Engineering of Dependable Complex Business Processe
using UML and Coordinated Atomic Actions

Nicolas Guelfi, Guillaume Le Cousin, Benoit Ries

Software Engineering Competence Center
Faculty of Science, Technology and Communication
University of Luxembourg, L-1359 Luxembourg-Kirchibe Luxembourg
{nicol as. guel fi,guillaune.|ecousin,benocit.ries}@mni.lu

Abstract. For many companies, it is widely recognized thatgliages and
methods for modeling and analyzing distributed hess processes are
becoming more and more important. For improvingcefficy, the modeling
language should provide reusability, easy undedstgrby business analysts,
and should ease the validation and verificatiokga® this paper, we present
an approach for developing dependable complex éssiprocesses using UML
that satisfies these requirements. The proposed bidfation is designed to be
directly integrated with COALA, a syntactically asdmantically well-defined
fault-tolerant advanced transaction model based Gmordinated Atomic
Actions. Structuring concepts like nested busimpeesesses and fault-tolerance
through exception handling are first class concéptsight by our approach
that are crucial for modeling cross-enterpriser®ss processes. The modeling
phase is followed by a validation phase by busiaesdysts through animation
of the business process model in a workflow enwrent. Due to the precise
notation used, automatic verification of cruciabperties is accessible through
integration with an automatic verifier.

Keywords. Cross-enterprise business processes modeling, Wdianced
transaction model, fault-tolerance, validation,fieation, methodology, tools.

1 Introduction

Business process modeling became a significantt goin companies due to the
growing need of competitiveness, responsiveness fiflte changes of market, but
also for a better communication and comprehensibnthe businesses in an
organization. Recently, many organizations coopef@iming partnerships to deliver
solutions in a competitive way. They focus on theire business and outsource
secondary activities to other organizations. Thasnpanies require the ability to
model business processes that are related to pesceé their partners. As human
dependence on technical infrastructure and systgrows, the threats of major
failures grow accordingly. This fact calls for ancentrated effort to improve the

quality of Information and Communication technold#®T)-based systems along the
following axes: Security, Dependability and TruSoncerning dependability, there
are many application areas where system failure teag to loss of financial
resources, and even loss of human lives (e.g.ralarftaircrafts and nuclear plants).
In such cases, scientifically rigorous evidencenéeded in advance to back up
promises about a product's future service. Thel@mols complicated by the need for
practical ICT systems to evolve in response to gbsanin their requirements,
technology and environments, without compromisimgjrtdependability. This is even
stronger in applications where system boundariesnat fixed and are subject to
constant urgent change (e.g. in e-business). #aiemtd technological advances are
required to (a) demonstrate that commercial andigtiéhl-scale software can be
developed to be truly dependable, and with lesgldpment risk than today; and (b)
dependable systems can be evolved dependably ingludr a class of applications,
just-in-time creation of required services.

A business process model describes the activitias d@re carried out to reach a
certain goal, and the execution order of thesevitie8. It may involve many actors
and perform many activities, which may be as simgte sending or receiving
messages, or as complex as coordinating othergzes®r activities. An activity may
also fail, which implies the integration of a rigas fault-tolerant mechanism to deal
with abnormal situations.

In order to represent such systems, the modelingukge should describe actors
with their role in the process, the activities ex@m flow (control flow) which may
involve concurrency, and interactions between actord between activities through
messages exchange (data flow). The language sladiald reusability of processes,
and be easily understandable by non-computer disésias business analysts. It must
also have a well-defined semantics facilitating vh#édation and verification tasks,
and thus ensuring to the involved organizations the model is correct and fulfills
the required properties.

We selected the Unified Modeling Language (UML)l basis for our modeling
language. Amongst all the UML [1] diagrams avaéabhe consider that the UML
activity diagrams syntax is well adapted for thénewdor specification because it
allows representing processes with actors, roleivittes execution flow and data
flow in a graphic and comprehensive way [2], [3Ltifity diagrams syntax has been
shown to be useful for business process modelingdjn UML Class diagrams
represent the structure of data handled by thenbssiprocesses. Moreover, UML
provides extension facilities (stereotypes, taggaldes and constraints) that allow
building UML profiles for specific application domms, and it allows interoperability
through the standardized open-source XML Metadatardhange (XMI) format.
Extensible Markup Language (XML) is a simple, véiexible text format, originally
designed to meet the challenges of large-scaldraféc publishing, XML is also
playing an increasingly important role in the exul of a wide variety of data on the
Web and elsewhere. Thus, in this paper, we defirge syntax of our modeling
language, which is a customization of UML activatyd class diagrams.

