A few cities provide
trip data consisting of the date, time and duration of trips from an origin station to a
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destination station for certain periods or their complete history. These are very much
the exception. Additionally some of these data sets are available by request to the
provisioner. This chapter presents a methodology that allows the estimation of daily trip
numbers for all conventional BSS with the wider aim of democratizing the evaluation and
comparison of BSS. In order to do this we also formalize IS station level data, trip data,
their relationship and the revealed rebalancing operations. This has useful applications
for the extensive BSS rebalancing literature.

The remainder of this chapter will define the di↵erent data sets, formats and termi-
nology used in our methods (Section 3.2). In the methods (Sections 3.3) we describe
the models applied based on daily, time interval and station aggregations. Finally in the
results (Section 3.4) we present how data collection interval durations impact estimation,
the particularities of the case studies and the coe�cients of our three models as well as
their accuracy rate and validation testing outcome.

3.2 Definitions and Data

3.2.1 Definitions

There exists two types of data for BSS:

1. Trips: For each bicycle trip, T , from a departure station (origin) to an arrival sta-
tion (destination) the date, time and duration are provided. This is only available
for a few cities.

2. Station levels: The current number of bicycles (X) and its complement, the number
of available docks at each station in the BSS. This is typically collected through
consistent scraping or API calls at set time intervals (O’Brien, Cheshire, and Batty,
2014).

Corcoran et al. (2014) refer to these as flows and stocks respectively. Access to the
first item, trip origin-destination (OD) data2 , allows the simple calculation of the daily
number of trips, Td, the value we seek to estimate in our methodology. Conventional
BSS provide the second item, the station levels, through their information systems (IS).
Our model aims to translate station levels, X, into daily trip sums, Td. In an e↵ort to
do so, the OD trip data collected for a few BSS are extremely helpful in understanding
di↵erences and validating our transformation.

Observed station states and interactions

Conventional BSS with IS contain the current number of bicycles and spaces (docks)
available at each station. In this analysis only the number of bikes available is of conse-
quence, not the spaces or total number of docks. In fact our methodology simply uses

2The literature commonly refers to origin-destination as the journey between activity places. In the
BSS context we use the terms to refer to a portion of a journey from the station of departure to the
bicycle return. BSS trips with the same origin and destination do not capture a potential intermediary
activity place visited.
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changes to the number of bikes at a station to estimate Td. The station state or level3

can be collected for each station in a BSS synchronously and repeatedly at a set time
interval, �, expressed in minutes. An interval of ten minutes, � = 10, for example,
requires 144 data collections per day. We denote by v each collection point per day and
V = 60⇤24

� the total number of collection points per day. BSS operators typically update
the status of their IS data each minute explicitly (JCDecaux, 2014) or implicitly which
can be observed by repeating requests more than once per minute. More frequent data
collection insures greater accuracy but is encumbering due to the increased bandwidth
and storage required.

We identify station states, Xsdt, based on the station, s, date, d, and time, t, the
observation was taken. The changes in the number of bikes between sequential Xsdt

observations is typically a bike being docked (returned to a station) or removed for use.
However a change in value can also be due to technical issues (with the BSS operator
system or our data collection), rebalancing operations or maintenance, which we will
all refer to as rebalancing for simplicity. We call changes to Xsdt values over time
interactions4 and refer to the sum of interaction changes between temporally sequential
Xsdt intervals as delta station states, x�sdt, where � is the interval duration in minutes.

x�sdt = Xsdt �Xsd(t��) (3.1)

With a � of 10, a station with 7 bicycles at 5:00pm then 4 at 5:10pm will have a
x10sd(5:10pm) = �3. Applying this transformation to a complete BSS data set creates a
matrix of x�sdt for each station, s, for each time interval, t of each day, d.

Calculating x�sdt from Xsdt can be done using Equation 3.1 with the understanding
that not only trip interactions are being observed but also rebalancing.

Observed trips and synthetic interactions

Using OD trips data we can also directly calculate delta station states by looking at what
time and station each trip’s bicycle was removed and returned at. We use z to denote
delta station states as they are based on OD trips, rather than station level states X,
which do not contain rebalancing influence and are therefore not equivalent. We refer
to z�sdt as synthetic delta station states. The synthetic data is a cleaner source which
provides a better data set to perform estimations of Td and can also be used to reveal
the rebalancing quantities when compared to x�sdt data.

Trip data can be directly transformed to z�sdt values. For each time interval and
station, the trips that originate, O, are subtracted from those that arrive at their destina-
tion, D. This process clearly loses interactions when bike removals and returns coincide
within the same time interval of the same station.

3We use state or level interchangeably to refer to the number of bikes available at a station.
4The term interactions is used to refer to the removal or return of a bicycle at a BSS station by a user

for a trip or any other maintenance or rebalancing of the bicycle. This includes technical problems that
may indicate that a bicycle has been added or removed from the station when in fact it may have not
been moved. The term interaction is not to be confused with the term used in the spatial interaction
literature where an interaction refers to a flow. In our analysis a trip comprises of two interactions.
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z�sdt =
X

T(s=O)dt �
X

T(s=D)dt (3.2)

Daily aggregates

The following equations define the aggregation of data from Equation 3.1 and 3.2. We
use z�sdt in the following equations but these are equally applicable to station level
derived delta station states, x�sdt, as well as other forthcoming data types. Aggregating
the daily observed interactions for each station is completed by summing across the V
daily collection points.

z�sd =
VX

v=1

|z�sd(v⇥�)| (3.3)

Alternatively it is useful to sum the station interactions during each interval to
identify variations along the day.

z�dt =
SX

s=1

|z�sdt| (3.4)

Where S is the total number of stations, s, in the BSS. To calculate daily interac-
tions observed, we sum z�sd (Equation 3.3) across stations or zdt (Equation 3.4) across
intervals per day:

z�d =
SX

s=1

z�sd =
VX

v=1

z�d(v⇥�) (3.5)

In order to estimate the number of trips per day, Td, based on a specified �, we
converted interactions, which only account for half of a trip, into number of trips, E�d.

Tz�d =
z�d

2
(3.6)

And equivalently for station states:

Tx�d =
x�d

2
(3.7)

Calculating z�d, as � approaches 0, detects every bicycle removal and return. As
we are currently focusing on synthetic delta station states with no rebalancing, dividing
the number of interactions by two provides the exact number of daily trips, Td.

Td = lim
�!0

Tz�d = lim
�!0

SX

s=1

VX

v=1

|z�sd(v⇥�)|
2

(3.8)

Which is not true using x�sdt where we have:

Td = lim
�!0

Tx�d � rebalancing (3.9)
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In which case Tx�d always overstates Td as rebalancing is a positive value.

For positive durations of �, interactions begin to be lost. Interaction collisions
are opposing interaction pairs, a removal and return, occurring between observations.
Interaction collisions, as rebalancing, are positive values. The total e↵ect, depending on
rebalancing and interaction collision amounts, may be positive or negative. Hence Tx�d

may over or underestimate Td, depending on �, when using station level inputs.

Td = Tx�d + interaction collisons� rebalancing (3.10)

Conversely, Tz�d contains no rebalancing, increasing � durations increases the num-
ber of interaction collisions resulting in the magnification of Tz�d underestimating Td.

Td = Tz�d + interaction collisons (3.11)

Longer time intervals e↵ectively increase the potential number of interaction colli-
sions, decreasing z�sdt and x�sdt values as well as the number of observed trips (Equation
3.6 and 3.7).

Disaggregated trips

While we wish to estimate the daily number of trips, our estimation models need not be
specified at the arbitrary daily aggregate of trips. It is possible to operate models at a
finer temporal resolution by knowing the number of interactions at finer resolution. To
create interaction sums at the same temporal scale as the z�sdt scale, we simply add the
two terms of Equation 3.2 to count each bicycle removal and return (i.e., interactons, i).

i�sdt =
X

T(s=D)dt +
X

T(s=O)dt (3.12)

Note that i�sdt, summed for each day across stations and time intervals, i�d, is equal
to twice the number of daily trips, Td, regardless of �. The aggregations i�sd, i�dt and
i�d can be calculated following Equations 3.3, 3.4 and 3.5.

By comparing synthetic station states and interactions the quantity of interaction
collisions, c, can be calculated at the � temporal resolution for each station.

c�sdt = i�sdt � |z�sdt| (3.13)

Interaction collisions are the sole factor causing Tx�d to underestimate Td. Rebal-
ancing is the opposing factor causing Tx�d to overestimate Td. Just as c�sdt can be
isolated so can rebalancing quantities, r�sdt. At this scale r�sdt can indicate the source,
through a negative value, and destination of rebalancing.

r�sdt = x�sdt � z�sdt (3.14)
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BSS attributes

As it is necessary to combine data sets from BSS of multiple sizes in our generalized
model, we required a form of normalizing based on some related BSS attribute. The
number of built stations in a BSS is an easily accessible attribute but does not account
for the change in BSS usage throughout the day. This is desired as rebalancing and
interaction collisions are more prevalent during high usage periods. The number of
active stations, Az�dt (or Ax�dt for station level data), which we define as the sum of
stations that have had at least one interaction during the � interval, is an e↵ective
measure of the infrastructure size being used throughout the day.

Az�dt =
SX

s=1

⇢
0, ifz�sdt = 0
1, ifz�sdt > 0

(3.15)

This can also be evaluated for each day.

Az�d =
SX

s=1

⇢
0, ifz�sd = 0
1, ifz�sd > 0

(3.16)

We also use a similar parameter where rather than looking at how many stations are
used concurrently we observe how often a station has been used throughout the day.

Az�sd =
VX

v=1

⇢
0, ifz�sd(v⇥�) = 0
1, ifz�sd(v⇥�) > 0

(3.17)

In this section we have shown that two data types exist for BSS and have formalized
their relationship. Trip data provide the departure and arrival stations as well as the date
and time at the start and end. Using these we have shown how synthetic delta station
states, z�sdt, interactions, i�sdt, active stations, Az�dt, collisions, csdt, and trips per day,
Td, are related. Observed station states, Xsdt, the second form and more accessible form
of data, allows the creation of delta station states, x�sdt, and rebalancing quantities,
r�sdt. The relationships between all the above BSS data sets are clearly illustrated by:

Td =
i�d

2
=

|z�d|+ c�d

2
=

|x�d � r�d|+ c�d

2
(3.18)

We provide an abstract symbolic explanation of the overall process of combining the
data sets and their derived data in Figure 3.1.

3.2.2 Data

For simplicity and clarity we refer to BSS by the most well known city (some span
multiple municipalities) in which they operate.5 We consider eight case studies (Table
3.1), chosen because both their trip data and station state data, X10sdt, are accessible.

5An important part of BSS it seems are, with the exception of those named after sponsors, their quirky,
upbeat names such as Divvy (Chicago), Nice Ride Minnesota (Minneapolis), and Hubway (Boston).



3.2. DEFINITIONS AND DATA 33
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Figure 3.1: An abstract symbolic simplification of data derivatives and combinations.

Boston Chicago London Minn. NYC SF Vienna WDC
Stations 95 300 723 170 333 68 102 307
Bicyclesa 767 2686 9250 1445 5687 606 1142 2590
T

d

1688 4041 21493 1356 22890 782 1951 4822

Populationb 4.6m 9.5m 8.4m 3.3m 11.7m 7.5m 1.7m 5.7m
Trip data 2011-07 2013-06 2010-07 2012-04 2013-07 2013-08 2012-01 2010-09
period 2012-10 2013-12 2013-12 2013-11 2014-02 2014-02 2012-12 2013-12
Level data 2011-08 2013-06 2013-03 2013-03 2013-05 2013-07 2012-01 2013-03
period 2012-09 2014-05 2014-01 2014-04 2014-01 2014-01 2012-12 2014-01
a Defined as B

max

by O’Brien, Cheshire, and Batty (2014)
b Metropolitan area populations from O�ce for National Statistics (2013),
U.S. Census Bureau (2011) and United Nations Statistics Division (2011)

Table 3.1: Case study attributes during data collection period.

While some of the largest BSS in the world are in China, no trip data or station level
feed was found there or elsewhere. This causes our analysis to remain Europe and North
America focused.

The number of bicycles actively usable for a BSS is typically ten percent less than
that reported being present. This is due to a proportion of bicycles being maintained. To
calculate the number of bicycles we refer to the maximum observed number of bicycles
docked simultaneously, defined as Bmax by O’Brien, Cheshire, and Batty (2014), over
the studied time period. The mean trips per day, T d, in Table 3.1 is calculated using
trip data over the data period that the BSS was operational.

Synthetic data derived from trip data

The selection of case studies (Figure 3.2) was determined by OD trip data being openly
available through their respective websites or accessible by request (Vienna). Multiple
requests for data were not responded to. The data periods are based on what was
available or provided.
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Station level data collected

As shown in Table 3.1, Boston and Vienna station states are accessible from the provi-
sioners for the same period as the trip data available. For the other BSS, station state
data, Xsdt, was gathered using a program that repeatedly, at ten minute interval, dis-
patched a data source list to multiple servers to concurrently retrieve the station levels.
This system gathered data from March 2013 to July 2014. This data gathering system
experienced occasional interruptions due to programming and connectivity issues as well
as the BSS servers being down. As a result some data set days contain less than the
desired number of 144 records per day.

Data cleaning was applied to x10sdt values before use. Any values with interval dura-
tions which exceeded the � by +

�10 percent were removed. The same was done for days
with fewer than 95 percent of the 144 desired x10sdt values. While some BSS had very
little data loss, non-standard intervals and insu�cient records per day necessitated, in
the worst cases, a removal of three percent and twenty percent of the records respectively.

As a trip consists of two interactions we expect the sum of all x10sdt values to be
zero. The sum of x10sdt values for the full durations of the data sets is on average 1180
of over three million interactions. This indicates that there is no systematic loss or gain
of interactions which would be caused by regular data gathering lapses.

Figure 3.2 shows weekly T d normalized by the daily maximum number of bicycles,
Bmax, based on trip data available during the same span as the station level data col-
lected. It is important to note that Chicago, NYC and SF all launched in 2013. This
measure is a good indication of the utility a BSS provides and which is often reported
by the media. One of the goals of this methodology is to provide the data in Figure 3.2
for all BSS. Station states, Xsdt, are democratic open data while Td is typically closed.
Using z�sdt we try to bridge from x10sdt to Td.

3.3 Assumptions and Estimation Methods

Following our definitions and case study descriptions, we now present three models for
estimating Td, given z�sdt or x�sdt inputs, which aggregate data daily (DAM), by �
interval (IAM) and station (SAM).

In theorizing what is required in to estimate trips for a daily aggregated model (DAM)
we look at how we synthetically reconstructed Tz�s (Section 3.2). This methodology
guarantees that Tz�s will be at most equal to Td. Any di↵erence is caused by collisions.
It follows that stochastically with greater trips, a greater number of collisions will occur.
Because BSS stations are located in a space of heterogeneous demand we expect to see
an even greater collision rate and foresee the estimating of Td for individual BSS to
require an additional factor to compensate, non-linearly, for greater rates of lost trips
due to collisions, c�d, as trips increase.

We assume that creating a generalized model applicable to multiple BSS of di↵erent
sizes requires their di↵erentiation through added characteristics. Collisions rates are the
result of the intensity of trip interactions at origin and destination stations. Given two
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Figure 3.2: Weekly average number of daily trips normalized by daily maximum number
of observed bicycles (Bmax) for the eight case studies. Data is based on trip and Td data
available.



36 CHAPTER 3. TRIP ESTIMATION

BSS with equal number of daily trips, a BSS with a greater number of stations will
typically experience fewer interaction collisions, as the interactions are dispersed, than
a BSS with fewer stations. To adjust for this we theorize that the number of active
stations can help measure the intensity of activity.

By reducing the amount of aggregation to each Delta interval (IAM) or station
(SAM) we still expect estimation to be influenced by collisions relative to activity density
and therefore require a similar activity measurement, albeit at a di↵erent scale, to the
daily aggregated estimations.

3.3.1 Model specifications

The following model is based on the hypothesized relationship between Td and Tz�sdt.
We denote Equation 3.19 as the individual day aggregated model (DAM), specific to
each BSS.

indivual DAM : Td = 0 + �1Tz�d + �2T
2
z�d + ✏ (3.19)

The quadratic factor T 2
z�d compensates for collisions for days of higher activity. Note

that we lock the intercept to the origin. This prevents negative estimates, an undesired
e↵ect of a linear model on count data, in our application of individual BSS data sets to
Equation 3.19 6. We expect �1 to be close to one when DAM is applied to synthetic
data, but less than one for Tx10d data to compensate for rebalancing.

The active stations parameter (Equation 3.16) is added in Equation 3.20 for the
combined DAM model.7 While T 2

z�d compensates for interaction collisions we use Az�d

to normalize the density of activity.

combined DAM : Td = 0 + �1Tz�d + �2
T 2
z�d

Az�d
+ ✏ (3.20)

For the interval aggregation model (IAM) we modify Equation 3.20 to use the �
temporal resolution data to estimate the number of interactions rather than daily trips.
IAM sums interactions across all station in the BSS for each interval duration. The BSS
normalization variable Az�dt from Equation 3.15 is included as well as it’s square to
compensate for interaction collision losses.

IAM : i�dt = 0 + �1z�dt + �2Az�dt + �3A
2
z�dt + ✏ (3.21)

The final model sums interactions for each station throughout the day, z�sd, defined
in Equation 3.3. Based on the assumption that stations with high usage experience more
interaction collisions than those with lower usage, this method is designed to reduce the
aggregation of values of di↵ering variance. This station aggregation model (SAM) is BSS
size agnostic and only uses the frequency of station use throughout the day (Equation
3.17) not the number of active stations in the system.

6As we aggregate count data there are few zero values and a normal, not Poisson, distribution.
7Other specifications were tested using di↵erent exponents and interactions for T

z�d

and A

z�d

but
this yielded the best results.
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SAM : i�sd = 0 + �1z�sd + �2Az�sd + �3A
2
z�sd + ✏ (3.22)

The individual DAM model (Equation 3.19) is applied to each BSS case study inde-
pendently at each � to characterize the BSS. The model Equations 3.20, 3.21, 3.22 are
then applied to the combined synthetic data sets for the eight case studies in Table 3.1.

3.3.2 Bootstrapping synthetic station levels

One thousand samples with replacement of each BSS data set the size of the smallest
data set are applied to the combined data sets of the DAM, IAM and SAM models and
regression results saved. The distributions of the thousand iterations are checked for
normality and the mean coe�cients, p-values and adjusted r-squared values reported.

The synthetic data, Tz�sdt, contain no rebalancing, only interaction collisions, in
terms of deviance from Td. As Tz�d data are more directly related to Td, compared to
Tx�d, we expect an almost perfect fit. For Tx�d however, which contains rebalancing
e↵ects in addition, we use cross-validation to prevent over specification of our models.

3.3.3 Cross validation of observed station levels

Applying the models to x�sdt data requires additional steps due to the rebalancing
e↵ects, limited periods of data, imbalance in case study data sizes and few BSS case
studies available. For the three models ten percent of the data, every tenth day of
each BSS, is kept for validation and the remainder is allocated to coe�cient estimation.
Unlike in the synthetic analysis, only seven case studies are used. Chicago is saved as a
validation set.

To measure the optimal achievable model we first apply DAM, IAM and SAM to
each individual BSS. This serves for comparison with the BSS combined results. Across
ten thousand iterations, each BSS data set is randomly divided into training (70%) and
test sets (30%). The training sets use DAM, IAM, and SAM regression, Equations 3.20,
3.21 and 3.22 respectively, from which the coe�cients are applied to the individual BSS
test sets. The estimated number of trips, bTx10d, are evaluated against known Td values
using RMSE normalized by T d for BSS comparison.

A similar cross-validation methodology is also used for the combined BSS data set.
Ten thousand subsets of equal number of rows is taken, with replacement, from each
BSS limited by the BSS with the least number of valid rows of data. The BSS data
sets are randomly split 70% - 30% into training and test data sets. The training sets
implement the DAM, IAM and SAM models and the iteration specific coe�cient results
are applied to the training sets from which the bTx10d, RMSE and model coe�cients are
saved for all ten thousand results. The resulting distributions are analysed for normality
and the mean values reported.

Finally, the validation of DAM, IAM and SAM is performed using the ten percent of
days of data put aside for this purpose. As these results are likely to over estimate the
e�ciency of our coe�cients due to their being used for training, a separate BSS, Chicago,
for which data recently became available, is also applied to the models for validation.
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� Boston Chicago London Minn. NYC SF Vienna WDC
1 0.05 0.06 0.07 0.05 0.13 0.04 0.05 0.09
2 0.08 0.11 0.11 0.08 0.21 0.07 0.08 0.14
5 0.16 0.20 0.20 0.14 0.35 0.13 0.15 0.24
10 0.25 0.29 0.30 0.21 0.47 0.21 0.23 0.34
20 0.36 0.39 0.40 0.29 0.58 0.31 0.34 0.44
30 0.43 0.45 0.46 0.34 0.63 0.37 0.41 0.50
60 0.54 0.55 0.56 0.45 0.71 0.48 0.53 0.60

Table 3.2: The proportion of interaction collisions, c�d, to interactions i�d. Rates relate
strongly with Td/Bmax levels shown in Figure 3.2.

While DAM is the simplest to apply it is expected that IAM and SAM perform
better due to their finer temporal and spatial scales respectively. IAM compensates for
the variation in daily activity, the morning and afternoon peaks and SAM for individual
stations having di↵erent usage frequencies.

3.4 Results

We begin by presenting the results of the synthetic data analysis, based on OD trips, at
various temporal intervals, the relationship to interaction collision rates and aggregations
techniques based on temporal and station interaction distributions. The day aggregation
model (DAM), interval aggregation model (IAM) and station aggregation models (SAM)
are applied to the eight synthetic BSS data sets. The analysis is repeated for the station
level data and compared with the synthetic equivalents. Through the use of synthetic
and station level quantities rebalancing is analysed. Finally DAM, IAM and SAM are
trained, coe�cients applied to validation sets and error rates reported.

3.4.1 Synthetic data analysis

We strictly focus on synthetic data, based on OD trips, for this section. We first show
the di↵erence between z�d and i�d (Equation 3.13) before applying the models. All
values in tables where � = 10 are bold for later comparison with data collected from
station level scraping.

Synthetic data descriptive analysis

Table 3.2 shows the proportion of interaction collisions, c�d, to i�d at multiple intervals.
Interestingly we see large variations of c�d between cities at the same time �. The
rates relate directly to Figure 3.2. All else being equal, the number of interactions
per bicycles in a system will very strongly relate with interaction collision. Interaction
collisions also depend on the spatial morphology of origins and destinations as well the
tendency for trips to occur simultaneously. Polycentric cities are more likely to have
widely distributed station interactions compared to a highly centralised city with strong
temporally coincident commuting.
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Figure 3.3: Normalized Td plotted against Tz10d for the eight case studies showing the
amounts of interaction collisions.

A comparison of interaction collision proportions for Washington D.C. (WDC) in
2011, 2012 and 2013 show a minor but consistent increase across the years. The cause of
the change cannot be explicitly determined as between 2011 and 2014 WDC experienced
a doubling of annual trips (1.2 to 2.6 million) and stations (145 to 310) as well as weather
variations (and other unknown factors). Despite this, it is likely the increased number of
stations made the system accessible or desirable to new users whose interactions have not
been restricted to new stations. This likely made pre-existing stations busier, causing
the increase in interaction collisions observed. Analysis of WDC data shows that the rate
of interaction collisions, c10sdt, per interactions, i10sdt, correlates significantly with the
proportion of active stations, A10dt, to built stations reassuringly showing the tendency
of BSS stations to not be used uniformly.

Comparing Tz10d (normalized by Td) and Td values in Figure 3.3 we see that at
a fixed number of daily trips, the interaction collision rates, the horizontal distance
between points and the identity line, are greater for larger BSS (Chicago, NYC, London
and WDC - see Table 3.1).

For increasing � values in Tz�d we can see, using Vienna as an example in Figure
3.4, days with greater number of trips experience more interaction collision variability
and reduce exponentially the number of Tz�d observations. For this latter reason the
individual and combined DAM contain a quadratic term.

Focusing on individual z�sdt values, the finest data resolution available, to estimate
interactions, i�sdt, is, however, ine↵ective for our model due to the wide dispersion of the
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Figure 3.4: Vienna’s daily observed trips from synthetic levels against actual daily trips.
The seven thin lines from left to right show 60, 30, 20, 10, 5, 2 and 1 minute intervals.
The thicker line being the identity line.
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Figure 3.5: The sum of i10sdt values across all days in the Minneapolis data set. The day
aggregated model (DAM) aggregates all interactions in a day while the interval (IAM)
and station (SAM) aggregated models sum rows and columns respectively. The visible
columns suggest SAM is optimal due to the reduced variability in aggregation.

explanatory variable caused by the unpredictable presence of interaction collisions. For
example, if a station, within a time interval, experiences three interactions, the absolute
value of the observed z10sdt will be either three or one depending on the interaction
types.

Clearly some aggregation is necessary to understand the tendency of BSS station ob-
servations to omit interactions. Aggregations that minimize the summing of contrasting
variances will improve the estimation accuracy. The DAM dependent variables, Tz�d,
from Equation 3.19, sum stations and time intervals, which vary spatially, and in in-
tensity of use, throughout the day. The interval aggregation z�dt, from Equation 3.21,
sums across all station values. As can be seen in Figure 3.5, some stations have higher
usage rates than others and are therefore more likely to experience interaction collisions.
A model that isolates stations is expected to better estimate varying levels of collisions
as well. DAM and IAM have attempted to handle the varying size of BSS through
normalization using the number of active stations using A�d and A�dt. Using the SAM
model, station normalization A�sd is used.
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Synthetic �1 coe�cients (T
z10d)

� B C L M N S V W
1 1.03 1.02 1.02 1.03 0.99 1.02 1.01 1.03
2 1.05 1.04 1.04 1.04 0.98 1.03 1.01 1.04
5 1.11 1.08 1.09 1.06 0.94 1.07 1.02 1.07
10 1.20 1.14 1.15 1.09 0.90 1.10 1.02 1.11
20 1.34 1.23 1.23 1.14 0.92 1.14 1.02 1.17
30 1.49 1.30 1.31 1.19 1.07 1.19 1.02 1.25
60 1.87 1.56 1.62 1.29 1.78 1.40 1.01 1.61

Synthetic �2 coe�cients (T 2
z10d)

� B C L M N S V W
(10�5) (10�5) (10�6) (10�5) (10�5) (10�4) (10�4) (10�5)

1 1.12 0.99 2.18 1.63 0.65 0.26 0.17 0.95
2 2.11 1.90 3.81 3.16 1.32 0.50 0.32 1.80
5 5.15 4.30 8.19 7.64 3.42 1.10 0.76 4.13
10 9.90 7.54 15.4 13.2 6.94 2.43 1.49 7.88
20 18.9 13.2 29.7 23.0 12.9 5.20 3.08 14.7
30 24.9 18.3 41.5 31.8 17.1 7.48 4.72 20.3
60 37.5 29.2 57.7 62.4 21.6 11.8 10.1 28.4

RMSE/T
d

� B C L M N S V W
1 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01
2 0.02 0.03 0.02 0.04 0.02 0.01 0.01 0.01
5 0.03 0.06 0.03 0.05 0.03 0.02 0.02 0.02
10 0.04 0.08 0.04 0.06 0.03 0.02 0.03 0.03
20 0.05 0.11 0.05 0.07 0.05 0.03 0.04 0.04
30 0.07 0.14 0.06 0.08 0.07 0.04 0.05 0.06
60 0.09 0.18 0.10 0.10 0.13 0.04 0.07 0.10
B:Boston, C: Chicago, L: London, M:Minneapolis, N: NYC,
S: San Francisco, V:Vienna, W:Washington D.C.
Robust standard error (White, 1980) sign. levels < 0.001 for all values.
Adjusted r-squared values for all BSS at all intervals are greater than 0.97.

Table 3.3: Individual day aggregated model (DAM) regression coe�cient results of syn-
thetic delta station states at multiple time intervals for the case studies.

Synthetic data model applications

Applying the individual DAM (Equation 3.19) linear regression to the cities at multi-
ple intervals we estimate the number of daily trips from z�sdt summed to Tz�d using
Equations 3.2, 3.3, and 3.5. The data and linear regression results maintain statisti-
cal assumptions (Gelman and Hill, 2007: 45) except for homoskedasticity for which we
compensate for by using White’s (1980) robust standard error method to recalculate
significance levels.

The �1 coe�cients in Table 3.3 are quite similar between BSS at short intervals yet,
like in Table 3.2, di↵erences between the systems occur at longer intervals. Strangely
Vienna keeps a fixed coe�cient near 1.01 at all interval levels while having a stronger �2
coe�cient for the longer intervals than the other cities. Vienna’s �2 coe�cient perfectly



3.4. RESULTS 43

DAM IAM SAM
T

z�d

T

2
z�d

/A

z�d

z�dt

A�dt

A

2
�dt

z�sd

A�sd

A

2
�sd

(10�3) (10�4) (10�2)
� �1 �2 R

2
�1 �2 �3 R

2
�1 �2 �3 R

2

1 1.00 1.96 1.0 1.18 -0.13 13.9 .99 1.18 -0.23 0.11 1.0
2 0.99 4.17 1.0 1.53 -0.48 10.6 .99 1.30 -0.42 0.27 .99
5 0.92 11.3 1.0 2.65 -1.62 -5.81 .98 1.55 -0.95 0.99 .98
10 0.82 23.2 1.0 3.30 -2.18 -21.1 .97 1.82 -1.65 2.71 .95
20 0.70 44.9 .99 3.34 -1.80 -30.2 .96 2.09 -2.68 7.54 .91
30 0.66 62.4 .99 3.25 -1.25 -34.2 .94 2.25 -3.43 13.6 .88
60 0.80 94.8 .98 3.10 n.s. -42.9 .90 2.45 -4.80 36.8 .82
Reported significance levels are adjusted for heteroskedasticity using White (1980).
All p-values < 10�10 unless indicated as non-significant (n.s.).

Table 3.4: Regression results using day (DAM), interval (IAM) and station (SAM)
aggregated models at multiple � for the combined data set containing Boston, Chicago,
London, Minneapolis, New York City, San Francisco, Vienna and Washington D.C.

represent the trip losses due to interaction collisions. The �2 coe�cient consistently
increases with longer intervals as is expected due to greater probability of interaction
collisions.

