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Abstract

In this paper we demonstrate the ability of a derivative-driven Monte Carlo
estimator to accelerate the propagation of uncertainty through two high-level
non-linear finite element models. The use of derivative information amounts to
a correction to the standard Monte Carlo estimation procedure that reduces the
variance under certain conditions. We express the finite element models in vari-
ational form using the high-level Unified Form Language (UFL). We derive the
tangent linear model automatically from this high-level description and use it to
efficiently calculate the required derivative information. To study the effective-
ness of the derivative-driven method we consider two stochastic PDEs; a one-
dimensional Burgers equation with stochastic viscosity and a three-dimensional
geometrically non-linear Mooney-Rivlin hyperelastic equation with stochastic
density and volumetric material parameter. Our results show that for these
problems the first-order derivative-driven Monte Carlo method is around one
order of magnitude faster than the standard Monte Carlo method and at the
cost of only one extra tangent linear solution per estimation problem. We find
similar trends when comparing with a modern non-intrusive multi-level polyno-
mial chaos expansion method. We parallelise the task of the repeated forward
model evaluations across a cluster using the ipyparallel and mpidpy software
tools. A complete working example showing the solution of the stochastic vis-
cous Burgers equation is included as supplementary material.

1. Introduction

The importance of modelling the effect of uncertainty in parameters on the
output of a system is widely accepted in diverse fields such as geophysics [I],
dynamical systems [2], statistical physics [3] and mathematical finance [4, [5].
Uncertainties can be modelled by both random variables or random fields [6], [7]
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and a significant quantity of research e.g. [§] has been performed to develop
efficient numerical techniques to propagate this uncertainty through models and
provide a statistical solution.

Commonly used methods to propagate these random variables or fields
through models include the large family of Monte Carlo methods [9]. Monte
Carlo methods lead to a collection of independent realisations of the forward
model to solve. One of the main reasons that these methods are so popular
in practice is that they are completely non-intrusive, requiring only an exist-
ing deterministic solver. They are also relatively straightforward to implement.
The embarrassingly parallel nature of the integral summation problem is rel-
atively easy to exploit. The convergence of the basic Monte Carlo method is
guaranteed under very weak assumptions and independent of the dimension M
of the parameter space. This latter property is particularly attractive for high-
dimensional stochastic problems. However the rate of convergence is slow, on
the order of Z=1/? where Z is the number of realisations [9]. Therefore min-
imising the number of realisations to achieve convergence is critical for achieving
acceptable performance.

The core computational kernel of most stochastic algorithms, e.g. Monte
Carlo, is the repeated evaluation of the forward model with different parameters.
In the context of models that can be described by a system of partial differential
equations (PDEs), solved using the finite element method (FEM) [I0], it is
usually the solution of the deterministic forward model, the map between a
single realisation of the stochastic parameter and a quantity of interest in the
output of a model, that dominates the overall cost of solving the statistical
problem. A key goal then, assuming reasonable efforts have been expended to
accelerate the deterministic forward model, is to develop methods that minimise
the number of evaluations of the forward model. This is the goal of this paper
and many others.

Variance reduction Monte Carlo methods attempt to minimise the number
of realisations required to achieve an accurate result. Because the variance of
the error of the basic Monte Carlo estimator is proportional to the variance of
the quantity of interest, if we can construct enhanced estimators with reduced
variance with respect to the basic Monte Carlo, we can achieve lower error with
fewer forward model realisations. Note that the underlying Z~1/2 convergence
rate of the basic Monte Carlo estimator is not improved, but the overall er-
ror of the estimator is reduced. Methods in the wide class of variance reduction
methods include multi-level techniques [8] [T, [12] and sensitivity derivative tech-
niques [13] 14} [15]. Multi-level Monte Carlo uses a hierarchy of forward models
of increasing computational complexity (e.g. uniform spatial grid refinement)
and calculates the expectation as being that of the coarsest level, plus a cor-
rection based on the difference in expectation between consecutive levels [16].
Sensitivity derivative methods calculate a correction based on the sensitivity of
the forward model with respect to the stochastic parameters about the mean pa-
rameters. Under certain conditions outlined in the paper of Jimenez et al. [I5],
and discussed in section of this paper, the sensitivity-derivative method
can lead to variance reduction, and thus improved performance. It is this class



of sensitivity derivative Monte Carlo methods that we study in this paper in the
context of propagating uncertainty through non-linear finite element models.

We briefly note the recent interest in using derivative information to accel-
erate the convergence of Markov Chain Monte Carlo (MCMC) see e.g. [17, [I8].
Distinctly from these works, we use derivative information to reduce the vari-
ance of the Monte Carlo estimation problem, rather than using the derivative
information to improve the quality of the Markov chain that can then be used
for Monte Carlo estimation.

We also remark on the difference of the sensitivity derivative Monte Carlo
method and local stochastic perturbation methods, e.g. [I9]. Local stochastic
perturbation methods compute a local approximation to the stochastic problem
via a Taylor series expansion around the mean value of the parameters. This
perturbation problem is then used as an approximation to the original stochastic
problem. In this work we use precisely the same Taylor series expansion but
instead of using it to supplant the original stochastic problem we use the local
perturbation as a correction to the global stochastic sampling problem.

An alternative to non-intrusive methods are intrusive methods, such as
stochastic Galerkin finite element methods (SGFEM) [20] 2T, 22 23]. These
methods lead to a directly accessible approximation of the stochastic problem,
in contrast with the sampling methods that require the user to specify quanti-
ties of interest a priori. These methods are very efficient for linear PDEs with
smaller stochastic dimension, but are more complex to implement into existing
models due to their intrusive nature [24, 25]. These difficulties are compounded
in the case of non-linear forward problems [22].