The semantics is given using an automatic transftbom of our UML models into
a COALA model. The correspondence of formal semsantietween UML and
COALA is not an issue in this paper. The formal aetits is provided by the
COALA model, thus business analysts must know timdy the COALA models has

well-defined meaning, and thus only the COALA meddjut not the UML models,

should be used, and modified if necessary, forfitte system validation. The UML

models and the transformation from UML models toAL® models ease the formal
specification of transactions to business analggtsnodeling in a visual and more
intelligible way for non-experts. COALA is a textuaodeling language based on the

Coordinated Atomic Action (CAA) concept [5], [6]. A& provides a conceptual

framework for dealing with cooperative or compgéticoncurrent processes. This is

done by integrating three concepts:

» Conversations: provide cooperative activities, aied used to implement
coordinated and disciplined error recovery;

* Nested transactions: maintain the consistency afeshresources in presence of
failures and competitive concurrency, and allow i@rdrchical transactions
structure;

» Exception handling for error recovery.

Using the CAA concepts for modeling business psegsllow cooperation between

business partners, nesting transactions for arbetisability, fault-tolerance by using

a transaction system [7], [8] for accessing shaesturces, and exception handling

for reacting as well as possible to an abnormalatibn. The COALA language [9]

provides a well-defined semantics of CAA and ouprapch aims at providing to

COALA a UML-based syntax adapted to business psooexdeling, and suitable for

verification and validation.

As for now, the modeling phase is followed by aidation phase handled by
business analysts. During this phase, the modets tansformed into XML
Processing Description Language (XPDL) standardipetiat that is computed by a
XPDL-compliant workflow engine. Business expertendate the system behavior
with the help of the workflow engine; i.e. they peaatively validate the business
model by playing roles of the business processes,participate in the execution of
the processes by receiving messages and sendiwgransince the validation cannot
prove the absence of errors, but only detect sdntieemn, we suggest to improve the
current way of validation, by introducing an adati@l and complementary approach
based on formal proofs and on the formal semamicSOALA given in terms of
COOPN/2 (Concurrent Object-Oriented Petri Nets) resgions, allowing the
verification of properties for all possible scewoari We focus our work on the
specification process, however an alternative amprdor validation could be to use
an execution platform that handles middleware impletations of CAAs like the
DRIP platform [10]. This alternative approach diffedoy focusing on the generation
of an executable prototype of the whole system.

This paper is structured as follows. Section 2 rless the coordinated atomic
actions and COALA concepts, which are used to boildnotation. This notation is
described in Section 3. Section 4 describes theslo@went process used for
engineering complex business processes. SectiononBludes and presents future
work.

2 Coordinated Atomic Actions and COALA

The CAA concept [5], [6] facilitates the design rafiable distributed systems. It
allows several threads (ooles) to perform a set of operations cooperatively gigire
conversation concept [11], [12] throudhternal objects. CAAs may be nested.
Several nested CAA may be started concurrently magt be in competition for
shared resources. To maintain the consistencyesetiesources in the presence of
failures and competitive concurrency, the nesteshsaction model [13] is used.
Moreover, CAAs integrate exception handling, inesrtb perform coordinated error
recovery involving all the threads, or to propagateexception to the enclosing CAA
(possibly after having undone all its effects tlylouhe transaction system). The
COALA language [9] provides a well-defined semastic CAA in order to carry out
dynamic properties verifications.

Fig. 1, below, illustrates an enclosing CAA involgi three roles of which two
carry out a nested CAA. This section will detaibgmessively the elements of the
figure.

enclosing CA action . outcome
handling E2agreement
Rolel -
- [The CA action
nested CA action lends with normal
handling E1} or exceptional
Role2 Qutcome
K L A -
Raise EY
Role3 Signal e >
K K o
} (") = raise E2
o1 &
5 O

A
| access to internal object | access to external object
A\

Fig. 1. Coordinated Atomic Actions

2.1 Fundamental Concepts of CAA

Roles.A CAA is composed of one or moreles (Fig. 1 shows three roles) executed
in parallel to perform cooperatively a transactfoliilling the ACID properties. The
ACID model is one of the oldest and most importeaicepts of database theory. It
sets forward four goals that every database maramgesystem must strive to
achieve: _Aomicity, Consistency, dolation and_[Drability. The goal of a CAA
consists in coordinating its roles. Each thread wemts to participate in a CAA takes
a role by activating it. The CAA cannot start uil the roles are activated, i.e. roles
start together.