Combining the BSS case studies into one regression model for generalized estimation
using Equation 3.19 is insu�cient due to the BSS having di↵erent interaction collision
rates, as seen in Table 3.3, likely dependent on the number of bicycles, demand and sta-
tions among other factors. We control for this e↵ect using the number of active stations,
A�d, (Equation 3.16) in the regression (Equation 3.20) to yield synthetic estimates for
our combined BSS (Table 3.4).

Individual DAM

The combined DAM Tz�d coe�cients in Table 3.4 decrease while in the individual
DAM model (Table 3.3) they increased. The individual DAM model due to its simplicity
is more intuitive than the combined. The combined model requires the more complex
T
z�d

2

A�d

term to be e↵ective as using distinct variables in the model, T 2
z�d and A�d, yielded

coe�cients of inconsistent sign for the BSS.

Combined DAM

The combined DAM (Equation 3.20) was tested using the built number of stations,
rather than the more temporally variable A�d, but was found less e↵ective. A�dt (Equa-
tion 3.16) covaries with Td rather than simply di↵erentiate BSS sizes. The drawback,
however, of using an indirect measure, when we wish to estimate the number of daily
trips, is the risk of predicting a more generalized count such as using weather or other
cycling determinant variables (Parkin, Wardman, and Page, 2007).

As we have shown earlier in Figure 3.3, the percentage of synthetic trips, Tz10d,
varies non linearly with the number of trips, Td. Days of higher activity with greater
interaction collisions result in lower observed trip percentages than on calmer days. The
same occurs throughout the day between periods of high and low activity. We attempted
to address this by aggregating the interactions across stations at the interval temporal
scale, i�dt, in order to reduce daily variance error from our model.
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IAM

Performing regressions for the combined case studies at each interval using IAM
produces very di↵erent coe�cients than in our daily trip aggregated model as we are
now analysing interactions (Table 3.4) rather than trips.

Resulting coe�cient of IAM application are not continuous. The z�dt coe�cient
jumps with the reversal of A2

�dt to a negative coe�cient at � = 5. The negative coe�-
cients reduce the interpretive power of the model. Perhaps these results are partially due
to the aggregation within � intervals across stations of strongly contrasting variability
as can be seen in Figure 3.5.

SAM

The SAM application, using Equation 3.22, provides coe�cients (Table 3.4) easier to
interpret than IAM and consistently increase in magnitude across intervals. The A�sd

coe�cients are still negative however but well behaved. SAM achieves equivalent RMSE
rates to DAM (Table 3.5).

Looking at DAM in Table 3.5 we see Minneapolis, Chicago and San Francisco ex-
perience higher RMSE values for mid and long � while London, New York City and
Vienna increase almost linearly.

While IAM yields equivalent error rates at � = 1, 2, it shows generally disappointing
results with Boston, Minneapolis, San Francisco and Vienna doing especially poorly.

Finally the SAM values show a few di↵erent patterns, Washington D.C. maintains
very low values, Minneapolis rises much higher at mid � values but returns to the
average at the sixty minute � and Chicago and San Francisco which plateau early and
remain stable. SAM consistently has slightly lower averages than DAM.

Synthetic model error

Looking at the DAM, IAM and SAM we see some BSS behave similarly across the
models. We see London, New York City and Washington D.C. (the three BSS with large
amounts of interaction collisions in Figure 3.3) with lower RMSE while Minneapolis is
erratically high.

Synthetic station state analysis shows, using three models, the e�ciency of estimating
the number of daily trips for multiple BSS at di↵erent data gathering time intervals. In
Table 3.5 we see the DAM and SAM providing lower RMSE than IAM although all
three models where expected to be similar when comparing regression results (Table
3.4). The SAM and DAM RMSE results at � = 10 of 0.11-0.12 are encouraging for
the application of station level data. The high accuracy of the results suggest their is
no need for more complex modelling techniques. Estimations using observed station
level data is presented next, showing that IAM and SAM models are more susceptible
to rebalancing.
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Synthetic combined DAM RMSE/T
d

� B C L M N S V W mean
1 0.02 0.03 0.01 0.05 0.01 0.01 0.01 0.03 0.02
2 0.03 0.06 0.02 0.09 0.02 0.03 0.02 0.05 0.04
5 0.04 0.13 0.04 0.19 0.04 0.09 0.03 0.09 0.08
10 0.06 0.18 0.07 0.29 0.05 0.15 0.05 0.13 0.12
20 0.08 0.23 0.09 0.37 0.08 0.22 0.07 0.16 0.16
30 0.09 0.26 0.11 0.40 0.11 0.25 0.08 0.18 0.19
60 0.13 0.28 0.16 0.38 0.18 0.23 0.14 0.20 0.21

Synthetic combined IAM RMSE/T
d

1 0.02 0.02 0.05 0.04 0.05 0.02 0.02 0.02 0.03
2 0.08 0.03 0.08 0.08 0.09 0.04 0.03 0.02 0.06
5 0.24 0.12 0.11 0.27 0.13 0.13 0.12 0.08 0.15
10 0.38 0.19 0.09 0.43 0.13 0.26 0.24 0.14 0.23
20 0.46 0.25 0.09 0.57 0.17 0.42 0.35 0.18 0.31
30 0.49 0.29 0.11 0.67 0.21 0.52 0.41 0.20 0.36
60 0.51 0.39 0.15 0.86 0.27 0.66 0.48 0.22 0.44

Synthetic combined SAM RMSE/T
d

1 0.02 0.02 0.01 0.05 0.01 0.02 0.01 0.02 0.02
2 0.03 0.05 0.02 0.08 0.02 0.04 0.03 0.02 0.04
5 0.05 0.10 0.04 0.16 0.04 0.09 0.06 0.03 0.07
10 0.08 0.13 0.08 0.23 0.08 0.12 0.10 0.03 0.11
20 0.13 0.14 0.11 0.26 0.14 0.13 0.17 0.04 0.14
30 0.16 0.14 0.14 0.25 0.18 0.12 0.20 0.05 0.16
60 0.18 0.14 0.17 0.17 0.26 0.11 0.24 0.09 0.17
B:Boston, C: Chicago, L: London, M:Minneapolis, N: NYC,
S: San Francisco, V:Vienna, W:Washington D.C.

Table 3.5: Mean Td and interaction normalized RMSE at multiple � for the day (DAM),
interval (IAM) and station (SAM) aggregated models. DAM and SAM have lower error
than IAM.
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Figure 3.6: Normalized Td against Tx10d for the eight case studies showing combined
interaction collisions and rebalancing e↵ects.

3.4.2 Observed station level data analysis

The sole di↵erence between z�sdt and x�sdt data are the presence of rebalancing, con-
sisting of rebalancing operations, technical issues and maintenance, in x�sdt data. Recall
Equation 3.13 and 3.14 from which rebalancing can be isolated: r�sdt = x�sdt � z�sdt.
Before applying the models to the observed station level data (Section (Section 3.4.2)
we present the relationship between Td and Tx�d and rebalancing (Section 3.4.2).

Observed data descriptive analysis

Plotting Td against Tx�d (Figure 3.6) we see Chicago, San Francisco and to a lesser
extent Vienna behave erratically. Recalling from Equation 3.18 that i10sdt = |x10sdt �
r10sdt|+ c10sdt, we can recognize that disproportionate amounts of rebalancing occurring
for Chicago and San Francisco are the cause. This is likely due to technical problems
with the BSS hardware or software.

Similarly to Table 3.2 in our synthetic analysis we compare proportions of x10d, c10d
and r10d against i10d in Figure 3.6.

Rebalancing, the moving of bicycles from one station to another, is done to prevent
the situation where a station has no available docks or bicycles. When either occurs, half
of the functionality of a BSS station is lost, either no bicycle can be returned or taken.
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BSS c10d�r10d
i10d

c10d
i10d

r10d
i10d

Boston 0.07 0.26 0.19
Chicago -0.37 0.29 0.67
London -0.58 0.30 0.88
Luxembourg -0.82 0.13 0.96
Minneapolis -0.02 0.21 0.23
New York City 0.10 0.48 0.38
San Francisco -1.55 0.21 1.76
Vienna 0.00 0.23 0.22
Washington D.C. 0.12 0.35 0.23

Table 3.6: Bicycle sharing system (BSS) proportions, normalized by i10d, of c10d � r10d,
interaction collisions reduced by rebalancing, as well as c10d, interaction collisions, and
r10d, rebalancing alone. NYC has a particularly high collision rate meaning many of the
transactions are not visible in station level data, x10sdt.

Well managed systems aim to avoid these situations by predicting when they are likely
to occur based on travel patterns throughout the day/week. It cannot be stated that
systems with greater rebalancing quantities are better managed as individual BSS may
have non-symmetric spatial tendencies, such as elevation di↵erences, that accentuate the
need for rebalancing.

By substracting z10sdt from x10sdt we can see the proportions of rebalancing oc-
curring for each BSS (Table 3.6)8. Chicago, London, Luxembourg and especially San
Francisco have disproportionately larger rebalancing quantities. As we stated earlier we
use ‘rebalancing’ to refer to the rebalancing but also technical issues and maintenance.
Chicago and San Francisco, during the span observed, experience increasing numbers of
fluctuating station level states caused by technical issues either at the dock or station
level.

Interestingly rebalancing amounts for Boston, Minneapolis, Vienna and WDC simi-
larly account for about twenty percent of the interactions, and, including NYC, almost
completely o↵set the collision amounts. The e↵ects of the larger rebalancing quantities
on estimation will not be trivial. We expect especially larger error for San Francisco.

Comparing the daily number of rebalancing and trip interactions (Figure 3.7) we
see that Chicago, London, and Luxembourg have multiple groupings caused by an un-
known technical issue occasionally inflating values. Vienna seems to be experiencing
an occasional glitch as well due to stations reporting no bicycles for periods of a few
hours before returning to normal. While all rebalancing quantities increase relative to
trips, San Francisco does so exceedingly. Following a basic analysis, the behaviour of
rebalancing for certain BSS varies between due to unknown technical issues that would
require a deeper methodological analysis to remedy, outside the scope of this analysis.
These irregularities do not suggest improvements which could be added to our estimation
models to compensate.

8Note the small di↵erences between collision amounts in Table 3.6 and Table 3.2 due to the synthetic
and observed data sets having dissimilar time spans. See Table 3.1.
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Figure 3.7: The c10d and r10d quantities in relation to the the number of daily trip inter-
actions (i10d). Note that Chicago’s station level data contains errors inflating rebalancing
amounts.
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BSS RMSE

T

d

T

x10d T

2
x10d ⇥ (10�5)

Boston 0.05 1.06 8.19
London b0.04 0.74 3.28
Minneapolis 0.04 0.93 11.8
New York City 0.08 0.26 8.23
San Francisco 0.14 0.35 47.6
Vienna 0.09 0.79 14.7
Washington D.C. b0.04 0.70 9.74
b Mean of bimodal distribution.

Table 3.7: Error and coe�cients of the individual day aggregated model (DAM).

Observed data model applications

We now present results of the application of DAM, IAM and SAM to the BSS for which
we have collected station state values, Xsdt , and converted to delta station states,
x�sdt, using Equation 3.1. Chicago is not used in this analysis but saved for validation
(Appendix A.1).

The results of ten thousand samples are presented. Unless specified the distributions
of the coe�cients, significance values and RMSE in the results are all normal.

The individual BSS DAM model (Equation 3.19) is applied to the seven BSS in
order to determine what optimal RMSE rates are possible for each and to compare with
the synthetic analysis results. Table 3.7 shows the normalized RMSE and BSS specific
coe�cients. In comparison with the equivalent synthetic analysis (Table 3.3) the station
level data reduces the linear coe�cient, Tx10d, to account for the added rebalancing
interactions. Further, NYC and SF can be seen compensating for their large collision
and rebalancing proportions respectively by reducing their linear Tx10d coe�cients.

The same process is repeated but using Equation 3.20 which considers active stations,
Ax10d. Table 3.8 shows that the combined DAM equation, applied to independent BSS,
achieves similar error rates to the individual DAM (Equation 3.19). The independent
DAM achieve RMSE, normalized by the BSS T d, of 0.04 with the exception of NYC,
SF (as expected) and Vienna with rates of 0.08, 0.14 and 0.09 respectively. These
independent applications Equation 3.20 serve as a baseline for comparison with combined
DAM results using the same equation.

The combined application of the DAM yields surprisingly similar results to the in-
dependent DAM with the exception of Minneapolis and San Francisco (SF). While the
error is expected for SF due to the technical issues defined earlier, Minneapolis is a
surprise. Looking at Figure 3.2 we see that the same two BSS have low usage rates in
terms of bicycles (and also stations) in the system. This model may poorly estimate
trips for BSS with lower system usage rates. Minnesota also has high error rates in the
synthetic combined DAM results (Table 3.5). Without a deeper analysis of Minnesota
it is impossible to determine what causes this e↵ect.

As the IAM model is at the interval temporal resolution, the estimates are aggregated
to the day for normalized RMSE values (Table 3.8). The result of ten thousand samples
with replacement of each BSS yielded low error rates for the individual application of the
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DAM IAM SAM
BSS Indep. Comb. Indep. Comb. Indep. Comb.
Boston 0.04 0.05 0.08 0.29 0.11 0.15
London b0.04 0.04 0.15 0.28 0.08 0.14
Minn. 0.04 0.17 0.09 0.43 0.09 0.24
NYC 0.08 0.10 0.13 0.30 0.15 0.20
SF 0.14 0.28 0.23 0.87 0.30 0.47
Vienna 0.09 0.12 0.11 0.52 0.10 0.35
WDC b0.04 0.08 0.07 0.16 0.06 0.11
Mean 0.07 0.12 0.12 0.41 0.13 0.24
Valid. - 0.13 - 0.40 - 0.23
�1 - 0.751 - 0.470 - 1.55
�2 - 1.81 ⇥10�2 - 1.58 - -1.46
�3 - - - 6.95 ⇥10�4 - 2.26 ⇥10�2

b Mean of a bimodal distribution

Table 3.8: Bicycle sharing system (BSS) RMSE values for the day (DAM), interval (IAM)
and station (SAM) aggregated models, normalized by the BSS mean trips/interactions,
when cross-validated independently and combined. The means of BSS means are also
provided for comparison with the validation test set.

model, however, the coe�cients vary in sign and magnitude between BSS which foretells
of problems with the combined model. In e↵ect the application of IAM (Equation 3.21)
to the combined BSS sets shows higher error rates (Table 3.8) than DAM as expected
from the independent coe�cients and the IAM synthetic analysis (Table 3.5) results.
Importantly the coe�cients’ signs and magnitudes no longer resemble those given in the
synthetic analysis (Table 3.4) making interpretation of the e↵ects of rebalancing on the
IAM impossible.

Repeating the same methodology for SAM, the individual BSS analysis results in
Table 3.8 show similar BSS specific RMSE results to IAM. Unlike IAM, SAM shows
consistent magnitudes and signs for the model coe�cients with the exception of Vienna.
For the combined normalized RMSE results SAM provides consistently lower error than
IAM as expected from the synthetic results in Table 3.5. Vienna and SF experience much
greater error than the rest. Vienna’s station level data was one of the few provided by
the operator (Boston is the other) rather than collected directly. It is unclear if their
data collection methodology di↵ers, is erroneous or whether they have fundamentally
di↵erent rebalancing operations.

While the DAM and SAM show equally low error in the synthetic analysis (Table
3.4), the rebalancing interactions contained in observed station levels solely increase the
error of the SAM (Table 3.8). The SAM is sensitive to rebalancing as station focused
interactions increase the x10sd coe�cient without correspondingly increasing the number
of A10sd which has a negative coe�cient. The DAM is advantageous in this regard as it
compensates for rebalancing, relative to the synthetic coe�cients, by slightly decreasing
the coe�cients. As rebalancing interactions, excluding technical issues, account for
about ten percent of usage interactions (Table 3.6) it is apparent why SAM performs
worse.
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3.5 Conclusions

The number of trips a BSS experiences daily is typically inaccessible. Published metrics
are typically incomparable, of dubious accuracy (e.g., tons of carbon monoxide saved)
or available for short time spans that do not allow comparison or analysis to reveal if a
problem exists in the provisionment, suitability or demand of a BSS. The popularity of
BSS reflect positively on electees and are lucrative for advertisers. Without public access
to usage data knowing whether a BSS is the best investment for the limited amount of
funds allocated to forms of non-motorized transport cannot be determined. Electees
and provisioners hold usage data but are potentially conflicted with making it public
as this could have few benefits in the best case, while being politically damaging and
threatening provisioner contract renewal in the worst case. Regardless, data which is
not publicly available, using this methodology, can be estimated using our methodology.

Contracts between municipalities and BSS provisioners come with many clauses re-
garding quality of service. Rebalancing frequency and quantity are defined in some
agreements. The quality of the service provided by BSS operators is not easily ver-
ifiable. Our methodology can reveal spatial and temporal frequencies of rebalancing
completed by provisioners and allow municipal oversight of service agreements.

Our work utilizes trip data, gathered from the few BSS provisioners who do make
their trip data public, to test trip estimation models which use scraped station level
data, gathered at regular intervals, as their inputs. The resulting error rates show
that the daily aggregated model (DAM) consistently provides the best estimates of
trips using a simple methodology. The analysis of the created synthetic data sets at
various� intervals allowed the comparison of estimation error at di↵erent data collection
frequencies showing that ten minute intervals can provide su�ciently good estimates.
The application of the DAM on scraped station level data at a ten minute� also supports
that low-error estimations of Td (for those BSS not experiencing technical issues) can be
accomplished. Logistically, gathering data at this frequency to apply the DAM is not a
strain on network limitations or storage and individuals could perform these estimations
independently.

In an e↵ort to democratize the evaluation of BSS we created new sets of data beyond
observed station levels, x�sdt, typically used for analysis. We formalized interactions,
i�sdt, synthetic levels, z�sdt, rebalancing, r, collisions, c, and their relationships. We
believe our formalization of the properties and relationships open up possibilities of
deeper BSS analysis beyond which has been done to date and that our methodology has
applications for other systems that contain flow data sampled repeatedly at fixed points.

The estimated number of daily trips can serve as an indicator of potential problems
with a BSS. A deeper quantitative and especially qualitative analysis is necessary to
make statements as to whether a BSS is a success or a failure. Until trip data or daily
trip counts are consistently available this work provides a method for estimating the
daily trips in order to open a discussion or analysis about the e�cacity of a BSS and
whether it may be linked to provisioner management, station density, scheme pricing,
urban structure, cycling infrastructure or local legislation.
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Chapter 4

Rebalancing strategies, patterns
and purpose

Outline

We provide a first spatio-temporal exploration of bicycle sharing system (BSS) rebal-
ancing patterns from data extracted for individual stations at a fine temporal scale and
operator interviews. Analysing rebalancing operations for nine BSS we describe implica-
tions for operators, municipalities and future optimization work. We find that stations
adjacent to transit hubs receive disproportionate amounts of rebalancing relative to trips
and that rebalancing is more often responding to morning and afternoon demand ex-
ceeding station dock capacities rather than longer term accumulations of bicycles. More
importantly we observe some operator’ rebalancing behaviours constrained between op-
posing goals of maximizing trips, profits and service level agreements. Many BSS have
no explicitly defined purpose, but existing rebalancing strategies can support or clash
with the purpose or suggested benefits of a BSS.1

4.1 Introduction

In the last ten years bicycles sharing systems (BSS) became standard in large European
and North American cities. As a by-product of their success, the dominant complaint of
BSS users is the occurrence of stations being completely empty or full (Raviv, Tzur, and
Forma, 2013). Bike-share operators aim to minimize these occurrences by redistributing
bicycles between stations, and subsequently freeing docks. This rebalancing process is
a theoretically complex optimal routing problem with added complexity due to truck
and station capacity limitations, concurrency (multiple trucks) and spatial demand pre-
diction, all within a spatio-dynamic system. The variety of terms used to describe the
process, balancing (Benchimol et al., 2011; Kloimüllner et al., 2014; Rainer-Harbach et
al., 2013), rebalancing (Erdoğan, Battarra, and Calvo, 2015; Regue and Recker, 2014),

1This chapter is based on (Médard de Chardon, Caruso, and Thomas, 2016).
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repositioning (Forma, Raviv, and Tzur, 2015; Han, Luong, and Ukkusuri, 2015; Raviv,
Tzur, and Forma, 2013), relocation (Erdoğan, Laporte, and Calvo, 2014) and redis-
tribution (Labadi et al., 2012; Labadi et al., 2014; Lin and Chou, 2012; Nair et al.,
2013; Pfrommer et al., 2014), stems from the many disciplines studying the problem
(operations, logistics, engineering, economics, mathematics and computer science).

This chapter analyses BSS spatial and temporal rebalancing operations for nine BSS
(Boston, Chicago, London, Luxembourg, Minneapolis, New York City, San Francisco,
Vienna and Washington) and describes implications for operators, municipalities and
future optimization work. We first provide definitions and position our work in the
literature.

We define the moving of bicycles as redistributing and the state of a BSS as the mo-
mentary distribution of bicycles and available docks. Rebalancing implies redistribution
to achieve a state where all stations have roughly equal proportions of bicycles to docks.
An analysis of 38 BSS by O’Brien, Cheshire, and Batty (2014) shows the typical ratio
of docks to bicycles to be about two to one. This means that it is possible to have each
station in a BSS be about half full. We call this total balance. From a user’s perspective
a BSS could be considered in good order so long as one bicycle and dock is available at
each station. In the literature the term ‘balanced’ is used in terms of desired balance
(Benchimol et al., 2011; Chemla, Meunier, and Wolfler Calvo, 2013; Erdoğan, Laporte,
and Calvo, 2014; Forma, Raviv, and Tzur, 2015; Kloimüllner et al., 2014). In reality no
BSS should aim to be totally balanced as short-term demand would quickly cause an un-
desirable state. We therefore use the term balanced to imply having the desired balance
and define the process of rebalancing as striving to obtain a desired balance. Literature
analysing other BSS aspects refer to rebalancing (Ahillen, Mateo-Babiano, and Corco-
ran, 2015; Beecham, Wood, and Bowerman, 2014; Parkes et al., 2013; Wood, Slingsby,
and Dykes, 2011; Zhao, Deng, and Song, 2014), or redistributing (Nair et al., 2013;
Ricci, 2015; Shaheen, Guzman, and Zhang, 2010) and describes the state of a BSS when
many stations are full or empty as unbalanced (Ahillen, Mateo-Babiano, and Corcoran,
2015; Borgnat et al., 2011). Operators refer to full or empty stations as experiencing an
outage, while otherwise being normal.

Within the BSS literature, rebalancing is a mature subfield due to the rapid evolution
of the theoretical work (Benchimol et al., 2011; Erdoğan, Battarra, and Calvo, 2015;
Erdoğan, Laporte, and Calvo, 2014; Forma, Raviv, and Tzur, 2015; Han, Luong, and
Ukkusuri, 2015; Kloimüllner et al., 2014; Labadi et al., 2012; Labadi et al., 2014; Lin
and Chou, 2012; Nair et al., 2013; Pfrommer et al., 2014; Rainer-Harbach et al., 2013;
Raviv and Kolka, 2013; Raviv, Tzur, and Forma, 2013; Regue and Recker, 2014) in
which we see three distinct types of rebalancing. Static rebalancing (Benchimol et
al., 2011; Chemla, Meunier, and Wolfler Calvo, 2013; Erdoğan, Battarra, and Calvo,
2015; Forma, Raviv, and Tzur, 2015) simulates the optimal redistribution of bicycles
to reduce station outages when system use is at a minimum, i.e., during the night.
Dynamic rebalancing (Kloimüllner et al., 2014; Labadi et al., 2012; Pfrommer et al.,
2014; Regue and Recker, 2014) strives to achieve the same goal but while the system is
in use. This is much more relevant for BSS operators, which mostly only redistribute
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bicycles during the day. New York City2 (NYC), London and Paris are known exceptions.
Paris, for example, uses 20 trucks (Shaheen, Guzman, and Zhang, 2012), each with a
capacity of 25 bicycles (Forma, Raviv, and Tzur, 2015), for rebalancing 24 hours a
day (Benchimol et al., 2011). Finally, the third rebalancing behaviour, which is also
dynamic, aims to reach a bicycle distribution matching a forecast demand (Nair et al.,
2013; Regue and Recker, 2014). Existing literature discusses how to optimally rebalance,
but for those BSS constrained by high usage, such as NYC, outages are inevitable and
where to prioritize rebalancing, rather than how, is of greater importance. Each of
these optimal rebalancing models, preoccupied with minimizing outages through various
implementations result in di↵erent outcomes. Meanwhile operators may have contrasting
practical priorities, such as maximizing trips or revenue.

While optimisation literature is abundant, no work describing spatial rebalancing
patterns or operations of BSS in depth has been found. We aim to fill this gap using
discrete historical station rebalancing quantities combined with station levels, trip flows
and operator interviews to explore the spatial and temporal rebalancing behaviour for
nine case studies. Further, just like di↵erent optimal rebalancing models result in dif-
ferent outcomes, we propose that rebalancing behaviour heavily influences the outcome
of BSS in regards to their goal (maximizing trips, profits, equity, cycling modal share,
etc.). Hence, we not only analyse rebalancing outcomes but also how these operations
relate to the purpose of a BSS.

We begin by presenting our research methodology (Section 4.2), the results of our
operator interviews (Section 4.3) and spatio-temporal analysis (Section 4.4), followed by
a discussion of how rebalancing impacts outcomes (Section 4.5) and conclude (Section
4.6).

4.2 Methodology

4.2.1 Case studies

Data availability determined our selection of case studies. Station level data can be
gathered from most BSS freely, but trip data, providing origins and destinations, requires
operators making it available. Our nine case studies di↵er by operator, size and density,
data collection period and usage intensity (Table 4.1).

Our case studies capture di↵erent operations motivations: Non-profit (Minneapolis),
contract (Motivate and Serco), advertising (JCDecaux) and a hybrid of the latter two
(Gewista).

San Francisco is the smallest of our case studies and London the largest. London
has twice the number of stations as NYC but a lower density3. The remaining case
study densities (Table 4.1) are well below the 10 to 16 stations per square kilometre

2For simplicity, in the balance of this chapter, we refer to a city’s BSS by naming the principle city
alone rather than the brand name or specifying that we are referring to its BSS.

3The same methods as O’Brien, Cheshire, and Batty (2014) is used to calculate station densities
but with 300 metre bu↵ers as this is the distance between stations recommended by The Institute for
Transportation and Development Policy (Gauthier et al., 2013).
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Launch Stations Station Bicycle Days of Tripsc/dayc Data

BSS year Operator counta densityb counta datac /bicycled date range
Boston 2011 Motivatee 95 4.4 767 177 3.3 2011-08-23 - 2012-09-28
Chicago 2013 Motivate 300 4.6 2,406 127 2.6 2013-06-28 - 2014-01-01
London 2010 Serco 725 7.5 9,250 175 3.1 2013-03-25 - 2014-01-27
Luxembourg 2008 JCDecaux 72 4.9 698 589 0.8 2011-12-15 - 2014-05-27

Minneapolis 2010 Non-profitf 167 4.4 1,410 125 1.1 2013-04-24 - 2013-11-04
New York City 2013 Motivate 330 9.5 5,568 134 6.2 2013-07-15 - 2014-01-27
San Francisco 2013 Motivate 67 5.2 606 104 1.6 2013-08-30 - 2014-01-27
Vienna 2003 Gewistag 102 4.0 1,141 233 1.8 2012-01-01 - 2012-12-27
Washington 2010 Motivate 305 4.8 2,560 172 4.0 2013-04-24 - 2014-01-01
a Maximum observed. b Per km2, c Weekdays. d Mean values biased for data sets with partial years.
e Formerly called Alta Bicycle Share. f Nice Ride Minnesota. g Majority owned by JCDecaux.

Table 4.1: Descriptive statistics for the nine studied BSS.

recommended (Gauthier et al., 2013). The spatial shape and density of case study
stations, which can impact rebalancing, are displayed in Figure 4.1.

Our data covers spans from 2011 to 2014 (Table 4.1). To simplify analysis we focus
on weekdays alone, regardless of holidays. As the number of trips fluctuate between
seasons, some date ranges engender an aggregation bias due to incomplete years. We
believe data span to be of lesser importance than the fact that data for Chicago, NYC
and SF encompass months directly after system launch, likely containing more irregular
usage and rebalancing than mature systems. Although NYC launched within our data
span, it has the highest number of trips per day per bicycle (6.2), with Washington,
Boston, London and Chicago in the middle range (4.0 - 2.6) and Vienna, SF, Minneapolis
and Luxembourg at the low end (1.8 - 0.8).

4.2.2 Interviews

We contacted the nine BSS operators desiring to know what strategies they apply, how
many vehicles of what capacity are operated, how many bicycles are rebalanced, what
they believe the main constraints to rebalancing to be, how service level agreements
a↵ect rebalancing and what information systems are used by operators to facilitate
rebalancing.

Of the nine operators, Boston, Minneapolis and NYC completed telephone inter-
views, Vienna provided full responses by email and San Francisco and London provided
some of the details requested by email. Media articles and reports were used to comple-
ment missing information.

4.2.3 Rebalanced e↵ective usage (REU)

Rebalancing analysis requires understanding how BSS stations are used. Paradoxically,
many trips are only possible due to rebalancing, and, conversely, certain trips increase the
need for rebalancing. Past analyses have used station clustering (Froehlich, Neumann,
and Oliver, 2009; Lathia, Ahmed, and Capra, 2012) of daily normalized available bikes
(NAB) to characterize BSS. A drawback of this technique is that rebalancing operations
a↵ect station profiles and clustering of stations for generalization. Instead of NAB,
we define rebalanced e↵ective usage (REU) of stations, combined with departure and
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Figure 4.1: Case study stations plotted at the same scale.
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Figure 4.2: Normalized available bikes (NAB) and rebalanced e↵ective usage (REU) at
Boston’s North Station (weekdays Aug. - Sept. 2012)

arrival profiles for cluster analyses, using Ward’s hierarchical algorithm4 (Murtagh and
Legendre, 2014), in order to characterize stations ahead of rebalancing analysis.

Rebalanced e↵ective usage (REU) of stations is the cumulative sum of bicycle check-
ins minus check-outs within time intervals, illustrating the trips rebalancing a↵ords.
Figure 4.2 compares RUE and NAB with Boston data as an example. The REU plots
omit rebalancing and collisions i.e., coincident check-in and check-out transactions which
occur within a station level retrieval period. Collisions are desired transactions for a
BSS, as they require no rebalancing. Measuring mean REU amplitude (Figure 4.3)
provides the number of docks needed, based on historical averages, to satisfy equal trips
without rebalancing. Station mean REU plots also allow categorization of stations based
on net tendency (B and B’ quantities in Figure 4.3): stations that have roughly equal
numbers of trip starts and ends (transaction balanced), more people leaving (transaction
negative) and finally stations with more arrivals than departures (transaction positive).
Any station that is transaction positive or negative will require rebalancing. Conversely,
a station being anything but transaction balanced is caused by rebalancing. Amplitudes
that exceed dock count are another indication of rebalancing.