We do not use this intrusive type of stochastic method in this paper, in-
stead, we advocate a compromise between non-intrusive and intrusive methods;
we consider the sensitivity derivative Monte Carlo method to be partially intru-
sive, in the sense that in addition to the usual forward model evaluations we also
require that the user has a (preferably efficient) way to compute derivatives with
respect to the stochastic parameters. We also note that it is possible to imple-
ment SGFEM in a partially intrusive manner with iterative solution techniques,
see e.g. [26]. Clearly the whether these requirements actually are intrusive de-
pends on whether the user has models that can provide the required derivative
information [I4] or matrix-vector actions [20], respectively. In the past, easily
computing derivatives of complex forward models either by the tangent linear
(forward mode) or adjoint (reverse mode) of differentiation required the use of
automatic differentiation tools, e.g. [27] operating on the low-level implementa-
tion of the problem. Even with automatic tools, this task can be difficult and
error prone. The alternative to automatic differentiation was a complete bottom
up implementation of the adjoint model. Recently however, automatic differen-
tiation tools operating on the high-level algebraic description of models, such as
dolfin-adjoint [28], have opened up the range of models that can be easily differ-
entiated. Furthermore, unlike the output of many low-level automatic tools, the
models produced by dolfin-adjoint are computationally optimal [28]. Because
we do not consider time-dependant models in this work we only use the algebraic
manipulation tools in the Unified Form Language (UFL) [29] alone, rather than



the complete set of automatic tools for differentiating time-dependant models
available in dolfin-adjoint [28§].

The key contributions of this paper are as follows; we present a first-order
sensitivity derivative driven Monte Carlo method [I3] B0, [I5] to propagate un-
certainty through two typical PDEs from the field of computational mechan-
ics; a simple one-dimensional viscous Burgers equation with uncertain viscos-
ity, and a complex three-dimensional Mooney-Rivlin hyperelastic equation. We
concentrate on the low-dimensional case, when the stochastic parameters are
real numbers, rather than random fields. In this setting the tangent linear
or forward mode of automatic differentiation provides efficient computation of
derivatives of the solution field with respect to the stochastic parameters. We
automatically derive the tangent linear model from the high-level expression of
the variational forms of the finite element models in UFL [29]. We show the
superior performance of this method with respect to both the standard Monte
Carlo method and a more modern non-intrusive multi-level polynomial chaos
expansion method [25] [3T] implemented using tools from the Chaospy toolbox
[32]. We use the standard Monte Carlo method as a commonly understood
baseline for performance comparison. However we remark that the sensitivity
derivative method could be used in conjunction with other variance reduction
techniques, such as multi-level Monte Carlo [I2]. It can also be used with quasi-
random low-discrepancy sequences [33], e.g. Sobol sequences, to improve the
rate of convergence to O ((log 2)MZ~1) [14].

An outline of this paper is as follows; in section [2] we give the general stochas-
tic problem setting, before continuing to section [3] to specifics on the three
stochastic solution methods, namely standard Monte Carlo, sensitivity deriva-
tive Monte Carlo and the multi-level polynomial chaos expansion method. In
section [ we discuss the derivation of the tangent linear model from the high-
level UFL [29] description of our finite element models. Finally we examine the
effectiveness of the sensitivity derivative Monte Carlo method on two examples
in section

2. Problem setting

In general we are interested in the propagation of uncertainty through the
following canonical form of a non-linear system of equations. Find the solution
u € U such that:

F(u, w) =0, (1)

where w € P are some parameters of the system of equations. For a given
realisation of the parameter w, we can obtain a solution u to the non-linear
system of equations. So we can then write the solution as pure function of the
parameters:

u = u(w). (2)

Within the context of this work we restrict ourselves to non-linear systems of
partial differential equation discretised using the finite element method. In this
case the above non-linear system will be the discrete Galerkin weak formulation



of the residual equation [I0]. Typically then the deterministic solution will be
in some suitable Hilbert space, e.g. u € H'(£), where Q is the domain of
the PDE, typically space but possibly also time. The deterministic parameters
could be a vector of constant scalar coefficients of the PDE, e.g. w € R* or a
spatially-varying coefficient in some Hilbert space e.g. w € L?(Qy).

The associated uncertainty propagation problem can then be stated as fol-
lows. Consider a probability space (€, F, P) where €, is the sample space, F
is a o-algebra of subsets of 2, and P is a probability measure. Given a quantity
of interest on the solution ¥ : Y — V and a probability density function (pdf)
po on the parameter, find the expected value of the quantity of interest:

E ¢ (u(w))] :=/Q ¥ (u(w)) dP(w). (3)

Possible quantities of interest include the expected value of a scalar field
solution u € H'() at a particular point in the domain z, € {2, in which case
we have ¢, : Y — R given by:

P (u(w)) := ulzp), (4)

or for the variance of the solution u at a particular point =, € Q,:
bo(u(w)) = (u(zp) — Elu(z,)])?, (5)
VIf] = E(u (/) (6)

where we have explicitly denoted the dependence of the solution field v € U
on the position in space x. For notational convenience, we drop the explicit
dependence of the functional ¥ on the solution u, and in turn drop the explicit
dependence of the solution u on the position z,, allowing us to write:

Y= 1(w). (7)

In the vast majority of cases eq. cannot be solved in closed form and we
must resort to numerical methods to evaluate the integral.

3. Stochastic solution methods

In this section we give the specifics on the three stochastic solution methods
that we use in this paper.

3.1. Standard Monte Carlo method

We give a brief overview of the standard Monte Carlo method which provides
a baseline comparison for the other two methods we consider, see sections

and [3.3]



3.1.1. Mathematical development
The classical Monte Carlo [33] estimator can be used to evaluate an approx-
imation of the expected value of the quantity of interest in eq. :

Z
E [p(w)] ~ BN [p(w)] == 5 D0 (ws), )
z=1

where {wz}le is a sequence of independent and identically distributed realisa-
tions drawn from the distribution p,,. Using the Central Limit Theorem [9] it
can be shown that the above estimator converges under very weak assumptions
to the exact expectation:

EMC ()] ~ E @) l(0,) ~ 7| LA, o)

where v is a standard normal random variable N(0,1). The above result is a
probabilistic result on the error induced by the standard Monte Carlo estimator.

8.1.2. Implementation

The classical Monte Carlo method simply involves many evaluations of the
quantity of interest for given realisations of the random variables and then
taking the mean of those realisations. This is a totally non-intrusive method
because it is possible to compute each v (w,) using an existing solver. However,
convergence is slow, and often a very large number of realisations are required
to obtain an accurate solution.

3.2. Variance reduction Monte Carlo method using sensitivity derivatives

Cao et al. [13] introduced an improved variance reduction estimator based
on the use of sensitivity derivatives, or more precisely, the derivatives of the
quantity of interest with respect to the parameters evaluated at the mean of the
parameters.

3.2.1. Mathematical development

In this section we show the construction of this estimator from first principles
and show its variance reduction properties with reference to Theorems 2.1 and
2.3 of [15]. For simplicity of notation, we assume that the quantity of interest
is a functional ¢ : Y — R, however, the result can be extended to vector valued
functionals reasonably straightforwardly.

Consider a quantity of interest functional v : i/ — R which is at least C™
times differentiable. We write the n-th order Taylor series expansion of the
functional ¢ about the mean parameter w := E(w) as:

T,(w) = Z
k=0

| —

DL @) (w - @), (10)

o

[=p}



where D[] denotes the usual k-th order derivative with respect to the param-
eter w.

Then the sensitivity derivative enhanced Monte Carlo estimator of order n
can be defined as [I5]:

ESP~MC [1(w)] := E[T, ()] + ! > h(ws) = Tu(w:)]. (11)

In this paper we only consider the case n = 1, the first-order sensitivity deriva-
tive enhanced Monte Carlo method [13]. In that case the Taylor expansion is:

Ti(w) = $(@) + Dy [ (@))(w — ®), (12)

and the first order sensitivity derivative estimator (SD-MC) [13] can be written
without simplification as:

ESPMC [ (w)] = E[6(@) + DLH@)(w - )
A
23 [(ws) — ¥(@) - DL @] ~5)). (13)

From this point on we drop the explicit specification of the £ = 1 on the deriva-
tive, e.g. D,,.

By noting that the term E[D,[¢(@)](w — @)] is equal to zero, and that the
term E[)(@)] = ¥(@) the above equation can be simplified to:

Y (ws) = Duft(@)](w: — @)]- (14)

z=1

EfPMC [p(w)] =

N =

It is then possible to show [I3] 5] that as Z — oo the n-th order estimator
is unbiased, that is E[ESP~MC[¢]] = E[¢], and also that it converges to the
standard Monte Carlo estimator eq. .

The key theoretical estimate required is proof that the use of sensitivity
derivatives does indeed reduce the variance of the standard Monte Carlo esti-
mator. Theorem 2.1 of Jimenez et al. [I5] shows that a bound on the L? absolute
error of the first-order sensitivity derivative estimator E? ™™ can be written
in terms of the variance of the first-order Taylor remainder of the functional ).
Defining the first-order Taylor remainder as:

Ri(w) == ¢Y(w) — Ty (w), (15)
it is possible to show that [15]:

VIR (9())]

IESPMC(w)] — B[]l r2(q,) ~ ¥ 7

(16)

The convergence rate remains at O(Z -1 2). However, comparing eq. with
the result for the classical Monte Carlo estimator eq. @D we can see that we will



have a variance reduction iff:

VIR (¢(w))] < Vp(w)]. (17)

Theorem 2.3 of [I5] provides a further criterion for such a condition to hold.
Specifically, if:
VIT1(¥)] < 2Cov(¥, Ty(¥)), (18)

then the first-order sensitivity derivative estimator will reduce the variance of
the standard Monte Carlo method. Intuitively, these results tell us that the
sensitivity derivative correction will only improve on the standard Monte Carlo
method if the Taylor approximation to the function about the mean is a suffi-
ciently good.

8.2.2. Implementation

The sensitivity derivative estimator eq. can be seen as a simple post-
processing treatment of the standard Monte Carlo estimator eq. . Just as in
the standard Monte Carlo method, a sequence {wz}ZZ:1 of Z realisations of the
stochastic variables w must be drawn from the input distribution p,. Then for
each realisation w, the quantity of interest ¢, := ¥ (w,) must be evaluated, each
of which involves a forward model evaluation u, := u(w,).

In addition to the usual realisations, it is necessary to calculate the derivative
of the quantity of interest functional with respect to the parameter, evaluated
at the mean of the parameter D, [¢)(@)]. We leave the discussion precisely how
we calculate the derivatives to section [} Regardless of how the derivative is
calculated, the critical thing to notice is that it is evaluated only once, at the
expected value of the parameter @w. The derivative can then be cached and
used throughout the sampling procedure. We note in advance of the results in
section [5] that the cost of running the Z non-linear forward models massively
dominates the single evaluation of the derivative at the mean required by the
sensitivity derivative method. If the forward model provides the derivative
information, the use of the sensitivity derivative estimator comes almost for
free.

8.8. Multi-level collocation polynomial chaos expansion collocation method

It is well-known that the standard Monte Carlo method estimator described
in section [3.1]is not the most efficient or modern method for solving uncertainty
propagation problems of the type given in eq. . In this section we give
an overview of the construction of a multi-level collocation polynomial chaos
expansion (ML-PCE), collocation method as shown in [31}, 25] which should
be a tougher benchmark for the sensitivity derivative method to match. The
multi-level aspect of this method can be seen as a close cousin of the multi-level
Monte Carlo methods described in e.g. [8 12| [16].



3.3.1. Mathematical development

We first discuss the collocation polynomial chaos expansion (PCE) approach
before adding in the multi-level (ML) extension.

In the polynomial chaos expansion approach we expand the stochastic solu-
tion u(z,w) with w € RM in a basis H,(w) of polynomials of dimension M and
order p [34, [7]:

u(:z:,w) = Z Ca(x)Ha(w)v (19)
a€Im,p
with @ € Jmp. JTump is the set of multi-indices given by {a € N(()N) | o =
{at,...,a4,...;anm}, 05 € No,Jof = Z]Ail a; < p}. The dimension of Jar,p
increases rapidly with M and p:

N = dim(Jarp) = (M +p)!/(M! pl), (20)

making this technique suitable for problems of low to moderate stochastic di-
mension [25].