4As we aggregate data to hours and use local time, we do not expect station values to be out of
phase and therefore do not use a temporal clustering technique such as dynamic time warping(Froehlich,
Neumann, and Oliver, 2009). We found the clustering of the alternative measures provide clearer spatial
structures than NAB.
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4.2.4 Rebalancing analysis

We performed analysis using a variety of statistical and visual analysis methods. First,
identical reports were generated for each BSS containing: temporal and spatial evolutions
of the number of stations, trips and rebalancing quantities, hierarchical clustering of sta-
tions, station REU profiles, net flow vector maps, occurrences of full or empty stations,
relationships between trips and rebalancing, net distributions of origins and destinations
across portions of the day and other summary statistics. Second, animations were used,
displaying synchronously mean station levels, net rebalancing quantities and net transac-
tions. Then an interactive web based map (bikeshare-research.org/rebalancing) was used
to superimpose stations, trips and rebalancing over di↵erent periods. Selecting stations
provides detailed station profiles in terms of daily distribution of full and empty outages,
origin and destination trips, withdrawals and deposits of bicycles by rebalancers, as well
as NAB and REU profiles. Third we also visualize daily historical station levels, user
check-ins and check-outs as well as rebalancing deposits and withdrawals.

4.3 Interview results

From interviews, media and data sources we present rebalancing components and oper-
ational strategies while considering how these impact potential BSS goals.

4.3.1 Vehicles, facilities and sta↵

Vans, cube and pickup trucks, trailers, electric carts and even bicycles with trailers are
used in di↵erent combinations (Table 4.2). Vans with a capacity of about 25 bicycles
are used by most systems. Inclement weather and weekends typically require fewer
rebalancing vehicles. Rebalancing vehicles reportedly consume between 8 - 17 litres
per 100 kilometres (City of Seattle, 2016c; Fishman, Washington, and Haworth, 2014)
making alternatives important if the BSS purpose relates to CO2 emission reductions.
London in the past operated electric vehicles pulling trailers carrying up to 20 bicycles
but now solely uses cube trucks from which emissions now possibly exceed reductions
from user modal shift (Fishman, Washington, and Haworth, 2014). Bike trailers, a
sustainable alternative, rebalance 4 bicycles at a time. While Boston and Washington
find these of limited use due to their small carrying capacity (Capital Bikeshare, 2013),
NYC regularly uses 12 bike trailers for their e�ciency at moving bicycles short distances
and ability to bypass congestion. This contrast in opinion is likely associated with NYC’s
higher station and cycling infrastructure density (Table 4.1).

Chicago and Washington, each having about 300 stations, require roughly 260 hours
of rebalancing work per week5. As BSS trips vary by season, weather and day of the
week so does rebalancing and demand for rebalancers. Many operators provide seasonal

5Chicago uses about 43 employees with six hour shifts and Washington 25 with ten hour shifts
(Capital Bikeshare, 2015c; Maus, 2013; Steinberg, 2014). Chicago rebalancers and technicians do not
receive health benefits due to short shifts and have been trying to unionize in order to do so (Steinberg,
2014).
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SLA %
Vehicle Vehicle Reb. Daily Daily Rebalancing station

BSS quantity capacity hours trips reb. quoted normal
Boston 4/1 25/4 16 1,420 168 18K/month 85%
Chicago 5-7a 25 18 3,830 809 1-1.3K/daya -
London 17-21 18 24 23,393 4,989 - 82%
Luxembourg - - 16 476 102 - -
Minneapolis 3 15 16 1,516 148 250 none
NYC 3/6/12 45/22/4 24 26,497 2,564 30-65K/month 98%
San Francisco 2/1 25/4 16 928 130 - -
Vienna 3 20 8 1,809 124 4% of trips none
Washington 10b 25 20c 7,842 923 2,600/weekdayc -
a Gardner (2013) and Weissmann (2014). b Maus (2013).
c Capital Bikeshare (2015c).

Table 4.2: Summary of case study rebalancing operations.

contracts or sub contract rebalancing during busy periods. Some outsourced bicycle
trailer rebalancers are paid per bicycle moved, sometimes leading to unsurprising side-
e↵ects. For those BSS seeking equity, regular work shifts are more ethical than these
profit maximizing techniques.

Rebalancing operations vary from 8 to 24 hours a day (Table 4.2) and can be de-
duced from rebalancing. Chicago operates three 6 hour shifts (Figure 4.4). For NYC,
which operates 24 hours a day, rebalancing shifts have di↵erent responsibilities. During
rush hour, fixed rebalancing patterns are carried out by all vehicles attending to areas of
expected high demand. Between daily rushes, half of o↵-peak rebalancers address unde-
sirable station imbalances. Finally, night shifts address bicycle, dock and station repairs
and the redistribution of the relatively static system for the morning rush. Other BSS
typically balance their systems at the end of the day or early morning for the forthcom-
ing morning rush. Night shifts have reduced tra�c congestion and associated emissions
but also increased e�ciency and decreased costs as a result. Night rebalancing therefore
supports profit and sustainability oriented operators.

Our mean rebalancing quantities observed (Table 4.2 - Daily reb.) are lower than
reported in interviews and media, with the exception of Vienna6, likely due to many
systems having grown since our data gathering. Rebalancing quantities for five case
studies are around 10% of the number of trips, while Chicago and Luxembourg, have
20%, and London and San Francisco, about 35%. We observe erratic station level data
for San Francisco and Chicago, explaining their higher rates.

As is the case in most public-private partnerships, an expected level of service is
defined (Table 4.2). For example, Boston’s service level agreement (SLA) requires that
between 6 a.m. and 10 p.m. each station be normal, not full or empty, 85% of the time,
meaning outages can occur up to a maximum of 144 minutes per station per day. Some
SLA define outages as when a station and its neighbour(s) are not normal but this was
found di�cult to measure and enforce. London and NYC use a priority system, where a

6Vienna’s information system, at times, erroneously reported zero bikes for minutes or hours before
returning to the previous bicycles availability, exaggerating rebalancing observed.
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number of stations are given more stringent outage limits than others. Priority stations
in NYC, with 32 minutes of outage allowed per day, are challenging to maintain during
busier months (NYCBS, 2015a).

4.3.2 Valet and corral service

Although terminology di↵ers, a valet service is typically where rebalancing sta↵ removes
bicycles from station docks to prevent popular stations filling up. Bikes are either loaded
into vehicles or ‘corralled’ on the side walk or between docks until the process is reversed.
Valet services reduce operator costs and improve reliability by guaranteeing users the
ability to return their bicycles. Users sometimes abandon undocked bicycles adjacent
to full stations or call customer service for assistance. More serious are reports that
some members simply do not rely on the systems due to the anxiety of not finding free
docks at their destination and are less likely to renew their subscriptions. Valet services
guarantee users can deposit their bicycle, providing a better user experience and reduce
costs and potentially lost membership revenue.

Reverse valet services, refilling empty stations, are infrequently provided as operators
prioritize full station avoidance over empty ones. Full outages are more frustrating for
users and more reported by media. Empty outages therefore are understandably seen as
of inferior importance even though SLA do not typically distinguish between the two.
Prioritising full outages in SLA could increase quality of service.

Replacing valet service with more stations or docks is not necessarily e↵ective in
preventing outages due to latent demand. London’s Waterloo train station initially
provided a BSS valet service (Transport for London, 2010) but stopped after a 126 dock
station was installed to provide rail commuters equivalent quantities of bicycles. In
2012 Waterloo station once again had a valet service for morning and evenings with the
peculiarity of a night guarded corral.

Rebalancing trucks, during rush hour, operate similarly to a reverse valet service as
bikes are often checked out as quickly as rebalancers, those doing the rebalancing, unload
the bicycles from trucks and dock them for use. The repositioning of bicycles results
in better service relative to corrals as bikes remain usable within the system but at a
higher cost and potentially with greater CO2 emissions.

Valet services further intensify rebalancing’s nature of distorting station usage rel-
ative to demand. A station with corral service at central London’s Stonecutter Street,
for example, has 30 times the number of trips of an adjacent station 100 metres away
while no train station or landmark makes it distinctive.

Valet services typically run seasonally, in good weather and at popular destinations,
usually at CBD and large universities in the morning and train stations and residential
areas in the afternoon, but also for special events. A weekend valet service is unusual,
but present in Chicago (Divvy Bikes, 2014). Valet services currently exist in Boston,
Chicago, London, NYC and Washington (Capital Bikeshare, 2015a).

The number of bicycles handled by valets varies. New York City’s Penn Station
(Figure 4.6) provides 400 bicycles from an adjacent warehouse each morning, with the
opposite process in the evenings. This reverse valet service still runs out of bicycles
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during the morning. Depending on the goal of a BSS, such as increasing private utility
cycling modal share, running expansive valet services, with non-negligible costs, may
be counterproductive. Alternatively, in order to maximize profits, increasing service
dependability through valets is key.

4.3.3 Software

Despite the extensive number of optimal rebalancing publications, no known operator has
adopted such software. Vienna tested an optimal rebalancing methodology (Kloimüllner
et al., 2014) but the operator stated obtaining better results by relying on sta↵ experi-
ence.

All rebalancing operators use applications and maps, mainly developed by third
parties, showing the locations of full and empty stations in conjunction with local ex-
pert knowledge of tra�c conditions and special events. Cycling and BSS enthusiasts
are responsible for developing many of these applications out of curiosity and interest.
CabiTracker, showing station locations, states and outage durations, facilitates operator
SLA compliance. The creator was later hired by Alta Bicycle Share (Capital Bikeshare,
2014), making the software available to many of their systems (cabitracker.com, hubway-
tracker.com, divvytracker.com, cogotracker.com, citibiketracker.com). Oliver O’Brien’s
web maps (bikes.oobrien.com) are also commonly used in Minneapolis, NYC, San Fran-
cisco and Washington (Maus, 2013) dispatch centres. New York City is the sole operator
we know using custom software forecasting station demand and trip flows while Lon-
don has trialled similar software (Serco, 2015). Stock software is provided by hardware
vendors but operators stated these do not provide the clarity of information desired.

4.3.4 Strategy

Multiple rebalancing strategies exist and operate under di↵erent constraints.
Minneapolis initially aimed to have stations be half full, totally balanced, before

quickly realizing this should not be their goal and may be counterproductive. Stations
are divided into high and low value based on how many trips they generate. Rather
than spending time addressing outages indiscriminately, as SLA typically require do-
ing, their priority is on high value stations where outages of short duration will have
greater impacts on customers than longer outages at low-value stations. This strategy is
possible for Minneapolis by not having an SLA specifying acceptable outage durations.
Minneapolis is also innovative in their labour practices by encouraging multi-skilling
through the rotation of shift leaders to make decisions regarding rebalancing. Vienna
also has no SLA but rebalancing is more focused on moving bicycles back uphill as the
city is on a slight slope.

Routine dictates rebalancing for NYC during peak periods as demand is largely con-
sistent. Trucks and bicycle trailers follow their set patterns every day, unless weather
or special circumstances change requirements. Between peak periods, adjustments are
made to address outages but also prepare for the next peak period. Rather than re-
balance at the system scale, NYC and Washington delineate smaller control zones to
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rebalance within, similar to some optimal rebalancing models in the literature. The
shorter rebalancing distances have a few benefits. Bicycles with trailers are used in
NYC for rebalancing short distances. The bicycles have no emissions, are more cost-
e↵ective and, due to tra�c, can move bicycles faster than trucks. Rebalancing e�ciency,
the moving of bicycles by an individual, varies from 16 to 33 bikes per hour in Chicago,
NYC and Washington (Capital Bikeshare, 2015c; Weissmann, 2014) but it is unclear if
this is due to vehicle choice, congestion, station density or strategy.

Bike depots, present in major neighbourhoods, allow NYC operators to quickly re-
spond to high demand stations, typically in conjunction with a valet service, by stocking
bicycles in close proximity. Some of these depots, near major transportation hubs, are
rebalanced by bike trailer. Depots often hold 200 to 400 bicycles overnight and are com-
bined with repair services. Washington, rather than store bicycles in depots, collects
corralled bikes with large trucks to redistribute the bicycles in residential areas (Capital
Bikeshare, 2015c) in the outskirts of the system. Depots allow faster distribution with
the concession of perhaps reducing system bicycle availability.

In discussions with operators regarding rebalancing strategies, they distinguished
between optimizing customer experience and satisfying outage SLA. The two goals are
not seen as coincident. While existing optimal rebalancing models are complex, the
application still requires many practical non-trivial facets of BSS operations relating to
BSS purpose be integrated. For example, an operator prioritizing sustainability may
only be interested in models using bike trailers and electric vehicles, having di↵erent
constraints than gasoline vehicles.

4.4 Data analysis results

For brevity, rebalancing validation is in Appendix B and we present maps of only four
case studies, with the remaining five, as well as additional analysis tools, animations,
plots and maps available on the web addendum (bikeshare-research.org/rebalancing/).

4.4.1 Characterising trips

Looking at the dispersion of trips, many BSS have a few stations with disproportionately
large amounts of trip origins and destinations made possible through rebalancing and
valet services (Figures 4.5 and 4.6). In Boston, for example, trips to and from North and
South Stations account for almost a fifth of trips in the system7. Weekday mornings,
North Station has large net outflows while South Station has similar quantities of check-
ins and check-outs. The yellow cluster shows stations with higher morning destination
trips and higher evening origin trips. The navy blue stations are high volume stations

7Our data only contains a short span of trips from the summer 2012 system expansion, from roughly
60 to 95 stations, into Cambridge, Brookline and Somerville. We do not observe the known substantial
number of trips north of the Charles River, especially surrounding MIT. The system has continually
expanded and has 140 stations as of 2014 (Hubway, 2014). Cambridge accounts for 20-25% of system
activity in 2014.
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but generally balanced, and finally the light blue stations indicate stations of lower usage.
Cluster colours are nominal and not comparable between case studies.

Normalized available Bicycles (NAB) and rebalanced e↵ective use (REU) station
clustering were tested but using distinct check in and check out mean values was found to
best represent station usage while reducing error, which NAB contains, and maintaining
intensity, partially removed by REU.

Alternative methods e↵ective at abstracting BSS characterization also included map-
ping morning and evening net flow using glyphs, showing the orientation and magnitude
of trip flows (web addendum), and proportional symbols showing the net check-in, check-
out balance at stations (Figures 4.7 and 4.8).

Trip data is representative of where bicycles and spaces are available at the time of
demand and therefore biased, not representing demand homogeneously. As rebalancers
a↵ect the spatial and temporal presence of bike and dock availability they directly impact
which trips can occur. Further, operator spatial demand preconceptions may therefore
be self-fulfilling as areas with few bikes allow few trips and appear to represent low
demand.

Station trip imbalances (more trips starting than ending at a station, or vice versa)
over time is only possible due to rebalancing. It therefore becomes impossible to discuss
trips without rebalancing. While rebalancing aims to limit the occurrence of full and
empty stations, it is logistically unlikely this is spatially and homogeneously achieved.

As seen earlier, rebalancing is often prioritized where it is deemed most useful ac-
cording to operator goals of profit, satisfying user demand or SLA obligations. However,
current demand reinforces itself as existing flows are facilitated by rebalancing and unex-
pected journeys are not. The resulting bias due to operator preconceptions and station
constraints temper trip data’s ability to represent natural population flows and subse-
quent analysis. Making any conclusions based on trip data requires understanding the
character of spatial and temporal rebalancing. So while the purpose of a BSS may be
defined it is unclear whether municipalities and operators are aware of how rebalancing
shapes system use, perhaps in contrast to the municipal purpose of the BSS.

4.4.2 Rebalancing

Rebalancing types

Some rebalancing in Paris is allocated to moving bicycles uphill due to people mostly
riding downhill. Special stations, named V+, were created o↵ering time-in-lieu rewards
for members riding bicycles back uphill. This type of rebalancing is dominant in Lux-
embourg and Vienna where noticeable slopes are present. We call this type of rebalanc-
ing polarized rebalancing, where either rebalancing deposits or withdrawals consistently
occur at a station, in this case related to the relative elevation of stations. Polarized
rebalancing is necessary for any station with a positive or negative REU profile tendency
(Figures 4.3 and 4.11).

The second rebalancing behaviour we observe, especially at transit hubs, is caused
by morning bike demand exceeding supply and afternoon return trips struggling to find
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free docks. Operators address this by depositing bicycles as rapidly as possible at the
origin of trips in the morning and performing the reverse in the afternoon. For central
business district (CBD) stations the opposite occurs, emptying in the morning, filling in
the afternoons. Operators extend the capacity of bicycles available at stations through
rebalancing, we therefore define this as station extension rebalancing (SER). This costly
process relocates bicycles so they may either be immediately reused during the same
peak period or simply put in another station or depot for storage. Stations adjacent to
those experiencing SER sometimes serve as rebalancing storage but depots have reduced
this behaviour for some BSS. We observe frenzied SER in Boston, Chicago, London, SF,
NYC and Washington.

Neither polarized rebalancing or SER is theoretically worse than the other, they both
typically require one bicycle being moved for one additional trip. There are however a
couple additional ine�ciencies associated with SER. In some situations SER not only
requires providing bikes at origins but also supplying docks at destinations. The second
problem lies in the decreased e�ciency of SER often causing too many bicycles to be
moved in one direction only to be moved back again.

Station REU plots clearly illustrate the presence of polarized and SER rebalancing
(Figure 4.11). The net use of a station, bicycle check outs minus check ins, exceeding
the number of docks available at a station indicates where rebalancing has occurred. In
these cases a symmetric shape is caused by SER rebalancing and polarized rebalancing
if not.

Spatial distribution

Net rebalancing, the sum of bicycle deposits minus withdrawals, shows that di↵erences in
elevation cause greater trip flows downhill in Luxembourg and Vienna, where polarized
rebalancing is predominant. In London and Washington users have a greater tendency
to cycle inwards towards the system centre, visible by the net tendency of rebalancing
bikes from the centre to the outer half of the system. While other BSS have some spatial
clusters they show no consistent spatial tendencies relating to employment or residential
areas.

Morning (6 - 10 a.m.) and afternoon (3 - 7 p.m.) net rebalancing provide clear
patterns but generally not surprising ones. Across most case studies we see operators in
the morning remove bicycles from popular destinations such as universities, peri-urban
train stations and the CBD to drop them o↵ at CBD train stations, bus depots and
residential areas. Minneapolis’ strategy of proximity rebalancing is visible, as only sta-
tions within two kilometres of the CBD are refilled using bikes arriving in the core, while
Luxembourg and Vienna show redistribution consistently moving bicycles uphill during
mornings and afternoons (Figure 4.9). Afternoons we observe rebalancing in the oppo-
site direction for Boston, Chicago and London but Washington has a unique rebalancing
pattern where bicycles are withdrawn from a ring around the CBD and deposited within
and the outskirts (Figure 4.10). Washington’s rebalancing is also distributed more evenly
across many stations while Boston, Chicago and New York City focus on fewer stations
with greater intensity. Finally, while New York City and Washington usage trends are
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mirrored morning and afternoon (Figure 4.8), rebalancing strategies are not (Figure
4.10).

Spatial distributions of rebalancing and user transactions do not match. A few
stations are being heavily rebalanced while many other stations have little rebalancing
yet still generate significant numbers of trips. Operators justify the priority of modal
transition locations with the need for punctuality. Having no dock available to return a
bicycle when needing to catch a train causes great frustration. Operators have facilitated
expectations of high quality service at modal transfer hubs without perhaps considering
if this quality, and concentration of operator resources, constrained by space, cost, and
an SLA can be sustained as it gains popularity or even whether serving commuters
supports the system purpose.

Time and space constraints

Operator rebalancing is constrained by road tra�c and the extremely high demand over
short periods of time. Peak BSS usage coincides with road tra�c, and as such dampens
operator’s ability to reposition bicycles when most needed. While the fear of cycling due
to car tra�c is well documented, road congestion preventing e↵ective BSS rebalancing
is another example of cars preventing people from cycling in Boston and Washington
(Capital Bikeshare, 2013).

Restocking stations with extremely high demand to meet SLA requirements may
not be cost e↵ective for operators. In Boston, Chicago, NYC and Washington deposits
of dozens of bicycles in high demand locations and periods are often all checked-out
before trucks are emptied. Rebalancers’ innability to keep up with demand is visible in
some station REU profiles (Figure 4.11). What appears to be sharp demand followed by
decreased demand is an artefact of outages and rebalancing a↵ording a decreased trip
rate.

Logistically keeping up with short term demand, especially at transit hub stations, is
virtually impossible. Bicycles cannot be restocked quickly enough and increasing bicycle
supplies can be ine�cient due to latent demand. Penn Station, in NYC, is the system’s
busiest and considered the most cost e↵ective by the operator. So servicing commuters
can be profitable to operators but it is unclear whether the large distortion of rebalancing
allocation benefits local residents or the BSS goals.

Larger stations, in terms of docks, provide greater flexibility to reduce outage oc-
currences. Station sizes, however, are constrained by sidewalk and road space available.
While sidewalk space is restricted by pedestrian use, trees, lamp posts, bus shelters and
parking meters among others, the removal of on-street parking is a sensitive political
issue, can be costly if the BSS must o↵set lost parking revenue and may compete with
other cycling demands such as cycle track development. The space constraint means that
in some instances station sizes are insu�cient to handle daily fluctuations of bicycle and
dock demand.
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Figure 4.12: Rebalancing, transactions and bicycle and dock availability for a Boston
and NYC station.

E�ciency

An important motivation for the reduction of SER is its ine�ciency. For most BSS
we observe occurrences of stations being rebalanced in excess following morning peak
periods only to require the opposite rebalancing for the next peak period. The same often
occurs following afternoon peak periods requiring further rebalancing during the night
or next morning (Figure 4.12). Rebalancing ine�ciency may be caused by a variety of
factors. Morning crews may have defined station state goals contrasting with afternoon
requirements. Rebalancers, who are sometimes paid per bicycle moved, may not worry
about the purpose of their actions. It appears target station states are generally not
defined. A solution to increasing system e�ciency would be creating time of day station
fill rate targets or quotas dictated by REU profiles.

Stations that are generally and naturally balanced, not simply constrained into being
so by rebalancing or a lack thereof, provide an important opportunity for requiring little
SER, if they can be su�ciently expanded. Stations that are transaction positive or
negative will always require polarized rebalancing.

If space is unavailable to increase station size, a new station nearby may better suit
space constraints. Providing stations which are a little less accessible in proximity to
transportation hubs can provide important resilience. Spontaneous users will ignore
these stations while determined users will be grateful for the station’s bike or docks.
While stations have overhead costs, reallocating station size expenditures to new station
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Busiest station 2nd busiest 3rd busiest
BSS id score* id score* id score*
Boston 22 22.8 38 2.7 36 27.2
Chicago 91 2.4 90 6 35 7.7
London 14 1.4 154 1.2 194 2.6
Luxembourg 2 2.8 17 3.8 12 7.4
Minneapolis 30042 5.2 30029 4 30006 12.8
NYC 519 5.3 521 2.6 497 10.2
San Francisco 70 4.1 50 12 77 14
Vienna 1022 38.4 1032 30.3 1067 44.3
Washington 31623 11.6 31200 23.8 31201 15.1
* Where score = transactions/rebalancing over a period.

Table 4.3: E↵ective transaction ratings for top three stations in terms of trips.

locations increases coverage, proximity to services and residents and trip resilience.

A measure of station e�ciency can be created by comparing trips and rebalancing.
Boston’s North Station (Figure 4.5), for example, served as the origin or destination for
30,134 weekday trips and had 11,168 bicycle rebalancing deposits or withdrawals. South
Station (Figure 4.5) in contrast had 37,011 transactions but only 1,625 rebalancing
actions. Transforming these values into e↵ective transaction ratings, ep = tp/rp, where
tp and rp are the transactions and rebalancing at a station over a period p, creates station
and BSS comparable values (Table 4.3). Boston’s North and South Station (id 38 and
22) yield values of 3 and 23 respectively, meaning enabling North station transactions
is much costlier. While it may appear that preventing outages at high ep stations is
of greater importance, these stations are also more likely to self balance. However, if
reducing outages is the goal then a small rebalancing e↵ort at higher ep will have longer
lasting e↵ect.

The concentration of rebalancing quantities at few stations also evokes questions of
e�ciency. Boston’s top 10% of stations, in terms of rebalancing, experience half of all
system rebalancing but only 26% of transactions (Table 4.4). Similarly, NYC’s busiest
stations for rebalancing have 38% of the activity and also half the amount of transac-
tions (19%). With the exception of Vienna, and its inflated quantities, the other BSS
experience higher rates of transactions for the most rebalanced stations. This suggests
Boston and NYC more heavily rebalance stations dependent upon it, such as train sta-
tions. Alternatively, taking the top 10% of stations with the most transactions we see
that the rebalancing to transaction proportions are fairly similar, with the exception of
Vienna and Washington, where Washington’s rebalancing is more widely dispersed than
other systems.

Observing past station states (Figure 4.12) we see stations experiencing large outage
rates, where known demand exists and would likely generate additional trips, yet are
consistently and consciously infrequently rebalanced. This is an explicit example of how
operators shape trips and potentially perceived spatial demand.

Providing larger stations rather than repeatedly rebalancing busy transit hubs has
depraved results. Rebalancing provides a continual, but not demand satisfying, refill of
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Rebalance top 10% Transaction top 10%
BSS Rebal. (%) Trans. (%) Rebal. (%) Trans. (%)
Boston 50 26 40 32
Chicago 50 37 46 39
London 39 30 36 31
Luxembourg 36 31 33 34
Minneapolis 41 32 39 35
NYC 38 19 30 24
San Francisco 44 29 36 36
Vienna 30 13 15 29
Washington 34 29 24 37

Table 4.4: Transactions and rebalancing captured by the top 10% stations in terms of
rebalancing and transactions.

stations and outage reduction over time (Figure 4.12). Having bicycles available earlier
in the morning makes it likely such stations incur empty outages sooner while satisfying
equal trips as without SER.

Rebalancing a bike costs JCDecaux three dollars (DeMaio, 2009). A case study
operator estimated rebalancing costs of two dollars per bicycle while an annual mem-
bership generates sixty cents per weekday. For daily commuting members who require
rebalanced bikes, such as at transit hubs, it is unclear how subscriptions o↵set costs.
Revenue from short-term memberships and annual members who occasionally use the
system likely o↵set commuter trips requiring rebalancing.

Finally, although some transit hub stations may be less e�cient, in terms of trips
per rebalancing actions, they do provide transactions to other stations in the system.
So any reduction in morning bicycle provision for a popular trip origin station impacts
the balance of destination stations, perhaps increasing their rebalancing requirement.
As trips flows are a complex spatio-temporal web it is di�cult to generalize rebalancing
changes’ e↵ects beyond individual BSS.

Outages and SLA adherence

Service level agreements (SLA) specify a variety of factors, such as: the number of
functioning bicycles, stations, response times to calls, emails and broken docks, stations
and bicycles. Outages are only one of the many service metrics, but the most dynamic
and therefore hardest to achieve.

Generally empty station outages exceed full station outages in duration (Table 4.5).
Occurrence of full and empty outages covary with some temporal lag for full instances.
Outages typically peak in the mornings between 9 a.m. and 11 a.m., and less intensely
in the evenings, sometimes extending throughout the night. Night outages are often
ignored by SLA. As night outages last longer, since little or no rebalancing occurs,
they outweigh daytime outages in duration resulting in residential areas appearing to
experience greater full outages while the CBD and suburban train stations have greater
empty outages. Outages (Table 4.5) do not represent the duration of unmet dock or bike
demand. Clearly some outages do not concern any users while other short outages a↵ect
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many. At stations where operators are constrained to new lower SLA outage durations,
dramatic rises in trips have occurred due to the increased availability and reliability of
finding bikes at these stations.

Depending on operator motivation, SLA outage specifications can be a constraint
preventing increased BSS use by forcing rebalancing at locations of little usage rather
than carrying out other strategies to maximize trips. If a profit-seeking operator is
constrained in achieving their SLA outage targets they may prioritize low usage stations
over those in high demand as they are more likely to stay normal longer.

Minutes Percent
BSS full empty normal
Boston 65 75 93
Chicago 5 19 98
London 69 110 90
Luxembourg 25 33 97
Minneapolis 2 16 99
NYC 14 130 90
San Francisco 7 10 99
Vienna 88 a130 a86
Washington 41 81 92
a Due to station level data error.

Table 4.5: Mean station outage durations and normal percentage (weekdays 6:00 - 22:00).

4.5 Discussion

4.5.1 Rebalancing literature

Contrary to what Erdoğan, Battarra, and Calvo (2015) suggests, no case study operators
actively use rebalancing optimizing software. Existing optimal rebalancing models may
benefit operators in the future, but currently further work on optimizing rebalancing
priorities and expenditures, evaluating SLA requirements and providing alternative ser-
vices could be of greater interest to operators. We find that even if such software could
e↵ectively assist rebalancers, the question of what state of balance, maximizing what
purpose, needs to be further discussed by operators, municipalities and perhaps users
who pay membership fees related to how they collectively use the system.

4.5.2 Policy and recommendations

Bicycle sharing systems consist of combinations of municipal, non-profit and private
actors. Municipal involvement is typically required as stations are regularly placed on
public land. While municipalities have preconceptions about BSS benefits, less often a
clear goal. Private companies or non-profits typically become the operators rather than
a public transportation authority. This results in BSS municipalities and operators as
distinct and with di↵ering goals. Non-profits do not usually have SLA as they have
similar motivation as the municipality, and in fact may have been a main driver for BSS
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adoption. Service level agreements are used to constrain profit maximizing operators to
specified outcomes. It appears to be taken for granted by municipalities that SLA bound
operators will naturally cause BSS to induce desired beneficial outcomes. Our analysis
reveals how rebalancing operations impact BSS outcomes towards profit maximization,
SLA compliance or increased trips, among others.