Different methods exist to calculate the coefficients ¢, () of the polynomial
chaos expansion. We choose to solve for the coefficients using a collocation
approach and the solution of a least-squares minimisation problem. This method
consists of minimising the square of the Euclidean norm between Z random

T
samples (collocation points) of the solution U = {{u(m,wz)}zzzl} and the
PCE. With:

Ho(wl) HN_l(oJl) Co(l')

P = . . and ¢ = . , (21)

Ho(wZ) HN—l(UJZ) CN_1($)

the objective is to compute the PCE coeflicients contained in ¢ and the minimi-
sation leads to the following least-squares problem:

c=(PTP)"'PU. (22)

Note that unlike Monte Carlo methods we have a complete approximation of
the full stochastic solution and can compute quantities of interest quickly and
directly from the PCE expansion.

We now describe the extension of the PCE method with multiple levels (ML-
PCE). Let n be the typical number of Newton iterations required to acheive a
given tolerance in the Newton method used to solve eq. . For the computation
of the collocation realisations of the first level of the ML-PCE method, instead
of using n non-linear iterations, we choose to compute the solution U using
dy < n iterations. The output of this procedure is the coeflicients of the PCE at
the first level. We then proceed to the second level. We now choose to compute



the collocation realisations of the second level using do < n Newton iterations
at a new set of collocation points. The crucial step is that we initialise the
Newton solver of the realisations on the second-level using the output of the
PCE algorithm at the first level. We repeat this procedure for K levels. A
formal description of the multilevel algorithm is given in algorithm [I]

Algorithm 1 Algorithm for the multi-level polynomial chaos expansion collo-
cation method.
1: K is the number of levels.

2: d ={d,...,dx} are the number of Newton iterations at each level.

3: Z is the number of collocation points.

4: for k=1to K do

5:  Draw Z collocation points w, ~ p.

6: for z=1to Z do

7 if k = 1 then

8: Generate u'(w,) by solving forward problem with d; iterations.

9: else

10: Generate initial guess for forward problem uf(w,) from PCE calcu-
lated at level k£ — 1.

11: Generate u*(w,) by solving forward problem with d, iterations using
uk(w,) as initial guess.

12: end if

13:  end for

14:  Calculate the PCE coefficients for level k from w, and ug(w,).
15: end for
16: Output: Coefficients of the multi-level PCE expansion c¢ for level K.

3.8.2. Implementation

We use the methods in the Chaospy toolbox [32] to implement the PCE
method and collocation least-squares problem.

4. Automatically deriving tangent linear models

In this section we describe the process by which we derive the tangent linear
model using the automatic differentiation features in the Unified Form Language
(UFL) [29] of the FEniCS Project [35]. For a full review of techniques that
can be used to derive possibly time-dependant tangent linear and adjoint models
using the DOLFIN automated finite element solver [36] we again refer the reader
to the paper on dolfin-adjoint [28].

We begin with the canonical form of the non-linear system of equations given
in eq. :

F(u,w) = 0. (23)

10



Then, taking the total derivative of the above equation with respect to the
stochastic parameter w gives:

F F
iF(u,w)—a du OF dw

= 24
= 0 (24

T ude | Owdw
and re-arranging gives the tangent linear model associated with the forward

model eq. :
OF (u,w) du _ OF(u,w)

ou  dw Oow

In the case that the solution w is discretised using finite elements, leading to a
discrete space with size () and the parameter is a scalar, w € R, the solution

(25)

Jacobian S—Z = u,, will be a vector of size @, the linearised solution operator
about the solution u W := A, will be a matrix size Q x @, and the right

hand side source term %Z’“) := f,, will be a vector of size (). Having solved

the non-linear problem eq. at the mean parameter @ to find u(@) we can
then solve the following linear system at u(w):

Ayuy, = —fo, (26)

to directly obtain the required derivative information w, = D,[u(@)] for the
sensitivity-derivative driven Monte Carlo method. Once we have defined the
finite element residual equation in variational form using UFL, we can derive
the corresponding variational forms for the tangent linear model with only two
function calls that invoke the automatic differentiation techniques implemented
in UFL [29].

5. Results

In this section we demonstrate the effectiveness of the sensitivity derivative
Monte Carlo method on two example problems; the first problem is a simple
one-dimensional problem in fluid mechanics and the second problem a large
scale three-dimensional problem from solid mechanics.

5.1. Generalised Burgers equation with stochastic viscosity

In this subsection we solve the stochastic generalised Burgers equation with
uncertain viscosity. This example is very similar to the one presented in Liu et
al. [30]. We have chosen to replicate a similar result for two reasons; firstly, we
wish to independently demonstrate the effectiveness of the sensitivity derivative
estimator, and secondly we want to publish a simple and complete working
example of the method that can be modified in a relatively straightforward way
to the user’s time-independent problem if it can be expressed in the Unified
Form Language (UFL). A key difference of our implementation compared to
that in [30] is the use of the finite element method instead of the finite difference
method to solve the forward problem, and the automatic symbolic calculation
of the tangent linear problem from the UFL description. We also estimate the

11



second moment of the solution (and hence calculate the standard deviation)
and show an interval estimate of the full stochastic solution. Using the finite
element method to solve the forward problem is not required, in the sense that
an analytical solution to the forward model is available (although, we might add,
not the stochastic problem). Even calculating the finite element method solution
takes fractions of a second. However, these properties make it an excellent
candidate to verify the correctness of the method. In section [5.2| we present a
more challenging three-dimensional hyperelastic problem.

5.1.1. Forward model
The forward model is described by the following weak residual formulation

of the generalised Burgers equation with stochastic viscosity v ~ p,:
Find u € H}(Qs) such that:

1
F(v,u;u) = / vVu - Vi — §V(u2 —w)idr =0 Yae€ Hi(Q,), (27)
Q

s

where the space H}, () is the usual Sobolev space of square-integrable func-

tions on the domain  := [—1, 1] with square-integrable weak derivatives that
satisfies the Dirichlet boundary conditions:
1y _e(_1 1y _ el
u(=3)=u(=3v), u(z)=u(37), (28)
with u, the exact analytical solution to the problem:
1 T
(z,0) = = |1+t h(—)}. 29
u®(x,v) 5 [ + tan o (29)

We take the stochastic viscosity v ~ p, ~ N(0.25,0.025) and the two quantities
of interest functionals {¢1,12} : U — R to be:

Gr = u(0.3), v = [u(0.3)]2, (30)

i.e. we estimate the first and second moments of the velocity at a point x, = 0.3
in the domain.

We solve the forward model using a piecewise linear finite element method
within DOLFIN [36] on a uniformly-refined mesh with 1024 cells using a stan-

dard Newton method with update from u* to u**! given by the following linear
problem:

J(v,u¥; 0u; ) = —F(v,u®; @) Vi e HY(Q,), (31a)

uF = o 4 du. (31b)

In our implementation we let the automatic differentiation capabilities of UFL
derive the Jacobian J from the weak residual eq. on our behalf. We drive
the residual equation of the forward problem to a relative error of ~ 10712, This
results in a relative error in the forward model numerical solution with respect
to the analytical solution of around ~ 10~® in the H'-norm. The forward
model solution can be viewed as exact with respect to the stochastic estimation
procedure.

12



5.1.2. Tangent linear model
For the tangent linear model, which gives the derivative of the solution with
respect to the parameter, we solve the following linear variational problem:

Find u, := D,[u] € H}, () such as:
dFf  OF OF du
P T e 2
dv v * ou dv 0, (32)

ie.,

/ vV, Vi, — %v (2uyu — u,) @, dv = —/ VuVi, dz Vi, € Hy (),
Q Qs

‘“’ (33)
where Hllju () satisfies the Dirichlet boundary conditions given by the deriva-
tive of the exact analytical solution with respect to the parameter:

wr (=8) = () () = (), 31
with: e .
ul (z,v) = ST {tanh2 (E) - 1} . (35)

We solve the tangent linear model on the same mesh and using the same linear
finite element method as the forward model. Typically we see a relative error
in the tangent linear model with respect to the analytical solution of around
~ 107% in the H'-norm. The example code contains a file that verifies the
correct convergence rate of both the forward and tangent linear models to the
exact solutions, but we do not show these results here.

Just like the derivation of the Jacobian for the Newton method solution
of the forward model, we let the symbolic differentiation capabilities of UFL
derive the tangent linear problem from the specification of the weak residual.
This procedure is demonstrated in the example code.

We reiterate the point that the tangent linear model is only solved once at
the mean parameter. To calculate the tangent linear solution w, (), we first
solve the forward model at the average parameter to give u(7). Substituting
the forward model solution at the mean parameter v = w(?) into the tangent
linear model and solving we obtain the desired derivative u,,.

5.1.3. Estimation

We now proceed to the implementation of the estimation procedure. Unlike
the forward and tangent linear problems, we do not have an exact analytical
solution for the stochastic problem. So we must estimate the expected val-
ues of the quantities of interest {1,152} using a numerical method. We use
Chaospy [32] to draw a quasi-random Sobol sequence on a unit line before map-
ping the realisations of the sequence to the distribution p, using the inverse
cumulative density function [32]. Drawing Z = 200000 samples from the Sobol
sequence gives us the following highly accurate estimates:

E1] ~ E¥[¢h1] = 0.646937696525, (36a)
E[tho] =~ E¥[tho] = 0.418729810487. (36b)

13
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Figure 1: Log-log plot of relative root-mean-square error (RMSE) for standard Monte Carlo
EMC and sensitivity-derivative enhanced Monte Carlo methods ESP~MC on the quantity of
interest functions 11 (first moment) and 2 (second moment) evaluated at a domain point
zp = 0.3 of the stochastic Burgers equation. Expected convergence rate line of O(Z‘l/Q)
included for comparison. The sensitivity derivative Monte Carlo method provides almost one
order of magnitude better convergence than the standard Monte Carlo method at the expense
of only one extra linear solve.

The errors of the standard Monte Carlo method and the sensitivity derivative
enhanced method are calculated with respect to these two values. We use the
exact forward model solution, rather than the approximate finite element solu-
tion, to obtain our highly accurate estimates.

Because the output of an Monte Carlo estimator is itself random, to get
sensible error estimates we must take an estimate of the output of the underlying
estimator. We assess the performance of a given estimator on a quantity of
interest by calculating the relative root-mean-squared error (RMSE):

ERMSE 511 \/EMC[(EIE@[;]?S )2 -

For a given estimator, set to use a fixed number of realisations (we select Z =
{20, 50, 100, 500, 1000, 2000}), we choose to take Z = 100 realisations of said
estimator to evaluate the RMSE. We show the results of the RMSE convergence
study in fig. [II The sensitivity derivative Monte Carlo method produces an
estimator with an RMSE error one order of magnitude lower than the standard
Monte Carlo method. Both estimators acheive the expected convergence rate of
O(Z~'/?). Taking the estimate on the first moment as an example, E(t1), to
achieve an error of ~ 10~2 we require Z ~ 20 non-linear forward model solves
using the sensitivity derivative Monte Carlo method, versus around Z ~ 1000
non-linear forward model solves model evaluations for the standard Monte Carlo
method.

To close up our discussion on the stochastic Burgers equation, we show the
solution evaluated at 20 evenly spaced points in the domain in fig. [J] using the
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Figure 2: Solution of stochastic Burgers equation with stochastic viscosity v ~ N(0.25,0.025).
Plot shows mean solution with £1.960 standard deviation envelope denoted by shaded region.
This figure was generated using the sensitivity derivative Monte Carlo estimator with Z = 2000
forward model evaluations and one tangent linear model evaluation.

sensitivity derivative Monte Carlo method. The quantity of interest functionals
in this case are simply the ones shown in eq. (36) but evaluated at multiple
points in the domain. The Monte Carlo method gives us the sampled mean
and interval estimate that respects the u(0,v) = 0 Vv condition given by the
analytical solution.