Rebalancing responds to fluctuating spatio-temporal patterns of full and empty out-
ages but also creates a dependence on it. What dependences help achieve BSS goals
needs to be specified by municipalities. Rebalancing so that bicycles and docks are
available at all stations is not cost e↵ective. One operator found SER at a transit hub
to be profit generating, but energy requirements and the disproportionate allocation of
resources for a few stations and their users, may contradict the purpose of the system.
Alternatives options to excessive rebalancing exist. Stations may be moved, removed or
rebalancing reduced. A reduction in rebalancing from where bikes would be utilized need
not be anathema. We have observed clear absences of rebalancing where high demand
exists. Municipalities must specify to operators which trips to facilitate over others or
operators will choose for themselves.

Outage importance relates to trips potentially lost. Yet, most SLA do not distin-
guish between the location of stations or outage types. Figure 4.13 illustrates some of
rebalancing’s exclusive goals of maximizing profits, increasing trips and reducing out-
ages to satisfy SLA. If rather than having SLA focusing on outages but on trips this
triangle would become a continuum between trips and profits. In the case of non-profit
BSS operator the strain disappears and only the purpose of the BSS is of importance.
We refer to trips as the goal but it may be modal shift, equity, health or other. The
important aspect is that current SLA may not be maximizing system goals.

SLA Profit

Trips

Rebalancing’s
exclusive goals

Figure 4.13: Exclusive outcomes of rebalancing behaviour.

Polarized rebalancing is necessary for stations requiring it to maintain usefulness
but SER can contradict BSS purpose. Whether SER is a more worthwhile investment
is impossible to determine without clear BSS goals. Regardless, over time BSS users
develop a dependence on rebalancing while alternative investments may be more cost
e↵ective at maximizing a desired outcome.

The most surprising revelation of our analysis is the extremely imbalanced demand at
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transit hubs. Rebalancing transit hubs requires a large proportion of BSS resources for
the benefit of relatively few. While train stations are natural locations for bicycles to be
available and can increase cycling and public transit use (Pucher and Buehler, 2012), we
have shown that BSS stations located at train stations are utilizing a disproportionate
amount of system resources. Beecham, Wood, and Bowerman (2014) has also noted out-
of-town commuters arriving at rail hubs requiring more rebalancing than Londoners’
more varied trips. For one profit seeking operator these stations are reported to be
cost e↵ective, but for municipalities seeking a modal shift to private utilitarian cycling,
supporting transit hub rebalancing demand makes little sense.

Transportation hub BSS users are mainly commuters and likely the most demanding
as they rely on bicycles being available to reach their work on time or catch a specific
train home. These commuters are prime candidates for shifting to private cycling as
it o↵ers greater benefits than BSS. For commuters, the main limitation of BSS are the
availability of bikes and docks, as required, and potentially the locations of stations,
while the benefits are the availability of bikes in working condition without the worry of
theft. The development of secure parking with bicycle maintenance facilities, perhaps
provided by BSS operators, makes private cycling more attractive (Martens, 2007) and
reduces the energy intensive rebalancing process transit hubs require.

As a system’s use increases, so does the occurrence of outages, a symptom of con-
gestion, decreasing its reliability and attractiveness. When deciding whether to use the
BSS, users must now weigh the risk of having no bicycle available at their point of depar-
ture, or more frustratingly, having no dock available at their destination or selecting an
alternative transportation option. Much like car tra�c adjusts to new higher capacity
roads, BSS usage increases until congestion e↵ects, namely outages, create a new equi-
librium as alternative modes of transport become equally attractive. Clearly some BSS
have reached levels of congestion requiring extensive rebalancing. But just like widening
roads may not reduce long term congestion, increasing rebalancing may not support BSS
goals.

Any option, such as secure private bicycle parking, that lessens the burden of re-
balancing but provides a similar alternative, perhaps at reduced cost, could be more
beneficial. Bicycle sharing system costs have important ramifications as revenue gen-
eration sometimes undermine system goals. Users of BSS typically make up a small
proportion of cities yet subject a large population to advertising. Advertising isn’t un-
ethical by nature, but conventional use does promote conspicuous consumption and a
car dependent lifestyle that clearly contradicts the sustainability purpose of many BSS.

Based on our quantitative and qualitative analysis we provide rebalancing recom-
mendations grouped by potential goals: general, sustainability, equity, private utility
cycling and profit (Table 4.6).

4.6 Conclusion

Understanding rebalancing requires a characterization of trips, which are themselves,
ouroborosly, heavily influenced by rebalancing. Our analysis provides a description of
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General
Rebalancing strategies determine BSS outcomes. State clear purpose and goals for the BSS.
Define BSS target users (e.g., equity, locals, commuters).
Weigh SLA station outages according to goal.
Weigh full outages more severely than empty.
Weigh larger station outages more severely than smaller stations.
Not all outages need be considered as operational failures.
Establish polarized rebalancing and SER quotas.
Adopt better station and rebalancing analytical software.
Increase system resilience with transit hub perimeter stations.
Mixed land use areas require less and easier rebalancing.
Any optimal rebalancing software must maximize goals not only minimize outages.

Sustainability
Integrate BSS operations with secure private bicycle storage and repair services at transit hubs.
Increased station density facilitates bike-trailer rebalancing.
Use bike trailers during the day and vehicles at night or on occasion.
Allow rebalancing vehicles in restricted HOV and bus lanes.

Equity
Encourage operator multi-skilling. Rotate rebalancing sta↵ roles.
Ask target residents what investment is most required. It may not be rebalancing or BSS related.
Prohibit rebalancer contracts limiting health insurance coverage and unsteady employment.

Private utility cycling
Limit rebalancing of transit hubs. Provide a convenience service, not a commuter service.
Have BSS operator also provide secure private bicycle storage at transit hubs.

Profit*
Hire seasonally or subcontract rebalancing for part time contracts.
Use gasoline vehicles in conjunction with other vehicles if tra�c congestion is a problem.
Use valet services to reduce rebalancing costs, increasing dependability and reliability on system.
Run valet services seasonally and according to weather.

* May reduce the e�cacy of sustainability, equity or private utility cycling goals.

Table 4.6: Rebalancing operations recommendations.
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rebalancing for nine bicycle sharing systems (BSS) and found the relationship between
trips and rebalancing to be more complex than anticipated. Trips, especially at transit
hubs, are limited by the quantity of bicycles rebalanced, and, outages, the occurrence of
full or empty stations, impact trip numbers more than expected. As rebalancing a↵ects
trips, conclusions from aggregated spatio-temporal trip flows should be tempered as they
do not represent spatial demand or flows homogeneously or unconstrained. The research
of BSS trips without thorough rebalancing analysis may lead to erroneous conclusions.

Satiating demand at transit hubs, through increased rebalancing, produces less trips
per expenditure. Additionally, due to latent demand providing more docks and bicycles
at busy stations increases trips and, to prevent outages, requires operators rebalancing
further. For operators bound by SLA, increasing dock counts at stations experiencing
station expansion rebalancing (SER) may have little e↵ect on reducing outages while
supporting BSS use by commuters.

Most operators use software showing the presence of outages and station fill rates
with some historical demand statistics aggregated over time as well. Existing opti-
mal rebalancing models provide theoretical solutions to dynamic and demand predictive
rebalancing. While operators would also require real-time tra�c and road closures in-
cluded for such software to be of use, demand may also exist for models integrating SLA
adherence, profit, trip maximization and other possible goals. Further it seems that
simpler information could already greatly benefit operators. Feedback from operators to
historical plots combining rebalancing, trips and station levels (Figure 4.12) and rebal-
anced e↵ective use (REU) plots (Figure 4.11) have been appreciated for increasing their
understanding of their own behaviour and (in)e�ciency. So as rebalancing optimization
software may be e↵ective theoretically, in practice it has yet to be shown. A more fun-
damental problem precedes the need for such software: knowing what distribution of
bicycles, and expenditure, at what stations is desired. Something that from discussions
with operators is still very much unclear and requires discussion with the municipalities
regarding the purpose of their BSS.

The purpose of BSS may appear tangential to the rebalancing discussion but actu-
ally dictates where and how much rebalancing should take place. The profit-SLA-trips
triangle (Figure 4.13) illustrates our findings that some existing SLA appear to diverge
from maximizing the number of trips or other possible BSS goals. The large quantities
of rebalancing have evolved from satisfying SLA constraints without discussing whether
this is desirable or worthwhile in achieving the goal of the BSS.

Getting high BSS usage rates depends on attracting many members from diverse
locations to use the system. While, stations with many transactions of one dominant
type, such as transit hubs, will always have a strong tendency to be empty, opening BSS
to more users means a more stochastic system, providing more mixing of bicycles spa-
tially and likely reducing outage occurrences and durations for many other stations. An
interesting consideration is whether raising fares reduces the diversity of users, increases
the share of commuters who’s trips are typically in mass and require greater rebalancing
at higher cost.

Bicycle sharing systems are truly complex systems, changing rebalancing behaviour
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at one station can have unexpected e↵ects at others. Based on existing employment,
transit and residential distributions, rebalancing may be more e�cient in areas of mixed
origin and destination demand. In addition the density of stations and road congestion
may alter the e�ciency of rebalancing modes (van or bicycle).

Regular rebalancing creates a status quo bicycle distribution and therefore a de-
pendence. Rebalancing is necessary to provide a quality of service that is su�ciently
reliable to be considered a legitimate form of public transport. If outages are chronic
and widespread this cannot occur, yet the onerous amounts of rebalancing enable a
continued dependence of BSS as a commuting tool. For most BSS sustainability is a
major reported benefit, yet extensive rebalancing is not sustainable. The use of BSS
as a transitional tool to private utilitarian cycling should be pursued if the desire for
sustainability is genuine and not political green washing. Bicycle sharing systems can be
part of larger utility cycling plans, serving as private cycling catalysts but also flexible,
convenient and enjoyable addition to a more resilient public transport system.

While our analysis evaluates day to day rebalancing operations, we are not able to
take into consideration weather, operational, cost and policy challenges the operators
must deal with. Bicycle sharing systems are truly complex systems and our observations
should not be taken as a critiques of their work ethic, but as a narrow-minded observation
of one aspect of BSS operations. Many BSS are still expanding and evolving their
rebalancing behaviour. Our analysis may obviously understate new flows in expansion
areas and does not describe recent changes to operations.



Chapter 5

Determinants of ‘success’ for
bicycle sharing systems

Outline

Many municipalities assert bicycle sharing systems (BSS) as having many benefits, jus-
tifying their adoption, yet few explicitly state the purpose of their system making com-
parisons or determinations of success impossible. In addition, the apprehension of many
BSS operators to share data further hinders comparison. This paper estimates the num-
ber of daily trips from publicly available data for 75 BSS case studies across the world
and provides trips per bike per day scores as a comparison of performance and success.
Results reveal that a third of case studies have fewer than the psychologically important
one trip per bicycle per day. To ascertain what factors are associated with this met-
ric we estimate models with independent variables related to system attributes, station
density, weather, geography and transportation infrastructure. Our analysis provides
strong evidence undermining the ‘network e↵ect’ promoted by influential BSS policy
makers that expanding system size increases performance. Larger systems are not a
requirement for success nor a guarantee, but results support that station density and
cycling infrastructure are associated with higher BSS performance. 1

5.1 Introduction

Many bicycle sharing systems (BSS) are regularly called successful by operators and
politicians without providing a reason or metric. While metrics are sometimes quoted,
they often lack comparative potential or the methodologies and assumptions used to
derive values appear dubious. As most BSS operators do not provide consistent and
comparable metrics of system use, mainly the number of trips per day, the evaluation of
individual systems against others is largely impossible. By using a common metric this

1This chapter is a working paper submitted for publication.
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paper provides a first comparison of a wide number of BSS in Australia, Europe and the
Americas, followed by an analysis of what factors impact the metric.

The criteria for a BSS being successful depends on a purpose being defined, some-
thing that is done vaguely or typically not at all (Ricci, 2015). New York City’s BSS’s
purpose is to o↵er an a↵ordable transportation alternative at no cost to taxpayers (New
York City, 2012) yet is called a success based on trips completed and unspecified emission
reductions (New York City, 2013). There exist many reported benefits of BSS, such as
the reduction of travel time, roads and public transit congestion, carbon emissions and
increases in cycling modal share, financial savings to users, physical and mental health,
transportation resilience, connectivity and convenience, social equity and increasing pri-
vate utility cycling modal share (Fishman, Washington, and Haworth, 2013; Ricci, 2015;
Shaheen, Guzman, and Zhang, 2010). Unfortunately some of these benefits have been
shown to be hard to measure, trivial or non-existent.

While social equity is a plausible e↵ect of BSS due to the relatively low costs of the
service, members are observed to be wealthier, younger, white, male and more likely to
own a car compared to the local population (Fishman, 2015). In addition, inadequate
cycling infrastructure causes gender disequity for BSS and private utility cycling due to
women being more risk averse (Garrard, Handy, and Dill, 2012; Goodman and Cheshire,
2014). Women using London’s BSS have reduced health benefits, compared to men, ow-
ing to increased rates of injury (Woodcock et al., 2014). The cost of BSS membership
impacts user demographics and equity (Goodman and Cheshire, 2014). Membership
discounts of varying amounts are therefore available for BSS in Chicago, Boston, New
York and Washington. The shift from sedentary travel modes to cycling has clear health
benefits but net quantities are overstated due to the reduction in walking, which has
greater health benefits for a fixed distance travelled (Fishman, Washington, and Ha-
worth, 2015; Murphy and Usher, 2014; Woodcock et al., 2014). Reduction in other
public transport systems is not consistent, the use of rail by BSS users has been shown
to increase in some cities and decrease in others (Ricci, 2015). Reductions in road con-
gestion are also unproven (Ricci, 2015). Perhaps the most exaggerated BSS benefit is the
reduction in carbon emissions. Multiple studies have shown that publicized estimates of
carbon dioxide reductions are often overstated as only a small portion of car trips are
replaced using BSS (Ricci, 2015). In the case of London it is estimated that the vehicles
rebalancing bicycles within the system may surpass any emission reductions from modal
shift (Fishman, Washington, and Haworth, 2014). So while BSS appear to have many
benefits some are not consistent or as salient under scrutiny.

Bicycle sharing systems do have indisputable benefits however. They provide an al-
ternative mode of transport, increase accessibility, trip resilience and flexibility, lower the
barrier to exploring urban cycling, increase the visibility of bicycles, bicycle awareness by
drivers and normalizing the image of cyclists in casual clothing (Fishman, Washington,
and Haworth, 2013; Goodman, Green, and Woodcock, 2014; Murphy and Usher, 2014;
Ricci, 2015).

Between the promoted ‘benefits’ of BSS by operators and the lack of goals, stating
that an individual BSS is successful is challenging and the comparison of multiple sys-
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tems arduous. Media (Bialick, 2013; Cripps, 2013; Goodyear, 2013; Mead, 2016.04.01),
reports (Curran, 2008; Gauthier et al., 2013) and publications (Fishman, 2015; Fish-
man, Washington, and Haworth, 2013; Ricci, 2015; Zhao, Deng, and Song, 2014) use the
number of trips per day per bike (TDB) as a comparable measure of success for small
numbers of BSS. As success depends on a goal however, we refer to this metric as one
of performance.

The first goal of this work is to provide a comparison of a large number of BSS
using the TDB performance metric to encourage debate, especially, but not only for
low performance systems, regarding what purpose their BSS has. Few economic, social
equity and environmental benefits may be present if systems are little used.

Our second goal is to determine what attributes impact BSS performance. Past re-
search has studied the e↵ect of weather, infrastructure, station density and demographics
on trips within individual BSS (Corcoran et al., 2014; Faghih-Imani et al., 2014; Gebhart
and Noland, 2014). Zhao, Deng, and Song (2014) evaluates the e↵ects of demographics,
employment, system members and size as well as quality of service over one month for
69 BSS in China. We provide a comparison of BSS attributes, system compactness, ge-
ographic variables, weather and transportation infrastructure for 75 case studies around
the world over a period of 12 months. Beyond simply describing which variables are
related to performance we also describe those that are explicitly not. Resulting analysis
and model estimates will serve municipalities desiring to increase BSS intensity of use.

Given these facts, our methodology consists of selecting and collecting data; comput-
ing validity and comparing TDB, our success metric, across case studies; and revealing
what factors determine TDB from estimating OLS and mixed models. We begin by de-
tailing our data and performance metric as well as the choosing of independent variables
and expected impact on TDB (Section 5.2). In the results (Section 5.3) we present and
compare TDB scores across case studies and our model coe�cients before discussing
causality and policy recommendations.

5.2 Data

5.2.1 Case study selection and data collection

In March 2013 we selected BSS with a minimum of 20 stations requiring bicycles be
docked (not free floating as is common in Germany and some newer BSS in North
America). Our 75 case studies (Table 5.3) are predominantly in Europe (49) and the
United States (18), but also in Canada (3), Brazil (2), Australia (2) and Israel (1). While
there are many BSS in Asia (Zhao, Deng, and Song, 2014) data access was limited.

We gathered the number of bikes and spaces available at each station at a ten minute
interval between March 2013 and July 2014. As some BSS opened after March 2013 or
were added later the number of records varies between case studies, totalling 909 months
of data. Only months with more than 15 days of data, each with 95% of daily records,
are used. Using the station level data we can estimate the number of trips per day, Td

(Médard de Chardon and Caruso, 2015). The station level data also provides a good
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estimate of the number of bicycles in the system, B, as well as the quality of rebalancing
in terms of outages, where stations have no docks or bicycles available (Médard de
Chardon, Caruso, and Thomas, 2016).

5.2.2 TDB performance metric

To compare BSS we calculated a global trips per day per bike (TDB) score for each.
From Td we calculate a monthly mean (Td) normalized by the maximum number of
bicycles observed docked during the month (BM ) i.e., TDBM = Td/BM . As BSS usage
varies with season we take the average of any duplicate months across years. The mean
of TDBM providing overall BSS performance. Clearly BSS that have more months with
enjoyable cycling weather will have an advantage. Likewise, of two BSS experiencing
similar continental weather patterns, if one stays open during the winter this may reduce
its score as the other’s winter usage will not be included in the mean score. Conversely,
being open all year round may be beneficial in terms of constancy, there existing less
need to advertise resumed service and repeatedly motivate a modal shift in order to
ramp up usage each spring.

We use the monthly average of trips per day per bike (TDBM ) as dependent variable
in our regression models rather than daily for multiple reasons. Trip estimates are
susceptible to over or under stating and some attributes, such as the number of bicycles
active in a BSS, can better be represented from a month’s observations. Additionally
weather is most likely to account for daily variations in BSS usage (Corcoran et al., 2014;
Faghih-Imani et al., 2014; Gebhart and Noland, 2014) while we are interested in other
factors.

To validate monthly and global performance estimates we compare operator data
for 11 case studies (Table 5.1) by calculating absolute (|✏M |) and mean error (✏M ) per-
centages as well as operator and estimated TDB for a number of months, nM , where
data overlaps. Ignoring known problems with data feed reliability for Chicago and San
Francisco, the estimation error percentages are around 10%. This error is acceptable
based on the large range of TDB values estimated for the 75 case studies (from 0.22 to
8.4).

5.2.3 Independent variables

Zhao, Deng, and Song explored the impact of geographic and demographic features,
system characteristics and composite indicators for 69 Chinese BSS. Using 69 months
of data, they found population, government expenditure and number of members and
stations related to TDB.

Our scope is di↵erent, we study the impacts of a broader set of variables relating
to operator determined attributes, compactness, geography, weather and transportation
infrastructure. Our model also applies a longitudinal analysis, with 909 months of data,
to intercontinental case studies.
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Monthly TDB Overall TDB

Case study n
M

|✏
M

| (%) ✏

M

(%) reported estimate
Boston, US 7 9.4 9.4 3.89 4.19
Chicago, US 12 ⇤64 64 2.37 2.95
London, UK 14 4.3 -4.1 2.14 2.06
Luxembourg City, Lux. 14 11 -11 0.62 0.54
Minneapolis, US 6 13 -13 1.10 0.96
Montreal, Canada 1 4.4 -4.4 3.37 3.22
Namur, Belgium 12 23 -23 1.30 1.00
New York City, US 12 10 4.0 4.85 4.83
San Francisco, US 11 ⇤28 28 1.39 1.75
Vienna, Austria 10 15 15 1.60 1.79
Washington DC, US 13 7.2 -7.2 3.38 3.13
* Partially due to data feed misreporting bicycle count.

Table 5.1: Validation results of monthly and overall trips per day per bike (TDB) esti-
mates.

BSS attributes

Many attributes of a BSS are defined by the operator and municipality. We distinguish
between operator types: for profit, non-for-profit, advertising and transport authorities
to see if it impacts usage. (DeMaio, 2009) notes university and government operators also
exist but none are within our case studies. Operator names are also used to determine
whether company specific management impacts BSS performance. As membership costs
impact annual membership number and system usage (Goodman and Cheshire, 2014)
they are included (converted to Euro using January first, 2014 exchange rate). The mean
number of docks impacts the likelihood of having a dock free to return a bicycle as well as
rebalancing necessity. Conversely, larger docks mean a compromise against more smaller
stations with an increased coverage and density, both of which have benefits. Dock
counts likely match expected demand rather than being constant so we also measure the
standard deviation of station docks. As discussed earlier, whether BSS operate all year
or halt during colder months may also impact usage. The daily operating hours of BSS
varies, some close during the night for only a few hours, others up to eight hours. Like
any service, reduced hours decrease potential service time but also its dependability as
a transport mode for return trips in the evenings.

The above attributes are kept static over time, the following vary for each month of
data. The monthly maximum sum of bikes and docks are observed and also used for a
monthly ‘dock to bike’ ratio. (O’Brien, Cheshire, and Batty, 2014) noted a mean ratio
of 2.08 for their case studies (measured as the inverse and named maximum load factor).
Finally, with a potentially more explicit impact on BSS usability, we track the mean
daily number of minutes that stations are full and empty for each month.

The number of stations in a system are summarized by the monthly mean of daily
observations. The number of stations increases exponentially the number of unique
origin-destination trips possible according to the number of edges in a directed complete
graph (s2�s). Sometimes called the network e↵ect, it is plausible that increased number
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Temporal Expected Std.
Variable name Description resolution e↵ect Mean dev.
Dependent variable
TDB

M

Mean number of trips per day per bike monthly 2.42 2.33
BSS attributes
op type Operator type (priv., non-profit, advert. or PTA) static categ.
op name Operator name (e.g., JCDecaux, Motivate) static categ.
seasonal Partially or fully closes during winter static categ.
annual cost Annual membership cost (e) static - 47.5 44.9
open hours Daily number of hours system is open static + 22.7 2.57
open24h Binary variable of open hours static categ.
dock mean Mean number of docks at station static - 20.3 6.07
dock sd Std. dev. of number of docks at station static - 6.02 3.12
stations Mean number of stations monthly + 125 191
bicycles Maximum observed bicycles docked monthly - 1291 2560
bicycles per stn bicycles/stations monthly + 8.20 2.73
docks per bike Ratio of docks to bikes monthly - 2.22 0.789
outages full Station full outage ratio monthly - 0.0244 0.0241
outages empty Station empty outage ratio monthly - 0.0539 0.0750

Density & compactness
density stations/area km2 static + 5.68 1.53
area300m Area within 300m of stations (km2) static + 20.6 24.0
compactness 4⇡ ⇥ area1000m/perimeter

2 static + 0.683 0.156
stn spacing Mean euclidean distance to 3 closest stations (m) static - 552 256

Geographic
country Country static categ.
continent Continent static categ.
helmet Helmets are mandatory for cyclists static -
latitude Latitude (degrees) static - 39.8 17.5
hemisphere Hemisphere static categ.
network Network to euclidean distance ratio static - 1.51 0.196
altitude sd Hilliness: Std. dev. of indiv. station altitudes (m) static - 13.0 12.1
daily sun Mean hours of sunlight monthly + 14.4 2.3
pop Population of primary city of BSS static + 922K 1,640K

Weather
humidity Mean monthly relative humidity (%) monthly - 70 9.7
temp C Monthly mean temperature (Celsius) monthly + 14.5 7.30
precip mm Mean monthly precipitation (mm) monthly - 1.45 1.77
wind kmhr Mean monthly wind (km/h) monthly - 12.3 3.92

Transportation infrastructure

cyclinf density Cycling infrastructure density (km/km

2) static + 2.83 1.76
bus density Bus stop density (per km

2) static + 14.8 10.1
rail density Railway, subway and tram stop density (per km

2) static + 3.74 5.33

Table 5.2: Variable definitions and summary statistics.
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of stations, typically with a corresponding increase in bicycles, increases performance
(which normalizes linearly by number of bicycles which is highly correlated with the
number of stations) due to the exponential increase in possible trips of number.

Influential practitioners promote this exponential ‘network e↵ect’ as justification for
increasing the number of stations to increase performance. Scott Kubly, the former
president of Alta Bicycle Share and Seattle’s current Department of Transportation
Director gives the example of Washington DC’s transition from the 10 station system
(SmartBike DC) to the 100 station system (Capital Bikeshare) with a stated increase in
performance from 0.7 - 0.8 to 50 times2 greater (City of Seattle, 2016c). Nicole Freedman,
head of the North American Bikeshare Association (NABSA), formerly Boston’s and
now Seattle’s current BSS manager, states in regards to growing Seattle’s BSS from 50
to 100 stations, that ”doubl[ing] the size of the system [results in a] three to five fold
increase in trips - that’s the network e↵ect” (City of Seattle, 2016b). Clearly existing
practitioners believe the number of stations to play an important role in determining
BSS performance.

Density and compactness

The location of BSS stations are a compromise between municipalities, politicians (espe-
cially when on street parking is potentially removed), system operators, local businesses,
advertisers, system utility and profit potential, street and cycling network, civil engineer-
ing (whether underground cables are present or wheel chair access is obstructed) and,
finally, public interest. We characterize the distribution of stations by the system’s
density, area, compactness, distance between stations and the number of stations.

Density of stations relates to the closeness of stations to origins and destinations.
Convenience is an important factor for BSS use (Fishman et al., 2014; Fishman et
al., 2015). Unlike (O’Brien, Cheshire, and Batty, 2014) we use a 300 metre bu↵er
around stations to measure the density and area of BSS as this distance is the commonly
recommended distance between stations (APUR, 2006; Gauthier et al., 2013) and similar
to the distance transit users are willing to walk to use a service (Kittelson & Associates
et al., 2003).

Compactness, a measure of roundness of station distribution (4⇡area / perimiter2)
is sensitive to the bu↵er distance used. As (O’Brien, Cheshire, and Batty, 2014) noted
having short bu↵er distances creates gaps between stations, dramatically impacting com-
pactness scores, we also use a 1000 metre bu↵er for this measure as it better distinguishes
BSS with higher station spacing. Our observed mean (Table 5.2) falls within the range of
0.55 - 0.72 observed by (O’Brien, Cheshire, and Batty, 2014). In addition we calculate
the mean euclidean distance between each station and the three closest neighbouring
stations. We use this measurement rather than network distance due to the uncertainty
of existing cycling network data.

2Washington’s BSS had about 3 TDB with 300 stations in 2014-2015. A four-fold TDB increase from
the earlier 10 station system.
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Geographic

To capture demographic, cultural and legal e↵ects we provide BSS continent, country,
municipality population, latitude, monthly mean hours of sunshine and whether a helmet
requirement legislation exists. We also measure the topography in terms of standard
deviation of station elevation and urban connectivity. Hilliness is a common resistance
to urban cycling and balanced BSS use (Westneat, 2016). Urban connectivity is the
ratio of bicycle street network distance, using Google Maps Directions API, to euclidean
distance for a random sample of Cn connections between stations, where Cn is whichever
is greater: 20 or 10% of the number of stations. This variable helps determine whether
grid and historic urban structures impact BSS usage. We select the population within
the city proper of the primary municipality in which the BSS resides (United Nations
Statistics Division and National Institute of Statistics and Economic Studies) rather
than the population strictly within the area of the BSS or the greater metropolitan area
that may be accessing it. Retrieving the population of either of these options are equally
faulty as BSS users typically start or end a trip adjacent to a station out of convenience
(Fishman et al., 2014), perhaps as part of a multi-modal commute, rather than based on
administrative boundaries. Estimating an accurate measure of the population which has
access to the BSS is not feasible for the 75 case studies in a consistent manner. Higher
population density is linked to higher performance (Zhao, Deng, and Song, 2014) and
recommended by (Gauthier et al., 2013). While population within BSS coverage area is
ideal, it still excludes commuters and tourists that are an important proportion of users
(Gauthier et al., 2013). Helmet requirement and use has been suggested as a barrier to
cycling for private utility cycling (Bateman-House, 2014; Robinson, 2006) and BSS use
(Basch et al., 2014b; Fishman et al., 2014).

Weather

Bicycle sharing systems in warmer climates, such as in Spain, have mild, if any, decreases
in daily trips during the winter compared to temperate (e.g., San Francisco, Washing-
ton) or continental climates (e.g., Chicago, Toronto), and obviously those that partially
or completely close (e.g., Boston, Minneapolis, Montreal). High temperatures and hu-
midity can also decrease cycling. While BSS with comfortable climates can more easily
maximize cycling, developing a cycling culture and infrastructure maintenance (keeping
cycle tracks clear of ice and snow) can reduce seasonal impacts, as is done in Copenhagen
(Appendix C.1).

Weather e↵ects are estimated using relative humidity, temperature, precipitation
and wind for each day averaged for the month. These are the same indicators used in
previous work measuring the impact of weather on BSS trips (Corcoran et al., 2014;
Faghih-Imani et al., 2014; Gebhart and Noland, 2014) and cycling (Meng et al., 2016).

Transport infrastructure

Cycling infrastructure promotes cycling (Marqués et al., 2015), can increase safety, the
perception of safety and cycling rates of women and children (Garrard, Handy, and
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Dill, 2012; Martens, 2007; McDonald, 2012; Rietveld and Daniel, 2004). Integrating
cycling infrastructure with other modes of public transport can be mutually beneficial
and economical for individuals and municipalities (Chow and Sayarshad, 2014; Pucher
and Buehler, 2009; Pucher and Buehler, 2012). Cycling infrastructure within 250 metres
of stations has been linked to higher BSS station usage (Faghih-Imani et al., 2014)
although it’s unclear if this is endogenous. (Castillo-Manzano and Sánchez-Braza, 2013)
state Seville’s high BSS usage and cycling modal share is the result of the development
of extensive new cycling infrastructure. In order to estimate public transportation and
cycling infrastructure we extract Open Street Map features within 300 metres of BSS
stations.