Note that in this example where we have quantities of interest in many
positions in the domain we still only need to solve one tangent linear problem
as we can get the sensitivities of the solution field u € H'(Qs) with respect to
the scalar parameter v € R with just one linear solve.

We remark that if we had multiple parameters, e.g. w € R we would need to
solve M tangent linear problems to have the required sensitivity information for
the estimator. If the parameter was instead a random field w € L?(,), which
when discretised can be viewed as w € R™ with very high M, then clearly these
M linear solves would be prohibitively expensive. In this high-dimensional case,
it would make more sense to select a functional quantity of interest ¢ : 4 — R
and use the adjoint, or reverse mode of automatic differentiation, which scales
excellently with increasing m [28], to calculate the sensitivity with respect to all
M parameters with one just one linear solve. Current work includes the use of
the adjoint mode of differentiation in the context of sensitivity derivative Monte
Carlo estimators for random fields.

5.2. Hyperelasticity equation with stochastic material parameters

In this subsection we solve the stochastic Mooney-Rivlin hyperelasticity
equation. The deterministic version of this model is often used in biomechanics
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simulations to describe the behaviour of soft-tissue. However, in many soft-
tissue biomechanics simulations the material parameters used in the definition
of a given simulation often have a significant degree of uncertainty associated
with them. This motivates the use of the stochastic version where uncertainty
in the parameters can be taken rigorously into account. Taking into account un-
certainties in biomechanics models is a relatively young field and little work has
been done in particular for soft tissue with large deformation [37]. In a clinical
environment, where safety-critical decisions must be made based on the output
of such simulations, being able to propagate uncertainty efficiently through such
models is of importance.

We repeat the essential features of the Mooney-Rivlin hyperelastic model
here. Interested readers are referred to [38] for more details. In this section we
use bold to denote vector fields, e.g X € R? and capital sans-serif to denote
tensors e.g. F € R3*3,

Consider a continuum body B with reference configuration yo : B8 — R3
and an unknown (deformed) configuration x : B — R3. The domain occupied
by the body in Euclidean space R?® is then €y := xo(8B) and Q := x(B) in
the reference and deformed configurations, respectively. Material points of the
continuum body p € B are mapped similarly, giving X = xo(p) and x = x(p)
in the reference and deformed configurations, respectively.

We can define the deformation between the points in undeformed and de-
formed configurations as a map:

e=xX"X0 p: Q353X >xe, (38)

and then assuming the map is sufficiently differentiable, we define the deforma-
tion gradient tensor as:
_ Oy
=X
We furthermore assume that the boundary of the reference domain 2y can be
divided into two open subsets dp Qg and Oy 2y on which Dirichlet (displacement)
and Neumann (traction) boundary conditions are applied, respectively.

Based on the definition of the deformation gradient tensor F we define the
left Cauchy-Green tensor as:

F(X) (39)

C:=F'F. (40)

We can then write the Mooney-Rivlin energy density functional W : R3*3 x
Qo — R as [39, 40):

W(C,X) := Cy (I, — 3) + Co(Ip — 3) + Dy (137 — 1)2, (41)

where {C4,Co, D1} are possibly random material parameters which we assume
to be spatially homogeneous in this work, and the modified first and second
invariants are:

jl = J_2/311, (42&)
I = J 3, (42D)
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where I, Is and I3 are the unmodified invariants of C given by:

L(C) = tx(C), (43a)
L(C) = % ((trC)? — (trC?)), (43b)
I3(C) := det(F)? = J2. (43c)

Defining the displacement field as u := ¢p — X and a linear functional f that
encodes the external loading (surface tractions, body forces etc.) we can char-
acterise the elastic equilibrium displacement field u* as the solution to the fol-
lowing minimisation problem:

*

u* = argmin L(u)
u€[H (Q0)]°

= argmin { W(C, X) dxo — (f, u>} ,
ll€[Hb(Qo)}3 Qo

(44)

where [H7(Q0)]? is the usual vector-valued Sobolev space of square integrable
functions with square integrable derivatives that satisfies the given Dirichlet
boundary conditions and dx is a measure on 2.

Using standard arguments, see [41], a (possibly non-unique) minimum of the
above problem exists. Taking the Fréchet derivative we can derive the residual
equation:

F(w,u*;0) = DgL(u*) =0, Va € Hy(Q). (45)

At this point we are in a position to the apply the general stochastic framework
outlined in section

We now describe the specific geometry, boundary conditions and probability
density functions on the stochastic parameters that we use in this example.
We consider the undeformed three-dimensional domain shown in fig. [3| given by
Qo = [0, L] x [-1/2,1/2] x [—e/2,e/2] with e =] < L. We define dpQ to be
the portion of the boundary of the domain 9y on which X, = 0. We apply
the Dirichlet condition u = 0 on 0p€y. We summarise the preceding by saying
that we have a beam built into a stiff wall on the left-hand end. No external
boundary tractions are applied, however, the beam is subject to a body force
due to gravity. We can then write the term with the linear functional f as:

(f,u) = / (—g)pus dao, (46)

where p is the possibly random density of the material and ¢ is the standard
acceleration due to gravity.

Out of the four material parameters {C, Ca, D1, p} in this example we select
two to be subject to uncertainty, so:

w:={p,D1} € R (47)
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Figure 3: Undeformed domain g shown with tetrahedral mesh. For a single realisation
of the random variables w := {p, D1} we show the deformed domain Q coloured with the
y-component of the displacement u, calculated using the deterministic forward model.

We specify the following distributions for the parameters:

plwr) == p°(1 +w1), wi ~ Beta(2,2), (48a)
Di(wg) := DY(1 +wy), way ~ Beta(2,2). (48Db)
With the Beta(2, 2) distribution we have zero probability of drawing non-physical

negative-valued parameters.
The numerical values for all of the parameters in the model are:

01 = 104 Pa
Cy =2 x 10° Pa
DY =2 x 10°Pa

L=03m . (49)
[ =0.025 m
g=9.81 m/s>

p° = 600 kg/m®

We now briefly describe the finite element method implementation of the for-
ward model. We discretise the forward model using a piecewise linear finite ele-
ment method on a uniform tetrahedral mesh leading to a discrete displacement
solution with 120000 degrees of freedom. To solve the non-linear problem we use
a Newton method from SNES [42] with continuation in the density parameter p
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and a third-order backtracking line search. We let the symbolic differentiation
capabilities of UFL derive the Jacobian of the forward model for the Newton
solver. We solve the linear systems arising from the Newton iterations using
a conjugate gradient method preconditioned using algebraic multigrid (Hypre
BoomerAMG [43]) interfaced from PETSc [42]. We show an archetypal solu-
tion of the deterministic forward model for a single realisation of the stochastic
parameters in fig.

5.2.1. Tangent linear model

We let the symbolic differentiation capabilities of UFL derive the tangent
linear models from the symbolic representation of the residual equation on our
behalf. As we now have two stochastic parameters we derive two different tan-
gent linear models so that we can calculate the required sensitivity derivatives,
one with respect to each parameter {u,,up, }.

The tangent linear model is solved on the same mesh and using the same
piecewise linear finite element method as the forward model. To solve the result-
ing linear system we use the MUMPS direct factorisation solver [44] interfaced
from PETSc [42].

5.2.2. Parallelisation

We use the ipyparallel parallel computing toolbox [45] to distribute forward
model evaluations across an 8 socket Intel Xeon E7-8880-based machine with
15 cores per socket, giving 120 cores in total. This machine is installed in the
Gaia cluster at the University of Luxembourg [46]. We use the message passing
interface (MPI) backend for communication between ipyparallel engines and the
ZeroMQ distributed messaging system to communicate between engines and the
controller. Each ipyparallel engine uses its own MPI communicator (SELF) to
solve each realisation of the forward problem.

5.2.3. Estimation

Let’s turn to the first experiment. We take four quantities of interest to be
estimated using the standard Monte Carlo (MC), sensitivity derivative Monte
Carlo (SD-MC) and multi-level polynomial chaos expansion (ML-PCE) meth-
ods:

X, :={L,0,0}", (50a)
1= wm(um(xp)/L)7 (50b)
V2 =y (ue(Xp) /L), (50¢c)
V3 1= m (uy (Xp) /1), (50d)
Y=y (uy(Xy)/1). (50e)

In words, the expectations of our quantities of interest are the mean and variance
of the z and y-components of the displacement u evaluated at a point X, located
at the centroid of the y — z plane at the free end of the beam.
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For the PCE method we use multi-dimensional Jacobi polynomials of order
p = 10 for the basis of the polynomial chaos expansion of stochastic dimension
M = 2. We use three levels for the multi-level process. The MC and SD-MC
methods are precisely those described in section [3]

We note that we cannot examine the convergence of the estimators in the
same rigorous way as we did for the stochastic Burgers equation in section [5.1
This is because the forward model takes too long to run to generate an RMSE
plot like the one shown in fig. [I} which required 370000 forward model evalu-
ations. The results in this section can be viewed as being indicative that the
SD-MC estimator performs well for this more complex problem. To do this we
show how the estimate of quantity of interest evolves with increasing number of
samples Z. In all experiments we let the guaranteed and reliable MC estimate
run until the estimate settles down. We then use the evolution of this esti-
mate as a point of comparison for the estimates from the SD-MC and ML-PCE
methods.

Two evolutions of the three estimators of the first-order quantities of interest
¢ and 13 with increasing number of realisations Z are plotted in fig. [4 All
evolutions eventually converge to the same value for both quantities of interest.
For 13 the SD-MC estimator settles down very rapidly to the converged answer,
requiring only tens of samples versus around 1000 samples for the standard
Monte Carlo method. The ML-PCE method also performs well requiring around
500 samples on the final level.

The two evolutions of the three estimators of the second-order quantities
of interest 1 and 1, with increasing number of realisations Z are plotted in
fig. ] All three estimators eventually converge to the same value for both
quantities of interest. Although the results are less emphatic than those shown
for the first-order quantities in fig. [ the SD-MC estimator does seem to settle
down faster than both the ML-PCE and MC estimators. There is not much
to choose between the ML-PCE and MC estimators, although we remark that
our methodology of using the final estimate of the MC estimator to denote the
Z — E region does produce a bias in favour of the MC estimator.

Finally, we show the mean and standard deviation of the complete stochastic
solution in fig. [f] This image was computed using the SD-MC method with
Z = 3000 samples. We again remark that only two extra tangent linear problem
solves (one for each parameter) were needed to obtain the required sensitivity
derivatives for the SD-MC method.

5.2.4. Efficiency

Clearly computational time is an important factor in assessing the three es-
timation methods. Comparing the MC and SD-MC estimators is quite straight-
forward; Z solves of the non-linear forward model are required for both, and
two extra forward and tangent linear model solve for the SD-MC method. The
cost of these four extra solves is computationally negligible compared with the
Z non-linear forward model solves. The cost of computing the MC and SD-MC
estimators themselves is also negligible compared with the time spent solving
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the non-linear forward problems. The only real variable of bearing on compu-
tational time for the MC and SD-MC methods then is Z.

However, comparing the computational time for both the MC and SD-MC
methods with the ML-PCE method is more difficult. In the ML-PCE method
we end up computing Z K non-linear model evaluations with varying numbers of
non-linear iterations di in the Newton method at each level. In total, the ML-
PCE method requires more linear solves than the MC and SD-MC methods,
although the lower level solves are relatively cheaper, and the output of the
lower levels is used to initialise the Newton iterations for faster convergence at
the higher levels. In addition, a linear least-squares problem must be solved at
each level, although again the cost of this is small compared with the non-linear
forward model solves.