Lovelace (2015) shows that Open Street Map (OSM) can provide a better represen-
tation of existing cycling infrastructure than the UK’s Ordnance Survey. We apply the
same methodology. The limitation of this methodology lies in the quality of cycling
infrastructure (e.g., sharrows and cycle tracks) being valued equally in our analysis (by
length) while unlikely to be similarly e↵ective at providing safety or even an appearance
of safety to riders. As cycling ‘infrastructure’ varies from fully segregated cycle tracks
to simply being designated as cycling paths without any indication on the road, the
e↵ectiveness of this attribute is limited. We apply similar feature extraction for rail and
bus infrastructure in proximity to BSS stations (Appendix C.2).

Untracked attributes

Desirable attributes for which we do not have data, due to being too laborious to gather
for such a large data set or not easily quantifiable are: cycling modal split, cycling cul-
ture, quality of cycling infrastructure, sign-up method (on the spot, on-line or by mail),
universal transit card integration, access (residents only, requires credit card), station
proximity to residences, employment and services (Fishman et al., 2014), demographics
(Rietveld and Daniel, 2004) and road congestion. Clearly the location of stations rel-
ative to trip generating areas is of great importance but a data hungry and intensive
exercise. In addition to these desired inputs are the level of promotion of BSS within
the municipality, the level of political support and supportive policies, public support,
the attitude of car drivers towards cyclists and the number of subscribers to the service.
All of which are di�cult to measure or access for such a large data set.

5.3 Results and discussion

5.3.1 TDB performance comparison

We present TDB estimates in Table 5.3. The range of estimated TDB values, 0.22 - 8.4
is similar to those observed in 69 Chinese case studies, 0.7 - 9.5 (Zhao, Deng, and Song,
2014), but with a much lower mean. The value of 1.0 TDB is psychologically important
as those systems below this value imply some bicycles being unused all day. Surprisingly
a third of the BSS in our sample have such ratings. More worrisome are the 10 systems
with ratings below 0.5 TDB, as this means most bicycles are not used on a daily basis.



94 CHAPTER 5. DETERMINANTS OF SUCCESS

Note the presence of Ljubljana, Dublin and Vilnius with high TDB values of 8.2,
8.0 and 6.0 while having few stations, 33, 49 and 33 respectively, relative to similar
TDB values. These three systems contradict the mantra that BSS need to be big to be
‘successful’. Conversely, Brussels, Minneapolis and Brisbane with TDB values of 1.1, 1.0
and 0.32, and 323, 169 and 151 stations respectively, have not managed to reach the 3
TDB performance of most other similarly sized systems.

The only similar large scale evaluation of BSS in Europe is by the Allgemeine
Deutscher Automobil-Club (ADAC, 2012) which looked strictly at accessibility, informa-
tion, ease of rental and bicycle quality for 40 systems but not the context in which they
are placed. This leads to contrasting rankings to our results (Table 5.3). The ADAC
highly ranked Brussels and Luxembourg while Barcelona and Dublin were located in the
lower half, a reversal from our results. The attributes evaluated by ADAC may have
some impact but are unlikely strong performance determinants.

5.3.2 The network e↵ect fallacy

Looking at our data sets’ number of stations versus performance, a relationship clearly
appears to exists (Figure 5.1). This same relationship exists with the number of bicycles
as the number of stations and bicycles are highly collinear between BSS. When discussing
increases in system size and station numbers an associated increase in the number of
bicycles is implied. The network e↵ect promoted by practitioners appears related to TDB
(Figure 5.1) and possibly causal through its justification by increased origin-destination
pairs allowing exponentially greater possible trips. A deeper analysis however reveals
inconsistencies, challenging that a direct link exists.

For a hypothetical 50 station BSS, assuming a TDB value of 1 with 10 bicycles per
station, increasing the number of stations to 100 should then result in a conservative TDB
increase of at least 50% but potentially doubling or much more according to practitioners
(Section 5.2.3). This translates to increasing the number of trips in the system from 500
to 1,500 - 2,500. While achieving 1,000 trips is plausible given an adjacent area of similar
activity and travel density, higher usage is only possible if BSS users are highly dependent
on using many stations, especially within the expansion area (and reciprocally within
the expanded area), and that individual stations have very high degrees of connectivity
with other stations. We explore both assumptions further.

Using London (2012) and Denver (2013 - 2015) data, unique for containing user
identifiers to link trips, we can estimate how many stations users typically visit as either
a trip origin or destination. During these periods London and Denver had about 600
and 80 stations and 13 and 11 median station visits per user respectively. Increasing
coverage and number of stations increase potential destinations, but doesn’t appear to
alter much the number of stations actually visited. Considering the small quantity of
stations visited by individuals, new stations likely impact a small proportion of users.
Further, as initial BSS deployments typically expected high demand areas for station
placement, any future expansion is unlikely to match the same TDB due to diminishing
returns as new stations are placed in lower demand areas. The only exception is perhaps
for extremely small systems where the number of stations serves too few origins and
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Number Number
of of TDB

Main city Country Brand name Operator stations bicycles estimate
1 Barcelona Spain Bicing BSM 420 4,852 8.4
2 Ljubljana Slovenia Bicike(LJ) JCDecaux 33 252 8.2
3 Dublin Ireland dublinbikes JCDecaux 49 584 8.0
4 Turin Italy [TO]BIKE Comunicare 136 495 7.9
5 Zaragoza Spain Bizi Clear Channel 130 1,211 7.3
6 Valencia Spain Valenbisi JCDecaux 276 2,403 6.6
7 Vilnius Lithuania Cyclocity Vilnius JCDecaux 33 245 6.0
8 Lyon France Vélo’v JCDecaux 346 3,301 5.3
9 Paris France Vélib’ JCDecaux 1,228 17,151 5.2

10 Milan Italy bikeMi Clear Channel 187 2,832 5.1
11 Tel Aviv Isreal Tel-O-Fun FSM GS Ltd. 177 1,411 4.9
12 Oslo Norway Oslo Bysykkel Clear Channel 100 882 4.8
13 New York City US CitiBike ABS/Motivate 357 5,208 4.7
14 Bordeaux France VCub Keolis 139 1,279 4.7
15 Boston US Hubway ABS/Motivate 115 1,037 4.2
16 Seville Spain Sevici JCDecaux 260 2,203 3.9
17 Nantes France bicloo JCDecaux 102 887 3.8
18 Toulouse France VélÔToulouse JCDecaux 256 2,193 3.8
19 Lille France V’lille Keolis 214 2,038 3.6
20 Montreal Canada Bixi PBSC/Bixi 421 4,044 3.6
21 Nancy France vélOstan’lib JCDecaux 29 245 3.1
22 Washington DC US Capital Bikeshare ABS/Motivate 297 2,278 3.0
23 La Rochelle France Yélo RTCR 57 210 2.9
24 Marseille France Le Vélo JCDecaux 123 661 2.9
25 Chicago US Divvy ABS/Motivate 300 2,191 2.8
26 Gothenburg Sweden Styr & Ställ JCDecaux 57 728 2.7
27 Miami US DecoBike Miami Beach decobike 94 601 2.6
28 Nice France Vélo Bleu Veolia Transdev 178 1,401 2.4
29 Rennes France Le vélo STAR Keolis 83 779 2.4
30 Rio Brazil Bike Rio Serttel 46 280 2.4
31 Valladolid Spain Vallabici Ingenia Soluciones 29 181 2.2
32 London UK Santander Cycles Serco 748 11,864 2.0
33 Toronto Canada Bike Share Toronto PBSC/Bixi 80 769 2.0
34 Rouen France cy’clic JCDecaux 21 193 1.9
35 Calais France Vel’ln Veolia Transdev 36 213 1.9
36 Montpellier France Vélomagg’ Veolia Transdev 49 280 1.9
37 Orleans France vélo’+ keolis 33 309 1.8
38 Vienna Austria Citybike Wien Gewista 95 1,072 1.8
39 San Francisco US Bay Area Bike Share ABS/Motivate 68 611 1.8
40 Mulhouse France Vélocité JCDecaux 40 245 1.7
41 Besancon France Vélocité JCDecaux 30 203 1.5
42 Denver US Denver B-cycle Denver B-cycle 80 569 1.5
43 Belfort France Optymo Optymo 25 201 1.3
44 Amiens France Velam JCDecaux 26 240 1.2
45 Madison US Madison B-cycle B-cycle 32 245 1.1
46 Columbus US CoGo ABS/Motivate 30 225 1.1
47 Brussels Belgium VillO! JCDecaux 323 3,708 1.1
48 Sao Paulo Brazil Bike Sampa Serttel 95 571 1.0
49 Minneapolis US Nice Ride Minnesota NRM 169 1,399 1.0
50 Saint Etienne France VéliVert Veolia Transdev 33 229 0.92
51 Ottawa Canada Capital BIXI PBSC/Bixi 25 244 0.89
52 Namur Belgium Li Bia Velo JCDecaux 24 190 0.86
53 Houston US Houston B-cycle Houston B-cycle 28 200 0.80
54 Nashville US Nashville B-cycle Nashville B-cycle 21 166 0.79
55 Melbourne Australia Melbourne Bike Share ABS/Motivate 51 546 0.71
56 Caen France V’éol Clear Channel 40 350 0.69
57 Luxembourg Luxembourg vel’oh ! JCDecaux 72 684 0.67
58 Pau France IDECycle keolis 22 199 0.66
59 Alacant Spain Alabici Tevaseñal SA 24 120 0.62
60 Charlotte US Charlotte B-cycle Charlotte B-cycle 21 164 0.58
61 Dijon France Vélodi Clear Channel 40 401 0.56
62 Boulder US Boulder B-cycle Boulder B-cycle 22 132 0.55
63 Avignon France VéloPop TCRA 20 173 0.54
64 Fort Lauderdale US Broward B-cycle B-cycle 25 154 0.54
65 Cergy-Pontoise France vélO2 JCDecaux 43 318 0.54
66 Chattanooga US Bike Chattanooga ABS/Motivate 33 262 0.47
67 Santander Spain TusBic JCDecaux 15 175 0.46
68 Valence France Libélo Veolia Transdev 20 164 0.43
69 Clermont-Ferrand France C.vélo Vélogik 10 104 0.42
70 San Antonio US San Antonio B-cycle B-cycle 52 388 0.42
71 Brisbane Australia CityCycle JCDecaux 151 1,856 0.32
72 Bari Italy BariinBici Comunicare 32 44 0.29
73 Fort Worth US Fort Worth B-cycle FW B-cycle 34 267 0.28
74 Vannes France Vélocéa Veolia Transdev 25 153 0.26
75 Perpignan France BIP! Clear Channel 15 123 0.22

Table 5.3: Studied BSS ranked by trips per day per bicycle.
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Figure 5.1: Monthly trips per day per bike (TDB) performance values relative to number
of stations for our 75 case studies.
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BSS city Mean Median Stations
Boston 9.8 7 95
Chicago 3.3 0 300
London 46 37 741
Luxembourg 2.9 2 72
Minneapolis 6.6 3 167
New York City 38 34 330
San Francisco 7.9 4 68
Vienna 7.6 6 102
Washington 24 9 305

Table 5.4: Mean and median daily trip connectivity of stations to other stations.

destinations to satisfy individual user demand. As Ljubljana and Vilnius show (Table
5.3) however, high TDB rates can be achieved with about 30 stations if other attributes,
such as su�cient trip generating land-use density, are present.

Independent of users, station connectivity through trips is limited. From each indi-
vidual station there are only a small percentage of other stations that connect through
trips. Typically a few stations in the centre of the system have connections to many
other stations, but most stations have few stations with regular trip connections.

Using data available for a selection of cities using data from 2012 and 2013, Table
5.4 shows the mean and median number of stations that other stations connect to daily
through trips (as either origin or destination). The small number of daily connections for
each station disagrees with a functional network e↵ect. So a new station is unlikely to
experience many trips between many of the other stations and BSS members are mostly
concerned with few stations in a system.

Another much simpler analysis to see the e↵ect of system expansion is comparing
performance over time as systems grow. Using operator data providing bicycles, trips
and stations over time, Figure 5.2 shows Chicago, Denver, Minneapolis and Washington’s
BSS performance and station count vary independently.

The final argument against the network e↵ect is based on our TDB estimations
results (Table 5.3). Slovenia, Dublin and Lithuania have some of the highest TDB
scores (6.0 - 8.2) while Brussels, Minneapolis and Brisbane with 4 - 12 times as many
stations have much lower scores (0.3 - 1.1). While other factors are at play, given the
purported increase in TDB associated with more stations, these values further suggest
no causal link to be present. Returning to the relationship illustrated in Figure 5.1,
we believe station and bicycle number to be endogenous and that large systems have
had large investments in their usage, such as the development of cycling infrastructure,
or conversely, had high TDB to begin with and increased in size (station and bicycle
number) as result. Based on the multiple arguments presented we believe that increased
TDB performance strictly based on system expansion is a fallacy.
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Figure 5.2: Station count and trips per day per bike (TDB) performance for Chicago,
Minneapolis, Washington and New York City’s BSS over time.

5.3.3 Model selection and fitting

E↵orts to statistically show system size to be an endogenous variable unfit for predicting
TDB using a Hausman test failed due to the lack of finding an instrumental variable
unrelated to TDB. The use of system size, in terms of number of stations and bicycles,
was tested in regression models, greatly reducing error, but omitted due to believing it
to be endogenous.

Our analysis contained many ‘independent’ variables (Table 5.2) in the BSS at-
tributes, compactness, geographic, weather and transportation infrastructure categories.
Our models implement a quarter of these. We are not stating that omitted variables have
no e↵ect, only that some are perhaps weaker than our model variables or endogenous
and required exclusion.

Our models aim to determine what factors impact BSS performance in terms of TDB.
We create multiple models to increase the confidence of estimate variable influence: an
OLS regression of mean temporal values for each BSS, a similar but robust regression
(Huber, 1981), an OLS using only the month of April rather than a mean value, and
finally, since we have multiple measures per BSS with dynamic variables, we use a
mixed model as this minimizes variance between case studies and isolates unexplained
di↵erences between case studies such as laws, by-laws, culture, topography and history
among many possible factors.

We present four models to increase robustness as we observe that many variables have
outliers. Across the four models a clear set of coe�cients remain similar and significant.
Our original data gathering and analysis methodology planned for multiple observations
per case study negating the use of OLS. We decided to explore what result mean values
and a one month sample (April) would yield. Attempts to apply a linear model to
means of monthly values yielded models susceptible to over-fitting due to outliers with
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OLS Robust regression OLS April Mixed model
Variable Coef. Robust SE Coef. Robust SE Coef. Robust SE 2.5% 97.5% t-Value
Intercept -8.48 -4.40 *** -8.40 -4.02 *** -4.17 -3.85 *** -0.04 0.50 1.65
op type [advertiser] reference

op type [np] -0.96 -3.04 ** -0.99 -2.95 ** -0.77 -2.05 * -1.75 -0.46 -3.37
op type [private] -0.10 -0.39 -0.11 -0.40 0.04 0.16 -0.62 0.15 -1.21
op type [pta] -0.10 -0.17 -0.12 -0.22 -0.37 -0.71 -0.96 0.69 -0.34
bicycles per stn -0.23 -0.13 -6.95
outages full : outages empty 0.11 0.16 10.33
density 0.17 2.21 * 0.17 2.06 * 0.18 1.90 . 0.06 0.47 2.58
helmet [false] reference

helmet [true] -2.01 -2.70 ** -2.02 -2.63 ** -2.22 -2.39 * -3.18 -1.07 -3.96
log(pop) 0.26 3.22 ** 0.27 3.13 ** 0.33 3.31 ** 0.20 0.58 3.91
daily sun 0.36 2.66 ** 0.35 2.41 *
wind kmhr -0.06 -2.07 *
temp C 0.47 0.58 17.95
temp C

2 -0.39 -0.27 -10.93
cyclinf density 0.10 1.96 . 0.10 1.88 . 0.12 1.68 . 0.04 0.38 2.54

Adjusted R

2 0.43 - 0.42 0.49a

Robust standard error significance values: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1
a Fixed e↵ect R

2 (Johnson, 2014; Nakagawa and Schielzeth, 2013)

Table 5.5: Log-TDB model results. Mixed model coe�cients on the right are scaled.

influence. A robust regression was applied as it reduces the impact of outliers (but not
those with leverage and influence). The OLS using April was chosen as it is temperate
in North and South hemispheres. Zhao, Deng, and Song (2014) performed a similar
analysis but using di↵erent months.

The mixed model applied to multiple observations per BSS proved to be more robust.
Model structure was resolved through an iterative observation of Aikake and Bayes
information criterion (AIC/BIC), log likelihood and R2 (Johnson, 2014; Nakagawa and
Schielzeth, 2013). Our iterative mixed-model comparison resulted in a model containing
individual BSS as random e↵ects with the remaining variables as fixed e↵ects described
in Table 5.5. All dependent and independent variables are scaled. Scaling reduces the
correlation of squared terms with their non-squared equivalent (for the temperature),
prevents collinearity between interaction terms and eases some aspects of interpretation
while rendering others more di�cult. Due to our case studies varying in magnitude we
log the dependent variable tdb and pop. In addition we maximize R2 with restraint by
maintaining only significant variables in our model while reducing the BIC.

Table 5.5 provides OLS and robust regression coe�cients and 95% confidence inter-
vals for the mixed model, based on a 10,000 iteration bootstrap. We will refer to the
OLS and robust regression models as the ‘simple’ models. The categorical default for
variables op type is advertiser, such as JCDecaux and Clear Channel, and for helmet is
false, meaning no helmet law exists. We note that all our models achieved an R2 of 0.42
- 0.49.

Although a small sample, non-profits have a lower performance tendency to other BSS
operator types. The simple and mixed models estimate a 77 - 99% and 48 - 180% decrease
respectively in TDB for non-profit operators (Tables 5.5 and 5.6). With the exception of
Denver (1.5 TDB) the six other non-profits in our sample are within the bottom third of
our TDB ranking (Table 5.3). This may be due to non-profits having reduced access to
capital to promote the system, less support from a ‘champion’ within the municipality
(Parkes et al., 2013) or the operator having a goal other than maximizing the number
of trips. Maximizing the performance of a BSS based on TDB may clearly marginalize
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Variable E↵ect (%) confidence interval (95%)
Non-Profit operator 48 - 180 decrease
Bicycles per station 4.9 - 8.8 decrease per bicycle
Station density 4.3 - 32 increase per station
Helmet requirement 110 - 330 decrease
Population (percentage inc.) 0.16 - 0.48 increase
Temperature Dec. marginal returns until 17 - 31�C
Cycling infrastructure 2.6 - 22 increase per km

Table 5.6: Mixed model variable e↵ects on performance.

social, economic, racial and gender equity outcomes many non-profits aim to prevent.
Minneapolis’ BSS explicitly allocates stations, bicycles and service to areas for social
equity purposes while expecting an economic loss (Nice Ride Minnesota, 2012).

Our models do not directly use the number of stations or bicycles in our model even
though, as mentioned, they are highly correlated with the dependent variable (Figure
5.1). Adding these variables to our models increases R2 by 30% but as a result of
endogeneity. The normalized bicycles per station alternative variable is linked with a 5
- 9% decrease in performance per bicycle (Table 5.6).

Systems with more bicycles per station require larger stations, in terms of docks,
and also have greater variation in station size, hence the variables also covary. Our
interpretation considers these three factors together in hypothesizing that operators
which place larger stations in high demand areas, such as transit hubs, may not benefit
the system as a whole. More resources are invested in replenishing these stations then
focusing on a wider set of stations. Having larger stations, while all else remains equal,
also means having fewer stations, based on fixed capital costs, meaning a smaller coverage
area, decreasing station density and reduction in potential trip origins and destinations.

Station density was found to increase performance by 4 - 32% per station per square
kilometre. The recommended density of stations by the Institute for Transportation and
Development Policy is 10 - 16 stations while our case study mean is below 6 stations
(Table 5.2). Density impacts the distance between users’ true origin or destination and
the closest bike share station. More insidious however is the distance that users must
walk and/or bike if their desired station is full or empty. So density is a measure of
coverage quality but also resiliency and reliability of the system.

The bicycles per station variable, found to negatively impact performance, correlates
with station size and station variation suggesting more smaller regularly sized stations
being more performant. The complexity in interpretation prohibits a stronger recom-
mendation. However, in combination with the density variable significance, multiple
factors point to denser small stations being more e�cient than fewer larger stations over
the same area. We have shown the increase of system size, in terms of stations and
bicycles, does not increase performance as the TDB metric normalizes by the number of
bicycles, among other factors. Increasing the number of stations while keeping the num-
ber of bicycles constant however, may increase TDB according to model estimates. A
larger availability of stations, for a fixed number of bicycles, more densely concentrated
increases accessibility and therefore TDB likely as well.
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Whether having many small stations rather than few larger stations is more per-
formant, as Faghih-Imani et al. (2014) suggest, has implications for BSS technology
providers. Two of the largest BSS technology providers (Public Bike System Company
and JCDecaux) operate smart-station systems where much of the technology and costs
are associated with station kiosks and docks. Technology providers o↵ering smart-bike
systems where the technology is incorporated in the bicycles, supposedly reducing costs,
may benefit by being able to o↵er greater density of smaller stations at lower costs.

A densification of stations through a redistribution of resources to create more smaller
stations should not be confused with our earlier statement that an increase in stations
does not improve performance. We refer to system expansion generally where operators
typically grow their systems outwards at similar densities and increase the number of
bicycles. Our results imply increasing the number of stations, while maintaining the
number of bicycles, increases TDB.

The outage interactions (Table 5.5) suggest that having stations being full and empty
to be an indicator of an active and performant system, clearly not a cause. Operators
typically aim to prevent full outages more than empty outages, as can be observed by
the mean values in Table 5.2, as they lead to greater complaints from users (Médard
de Chardon, Caruso, and Thomas, 2016). We expected outages to be negatively associ-
ated with performance in terms of causality, ceteris paribus poorly rebalanced systems
decreasing usage, but it is revealed as a symptom of performance.

Our model suggests a penalty of 200% for BSS with helmet requirement laws. The
two Australian case studies with helmet requirements are both in the lower third of
performance ranking (Table 5.3). Currently mandatory helmet legislation is only present
for BSS in Melbourne, Brisbane and Seattle. We note that Seattle’s BSS, of similar size
to Melbourne’s, is experiencing 0.9 TDB (City of Seattle, 2016b; Pronto, 2016) and
was at risk of bankruptcy until the City of Seattle purchased the system in early 2016.
Discussion of the cause of the deficit has largely ignored helmet regulation and rather
related to unmet expectations of financing, trips, hilliness and governance structure
(Bush, 2016; City of Seattle, 2016b; Westneat, 2016). The helmet variable e↵ects of our
model may partially relate to Australian cultural or behavioural factors (Section 5.2.3)
rather than helmets alone.

As the number of trips directly impacts the TDB metric, it’s no surprise that larger
populations increase metric performance. The simple and mixed models show a percent
increase in population relates to 0.26 - 0.33% and 0.16 - 0.48% increases in performance
respectively.

Weather is of course a major determinant of performance. Warmer temperatures
increase performance but marginal returns are maximized around 24� C. Temperatures
beyond the maxima should perhaps not be interpreted as decreasing performance, rather
that warm weather noticeably, but decreasingly, increases TDB up to the maxima. For
the simple models, hours of daily sun were more representative of BSS usage, except
for the April model (12 hours of sun for almost all BSS) for which wind plays a role.
An increase in wind of 1 km/h, above the mean, suggests a 6% performance decrease.
Humidity was never found significant, likely due to monthly aggregation as prior work
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found it relevant at shorter temporal resolution (Gebhart and Noland, 2014).
Our performance estimates (Table 5.3) bias systems with weather more comfortable

for cycling. Weather is but one factor impacting ridership and as Copenhagen shows
(Appendix C.1) need not be such a strong e↵ect. As our analysis only uses data from
months BSS are in operation, those that close during the winter may have higher overall
performance as a result. BSS have the same capital costs regardless of seasonality. While
operating costs during the winter may be greater than revenue, the winter closure may
still decrease seasonal BSS revenue and performance upon reopening due to the need to
reinvigorate potential members. This decision may be out of the control of the operator
however, as cycle path maintenance requires municipal assistance.

Cycling infrastructure is significant in the simple and mixed models showing an e↵ect
of 11% and 3 - 22% respectively per additional kilometre per square kilometre (Tables 5.5
and 5.6). Other variables such as elevation deviation and mean dock sizes were sometimes
significant but sensitive to model changes. Rail and bus infrastructure were not found
to be significant although BSS stations adjacent to rail stations in Boston, Chicago,
London, Luxembourg, New York City, San Francisco and Washington are some of the
most used stations within their systems (Médard de Chardon, Caruso, and Thomas,
2016) and important feeders for the whole system. It is likely not the number of bus or
rail stops that matter but their magnitude of tra�c.

5.4 Conclusion

We provide a comparison of a large number of bicycle sharing systems (BSS), mainly
in Europe and North America, using the metric of trips per day per bike (TDB). The
use of TDB is one metric that allows a relatively simple comparison of many BSS. This
exercise is worthwhile however as little quantitative work explores the determinants of
BSS performance. While the benefits of systems are repeatedly stated by politicians
and media there’s little existing concrete evaluation of these and a chronic absence of a
specific purpose for many BSS. A comparison based on TDB is perhaps the most fitting
as it is largely indisputable. Without clear goals, BSS adoption hints to their purpose
being a symbol of sophistication, equity and sustainability awareness, among others,
more than part of a comprehensive public transportation tool.

In determining what factors impact BSS usage we found that system expansions
(increasing the number of stations and associated number of bicycles) do not increase
system performance. This is a significant finding as influential actors promote this
‘network e↵ect’ to policy makers while we have found absolutely no evidence supporting
this. Additionally, and unsurprisingly, cycling infrastructure is significant related to
BSS performance. Politically, however, increasing BSS size may be more palatable by
decision makers and less contested by the public than a redistribution of public roadways
for improved utility cycling infrastructure. Results also show that non-profit operators
have decreased TDB, perhaps due to addressing equity, and that temperature and wind
negatively impact BSS performance as expected.

Given the presented attributes’ impact on performance, policies can be put in place
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to maximize TDB - if this is the goal of the BSS. Alternative metrics, such as BSS
self-funding through user fees or advertising, are available but can equally be criticised
for lack of equity consideration. Additionally, such a metric would be more opaque to
external evaluation. As we mentioned earlier, this performance metric does not align
with some BSS goals. The purpose of Luxembourg City’s BSS, for example, is to serve
as transitional tool to private utility cycling, a goal that can be interpreted in the long
term as aiming to decrease system TDB. More often however BSS have no explicit or
measurable goal.

As some BSS adoptions may be motivated by political gain (Which politician doesn’t
doesn’t desire a sophisticated, self-funding, sustainable, equitable, health improving,
congestion reducing transportation system in their city?) and facilitated by provision-
ers seeking profit through sales, advertising or operation of the service, it’s no surprise
that a clear goal isn’t present. So while some existing goals ignore demographic seg-
ments, a secondary concern may be the regularly ignored social detriment associated
with advertisement subsidized BSS.

We hope the provided TDB estimations (Table 5.3) initiate discussions within munic-
ipalities of precisely what purpose their BSS has. Some of our low performance rated case
studies have been previously called a success by media, operators and their municipality,
yet, as discussed, BSS often provide limited benefits to health, carbon dioxide emission
reductions, road congestion and equity. With low TDB rates, even fewer plausible claims
of BSS benefits remain.
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Chapter 6

A critical perspective of bicycle
sharing system politics, business
and purpose

Outline

This chapter describes the growth of bicycle sharing systems (BSS) in Europe and North
America from a critical urban sustainability perspective. It discusses how BSS, consist-
ing of multiple collaborating actors with di↵erent objectives, can lead to unintended
outcomes. Environmental sustainability is often cited as a benefit of BSS yet CO2 emis-
sions have been shown to sometimes increase as a result. Technological and contractual
lock-in of BSS by technology and service providers respectively, constrain municipalities
from expanding or locating stations where they desire. Politically, BSS are being used to
promote cities as being cosmopolitan externally while increasing citizen pride in having
a sophisticated and modern technology that is a supposedly sustainable, healthy and
equitable form of transport. The rapid and global dispersion of BSS has been facilitated
by their many positive associations. Yet many of BSS’ promoted benefits are unproven,
limited or inconsistent. In addition many systems are subsidized by advertising, promot-
ing consumption and even car ownership. While BSS do have some concrete benefits,
these are disproportionately gained by the already privileged classes.1

6.1 Introduction

Bicycle sharing systems (BSS) appear to be easily implementable solutions with many
benefits for relatively little expenditure. Existing literature, however, has largely fo-
cused on quantitative analysis (Fishman, Washington, and Haworth, 2013; Ricci, 2015)
and optimal rebalancing (Erdoğan, Battarra, and Calvo, 2015; Forma, Raviv, and Tzur,
2015) but very little on critical analysis of the validity and distribution of BSS benefits.

1This chapter is based on a working paper.
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While operators and decision makers regularly state BSS’ many benefits, clear goals are
rarely provided with their adoption, making claims of success, using arbitrary statistics,
questionable. Additionally, BSS deployments requires multiple actors with di↵erent pri-
orities, sometimes deteriorating their e�cacy. Comparing BSS performance as a metric
(Chapter 5) provides a relative measure of success, but this too can be criticised as being
too narrow. Analysis of BSS politics in the context of sustainability and justice raises
existential questions regarding the purpose of these systems in cities, regardless how
much the the systems are used.

The reported benefits of BSS, which we strongly di↵erentiate from goals or purposes,
are many and varied: cycling modal shift increase, economic and travel time savings
for users, reduced congestion and emissions, physical and mental health, normalizing
cycling, a complementary and alternative transportation mode, convenience, leisure and
social equity (Fishman, Washington, and Haworth, 2013; Ricci, 2015; Shaheen, Guzman,
and Zhang, 2010). While many of these are plausible, they first depend on BSS having
a certain level of use and stations being present for a variety of demographics, which is
rarely the case (Chapter 5).

The recent growth of BSS coincides with the study of new technologies being pro-
moted as solutions to societal and environmental concerns while being capitalized upon
to attract funding, pacify conflicts and increase urban value (Kenis and Lievens, 2015;
Krueger and Gibbs, 2007; While, Jonas, and Gibbs, 2004; Whitehead, 2003; Wilson,
2015). The problem with these technological or policy solutions is that while they may
provide social, environmental and economic benefits, gains are not equitably distributed.
With ongoing deregulation, city or urban governments are becoming more independent,
important and responsible in shaping urban living. A selective process of social and sus-
tainability policies, increasingly privatized, conceal underlying goals of economic growth
for some citizen classes over others (While, Jonas, and Gibbs, 2004; Wilson, 2015). Ur-
ban sustainability literature criticizes technocentric projects, similar to BSS, that provide
‘green fixes’ through green policies (Long, 2015; While, Jonas, and Gibbs, 2004) in other
sectors (energy, transport, waste, building). Similarly, ‘sustainability fixes’ have predom-
inantly focused on implementing policies specifically reducing CO2 emissions, among a
wider set of issues, through measurable means rather than potentially more e↵ective,
but less quantifiable, alternatives (While, Jonas, and Gibbs, 2010).

Many BSS stated benefits, publicized as objectives, are unproven and in some cases
undermined. The three most commonly promoted benefits of BSS relate to the equity,
health and the environment. For most cities however, users are more likely be white,
male, younger, wealthier and own a bicycle and a car (Fishman, 2015). The likely cause
of gender inequity is that cycling infrastructure, which at the very least appears unsafe or
unenjoyable, is more commonly used by men (Garrard, Handy, and Dill, 2012; Goodman
and Cheshire, 2014). The health benefits of BSS are controversial as well. A study in
London showed increased benefits for men as women tend to have a greater number of
accidents (Woodcock et al., 2014). Cycling is a healthier alternative to driving, certainly,
and some forms of public transport, but it likely reduces the health benefits of those who
previously walked (Fishman, Washington, and Haworth, 2015; Murphy and Usher, 2014;
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Case study Luxembourg Munich Minneapolis New York City Seattle
Technology JCDecaux nextbike PBSC PBSC 8D/Arcade
Operation JCDecaux PTA NRMb Motivate Motivate
Tech. owner JCDecaux PTA NRM Motivate City
Manager Citya PTA NRM City City
Sponsor - - BCBSAc Citibank Alaska Airlines
a Economic disincentives by operator for certain station locations.
b Nice Ride Minnesota, a non-profit.
c Blue Cross Blue Shield Assoc., among many others.

Table 6.1: Types of bicycles sharing system actors and case study examples.

Woodcock et al., 2014). Public transit use is not necessarily reduced by a BSS’s presence,
it may replace some trips but also encourage increased use by trip chaining (Ricci, 2015).
The decrease in car usage as an alternative is minor in user surveys and no work has
yet measured actual behaviour change, only self reported (Ricci, 2015). Likewise carbon
emissions reductions are questionable, especially as most BSS use conventional trucks for
rebalancing bicycles, in some cases increasing overall emissions (Fishman, Washington,
and Haworth, 2014). The many claims of BSS benefits are overestimated.

A BSS consists of multiple actors. Technology manufacturers, sometimes multiple,
provide the physical infrastructure, point of sale technology and operational software
required for a functional BSS. The maintenance and repositioning of bicycles is often
contracted out to a private company. System management, dictating operational goals
and station location, is often handled by municipalities but to varying degrees handled by
operators. The technology owner tends to be the operator, municipality or a non-profit.
The municipality is present if BSS require the use of public land for stations, but some
types of systems do not require stations and therefore omit governmental involvement.
Mayors occasionally play important roles in BSS deployment, championing and finding
sponsors. Sponsors are prevalent in North America and the UK in subsidizing BSS.
Users and residents are the final actor. Individual BSS have diverse combinations of
actors, some of which hold multiple roles (Table 6.1).

Over the last decade BSS have been aglow with positive associations encouraging
their rapid growth. Throughout this evolution negative aspects have not been docu-
mented. The broad diversity of operation and ownership models have evolved, with
di↵erent actor combinations, making generalization and comparison di�cult. Interac-
tions between actors with di↵erent goals has led to conflicts, contradictions and co-opting
leading to alternative outcomes than those promoted. This chapter reveals and discusses
these so further work can focus on these facets.

The chapter begins by presenting methods (Section 6.2) before critically describing
narratives in Europe and North America (Section 6.3), followed by a series of discus-
sions on key issues (Section 6.4) that arose from the narratives before finally concluding
(Section 6.5).



108 CHAPTER 6. A CRITICAL PERSPECTIVE OF BSS

6.2 Methodology

A total of 19 in person or telephone interviews where carried out between 2013 and 2015
with municipal decision makers, BSS professionals, operators and cycling non-profits in
a variety of cities in North America and Europe (Dublin, Luxembourg, Vienna). Larger
BSS in North America were targeted for interviews, which at the time there were still few
of. Fewer European interviews were completed simply due to time constraints. Three
interview question sets were completed by email responses. English and French media
articles from North America and Europe were also studied to complement interviews. We
quote the transcribed interviews in this chapter but maintain anonymity while providing
the organisation type, role, such as elected council member or city manager, and whether
their relevant BSS is in Europe or North America.

Our semi-structured interviews were tailored to three interviewee types: municipal,
operator and cycling organization. This research evolved from a suspicion that operators
and municipalities were prematurely calling their BSS a success. Cycling organizations
were chosen for an external opinion having expert knowledge in e↵ective cycling strate-
gies. Interview questions served as guidelines for discussion rather than fully structured.
The purpose of the interviews was to understand the motivation, adoption and evolution
of BSS (Appendix D.1).

6.3 A critical history of BSS evolution in Europe and North
America

Bicycle sharing systems are most common in Germany, France, Italy and Spain in Eu-
rope. Although contiguous, their outcomes are summarized di↵erently. Germany’s sys-
tems haven’t been recognized as successful (Parkin, 2012; Tironi, 2011). To understand
why it’s necessary to return to Germany’s alternative BSS evolution.

In 1998 three students developed the Call-a-bike, station free, BSS in Munich with
about 1200 bicycles in the city centre (Nitschke, 2015). Following financial di�culty in
2001, the system was taken over by Deutsche Bahn (DB) and spread to over 50 other
German cities. Germany due to this had a much earlier and more dispersed BSS presence,
although this typically consisted of one station adjacent to train stations. Around the
time Lyon’s system launched, in 2005, a second technology named nextbike emerged
and began spreading across Germany. The system was also station free with virtual
station areas where bicycles could be parked. With a presence in over 30 cities, some
municipalities, such as Munich, now had two BSS present. Because these systems did
not use stations they did not require municipal involvement for the use of public space
to place stations nor did they have the same visual presence as systems with stations
(Nitschke, 2015). These systems as a result were not integrated into larger cycling or
transportation initiatives and not promoted by municipalities.

The presence of Call-a-bike and nextbike likely reduced the integration and develop-
ment of BSS as part of larger cycling initiatives in Munich (Nitschke, 2015) and other
German cities. With Munich’s public urban space fully allocated, increasing cycling
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infrastructure further meant taking space from other transport modes, likely cars, some-
thing that politicians were reticent about. The development of more comprehensive
station based BSS was easily disarmed by the existing presence of existing less visi-
ble and smaller BSS. Eventually decision makers’ use of alternative station based BSS,
popular cycling initiatives and perhaps the desire to market themselves as a liveable
city, motivated the development of a station based system managed by Munich’s public
transport authority. While Berlin adapted their systems to become station based most
other German BSS remain station free or exceptionally small.

Italy while having a few large and well used systems, largely has many very small
systems with little use. Spain had a rapid expansion throughout the country, and still
has many highly used systems, but many smaller systems closed following the 2008
economic downturn. France has a variety of systems in terms of size and usage mostly
operated by JCDecaux. Overall Europe’s new BSS deployment peaked between 2007
and 2010.

Existing BSS development is often privatised and associated with advertising. This
contrasts with the earliest know BSS. Amsterdam’s ‘White Bikes’ was conceived in 1965
by Luud Schimmelpennink during his time as a member of the Dutch anarchist Provo
movement as a response to air pollution and consumerism (Teun Voeten, 1990; Zee,
2016). The freely accessible bicycles, provided by volunteers and painted white for use
by all, did not last long. Many where quickly removed by police due to a bylaw requiring
bicycles be locked but more generally out of resistance against Provo’s initiatives to pro-
voke the police (hence the name) (Beatley, 2000). Schimmelpennink, however, continued
to shape the BSS landscape to its current form.

The White Bikes would have many imitators in Europe and North America until
the 1990’s. Most experienced a similarly short fate with perhaps the exception of La
Rochelle in 1976, who’s mayor strongly supported the initiative. While Amsterdam’s
Provo movement was short-lived, Schimmelpennink, after being elected to Amsterdam’s
city council, proposed a similar BSS concept a few years later. This was rejected due
to the bicycle being viewed as a thing of the past and the car as the future (Zee, 2016).
In 1995 Schimmelpennink helped develop Copenhagen’s 1995 coin-operated and station
based, second generation, BSS. In operation until 2012, it was so popular that find-
ing a bicycle was sometimes di�cult (Beatley, 2000). It is to date the longest know
running system. After another attempt in 1999 to develop a modern BSS in Amster-
dam (Beatley, 2000; Teun Voeten, 1990), Luud Schimmelpennink assisted JCDecaux in
2002 in developing Vienna’s third generation BSS, with an automated and secure check-
out system linked to user’s credit cards, solving earlier generations’ biggest problem,
anonymity (Zee, 2016). So while Amsterdam’s White Bikes were born out of an anti air
pollution and anti-consumerism movement, many of Europe’s BSS are now funded by
advertisements promoting consumption and often cars.

Advertising being paired with BSS can be traced back to Rennes’ 1998 call for street
advertising o↵ers where Clear Channel, an American advertising company, o↵ered a
third generation BSS as an addition to their bus shelter and advertising o↵er and won.
The previous contract holder for bus shelter advertisement, French company JCDecaux,
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unhappy with the outcome vindictively removed all bus shelters, leaving Rennes’ citizens
in the rain (Meignan, 2007), and contested the tender process in the courts. The court
ruling crippled Rennes’ new “Vélo à la carte” BSS by disallowing any expansion of the
system. To the detriment of citizens Clear Channel and JCDecaux have repeatedly
challenged outcomes of street furniture and advertising provisioned BSS contracts since
this event (Girard, 2005).

Unsurprisingly, JCDecaux quickly began development of Cyclocity, their BSS brand,
in 1999 (Lundahoj, 2014) at their headquarters outside Paris, deploying their first sys-
tems in 2003, following the assistance of Luud Schimmelpennink, in Vienna, Cordoba
and Gijon. The first large test of JCDecaux’s new BSS technology however was in 2005
when Lyon, France’s third most populous agglomeration, requested o↵ers for a BSS in
exchange for street furniture advertising. This time JCDecaux was prepared to challenge
Clear Channel and won the contract, creating the worlds largest BSS at the time (Parkes
et al., 2013) and demonstrating their ability to o↵er advertisement subsidized BSS for
large cities.

Paris had carefully watched Lyon’s BSS developments. In a hurry to deploy their
system for the summer before municipal elections, Clear Channel and JCDecaux were
both involved in defining the tender, guaranteeing that their products would best fit
the request for proposals while alternatives would not (Tironi, 2011). JCDecaux lost
the bid to Clear Channel which had o↵ered more bicycles. Unsatisfied JCDecaux once
again contested the outcome in court and, thanks to a technicality, annulled the out-
come resulting in a second round of proposals which JCDecaux finally won by o↵ering
more bicycles. The absurdity continued however, with Clear Channel also taking the
outcome to the courts but only succeeded in temporarily preventing an expansion of
Paris’ future BSS into adjacent municipalities (Paris, 2008). With the deployment of
750 new stations and thousands of bicycles in Paris would also be implanted many new
advertising billboards. As the leftist party was responsible for the BSS, the green party
attempted to protest the privatisation of public space but found the complexity in un-
tangling free bicycles from advertising too complex to communicate to voters (Tironi,
2014). The contention regarding advertising would however follow JCDecaux in other
municipalities such as Brussels and Namur.

Paris’ BSS, associated with sustainability, health and decreased congestion, was a
huge boost in image for JCDecaux (Le Go↵, 2009) following allegations and convictions
of corruption (Marketing Week, 2000; Rydberg, 2007; Strategies, 2003). After Paris,
JCDecaux experienced a rapid growth in the number of BSS deployments until 2011
(Figure 6.1). It’s unclear if the decline is due to market saturation, most large cities
now having a BSS, decreased demand for advertising coupled with a BSS, or a decline
in billboard advertising prices. Regardless, JCDecaux has no interest in running BSS as
a service independently of advertising and did not bid for London’s operator contract
because revenue was not linked with advertising (Le Go↵, 2009).

While some municipalities purchase BSS infrastructure and others operate it, for ad-
vertiser provisioned BSS all the infrastructure belongs to the company and will remove
it at the end of the contract. Some municipalities view this as a benefit as the tech-
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Figure 6.1: JCDecaux bicycle sharing system deployments.
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nology is still evolving rapidly. There is however a more nefarious side to this. System
expansions require new negotiations between operators and municipalities. Placing new
stations where the advertiser has no interest in placing advertisements creates problems
relating back to these companies having no desire to simply run a BSS. A good example
is present in Luxembourg.

Luxembourg City’s BSS, operated by JCDecaux and deployed in 2008, is the largest
in the country with 73 stations. As an important usability factor of a BSS is the station
coverage area, The greater the area covered enables a larger proportion of the population
to access more destinations. Luxembourg City is peculiar for having two BSS directly
adjacent but using incompatible technologies. While JCDecaux may provide added
stations in exchange of advertisements billboards, they ask for payment for stations at
locations undesirable for advertising. The reasons for Bertrange’s distinct BSS, adjacent
to Luxembourg City, is due to their discovering that the cost of purchasing electric
bicycles, docks and station infrastructure was cheaper than purchasing conventional
infrastructure from JCDecaux. This results in fragmented BSS, decreasing their utility.

Municipalities using advertiser operated BSS are locked-in. While initial contracts
typically define stations, bicycles and service to be provided in exchange for advertising
rights, adding further stations and bikes causes problems for a few reasons. Advertisers
wish to have stations in high visibility areas, preferably of a certain demographic. If the
municipality insists on a station being in a location the advertiser has no interest in,
they discourage this with high costs for multiple reasons. Advertisers have no interest
in operating a BSS and placing a price on BSS service. This exposes advertiser’s black
box of costs and revenue. So to impede undesirable station locations the operator may
charge high costs justified by the ‘high cost of operating the service’.

Returning to our earlier statement that advertising operators have few incentives to
maximise BSS usage, this creates a particularly interesting situation. Municipal BSS
promoters, often mayors or other elected decision makers, who have bootstrapped their
reputation to this symbol of sophistication and sustainability, cannot easily claim their
BSS to be a failure lest it reflect poorly on them as well. Although there exists no
quantifiable evidence of advertiser operators o↵ering lower quality service than others,
it’s plausible, and encourages a situation of potential collusion in calling a BSS successful.

Advertisements are not inherently bad, but many provide more than just information
and are unethically using sophisticated techniques as an “ultimate influencer” (JCDe-
caux, 2012) rather than to inform. The most commonly promoted benefits of BSS are
health by increased activity, decreased road congestion, emission reductions and general
sustainability. Advertisements generally push for consumption and even car-dependent
lifestyles (Figure 6.2).

Europe’s conventional BSS development was spurred by an advertising innovating
to remain competitive in outdoor advertisement. The visibility and associated reported
benefits of BSS made them attractive to politicians, happily provided by advertisers
at no cost to municipalities. We have seen however, how in Europe the coupling of
advertisement and BSS brings legal conflicts and delays to the introduction of the service.
Advertisers’ goals also di↵er from municipalities’, which is locked in with the technology,
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Figure 6.2: Car advertisements on bicycle sharing system station billboards in Luxem-
bourg City.

creating in some cases fragmented BSS of decreased utility.
Europe’s BSS development influenced North America (Parkes et al., 2013). The

Portland Yellow Bikes developed in 1994 were inspired by Amsterdam’s White Bikes.
The motivation to develop Yellow Bikes however was simply to have free and convenient
bicycles available. While the system gained a lot of publicity, the maintenance required
and thefts rapidly put an end to the system. A few other systems in North America also
dabbled in early generations of BSS or small conventional systems, such as Washington’s
SmartBike DC, but it wasn’t until 2009 that Montreal’s Public Bike System Company
(PBSC) deployed the BIXI (BIcycle taXI) BSS, with 300 stations and 3,000 bicycles,
that larger systems began to appear.

The rapid deployment of BIXI technology in North America may be due to Washing-
ton’s 2008 SmartBike experience discouraging the use of advertising companies. Clear
Channel deployed a small 10 station 100 bicycle system as part of a street furniture
contract but had no interest in developing it further when the municipality desired to
do so (Klein, 2015). At an impasse, the system was abandoned and BIXI and Alta Bi-
cycle Share collaborated to provide the modern, flexible and potentially less constrained
Capital Bikeshare (CaBi). Four BSS launched in 2010, Denver and Minneapolis, both
operated by non-profits, Washington, operated by ABS, and Mexico City, run by Clear
Channel, after which advertisers have had little success in North America. The absence
of advertisers from North American cities is due to two additional factors. Many may-
ors expressed dislike for advertisement linked with street furniture and the demand and
value of street advertising decreased sharply following the 2008 economic crises, reducing
advertisers’ bidding for such contracts.

Using BIXI technology Alta Bicycle Share (ABS) became North America’s regular
operator for large cities, serving Washington (2010), Boston (2011), New York City
(2013), Chicago (2013), San Francisco (2013) and Seattle (2014). A second technology
supplier, Trek/BCycle, has been present in many more cities but typically for smaller
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systems and often operated by non-profits. An interviewed American BSS professional
states ABS’ success is due to having applied PBSC technology, “the golden standard”
of BSS, and being “fortunate to have good sta↵”2. Likely, ABS having an experienced
sta↵ o↵ering to manage systems while selling trusted technologies was responsible for
their rapid growth. More recently operator CycleHop has grown rapidly using various
technologies, one of which, Social Bicycles, is particular for being a flex system, similar
to those present in Germany, but with optional stations.

In 2012 PBSC made a decisions which caused disruptions and opportunities for
North American BSS development. Believing they were being overcharged they termi-
nated early their relationship with 8D, the company providing BIXI with all the technical
components, and began developing a new solution internally. Besides the 26 million dol-
lar lawsuit filed by 8D, later dismissed (Martineau, 2012), BIXI’s replacement technol-
ogy was inadequate causing Chattanooga’s system significant di�culties and motivating
New York City’s (NYC) launch to be delayed (Sadik-Khan and Solomonow, 2016). Mis-
management by Alta Bicycle Share and PBSC’s misrepresentation regarding the state
of their newly developed technology led to delays and complexity for NYC’s BSS de-
ployment, almost to the point of being scrapped entirely (Sadik-Khan and Solomonow,
2016). In early 2013, with NYC still to launch, Alison Cohen, ABS’s president, left the
company to later found Bicycle Transit Systems (BTS) with other important members
of ABS (Andersen, 2014). When NYC finally launched in late May 2013 some problems
were still present but the system was considered a success (Sadik-Khan and Solomonow,
2016). Meanwhile PBSC was struggling with delayed repayments and the destruction
of uninsured assets caused by Hurricane Sandy. PBSC filed for bankruptcy in January
2014. Shortly after, ABS formed an alliance with 8D to provide alternative BSS tech-
nologies. A Montreal investor purchased PBSC and restructured it over the following
year, causing BIXI technology shortages during that time.

Unlike many other BSS in North America, NYC’s bicycles and other infrastructure
were owned by ABS rather than the municipality. The delays caused by PBSC’s tech-
nological complications and the invested capital in NYC caused ABS to be financially
strained by early 2014 (Flegenheimer, 2014). To worsen their situation, in April 2014
ABS lost the Philadelphia BSS contract to BTS which now had some of their key former
employees (Andersen, 2014). Until then ABS had dominated service provisionment for
larger BSS deployments in the United States. In addition to this, ABS’s 2013 contract
to provide BIXI bikes for Vancouver’s 2014 system fell apart due to PBSC bankruptcy.
These factors deprived ABS of needed capital and in October 2014 investment group
Bikeshare Holdings bought the company, changing its name to Motivate (Chappell,
2014).

Similar to Europe’s advertiser lock-in, many North American BSS using PBSC tech-
nology found themselves locked in with no technology provider available following the
bankruptcy. System expansions were delayed in San Francisco, Chicago, Washington,
New York City (NYC) and other cities (CBS SF Bay Area, 2014; Goodyear, 2014).
Motivate, now with new capital and desiring to expand many of its systems was con-

2New companies have since entered the market and others upgraded their technology.
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Figure 6.3: Bicycle sharing system deployments in North America according to technol-
ogy provider.

strained. Motivate replaced NYC’s software with 8D’s in early 2015 to improve BSS
usability, reliability, management and diagnostics (Miller, 2015) and had new bicycles
and docks manufactured in China and Detroit (Peters, 2016) despite the expected patent
infringement lawsuit from PBSC (Baril, 2015).

In terms of BSS deployments, North America is at least five years behind Europe,
2015 being the largest year so far (Figure 6.3). Despite the common perception promoted
that BSS have been successful in North America, with rare exceptions such as Seattle,
Canada and the US both have grounds to re-evaluate this perception. All Canadian
BSS have had di�culties. Vancouver’s BSS initially planned to launch in 2012 has been
repeatedly delayed until its progressive launch in the summer of 2016. Ottawa closed
their Bixi system and changed to Social Bicycles in 2015. Toronto’s system stuttered
due to a mayor who viewed cyclists as a nuisance, changing operator to Motivate fol-
lowing PBSC’s collapse and unable to expand due to obsolete technology (Spurr, 2015).
Montreal has been consistently well used but at great cost to its tax payers following its
bankruptcy and failure to repay $15 million in loans (Bleiberg, 2014; Vailles, 2014).

Meanwhile the US has many BSS with low usage, such as in Fort Worth, San Antonio,
Chattanooga, Fort Lauderdale, Boulder, Charlotte, Nashville and Houston (Chapter 5).
Seattle is perhaps the first system to attract much media attention as it came to the
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brink of bankruptcy before being purchased by Seattle. The cause of the deficit has been
claimed to be unmet expectations of financing, debt repayments, insu�cient income
from low membership counts and governance structure (Bush, 2016; City of Seattle,
2016b; Westneat, 2016). The City of Seattle BSS managers claim the system should
have been publicly owned rather than by a non-profit (City of Seattle, 2016b) that then
sub contracted to a for-profit operator. City sta↵ comments hint that hilliness may be
a factor and are exploring electric bicycles in the 2016 request for proposals (City of
Seattle, 2016c). Surprisingly there is little mention of Seattle’s helmet requirement as a
cause for low use.

So while BSS started as an ine↵ective protest to car pollution, anti-consumption and
part of the sharing economy, it has been popularized in Europe by advertising companies.
Meanwhile in North America, the ‘gold standard’ of BSS tech, PBSC, developed by a
non-profit subsidized by the City of Montreal, went bankrupt, costing the municipality
millions, only to be purchased by a real estate developer. Alta Bicycle Share, founded
by cycling enthusiasts and operator of larger BSS, su↵ered from PBSC’s collapse leading
to their purchase by an investment firm. The evolution of BSS can, as a result, be
summarized as the corporatization of a democratic concept initiated by non-profits and
cycling enthusiasts.

6.4 Discussion

There exists extremely little critical or qualitative analysis of BSS. White papers have
e↵ectively summarized the large recent developments of quantitative analysis (Fishman,
Washington, and Haworth, 2013; Fishman et al., 2015; Ricci, 2015) with minor men-
tion of BSS existential issues. The analysis of Paris’ BSS development and underlying
conflicts of privatisation and capitalization of public space (Tironi, 2011; Tironi, 2014)
present the complex reality between between political party beliefs and the ability of the
public to comprehend them, leading to political parties forced to support policies, such
as advertising, they disagree with. Nitschke (2015) provides a much needed description
of German BSS, largely ignored in the literature, and focuses on the development of
Munich’s most recent system while well articulating conflicts of interest between BSS
actors.

In this section we further discuss the issues raised through the European and North
American case studies presented. We begin by looking at BSS reported benefits, purpose
and success metrics before focusing on some specific issues relating to equity, lock-in,
advertising, public participation, rebalancing and helmets. Finally we discuss how politi-
cians and businesses use BSS for ulterior outcomes than true pro-cycling initiatives.

6.4.1 Benefits, purpose and success

Bicycle sharing systems are promoted based on benefits but often not given a distinct
purpose. Without a clear purpose definition or goal the claim of a system being a
success cannot be questioned. From interviews many stated potential benefits of BSS
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were reoccurring:

• Provide alternative transport mode to the car.

• Economic and environmental benefits.

• Air quality improvements.

• Normalize the image of cycling.

• Increase mode shift to private cycling.

• Reintroduce the joy of cycling.

• Increased accessibility.

• Transport resilience and convenience.

• Decrease road congestion.

• Reduce overcrowding in buses and subway.

• Complement other modes of transport.

• Health.

• Promote tourism and recreation.

As we mentioned in the introduction, some suggested benefits of BSS are negligible,
inconsistent or unproven. With large amounts of data tracking every trip’s distance3

and duration, operators can and do interpret aggregate sums to promote and support
their system. An American operator states “a lot of the stats we report, like calories
burned and miles travelled, [are] an extrapolation based on formulas not real actual
data, it’s our best guess.” Claims of success based on estimates reflect positively on
decision makers, operators and advertisers associated with the system. A closer look
at the interpretations of many of these data press release statistics however reveal an
ignorant or deceitful conversion of data to measurable benefits.

Miami Beach’s operator claim CO2 reductions of almost four million metric tons in
two and a half years (Decobike, 2013), equivalent to the total emissions of Uganda in 2011
(The World Bank). The ludicrousness of the claim is better revealed when normalized
by distance travelled yielding CO2 reductions of 270 kg per kilometre or 1.2 metric tons
per trip. Boston’s celebration of four years of service is similarly fictional with CO2

reduction estimates of 0.924 metric tons per trip and 412 kg per km travelled (Hubway,
2015). These values make Luxembourg’s exaggerated CO2 reductions of 830 g per trip
and 208 g per km travelled trivial (JCDecaux, 2011). Using an optimistic 20% of trips
replacing car use (Fishman, Washington, and Haworth, 2014) with an emission rate of

3Most BSS do not have a GPS and do not track path, only trip origin and destination.
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140 g CO2 per kilometre yields emissions of 56 metric tons rather than the 415 suggested
by JCDecaux for Luxembourg. This emission reduction estimate discounts rebalancing
vehicle exhaust which in some cases exceeds reductions (Fishman, Washington, and
Haworth, 2014).

Bicycle sharing systems are susceptible to the same technocentric ‘green fix’ problems
as other sectors (Long, 2015; While, Jonas, and Gibbs, 2004). The simplification of en-
vironmental sustainability to CO2 reductions creates demand for measurable solutions
rather than potentially more e↵ective but unquantifiable methods. The use of met-
rics encourages measurable gains, independently of the quality of their impact (While,
Jonas, and Gibbs, 2010). So rather than be e↵ective at their stated goal, they represent
a proxy. In the context of a BSS promoting emission reductions, number of trips and
overly optimistic tons of CO2 saved are quoted while trips largely only replace public
transport, walking (Fishman, Washington, and Haworth, 2013). Similarly, a BSS pro-
moting health benefits will quote calories burned while already healthy and active people
use the system. Bicycle sharing systems by their nature of digitizing individual urban
transportation create large amounts of data allowing estimates of CO2 emission reduc-
tions and calories saved, among others, to be used for promotion by decision-makers.
Likewise however, this same data can show how overstated benefits may be.

Bicycle sharing systems should be part of a strategy to increase cycling modal share
and not a strategy in itself (Beroud and Anaya, 2012). In some situations, especially
politically, BSS appear to be used as stand alone promotions of cycling and its multitude
of benefits. The last two American Democratic National Conventions in 2008 and 2012
funded BSS deployments in Denver and Charlotte (Marshall, Duvall, and Main, 2015).
Tironi (2014) mentions Paris’ system deployment was rushed before the election and the
adoption may have related to political motivations rather than from a cycling promotion
strategy. London’s former Conservative mayor, Boris Johnson, consistently associated
himself with the system despite it being initiated by the former Labour mayor Ken
Livingstone. When mayors look to provide a BSS, advertisers, such as JCDecaux or
sponsors such as Barclays, Santander or Citibank, are happy to facilitate it in exchange
from the profits of associating their brand and their clients’ with, mainly, environmental
sustainability.

While increasing cycling in London is mentioned as one of Transport for London’s
(TfL) goals of their BSS, over 200 million pounds was spent on their system in two years
(Hill, 2012), money that was otherwise largely meant to be spent on cycling infrastructure
improvements. Perhaps this is politically a wise investment as it supports cycling without
the political disruption that equal investment in cycling infrastructure would have caused
due to parking or lane reassignments. Similarly, the 2009 adoption of a new BSS in
Munich was blocked, partially due to the politically infeasibility at the time to suggest
reductions in car parking (Nitschke, 2015).

One of the main signs that BSS are being used as symbols of municipal sophistication
and sustainability awareness is the pervasiveness of small systems with very few bicycles
and stations. Just like having one bus line does not constitute a transit supportive
government, neither does a small BSS demonstrate an authentic cycling and mode shift
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initiative.
Bicycles sharing systems imply ‘sharing’ and being part of the sharing economy.

The sharing economy is a broad democratic resource sharing concept of reuse, commu-
nity and sustainability outside traditional economic transactions (Matofska, 2016) with
many similarities to promoted BSS benefits. Comparing a traditional bike rental service
to a BSS, the duration and frequency of use di↵erentiate them, yet the transactions are
much the same. Many BSS are devoid of sharing. No individual provides belongings for
common use without expectation of (economic) reciprocity, ownership is often by a cap-
italist corporation expecting something in return. Advertiser operated BSS are strongly
capitalistic, profit seeking and encouraging consumption. Alternatively, the original
Amsterdam White Bicycles was very much part of the sharing economy as individuals
provided bicycles to be freely shared with other residents for the greater common good
in order to reduce pollution and consumption. According to Belk’s (2010) definition of
sharing, advertiser operated BSS are a commodity exchange, at the opposite extremity
of sharing, while systems owned by non-profits and municipalities fall somewhere in the
middle as aspects related to revenue generation and advertisement make BSS inclusion
into the sharing economy, and associated benefits, fuzzy.

How interviewees measured BSS success is of much narrower scope than the benefits:

• Transportation alternative.

• Economic, breaking even.

• Number of memberships, trips per day or trips per day per bicycle.

• User satisfaction through surveys.

• Normalizing cycling as a mode of transport for all, beyond lycra and messenger
niches.

• User demographics to mirror city demographics.