With the above in mind we show the wall time to achieve an accurate solution
using the three methods for the first order quantity 3 and second-order quantity
Y4 in fig. [] We can see that the SD-MC method performs hugely better at
estimating the first-order quantity, and significantly better for the second-order
quantity, compared to both the ML-PCE and MC methods.

5.2.5. Sensitivity and correlation analysis

In this final section we present some auxiliary local and global sensitivity
analysis results calculated using the tangent linear model and the MC method,
respectively. We also examine the correlation between two functionals of inter-
est. The global sensitivity analysis was performed using the methods included
in the software package Chaospy [32].

We first present the local sensitivity analysis of the quantities of interest
11 and 3. Additionally, we introduce the further quantity of interest s :
[H(Q0)]P — [Hb(0)]:

s 1= ¢m(u(X)/L)7 (51)
which gives the mean displacement field of the beam as:
u(X)/L = E[¢s]. (52)

The quantities of interest ¢); and 3 are then simply the x and y-components,
respectively, of the mean displacement field evaluated at the point X,,.

The studied local sensitivities of the quantities of interest with respect to
the random parameters are then:

Dwi[wj](wi)? L= {152}v Jj= {173’5}' (53)

The norms of these quantities are given in fig. All quantities of interest
are more sensitive with respect to the density parameter p than the volumetric
material parameter Dy. This matches our intuitive expectations of the problem
setup, because the denser the object is the more it will sag under its own weight.

We also calculate the global sensitivities using the method of Sobol [47]
using the polynomial chaos expansion output of MC method, see e.g. [48]. This

21



variance-based sensitivity method gives an understanding of the behaviour of
the quantities of interest across the entire probability space, rather than the
crude local sensitivity method just demonstrated.

The first-order and total effect Sobol indices are shown in fig. [0} The global
trends are similar to those of local sensitivity analysis results in fig. [§] The
density variable p explains most of the variance in the both output functionals
11 and 13. The total sensitivity index is nearly equal to the first order-sensitivity
index for all variables and all quantities of interest. This means that there is
little interaction between the two random variables.

Finally, in fig. we show the normalised histogram of 13 calculated using
the MC and ML-PCE methods, and in fig. the hexagonal binning corre-
lation between 17 and 3. The distributions in fig. [L0(a)| calculated using the
standard MC and ML-PCE methods are similar. From the hexagonal binning
in fig. [L0(b)| it appears that 1; and 3 are partially correlated, with Pearson
coefficient correlation of 0.34 with a zero p-value.

6. Conclusions

In this paper we have explored the use of sensitivity derivative Monte Carlo
methods, originally introduced by Cao et al. [13], to efficiently propogate un-
certainty through two high-level finite element models. The required sensitivity
derivative information was efficiently calculated with the tangent linear model
derived through automatic differentiation of the high-level model.

We compared the sensitivity derivative method to two other non-intrusive
methods; the standard Monte Carlo method and a multi-level polynomial chaos
expansion collocation method. For the two mechanics stochastic problems we
examined we were able to show the improved performance of the sensitivity
derivative driven estimator. The benefits for first-order type quantities are
largest, but the gains still appreciable for second-order type quantities.

We are currently investigating the extension of this method to solving high-
dimensional stochastic problems arising from random fields, where the advan-
tages of Monte Carlo method’s asymptotic behaviour independent of the stochas-
tic dimension are most beneficial. In this high-dimensional context we will use
the adjoint method to calculate the required derivative information efficiently
with respect to the stochastic field.

Supporting material

Complete code to produce the results in section [5.1is given in [49].
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Figure 4: Two evolutions of the MC, SD-MC and ML-PCE estimations of 1 and 3 as
a function of the number of realisations Z. The blue shaded box indicates the region in
Z — E space within +0.3% of the final estimate predicted by the MC estimator. The vertical
dashed lines, with colour corresponding to the estimator, shows the last mean Z for which
the evolving curves leave this region. The SD-MC estimator settles down to the converged
answer significantly faster than the MC or ML-PCE estimators.
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Figure 5: Two evolutions of the square-root of the MC, SD-MC and ML-PCE estimations of
1o and 14 as a function of the number of realisations Z. The blue shaded box indicates the
region in Z — E space within £1% of the final estimate predicted by the MC estimator. The
vertical dashed lines, with colour corresponding to the estimator evolution curves, shows the
mean of the last Z for which the evolving curves leaves this region. The SD-MC estimator
settles down to the converged answer faster than both the SD and ML-PCE estimators.
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Figure 6: Solution of the beam governed by the stochastic Mooney-Rivlin hyperelastic equa-
tions with random density p and material parameter D;. The mean deformed domain
X := X + u is shown coloured with the pointwise magnitude of the mean displacement field
[[a(X)||gs. The upper and lower transparent grey objects show the mean deformed boundary
perturbed by the standard deviation of the displacement field X + o (X), respectively.
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Figure 7: Bar plot of approximate elapsed wall time to generate an accurate estimate of the
first-order quantity of interest ¢3 (a) and second-order quantity of interest 14 (b) using the
three estimation methods. We define the Z to obtain an accurate solution for each method
to be the corresponding dashed line given in fig. and fig. respectively. The timing
is then calculated by multiplying the wall time by Z/Zmae Wwhere Zmax is the total number
of fine-level forward model realisations at the end of the evolution.
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Figure 8: Local sensitivities of functionals of interest with respect to the parameters evaluated
using the tangent linear model at the mean parameter. We can see in all cases that the

problem is locally more sensitive to the density parameter p than the parameter related to
the volumetric material behaviour D1.
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P1 ~ Uy w3~uy

p D, p Dy
First-order 0.862 0.136 0.867 0.133
Total 0.862 0.138 0.868 0.133

Figure 9: Global variance-based Sobol sensitivity indices calculated from the polynomial chaos
expansion produced by the MC method. The first-order sensitivity indices are significantly
larger for the density p than for the material parameter D; for both quantities of interest,
signifying that the density explains most of the variance in the functionals of interest. The
total sensitivity index is nearly equal to the first-order sensitivity index in all cases, signifying
that there is little interaction between the two random variables.
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Figure 10: Various histogram plots.
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