What defines a BSS’ success depends on the municipality stating clear goals. When
asked the purpose of their system, a European city’s system manager responded “That’s
a very good question. I don’t think I’ve been asked that before and I’ve done a lot
of interviews.” before describing some of the benefits, cycling modal share, equity and
congestion. This exemplifies well how BSS are perceived as bundles of benefits rather
than tools for a specific goal. A BSS may be helpful in popularizing a mayor but this is
unlikely to be a published goal. As it’s easy to promote the many potential benefits of
cycling and BSS, governments may prefer, and find it safer, to advertise possible benefits
rather than goals. Some BSS do have clear goals such as those defined above, but we
argue that many of these goals are not in-line with a larger environmental and social
sustainability initiatives or senseless on their own. Being economically self sustaining
has little purpose without a larger aim. In the case of NYC’s BSS which has the goal
of providing a transport alternative (La Vorgna, Marc et al., 2013), the system’s simple
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existence su�ces in calling it a success. This is similar to an o�cial calling their system
a success at launch (Zazueta-Castro, 2015).

The number of trips or trips per day per bicycle is regularly used by operators and
media as a measure of success (Bialick, 2013; Cripps, 2013; Goodyear, 2013; Paris.fr,
2013). Similarly flawed to user satisfaction as a measure of success, these metrics are
fundamentally inadequate due to who the service is most helping. In the case of BSS it is
more commonly wealthier young white men, not reflective of the population distribution
(Buck, 2012; Fishman, Washington, and Haworth, 2013; Goodman and Cheshire, 2014;
Murphy and Usher, 2014; Ogilvie and Goodman, 2012; Ricci, 2015; Woodcock et al.,
2014), while advertising to all residents or using public funds, often both, to o↵set costs.
So while Chapter 5 reveals some high performing BSS, they may still be unjust by
providing further advantageous to the already privileged.

If many of the proposed BSS benefits are unfounded or inconsistent and targets for
success (goals) irrelevant or unjust, the question arises as to what purpose remain of these
systems. There are some indisputable benefits however. Non-cyclists worry about bicycle
theft, maintenance and therefore unsurprisingly have more positive feelings towards BSS
use than private cycling (Curto et al., 2016). As BSS negate private cycling fears, it
provides an e↵ective option for lowering the barrier to utility cycling for non-cyclists.
These systems also clearly increase the visibility of bicycles on the street, even if only
docked at stations, and encourage a more casual use with riders wearing unspecialised
clothing, helping normalize the image of cycling.

Bicycle sharing systems are also convenient, but as we said, particularly for some
demographics more than others. Further more, analysis of BSS operations, specifically
rebalancing, shows that disproportionate resources are spent supporting commuter be-
haviour rather than BSS as a convenience (Chapter 4). Rebalancing facilitates but also
generates new trips. Extensive rebalancing between transportation hubs and CBD en-
courages a costly dependence that is not o↵set by membership fees. Commuter BSS use
is o↵set by other members and alternative income sources such as advertising. Were
BSS to be used as tools of convenience, with reduced rebalancing and costs, alternative
revenue sources would likely be less necessary or decrease the need to target wealthier
demographics to balance costs and perhaps be more just.

Many municipalities that now have large BSS have previously abstained from the
large cycling marketing that now surrounds these new systems. Claims that BSS lower
the barrier to cycling (Curto et al., 2016) may simply be the result of marketing. Had
similar e↵ort been made promoting private utility cycling along with investment in infras-
tructure rather than a new technology, perhaps a similar outcome would have resulted
with greater environmental and social benefits and less privatisation of public space and
advertising. So while BSS has some benefits it is unclear if the opportunity cost would
have been more e↵ective spent on regular cycling initiatives.

Bicycle sharing systems are not necessary to developing large cycling modal shares, as
has been shown in the Netherlands and Denmark. Cycling initiatives and infrastructure
can be largely attributed to this outcome. While BSS can be catalysts for cycling modal
shift for a privileged demographic, safe and comfortable infrastructure is required to
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broaden its potential. A more just success of a BSS is dependent on e↵ective political
support encouraging funding of necessary and equitable infrastructure improvements
among many other societal issues. Fundamentally some demographics “have no access
to healthy food, so there’s a large obesity epidemic in these neighbourhoods. So you
can’t expect these people to hop on a bike ... it’s a societal issue.” (American BSS
consultant)

6.4.2 Equity, health and public participation

Beginning in the 1890’s bicycles provided a mode of transport enabling social and gender
equity (Horton, 2006). Any mode of transport that reduces the ease or cost of travel has
similar outcomes. The car’s twentieth century rise to dominance e↵ectively privatised
large amounts of public space by requiring personal vehicles to use roads. Alternative
modes of transport, such as trolleys, cycling and even walking, were relegated in impor-
tance or actively degraded or destroyed, decreasing equity. Currently in the US, BSS
are regularly being promoted as increasing equity4. This being e↵ective relies on sys-
tem stations being available in areas of lower income residential areas and near places
of employment, having comfortable and safe routes to travel along and a reasonable
distance.

Due to accessibility to city centres having become popular and increasingly expensive
in the last few decades, lower income groups are located in lower density areas farther
from the city centre and e↵ective transportation. In the case of Washington “because
of transit access ... metro rail corridors are very expensive to live in. Therefore you
only have well-to-do people living in these corridors.” (American BSS consultant) Ac-
cessibility has value and is capitalized upon. As BSS usage intensity relies on higher
population and employment density, lower income areas are less likely to be provided
stations (Duarte, 2016). These communities, as a result, do not have the same opportu-
nity to use BSS regardless of whether demand exists. The exists in fact the danger that
BSS stations placed in lower-income neighbourhoods increase property values and rents
displacing vulnerable residents.

A comprehensive e↵ort in Minneapolis has shown that ongoing investment and e↵ort
to promote BSS use has had limited benefits (Kretman Stewart, Johnson, and Smith,
2013). Placing stations in lower income areas has little e↵ect as there exist many other
barriers, such as having a credit card and internet-access, street safety and ability to
carry groceries or children (Kretman Stewart, Johnson, and Smith, 2013). A few BSS
also require smart phones with data plans to use the service. In some lower income
communities cycling is associated with children and being unable to a↵ord a car, making
demand for BSS utility cycling very low. Analyzing online crowdsourcing for station
suggestions, (Piatkowski, Marshall, and Afzalan, 2015) shows that less input is provided
by areas with higher Hispanic and African-American residency rates. It is however not
clear if this is due to lack of access to the technology or due to reduced interest.

Some lower income communities, such as Portland, home to Alta Bike Share, protest

4Social equity in relation to BSS is much less discussed in mainland Europe.
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the development of cycling infrastructure in their neighbourhoods (Benesh, 2014). They
oppose the investment as they perceive it to serve outside interests, likely increasing
the rate of gentrification, while their community has been starved of investment that
locals desire. The problem stems from investment need being decided by wealthier po-
litical, media and business leaders, who do not have stakes in lower income communities
(Benesh, 2014; Mercier, 2009).

Density and distance to employment make BSS ine↵ective in areas lower-income
residents are often present, making these systems ine↵ective in increasing equity. Besides
the further privatisation of public space, BSS which are privately funded and operated
reduces likelihood of e↵ective equity initiatives. Rebalancing analysis (Chapter 4) has
shown that service quality is more allocated to income generating areas. Additionally,
many American cities purchase BSS assets using federal grants while often stating that
no public money is used. This results in social subsidy of a service, often operated by a
private company, facilitating urban transport of a privileged class.

Aversion to public spending in the United States (US) for public transport and
advertiser BSS provisioners requires membership fees to be higher than in Europe in
order to cover costs. These higher membership fees further impact equity goals. Some
BSS, such as Chicago, Boston andWashington, o↵er discounted memberships that do not
require credit cards, one common barrier to membership for lower income individuals,
among others (Kretman Stewart, Johnson, and Smith, 2013). While other factors we
mentioned are a barrier to use, the low number of equity memberships purchased (Buck,
2012) suggest there is an e↵ort to increase equity but limited demand. Boston provided
subsidized memberships at system launch in July 2011. By December only 72 of 600 $5
memberships were claimed (Buck, 2012). This raises the question of what the needs of
socio-economically deprived areas are. Residents may have more utility for other forms
of transit such as more frequent bus service.

While municipalities speak of reversing inequalities, some BSS operations create
them. Many employees of Chicago’s system where employed with irregular or short
work shifts intentionally resulting in part time status, denying employees of full-time
benefits (Steinberg, 2014). These practices limit worker income equity, stability and
potentially health. As a result workers from some of the large American BSS, such as
Boston, Chicago, Washington and New York City, unionized. Miami’s BSS, which does
not actively promote equity, is operated by a private company in areas of high revenue
while hiring from a low income area (Buck, 2012).

So the fundamental di�culty in reconciling BSS with socio-economic equity is that
system use, related to revenue, relies on higher density of residences, employment and
services (Duarte, 2016). Something that over the last few decades has been increasingly
in demand, expensive and exclusive, resulting in lower income, and associated ethnicities,
having reduced access to the systems. Bicycle sharing systems are best for distances
beyond walking comfort but not so far as to exceed the free period, typically of 30
minutes, or when bus or rail travel is faster and easier. There exists some exceptions to
this however, Montreal’s system seems to provide better service to lower income areas
(Fuller, Gauvin, and Kestens, 2013).
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Figure 6.4: Helmet solutions for Brisbane’s and Vancouver’s bicycle sharing systems
(Photos by Julia A↵olderbach and Pascale de Rotrou).

While we discuss mainly socio-economic equity, gender inequality is also present.
Women are less likely to use BSS for utilitarian travel (Beecham and Wood, 2013; Good-
man and Cheshire, 2014; Ogilvie and Goodman, 2012) as they are more risk averse but
also more susceptible to accidents (Woodcock et al., 2014). The imbalance in BSS use
likely results from unappealing or unsafe cycling infrastructure (Garrard, Handy, and
Dill, 2012).

Helmet requirement laws have been partially blamed for low BSS usage in Australia
(Fishman et al., 2014). Seattle and Vancouver, which launched BSS in late 2014 and mid
2016 respectively, are the only other known instance of having a system operating with
a helmet requirement law present. Seattle’s system has experienced low usage despite
providing free clean and accessible helmets. Vancouver’s system provides a simpler
helmet solution by having the helmets attached to the bicycles similarly to what is done
in Brisbane (Figure 6.4). This solution appears to defuse the issue without actually
solving the problem as it’s unlikely people will use the provided helmets due to hygiene
or dampness.

A recent North American study focusing on BSS safety found users less likely to be
injured than when riding a private bicycle (Martin et al., 2016). The reasons suggested
relate to the sturdiness and slowness of the bicycles preventing fast or risky behaviour,
riders typically being more careful and improved cyclist visibility and lighting. As BSS
users typically wear helmets less often, helmet use was not a found to be a factor in
reducing injury rates (Martin et al., 2016). Mexico City, which launched in 2010, the
same year as Brisbane and Melbourne, clearly felt helmet legislation would be a barrier
to BSS use and annulled the requirement. No BSS with helmet requirement law has
had usage of more than one trip per bicycle per day (Chapter 5). If BSS with helmet
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requirement laws consistently under perform, it’s unclear what purpose their adoption
and investment has in Seattle and Vancouver.

In July 2016 a woman, wearing a helmet, was the first BSS confirmed fatality in
the US (Strum, 2016). There has been one fatality in Montreal, wearing a helmet
(Shields, 2014), and two in London. All these women were killed by drivers of large
trucks (Richards, 2015; Strum, 2016). One of the London fatalities was on a designated
Barclays Cycle Superhighway (Cycling UK, 2013), suggesting just how inadequate some
sections may be in providing safe and e�cient travel in London. The other North
American fatality was in Mexico City, a man was run over by a bus (Monroy, 2014).
Helmets were not consistently worn but would not have helped in any of the cases above
due to the size of the vehicles. A helmet may have prevented the only other recorded
North American fatality, in Toronto, where a BSS rider attempted a stunt in a skateboard
park (Kauri, 2013).

It’s unknown how often fatal accidents occur to BSS users in the rest of Europe, but
they happen with much greater frequency in Paris than all of North America combined
(Le Figaro, 2014; Le Nouvel Observateur, 2009; Le Parisien, 2015). There were 7 fa-
talities within the first two years of Paris’ BSS launch (Le Nouvel Observateur, 2009).
Across both continents women tend to be the major victims, killed by drivers of large
trucks or buses and the inadequacy of existing cycling infrastructure.

6.4.3 Public participation

Residents suggesting BSS station placements through workshops or public participation
geographic information systems (PPGIS) (Sieber, 2006) is common in North America
since Washington’s 2010 system launch. Online maps typically allow the submission
of locations, voting for other people’s recommended locations and commenting on the
quality of locations. Many systems have been using these not only for initial deployment
but for system expansions as well (e.g., Washington, New York City, San Francisco).
The use of PPGIS or workshops in Europe is unheard of, resulting in typically faster
deployments.

An interviewed American BSS non-profit director was critical of PPGIS input, much
preferring workshops or direct contact with resident or business associations to build
support for implanting stations in neighbourhoods. Additionally, Piatkowski, Marshall,
and Afzalan (2015) found that BSS public participation doesn’t equally represent city
demographics. An additional critique is whether PPGIS and charrettes are simply tools
to promote forthcoming BSS, satisfy resident’s desires to be consulted and potentially
pacify or disarm would be NIMBY complainers (Sadik-Khan and Solomonow, 2016).
Bicycle sharing systems require a dense structure of stations already constrained by
urban availability and underground utilities. The extensive public outreach in NYC
was instrumental in supporting the city for a multitude of lawsuits filed against the city
regarding station location (Sadik-Khan and Solomonow, 2016). It’s unknown whether
dissatisfied residents attended workshops. Regardless of citizen input, city planners in
interviews remarked they generally found optimal locations to be obvious without public
input due to density and public transport.
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Figure 6.5: Protest to advertising billboards at Namur’s BSS launch.

6.4.4 Advertising and lock-in

Given there is little evidence to date that BSS provide net environmental benefits (Ricci,
2015), many systems have traded this expectation for increased public advertisement.
Advertiser integration into street furniture has created complications for municipalities,
caused resident protests (Figure 6.5) and negative impacts on BSS.

Los Angeles’ planned 2013 launch was cancelled after realizing that planned revenue
through billboards would not be allowed with pre-existing street furniture contracts
present (Nelson, 2013). In New York City, where Citibank is the system’s main sponsor,
locating a large stations adjacent to Madison Square Garden, the main indoor arena
for professional sport and entertainment events, was denied due to Chase Bank being a
sponsor and competitor to Citibank.

Another aspect of linking advertisement and BSS is the placement of stations. As
advertisements are typically located on the back of kiosks, it raises the question of
whether stations are optimally placed for advertising or BSS use. This is a complex
issue beyond our scope, but it is unlikely optimal station placement and advertising
placement have the same criteria. A non-quantitative observation of station locations
in Luxembourg City exemplifies this possibility as stations are mainly adjacent to busy



126 CHAPTER 6. A CRITICAL PERSPECTIVE OF BSS

thoroughfares and infrequently in denser and quieter residential areas.

How important station visibility is to residents is unclear. Residents are more familiar
with their neighbourhoods and learn where stations are or use familiar maps to find
stations in less frequently visited neighbourhoods. For tourism and business visitors
station visibility is likely of greater importance if they are one of the target users. Station
location on main streets may however help promote the normalization of cycling. A
Canadian city project manager called their BSS “the best kept secret” due to having to
place stations o↵ main streets, on side walks and having no mayoral support.

The operation of BSS in exchange for advertising rights operate as black boxes where
BSS costs and advertising profits are hidden. These are clearly lucrative contracts con-
sidering how contested they are. The lack of interest by advertisers, who already have
the BSS experience and technology, in bidding for independent operating contracts, such
as in London, suggests that the revenue from advertising are of a higher magnitude and
better investment for capital, no matter how much advertisers complain of BSS expenses
(DeMaio, 2009). Additionally, BSS membership and usage fees in Luxembourg, Paris,
Dublin and others, all operated by JCDecaux, provide little or no revenue to the oper-
ator. This means JCDecaux has little incentive to see more people use their systems as
this would only increase their maintenance and service costs. It’s not di�cult to imag-
ine how this creates a situation where service level agreements need to be very firmly
established and monitored.

While in some cases advertisers compete for BSS contracts, the popularity of the
systems, particularly among mayors (DeMaio, 2009) created strong demand. In 2006
Aix-en-Provence agreed to a contract of paying 800,000 Euros a year in addition to
advertising billboards. After four years of lethargic use and recognizing that they had
been taken advantage of in the contract, they closed the system (Cycle Sud, 2009; Cycle
Sud, 2011).

Barcelona is an oddity where Clear Channel operates the system independently of
any advertising contract (DeMaio, 2009). Perhaps, similar to JCDecaux in Paris, this
provided an opportunity for Clear Channel to demonstrate their ability to operate a
world class BSS as a loss-leader and enter new advertising markets. In 2010 Clear
Channel launched Mexico City’s BSS, the second largest in North America. Generally,
advertisers’ behaviour strongly suggest they only use BSS as tools to enter markets.

Advertiser operated BSS combine contractual and technological lock-in. Bicycle
sharing systems run by advertisers who manufacture, own and operate the system can
simply refuse to expand the system, as happened with Washington’s system by Clear
Channel (2008 - 2011), or make it prohibitively expensive, as occurred in Luxembourg.
For non-advertiser BSS technological lock-in is still present. Stations, docks and bicycles
purchased by municipalities have physical and electrical communication standards, many
of which are patented. This prevents the selection of alternate providers if the cost is
considered unreasonable or the company is unable to provide components, as was the
case with PBSC following its bankruptcy.

The rental of BSS technology, as is the case for advertiser provisioned BSS and a few
others such as New York City, has some advantages. As BSS technology continues to
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evolve some become obsolete. Toronto had such an issue with their purchased technology
being a hybrid between BIXI and 8D, something that no longer existed following their
conflict, delaying a desired expansion of the system (Spurr, 2015). When interviewing
municipalities, in 2013, some appreciated the experience of ABS but were concerned by
the monopoly of operations. The PBSC technology was seen as superior to BCycle by
some originally, but now fear being locked-in with buggy technology following the split
between PBSC and 8D, preventing future expansions.

When the City of Seattle was deciding whether to purchase their ailing system owned
by a non-profit and operated by Motivate, they considered the lock-in e↵ect of purchasing
technology that may be incompatible with future potential expansion plans, such as
smart or electric bikes (City of Seattle, 2016b). Desiring to expand the system, the lock-
in required that future o↵ers greatly outweigh purchasing more of the same technology.
Their alternative option was to try selling their unique system (City of Seattle, 2016b),
passing the lock-in burden to another municipality.

Having di↵erent and incompatible BSS types creates problems for adjacent munici-
palities adopting di↵erent systems, decreasing the potential benefits to citizens relative
to a homogeneous system. Despite this obvious outcome the occurrence is increasingly
common. Luxembourg, Sao Paulo, New York City, Los Angeles and Santiago (Figure
6.6) are some of the cities where multiple BSS technologies are in proximity to the detri-
ment of the users (Bloom, Heilman, and Brien, 2015; Linton, 2015). This is also very
common in Germany due to nextbike and Deutsche Bahn’s Call a Bike being present in
many cities, however most of these systems have no stations, using free floating bicycles,
and therefore not susceptible to this problem.

Santiago, Chile, although outside our case study area, is an interesting example of
where technological incompatibility may be intentional. The system provided by Clear
Channel is located in Las Condas, a wealthier commune of Greater Santiago, while the
other system, from BCycle, largely surrounds it, creating a transportation barrier.

An import factor for municipalities to protect against lock-in would be the selection
of BSS technology with an open standard or that belongs to a consortium of competing
companies with corresponding components.

6.4.5 Politics and business

Bicycle sharing systems in North America appear to take longer to deploy than those
in Europe. This is likely due a more participatory process, an aversion to advertiser
provisioned systems, the search for sources of sponsorship and funding and coordination
between multiple actors. Advertiser operators interact directly with municipal planning,
have little interaction with the public and provide the technology themselves. Paris’ BSS
launch with 750 stations occurred on July 15, only four and a half months after signing
the contract on February 27, 2007 (Paris, 2008).

Although many BSS in the USA claim to not use public money, this is often not true.
Municipalities may not use local funds but often receive national grants. Despite public
transportation and roads being heavily subsidized, American cultural aversion to public
spending and transport subsidy creates a necessity for BSS to be economically successful
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Figure 6.6: Santiago’s two exclusive bicycle sharing system coverage areas.
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and greater media attention of system performance. Meanwhile European BSS are more
likely to be criticised for allowing advertisements into urban spaces. As advertisement
pays for BSS, it appears that on both continents the subsidization in one manner or
another of these systems is unpopular.

With existing globalization, the 2014 creation of a North American specific BSS as-
sociation (NABSA) rather than a Western or global organization, is perhaps indicative
of barrier to communication between the two continents. North American operators
collaborated as they encountered similar problems and technology. Due to many Eu-
ropean operators being advertisers which manufacture and operate there own product
there likely exists little reason to collaborate.

In Europe and North America some mayors champion their BSS. This has important
benefits in promoting use, securing sponsorship funding and developing cycling infras-
tructure improvements. London’s sponsorship was the result of Boris Johnson’s personal
contact with the head of Barclays (Donovan, 2013). The direct association of mayors
to BSS initiatives may be mutually beneficial however. Mayors of Lyon, Paris and Lon-
don where all re-elected following BSS deployments during their previous terms. The
use of BSS for self promotion using the many celebrated benefits is prevalent. Mayors
draw on conventional societal problems of health, environmental sustainability, conges-
tion and equity but also build citizen’s pride. A good example is Portland’s Bureau of
Transportation director calling their planned BSS “the largest smart bike share system
in North America” (Maus, 2016). Where a ‘smart bike share system’ contains the IT
technology in the bicycle rather than the station. A month later Vancouver responded
with an almost identical claim of getting “the largest smart-bike system in North Amer-
ica!” with 1500 smart bikes (City of Vancouver, 2016). Portland, not to be outdone
later claimed to be developing “the world’s most sustainable bike share system” (New-
comb, 2016; Portland Bureau of Transportation, 2016). This game of technicalities tries
to inspire pride locally and advertise sophistication continentally, while factually many
other North American ‘smart station’ systems are of equal potential and much larger
(Chapter 5). So BSS are not only used to market themselves as liveable cities (Nitschke,
2015) but compete in sophistication even if it is mundane.

Mayors, operators and technology providers actively promote citizen hubris through
superlatives associated with BSS. The CEO of Bewegen, a new eBSS technology provider,
pandered to Baltimore during the system announcement (in front of a large parking)
stating “the City’s residents and visitors deserve the very best. The City’s forward-
thinking mindset, which will bring pedelec (electric-assist) bikes to its streets makes
Baltimore a leader worldwide.” (Bewegen, 2016).

McCann (2013) defines policy boosterism as a form of policy marketing to promote
city policies externally, popularize decision makers associated with policies and polish
city image while potentially attracting economic investment. Applying this framework to
BSS we see all the same attributes. Paris’ BSS initiative, among other cities’, has been
boasted about and ‘exported’ internationally (Parkes et al., 2013). Mayors of Paris,
London and NYC have strongly associated themselves with their city’s BSS. Finally
governments and media promote proudly the arrival of BSS and their associated benefits,
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pridefully suggesting membership of an exclusive club.

As McCann (2013) explains, there are municipalities which supply policy boosterism
and others, extrospective, which desire to consume policies proved elsewhere due to
budget and time constraints. While some BSS deployments appear as part of overall
cycling initiatives, such as NYC, the pervasiveness of smaller BSS, of limited geographical
coverage in their municipalities, suggest the desire for “quick fix” outcomes rather than
a larger locally adapted solution. “In some cases the municipality will put funding into
bike-sharing even before they have a su�cient bike infrastructure network. That’s not
the best way to do it.” (American BSS consultant) Bicycle sharing systems are less
controversial than cycling lanes and the associated removal of on-street parking or road
lanes. Whether decision-makers select BSS as a tool to build support for cycling, lowering
future barriers to the necessary cycling infrastructure, or an end in itself, is unknown.
Without adequate cycling infrastructure BSS usage is likely be biased towards more
experienced and risk averse riders, but fundamentally, unjust.

Whether e↵ective or not, BSS are being used to promote cities externally. In Min-
neapolis, some system sponsors see BSS as helping develop a more vibrant urban core
leading to better recruitment of talent by attracting Millennials. New York City’s Mayor
Bloomberg, at the 2013 launch of their BSS, stated their system would “help to sharpen
NYC’s competitive edge versus other global cities like Washington D.C., Paris and Lon-
don” (Bloomberg, 2013) and department of transportation Comissioner Sadik-Khan de-
clared “Mayor Bloomberg has brought NYC streets into the twenty-first century and
prepared them for the century to come” (Bloomberg, 2013). These comments suggest
BSS adoption was partially extroverted in an attempt to promote the appearance of
NYC as a modern city and perhaps attract economic investment as well.

A modern city is becoming associated with having a BSS (Ó Tuama, 2015). In an
ongoing e↵ort by cities to appear sophisticated and innovative, a simple BSS may no
longer su�ce as we can see by Portland and Vancouver’s play on semantics to extract
value from a no longer innovative technology. We may as a result see a shift to BSS with
electric BSS (eBSS). JCDecaux and PBSC, the two largest BSS technology providers
in Europe and North America, have recently developed eBSS. The push for eBSS is
not pushed by operators but as a response to cities looking to distinguish themselves
further by appearing more sophisticated and environmentally sustainable. Some cycling
advocates do not see electric bicycles as a beneficial mainstream option for urban trans-
port (Colville-Andersen, 2014). As we have seen, BSS are not consistently implemented
out of desire for a transition to sustainable mobility but to increase local pride and
international reputation.

We have discussed how administrations benefit from association with BSS, but busi-
nesses also ride the sustainability promotion wave. Technology providers promote envi-
ronmental benefits of their systems, stating they “transform drivers into cyclists” (PBSC,
2016). Advertiser provisioned BSS allow the greening of the operator, such as JCDe-
caux, but also the association of sustainability and health with companies advertising
through sponsorship, such as Barclays or now Santander (London) and Coca Cola Zero
(Dublin), or ads directly on bicycles. Operators explicitly market the association of ad-
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vertiser brands with a “healthy, sustainable and community-based project” (Hamilton
Bike Share, 2015). Nitschke (2015) summarizes well the core problem of advertisement
associated BSS as “being a premium infrastructure developed by private companies on
public space in order to capitalize on an ‘urban elite’, facilitated by narratives of a sus-
tainable city within the sharing economy” (p. 41). In addition to this is the privatisation
of a new public transport system operating on public space, with no debate as to whether
the service should even be run by a public organization.

While BSS can serve as mechanisms to promote a mayor and administration, a
reciprocity exists where system users develop an expectation from government. Cycling
organizations in Dublin strengthened their demands to government for decreased speed
limits and cycling infrastructure to take better care of potentially vulnerable BSS users
that the administration had created (Ó Tuama, 2015). So BSS could also be seen
as Trojan horses to cycling infrastructure. Whether some cities adopt BSS as part
of policy boosterism but are then coerced into providing the infrastructure socially,
environmentally and economically required is an exciting question.

6.5 Conclusion

There exists a large variety of bicycle sharing system (BSS) structures consisting of
di↵erent actors with contrasting motivations, funded publicly, privately or by advertising.
Generalizing critiques of BSS becomes di�cult as a result. While the many benefits of
BSS are constantly promoted, a purpose or goal is less consistently present or nebulous,
such as providing a new transportation alternative. The fundamental problem is that
surveys in the literature have consistently shown BSS users to typically be younger,
male, white and wealthier individuals. User demographics are not representative of their
municipalities, making public expenditure and allocation of space benefit the already
privileged.

The sustainability of BSS is regularly promoted. Yet the term sustainability is so
pervasive and without opponent that it is has become apolitical, mainly serving as a
banner to validate any initiative with rosy outcomes of environmental, social and eco-
nomic benefits. This panacea becomes vague however when specifying who will gain
from these initiatives. Bicycle sharing systems are no di↵erent. Investment firms oper-
ate BSS with the sole purpose of increasing investor wealth. Wealthier white males are
the predominant users of these systems. Public space is utilized, and privatized through
advertising, for this new exclusive form of transportation. These systems serve as sym-
bols of sophistication, aiming to attract talent and investment. Meanwhile residents
without access to the service, either due to safety or income, are subject to increased
advertising and public expenditure on an exclusive service. Most residents of a city
with a BSS will be minimally but negatively impacted. The pacification of residents is
carried out by building pride through the use of superlatives in describing their BSS by
operators and decision makers or association with world class cities, while reminding of
their sustainability.

Land use prioritizing cars is exclusive as it typically requires a private vehicle. The
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bicycle greatly facilitates accessibility and lowers the barrier to relatively rapid transport.
As a result bicycles were originally a symbol of female independence and, following the
first world war, socialism. Most BSS now however provide an exclusive service. Bound
to be economically viable, due to hypocritical resistance to public transport subsidy,
BSS are located in dense urban cores, best suited for e�cient BSS usage. The limited
safety of urban cycling due to limited cycling infrastructure combined with BSS location
results in wealthier white male users being largest user demographic.

So while BSS are used predominantly by one segment, they are often accompanied
with advertising, occupying public space and promoting consumption and car dependent
lifestyles, opposing the promoted environmental sustainability, emission and congestion
reduction benefits. The many suggested benefits have served as vehicles for advertising
to enter urban cores and capitalize on public space.

The sharing economy is a concept of mutual benefit through decreased consumption
and expenditure of material goods by joint use. Bicycle sharing systems appear to fit
the definition yet the profit generation aspect present for many systems counters this.
Systems managed by municipalities, however, are more part of the sharing economy
despite their unjust demographic imbalance in use.

The phenomenal increase number of BSS in European and North American in the
last ten years can be partially explained by policy boosterism. Early cities such as Paris
saw the potential in using BSS to market themselves as an innovative and progressive,
sustainable city, addressing local air quality and congestion concerns, while popularizing
their mayor. Other municipalities imitated Paris and New York City by importing ‘tried
and true’ BSS as quick solutions to address similar concerns but also health and equity.
Aside from some BSS promoted benefits being contested, many of these systems are
too small to provide much change. Politicians use this new technology to provide a
solution to environmental challenges, rather than encouraging societal change, such as
removing parking spaces or a larger reallocations of urban public space to be inclusive
with equitable transportation options.

Justification of the continued existence of BSS requires a larger goal benefiting all
sectors of society while decreasing expenditures towards exclusive use. Bicycle sharing
systems lower the barrier to the discovery of cycling as a sensible mode of utilitarian
transport. To be equitable this requires BSS be part of larger cycling initiatives that
increase cycling infrastructure quantity and quality while reducing BSS operations facili-
tating their use as a commuter service and more as a convenience, and finally, decoupling
advertising from operations.

Once proper infrastructure is present and decoupled from profit generation, BSS can
ethically serve as catalysts for private utility cycling for a broader demographic. The
danger is that if BSS continue to be used as symbols of change rather than tools of
change their acceptance and potential will be tarnished.
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Conclusion

This thesis research explores bicycle sharing systems (BSS) through quantitative metrics
and qualitative analysis. Due to existing BSS metrics being incomparable we devised a
metric from open data to create a measure of success. By determining a system is a failure
advances discussions towards e↵ective cycling infrastructure beyond the promotion of a
symbolic technological solution to larger societal problems. Interviews in Europe and
North America and media analysis provide a description of BSS developments outside the
golden success narrative promoted by technology providers, operators and municipalities.

The following section summarizes the results from our trip estimation (Chapter 3),
rebalancing in practice (Chapter 4), the performance of existing BSS and determinants
of use (Chapter 5) and finally, from an alternative perspective, the existential problems
facing BSS as a result of political and business interests (Chapter 6). This work’s
contribution is then situated and future work is described before closing remarks.

7.1 Findings

7.1.1 Democratizing success measurements

Formalization of station level data furthers the understanding that it not only contains
bicycles being checked in and out, but also rebalancing and collisions. While some pre-
vious literature has accounted for rebalancing in station level data gathering, interaction
collisions which sometimes exceed rebalancing, are not taken into account. The com-
bining of trip data and level data allows the extraction of rebalancing data. Something
that has only been theoretically analysed through optimal routing research.

The second contribution comes from models estimating the number of daily trips. By
exploring the relationship between openly accessible level data and the typically private
number of trips, we were able to define multiple translation methods. Having a manner
of estimating the number of daily trips allows the democratisation of BSS usage in order
to move beyond the constant political rhetoric of success. This allows more e↵ective
pro-cycling alternatives to be considered if necessary.
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7.1.2 Rebalancing and operator behaviour

Bicycle sharing research has grown extremely quickly in the last five years. Many articles
have analysed the large amounts of data that are generated by station levels and trips.
This insight into travel behaviour, previously constrained to surveys or having to provide
GPS devices to users, has allowed a large amount of analysis. While this data represent a
portion of flow where stations are available, even within these service areas any analysis
of trips as a representation of demand is biased by the strong impact of rebalancing
operations in determining which trips can occur. Our rebalancing analysis reveals the
strong impact operators have on determining which trips do and do not occur based
on service level agreements and operator goals which may be distinct from those of the
municipality.

This rebalancing analysis shows that rebalancing, the mere redistribution of bicycles
so that stations are not full or empty, can be carried out in a variety of manners with
di↵erent outcomes. Municipalities often contract the BSS operations to private com-
panies without a clear understanding of the control operators have in gaming service
level agreements while trying to maximize profits. There is not one type of rebalancing.
Rebalancing behaviour is dictated by a goal. The multiple actors involved in a BSS
have di↵erent goals but operators have the most control while somewhat constrained by
service level agreements that do not necessarily encourage the municipality’s desired out-
comes. We have provided recommendations for rebalancing strategies related to various
goals, it remains for municipalities to clearly define what goal their BSS has.

7.1.3 Performance and determinants of use

Applying our trip estimation work to 75 of the larger BSS in Europe, North and South
America and Australia, we provide a first large scale global comparison. Performance
values, in terms of trips per day per bicycle, show that a third of our sample’s bicycles
are used less than once per day. There exists no clear value for concrete success, but
low usage will have few of the promoted health, congestion and CO2 benefits that are
promoted. Performance is one measure of success, for those BSS actively striving for
social equity or alternate goals, other measures apply.

Using these values we relate BSS and urban attributes, such as cycling and other
transport infrastructure, as well as geographic features and weather. We again created
multiple models, this time to determine which factors increase BSS performance, find-
ing that station density, cycling infrastructure and population increase their use, while
helmet requirement laws and other expected variables were barriers to use. This work’s
important finding however was that the number of stations does not increase perfor-
mance. This contradicts the status quo ’network e↵ect’, promoted by the BSS industry,
stating that exponential growth in performance is achievable with linear growth in num-
ber of stations. Besides the likely outcome of selling further BSS technology, the network
e↵ect is likely more palatable to decision-makers over the reallocation of public space for
further cycling infrastructure.
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7.1.4 Politics and purpose

Bicycle sharing systems (BSS) are new addition to urban pubic transportation. This al-
ternative mode provides added ease and resilience to moving about the city. By abstract-
ing BSS to a transportation technology alone most systems can be considered similar but
surrounded by unique varieties of actor constellations in di↵erent geographical settings.
It is the interactions between these actors however that fundamentally impact how BSS
serve citizens. Seraphic BSS benefit many of the actors involved by association, profit or
both. There are however many limitations. The literature overwhelmingly shows that
user demographics are whiter, younger, more educated, wealthier and more likely male
than the local population. Additionally many of the suggested benefits such as health,
CO2 emissions and increasing social equity are greatly oversold. Much like roads create
exclusive spaces where only cars can travel in comfort and relative safety, BSS use public
space and often public funds for a service that favours one class of citizens. Regardless,
due to physical limitations BSS can only serve so many people concurrently and con-
secutively, especially when considering that most users travel during similar periods in
similar directions, requiring intensive rebalancing to a↵ord more trips. These systems
are largely operated to service commuters rather than as a convenience and lowering the
barrier to (re)discovering cycling. Only private utility cycling can achieve the many pro-
posed benefits of BSS in a sustained manner. This however requires safe and enjoyable
cycling infrastructure with secure parking availability, something that is controversial
and politically extremely challenging. Currently bicycle sharing systems prove to be an
easier and popular alternative but less e↵ective and, more fundamentally, unjust.

7.2 Contribution and future work

This thesis contributes to existing BSS analysis literature but also in the fields of opti-
mization research, urban transportation and critical urban sustainability. The formal-
ization of station level data, reveals rebalancing and collisions, which many publications
have not taken into account in their analysis. Developing a technique to estimate the
daily number of trips and rebalancing quantities allows extensive new analyses to take
place. Existing optimal rebalancing research has ignored operational aspects. Chap-
ter 4 analysis should strengthen future models and allow consideration of alternative
goals than preventing outages, such as maximizing trips, profits or other BSS purposes.
While analysis revealed two di↵erent types of rebalancing, new station characterization
techniques were created, and well appreciated by practitioners, providing new means for
future analysis. This rebalancing work also showed that any BSS trip analysis must take
into consideration rebalancing which selectively alters bicycle and free dock availability
and therefore usage patterns. Finally, in the interest of municipalities and residents,
my work reveals that rebalancing a↵ects BSS outcomes rather than simply being an
objective task.

Estimates of trips show that most researched case studies have less than two trips per
day per bicycle, meaning that providing equivalent bicycles to daily commuters could
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have similar outcomes with much lower expenditure. These little-used case studies will
have very little of the promoted benefits further challenging that these BSS are a wise
expenditure. Further, analysis of factors a↵ecting performance strongly challenge the
practice of increasing system size to increase performance, showing in multiple manners
that this is an unproven outcome.

Finally, this work describes the conflict surrounding BSS that negatively impact
their usefulness and how a good example of shared economy initiative was transformed
into projects of commercialization and privatisation of public space. We show how
BSS serve economic interests but also improve perceptions of companies, advertisers
and politicians. While some municipalities exploit BSS adoption for personal image
and quick fix solutions we also found they are exploited by entering in contractual and
technological lock-in, negatively impacting residents, of which they appear to have little
awareness of until experiencing the constraints. Overall this work should encourage
further analysis and raise scepticism regarding BSS benefits and the outright calling of
case studies as successful.

The contributions of this work raise many new possibilities for future work. Perfor-
mance estimates, lower than expected for many systems, raises many existential ques-
tions for BSS. As we showed in Chapter 5, some BSS are well used and appreciated,
despite social justice concerns, and therefore do have some value. The critical questions
is therefore whether the opportunity cost would have been potentially more beneficial
and equitable if allocated di↵erently. A comparison of whether cycle track investment
and general cycling promotion are more beneficial than current BSS developments could
undermine recent BSS adoption trends.

Little work exposing the controversy and conflict surrounding BSS exists, especially
in North America where discussion are mainly regarding equity. A deeper analysis of
who benefits, besides the users, economically and politically has interesting potential.
While BSS are promoted as a new form of public transport, whether these systems, which
have largely already been privatised, are a form of public transport at all has yet to be
discussed. While many European BSS are a↵ordable, many in North America are not.
Public transport should be suitable for all users yet bicycle sharing systems are not for
a variety of reasons: their cost, the safety and comfort of existing cycling infrastructure
and the relatively small areas that they service. Despite this, and contrary to what is
repeatedly stated especially in the US, BSS are regularly subsidized.

Spatially there remains other questions related to actor motivation. While a few
publications have discussed optimal placing of stations there remains the question of
how location relates to other purposes such as advertisement. As stations often serve as
billboards and directly for the BSS, for advertiser operators whether compromises are
made in order to maximize ad revenue over system use that typically is contracted to
receive no revenue from. Further, while we described how the intensity of rebalancing
undermines environmental goals, the question of what maximum potential a BSS can
have while still being environmentally beneficial.

Finally, we have shown many reasons discouraging BSS adoption due to their level of
use but it may be that they have wider impacts on cycling policy. While some politicians
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may ride on the popularity of these systems it may have unintended consequences where
the public then demands suitable cycling infrastructure to accompany a rare pro-cycling
policy by many administrations. Similar to a trojan horse, BSS may promote broader
changes to cycling policies. Looking at countries that have very hgih rates of cycling,
such as the Netherlands and Denmark, we can find only one BSS in Copenhagen but
that has low performance. What is prevalent in these countries however, typically at
train stations, are long-term BSS (LTBSS), where bicycles can be used for days at a
time and returned at the origin. This clearly raises questions of whether the wrong type
of BSS is currently being deployed or BSS are not necessary in achieving high cycling
rates.

7.3 Closing

This thesis began by discussing conventional car dominated urban transportation prob-
lems in Western cities. This research evaluated whether BSS are beneficial to local
municipalities. Sadly it appears that in most cases BSS do not help reshape urban
transportation. Broader intentional restructuring of urban transportation is required
and many existing BSS are being applied as ine↵ective ‘quick fix’ solutions. Existing
BSS have not become the solution to the multitude of urban transportation problems
caused by car dominance. A new technology has been adopted with salesmanship rather
than carrying out e↵ective but di�cult policies for real change. Bicycle sharing systems
require density yet existing car dependence has created large suburbs of low density
housing for which these systems are not adequate. So BSS may serve in higher den-
sity areas, but this geometric problem restricts these systems to a small proportion of
residential areas, typically already with good subway service, especially in North Amer-
ica. So while BSS is promoted as a sustainable alternative it may in fact detract from
e↵ective, yet not novel, socially, environmentally and economically alternatives such as
cycling infrastructure.

Academics have been excitedly researching BSS’ new sets of data and theoretical
aspects, such as rebalancing, without thoroughly and critically analysing what purpose
it serves. Portions of this research likewise focus on BSS issues that from an alternative
perspective, such as social justice, may make anything but existential discussion void.
So while our rebalancing chapter criticises optimal rebalancing research for ignoring the
purpose of BSS, our quantitative work may be perceived as hypocritically by focusing
on aspects of metrics and determinants of success, comparable to discussing acceptable
rates of road fatalities.

This research evolved from questioning whether BSS were being run e↵ectively or as
empty symbols of sustainability, the danger being that if so, this enjoyable and useful
new form of transport (for the author), with potential for increasing cycling, would be
tarnished. This research aimed to also provide a qualitative perspective to predomi-
nantly quantitative work. Through interviews and study of critical urban sustainability
literature the existential issues surrounding BSS became apparent, to some degree un-
dermining discussions of success. These existential aspects however, are more likely to
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be downplayed by actors opposed to their conclusions, in which case this quantitative
work of success and determinants has a vital function in recognizing ine�cient systems
and the limited outcomes of promoted benefits.

Finally, it is extremely hard to generalize and state that all BSS are unjust or not
worthwhile, but certainly many are. We hope that this work initiates more research
critiquing such systems and refocuses municipal energies to the development of more
socially and environmentally sustainable and e↵ective cycling infrastructure.



Appendix A

Chapter 3 notes

A.1 Chicago validation

The DAM, IAM and SAM applied to the Chicago station levels data saved for validation
yield normalized error rates of 0.35, 0.79 and 0.42 respectively. These poor results are
similar to San Francisco in the combined models (Table 3.8) which is expected as both
experience similar technical problems which fluctuate station levels continuously, and
increasingly often, therefore simulating interactions which our model is dependent on for
estimation. The IAM overestimates trip counts the most in response to the anomalous
rebalancing quantities while in the first half of Chicago’s data span the DAM and SAM
closely estimate Td while glitch fluctuations remain few. Looking at the three model
estimates over time in Appendix A.2 we see their accuracy decrease as rebalancing
quantities increase in proportion related to trips.

A.2 DAM, IAM and SAM applications

We apply the day, interval and station aggregated models to our eight case studies in
the Figures below.

A.3 Culling for improved estimates

In order to strengthen estimates we also explored methods of culling out believed re-
balancing values. We iteratively compare the results of two simple culling techniques of
absolute x�sdt values. Our first method consists of replacing values greater than the cull
limit with zero. While this method seems excessive as it also removes any legitimate in-
teractions it also has the benefit of potentially compensating for rebalancing operations
that straddle two intervals and are not culled. The second technique simply replaces the
excessive values with the average of the temporally adjacent values. In Figure A.9 we
again see that di↵erences in rebalancing behaviour also a↵ects culling success.
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Figure A.1: Boston trip estimates using day, interval and station aggregated models.
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Figure A.2: Chicago trip estimates using day, interval and station aggregated models.
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Figure A.3: London trip estimates using day, interval and station aggregated models.
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Figure A.4: Minneapolis trip estimates using day, interval and station aggregated models.
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Figure A.5: New York City trip estimates using day, interval and station aggregated
models.
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Figure A.6: San Francisco trip estimates using day, interval and station aggregated
models.
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Figure A.7: Vienna trip estimates using day, interval and station aggregated models.
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Figure A.8: Washington trip estimates using day, interval and station aggregated models.
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Figure A.9: A comparison of the rebalancing culling techniques on station level data.
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Figure A.9 shows the results of applying di↵erent culling values to Boston, Minneapo-
lis, Washington D.C. and Vienna. Iteratively replacing x10sdt and z10sdt values greater
or equal to the cull value, we compare the sum of interactions within the data sets.
Ideally, by perfectly culling rebalancing, the observed and synthetic points in the figure
would converge as the cull limit decreases without a reduction in synthetic interaction
sum. Vienna again stands out due to its distinctive distribution and has its rebalancing
interactions removed most e�ciently. The reason for this are the large jumps in bike
availability due to technical glitches rather than rebalancing. Interestingly we are able
to cull all values greater than three, four and five, depending on the BSS, while main-
taining over 95 percent of the interactions. The zero and adjacent mean replacement
culling methods showed similar results. We arbitrarily selected a 95 percent preserva-
tion of interactions for defining the threshold for a culling limit. Using x�sdt data to
apply culling at multiple � values yields expected results. Shorter � decrease the 95%
cull limit value. Applying cull limits allow better assimilation of observed values to the
synthetic values which represent actual trips. Keeping with the goal of creating a simple
estimation model for public use this method was excluded from the main analysis.
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Appendix B

Chapter 4 notes

B.1 Data collection and validation

Rebalancing data collection

Rebalancing amounts can be extracted by combining station level data with trips. Sta-
tion level data is the number of bicycles and docks shown available on operator data
feeds. Using trips, consisting of date, time, duration and origin and destination, it is
possible to create a synthetic station level data (Médard de Chardon and Caruso, 2015)
that does not contain any rebalancing changes. Subtracting synthetic from collected
station levels yields rebalancing quantities. There exists however, some limitations to
this methodology.

First, rebalancing quantities are extracted as well as artefacts from technical issues or
misreporting from bicycle maintenance or server down time (operator’s or data scraping
server). A second issue, of importance for spatial analysis, is the occasional tendency
for some stations to be geographically relocated (This is more frequent for operators
using movable stations) while maintaining the same station identification. This shift is
typically less than a few hundred metres but sometimes more. For simplicity we use
the location at which stations remained at the longest during our analysis period. We
also found that some station locations are incorrectly reported by operators, these were
manually updated.

A more important issue is the temporal alignment of trip and station level data.
A delay exists between the time of station level data collection requests and the age
of the values on the central server providing the number of free bicycles and docks at
individual stations. Additionally, every minute, for most BSS, the server combines all
the station values into a single file to update the station level data feed. As BSS using
BIXI technology are solar powered, stations only notify the server when an event occurs,
a bicycle is checked in or out, or, when nothing has occurred, at regular ‘heart beat’
intervals of what appears to be four to five minutes to conserve energy. The temporal
alignment error between trip and station level data creates a divergence when a bicycle
return will be reported within the following data extraction period. This error causes
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Figure B.1: This example shows di↵erence in time between the request, server update
of station states file (60 seconds) and individual station states (mean of 150 seconds).

a tell-tale dip followed by a jump in rebalancing data. As this behaviour is illogical in
terms of operator rebalancing and we are confident of the cause, we adjust our data
to remove any such matching opposing sequential occurrences and avoid the incorrect
identification of rebalancing operations. Given our ten minute extraction intervals, we
also remove modelled rebalancing quantities within the range �3 to 3 bicycles.

Figure B.1 shows data collected January 29, 2015 from Washington’s BSS data feed
and the di↵erence in time between the request and the time of capture of individual
station statuses. Figure B.1 illustrates a scenario with almost a minute’s delay since the
central server has updated the data and an average delay of three minutes for station
statuses.

Validation

Temporal validation of our values and rebalancing extraction methodology is completed
using monthly reports for New York City (NYCBS, 2015a) and the daily withdrawals
and deposits for Boston (Hubway, 2015) and Washington (Capital Bikeshare, 2015b),
while spatial validation is achieved by aggregating trips.

Visualizing samples of daily rebalancing amounts for individuals stations we see the
alignment error through a withdrawal of one or two bicycles within one interval followed
by an equal deposit during the following interval (or vice versa). Occasionally these
dips and peaks (or peaks and dips) are of larger magnitude but typically of one or two
bicycles. As we are looking at ten minute intervals we expect most rebalancing operations
to be moving more than two bicycles. For this reason, combined with the alignment
problems we removed all transaction values between -3 and 3, exclusive. Further we
scan the data sets for sequential dips and peaks of any values and remove them as well.
This methodology has the limitation that any alignment error superimposed on another
technical issue or rebalancing operations will not be removed.

While only seven months’ rebalancing quantities are available for New York City
(NYC), a comparison of error reduction techniques, altering cut limits and the use of
the sequential ‘dip and peak’ cleaning filter, confirmed that our combined approach was
optimal. During this period New York City’s operators noted that discrepancies existed
between the quantities reported by their system, which we use, and those reported by
dispatch (NYCBS, 2015b). Except for August and September, the other months achieve
a 10-20% error rate. August and September experience error rates of 67% and 30%
respectively. Boston and Washington provide daily rebalancing deposits and withdrawals
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for a limited time span. This finer temporal resolution allows a much stronger validation.
Applying the small value extraction and error reduction process to 181 days for Boston
and 233 days for Washington, the cleaned data sets yielded mean deposit and withdrawal
errors of 21% and 23% for Boston and 10% and 11% for Washington. Our error reduction
methods tend to also reduce rebalancing amounts causing our values to underestimate
quantities.

The second validation technique uses the fact that the imbalance of trips from a
station can only be achieved due to rebalancing. Knowing that the capacity of stations
is fairly small, if during a period thousand more trips have ended at a station than
started, we know that this is only possible if about one thousand more bikes have been
removed, than deposited, by rebalancing. By aggregating the net sum of rebalancing
for each station we compare this against the trip departures subtracted from arrivals
for each station. Applying this to each case study we see error rates of 3%-12% of
total rebalancing amounts. Rebalancing quantities tend to underestimate the actual
quantity. This is likely due to our trimming of the data to account for technical errors.
The temporal validation error rates for NYC and Washington are higher than their
spatial error rates of 9% and 6% respectively. Regardless we believe these two methods
su�ciently validate the quality of the data to support our analysis.

We have not found literature stating this relationship between station trip imbalance
and net rebalancing quantities or using this method to do any analysis of rebalancing.
While having a much simpler methodology than the one we completed, this alternative
technique for extracting rebalancing quantities which isolates individual station quanti-
ties only functions at aggregated temporal spans. At the very least this methodology
provides a measure of validation for any other rebalancing extraction techniques or data
sets.
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C.1 Weather’s influence on trips

Weather need not be such a strong limiting factor to cycling. Copenhagen cycling
rates mildly decrease with colder temperatures but of much greater impact are holidays
(Copenhagen Commune, 2016). In Figure C.1 we compare the change in week day cycling
rates for a bicycle counter in Copenhagen’s Vigerslev Allé and the number of BSS week
day trips in New York City. We overlay two years of data for each for robustness.
While Easter, summer and Christmas holidays show noticeable cycling decreases for
Copenhagen, ignoring these, seasonal weather can be associated with the 25% drop in
cycling. Seasonal weather in New York City a↵ects cycling more strongly with a 75%
decrease (The September peak is due to system expansion).

As Copenhagen has no publicly available data for it’s new BSS we are unable to
compare BSS usage in both cities. It could be argued that cycling and BSS usage
fluctuate independently due to weather. We therefore also provide a comparison of BSS
trips to a bicycle counter, similar to that used in Copenhagen to compare. Seattle’s
bicycle counter on Freemont Bridge is well outside Seattle’s bike-share coverage area,
so there is likely only a very small proportion of BSS trips (Pronto, 2016) that are
included in the bicycle counter data (City of Seattle, 2016a). Figure C.2 shows a clearly
linear relationship between cycling and BSS trips for weekdays and weekends (with linear
regression coe�cients of 5.9 and 3.1 respectively) over a year.

Based on these figures we can conclude that weather can have decreased impact on
cycling and BSS usage if cycling infrastructure, maintenance and cultural norms adapt.

C.2 Open Street Map infrastructure extraction

Applying the criteria from Lovelace (2015) we extracted cycling infrastructure in order
to determine if it measurably impacts BSS usage. We present the key value pairs for
cycling infrastructure, bus stops and rail stations used in our data extraction.
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Figure C.1: Annual cyclist counts in Copenhagen (2013 & 2014) and BSS trips in New
York City (2014 & 2015).

Cycling
highway = cycleway
bicycle = designated
cycleway = track, lane, shared,
    opposite_lane, opposite_track,
    segregated, shared_lane, yes
cycleway:left = lane, track
cycleway:right = lane, track
cycleway:oneside = lane
cycleway:otherside = lane
path.bicycle = designated

Bus
highway = bus_stop

# reject
disused = *
abandoned = *
railway = disused,
    abandoned

Rail, subway & tram
railway = station,
    subway_entrance,
    tram_stop

# reject
disused = *
abandoned = *
railway = disused,
    abandoned
station = disused

Table C.1: Open Street Map query attributes for infrastructure extraction.
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Figure C.2: Observed rate of weekday and weekend bicycle trips to BSS trips in Seattle
between Oct. 2014 - Oct. 2015.
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D.1 Interview questions

Below are the structured interview questions used for cycling organizations, BSS opera-
tors and municipalities.

D.1.1 Cycling organization

Generally I am interested in the motivation to develop a Bicycle Sharing System (BSS),
adoption and development process, and evolution and e↵ects of BSS. I would like
to understand what people believe BSS will bring or has changed to urban transport
patterns.

General

• What is the role of your organization?

• What has been your role with this BSS.

• What is the history of this BSS.

• Who initiated the adoption of this BSS?

Actors

• What actors/organizations were involved in the process of encouraging or prevent-
ing bike-share adoption in this city. What were their roles?

• What do you believe has been the impact of BSS on bike rental shops? Are BSSs
competing with their business?

• Who do you think may be negatively impacted by this BSS?

Purpose of BSS

• What is the purpose of a BSS?
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• What are the benefits of a BSS?

• What outcomes would you like/hope to see from the BSS?

BSS station locations

• How adequate are the station locations?

• What process determined the location of BSS stations within the city?

• What factors are important in determining ideal station locations and distribu-
tions?

• More precisely why were stations located on the curb/parking etc. . . ?

• Do some or all of the BSS stations contain advertising billboards or sponsor names?

BSS Funding

• How is your BSS funded?

Success

• How successful has your BSS been?

• What metrics have you been using?

• What are some fears/problems you foresee about the BSS?

Evolution

• Have there been any unexpected outcomes due to this BSS implementation?

• Are the original BSS supporters still the strongest voice promoting BSS?

• Has your involvement with the BSS changed over time?

Closing

• Where does your funding come from?

• Could you recommend anyone I should contact related to this issue?

D.1.2 BSS operators

Generally I am interested in the motivation to develop a Bicycle Sharing System (BSS),
adoption and development process, and evolution and e↵ects of BSS. I would like
to understand what people believe BSS will bring or has changed to urban transport
patterns.

General

• What is the role of your organization?
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• What has been your role with this BSS.

• What is the history of this BSS.

• What type of business model does your company operate under?

• What is the nature of your relationship with the city, county or state that con-
tracted your organization to operate this BSS?

Actors

• With what organizations does your organization interact? Public, Cycling organi-
zations. . .

• Purpose of BSS

• What is the purpose of a BSS?

• What are the benefits of a BSS?

BSS station locations

• What process determined the location of BSS stations within the city?

• Was a computer model used to determine station locations?

• What factors are important in determining ideal station locations and distribu-
tions?

• Do some or all of the BSS stations contain advertising billboards or sponsor names?

Rebalancing

• What is the purpose/goal of your rebalancing?

• How do you do it?

• How many bikes to you rebalance per day?

• What are your main constraints to rebalancing?

• Do you have a service level agreement (SLA) with the city? What does it stipulate?

• Has your method evolved over time?

• Do you use software or observe need visually or is it routine - the same sequence
everyday?

• How many trucks with how many spaces are in operation for what portions of the
day?

Success
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• How successful has your BSS been?

• What metrics have you been using?

• What are some fears/problems you foresee about the BSS?

Evolution

• Have there been any unexpected outcomes due to this BSS implementation?

• Are the original BSS supporters still the strongest voice promoting BSS?

• What will happen when your contract with the provisioner expires?

• What are your thoughts on a pedelec BSS?

Closing

• Could you recommend anyone I should contact related to this issue?

• Do you have any documentation, data or press releases that you could make avail-
able for research purposes?

D.1.3 Municipalities

Generally I am interested in the motivation to develop a Bicycle Sharing System (BSS),
adoption and development process, and evolution and e↵ects of BSS. I would like
to understand what people believe BSS will bring or has changed to urban transport
patterns.

General

• What has been your role with this BSS.

• What is the history of this BSS.

• Who initiated the adoption of this BSS?

• Why was this BSS provisioner chosen to manage the system? Why was this busi-
ness model selected?

Actors

• What actors/organizations were involved in the process of encouraging or prevent-
ing bike-share adoption in this city? What were their roles?

• What do you believe has been the impact of BSS on bike rental shops? Are BSSs
competing with their business?

• Who do you think may be negatively impacted by this BSS?

Purpose of BSS
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• What is the purpose of a BSS?

• What are the benefits of a BSS?

• What outcomes would you like/hope to see from the BSS?

BSS station locations

• What process determined the location of BSS stations within the city?

• Was a computer model used to determine station locations?

• What factors are important in determining ideal station locations and distribu-
tions?

• More precisely why were stations located on the curb/parking etc. . . ?

• Do some or all of the BSS stations contain advertising billboards or sponsor names?

BSS Funding

• How is your BSS funded?

• What options were explored?

• Will public money be spent on the BSS? Why is this di↵erent than transit or car
infrastructure?

Success

• How successful has your BSS been?

• What metrics have you been using?

• What are some fears/problems you foresee about the BSS?

Evolution

• Have there been any unexpected outcomes due to this BSS implementation?

• Are the original BSS supporters still the strongest voice promoting BSS?

• What will happen when your contract with the provisioner expires?

Closing

• Could you recommend anyone I should contact related to this issue?

• Do you have any documentation, data or press releases that you could make avail-
able for research purposes?
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Duarte, Fábio (2016). “Disassembling Bike-Sharing Systems: Surveillance, Advertising,
and the Social Inequalities of a Global Technological Assemblage”. In: Journal of
Urban Technology, pp. 1–13. doi: 10.1080/10630732.2015.1102421.
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10.1007/s13547-011-0020-6.

Raviv, Tal and Ofer Kolka (2013). “Optimal inventory management of a bike-sharing
station”. In: IIE Transactions 45.10, pp. 1077–1093. doi: 10.1080/0740817X.2013.
770186.

Raviv, Tal, Michal Tzur, and Iris A. Forma (2013). “Static repositioning in a bike-sharing
system: models and solution approaches”. In: EURO Journal on Transportation and
Logistics 2.3, pp. 187–229. doi: 10.1007/s13676-012-0017-6.

Regue, Robert and Will Recker (2014). “Proactive vehicle routing with inferred demand
to solve the bikesharing rebalancing problem”. In: Transportation Research Part E:
Logistics and Transportation Review 72, pp. 192–209. doi: 10.1016/j.tre.2014.
10.005.

Ricci, Miriam (2015). “Bike sharing: A review of evidence on impacts and processes of
implementation and operation”. In: Research in Transportation Business & Manage-
ment 15, pp. 28–38. doi: 10.1016/j.rtbm.2015.03.003.

Richards, Chris (2015). “Claire Hitier-Abadie: ’Boris Bike’ cyclist killed in crash with
lorry is named”. url: http://www.mirror.co.uk/news/uk-news/claire-hitier-
abadie-boris-bike-cyclist-5209874 (visited on 2016-05-14).

Rietveld, Piet and Vanessa Daniel (2004). “Determinants of bicycle use: do munici-
pal policies matter?” In: Transportation Research Part A: Policy and Practice 38.7,
pp. 531–550. doi: 10.1016/j.tra.2004.05.003.

Robinson, D. L. (2006). “No clear evidence for countries that have enforced the wearing
of helmets”. In: BMJ 332, p. 837. doi: 10.1136/bmj.332.7545.837- a. url:
http://www.bmj.com/content/332/7545/837.2.
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