Objects. The CAA concept defines two kinds of objedtsternal objects (shown as
circles inside the CAA in Fig. 1) are internal teetCAA and are used to support

cooperative concurrency allowing the roles to agrpen the set of operations they
wish to perform on the external objedExternal objects (shown as circles outside of
the CAA in Fig. 1) may be accessed by other CAAecated concurrently, by using a
transaction system ensuring the ACID properties.

Outcomes.All the roles exit a CAA at the same time, afteclesole has voted for its

outcome. The four possible outcomes are:

* Normal. Indicates that the CAA was terminated and conahitts results correctly
while satisfying the ACID properties during exeouti

» Exceptional. Indicates that the ACID properties were satisfiedt an exception
was signaled to the enclosing CAA.

* Abort. Indicates that the CAA has aborted and undonétsalbperations while
satisfying the ACID properties

» Failure. Indicates that an error occurred and the ACIDperties could not be
satisfied.

Nesting. A CAA can be nested into another one (as shownign F. According to
the nested transactions model, the effects of a GAl become permanent when the
top level enclosing CAA terminates. Nevertheless éfffects of a nested CAA are
visible to its enclosing CAA as soon as the ne§tad terminates.

Exceptions and Handlers.A CAA may contain two kinds of exceptionsiternal

and interface exceptions. In Fig. 1, exception E1 is internathte nested CAA, and

E2 is an interface exception of the nested CAA wfiilis internal to the enclosing

CAA in order to handle it.

Internal exceptions are totally managed in the CuRgereas interface exceptions
correspond to the list of exceptions that the CAdyrsignal to its enclosing CAA (E2
is propagated to the enclosing CAA that handles By default, two interface
exceptions existabort andfail (corresponding respectively to the abort and failu
outcomes).

Due to the concurrent nature of the targeted systeaveral exceptions may occur
at the same time, and an exception requires allrdhes to perform the recovery
actions cooperatively. CAAs apply the followingeslto handle exceptions:
 If internal exceptions are raised concurrently,eaneption graph [14] is used to

determine which handler to activate.

 When an internal exception is raised, all the raletivate the corresponding
handler. If roles have entered a nested CAA, theluéion mechanism waits until
the nested CAAs terminate (blocking method).

« If an interface exception is signaled by at least cole, all the roles signal the
exception. If different interface exceptions agnsied, the CAA attempts to abort,
if it fails the fail exception is signaled.

« If an interface exception is signaled while anotfzée raises an internal exception,
the raised exception is ignored.

2.2 COALA Language

COALA (COordinated atomic Action LAnguage) [8§ a formal language used for
the specification of CAAs. A CAA is defined withia COALA module, which
comprises two sections:

* An interface section, which is visible to other CAAs. It dedsarthe list of roles
with their parameters (the external objects), dmel list of interface exceptions
with their parameters;

* A body section, which is private and hidden to other CARsis section contains:

The list of internal objects,

The list of parameterized internal exceptions,

A resolution graph which lists the combinatiorisraernal exceptions that can
be raised concurrently together with the resolvexzgtion,

A description of each role, consisting in theesdlbehavior, the declaration of

which handler must be activated for each resolvermion, and the behavior of
each handler.
COALA provides additional features compared to times provided by the basic
CAA concepts. A role is allowed to create new tbeeahowever, a thread must
terminate in the CAA where it was created. A rolgyrbeasynchronous, i.e. the role
may enter the CAA during its execution and the Ci8Aallowed to start before the
role is activated, however all the roles must syowize at the end of the CAA and
leave together. A role may require to be activateme than one time, possibly an
indefinite number of times for asynchronous roles.

2.3 COALA's Semantics

COALA’s semantics is defined as a translation fr@®@ALA programs into their
formal description in COOPN/2 [15], which is an etforiented specification
language, based on Petri nets and algebraic dp&s.tyfhree generic COOPN/2
classes are definedCga, Role and Scheduler), specifying the general behavior of
CAA, roles, and access to external objects. Theskasion consists in generating a
COOPN/2 class for each CAA and each role of the C®program. Each of these
classes inherits from one of the basic abstrasselaCaa or Role) and defines new
axioms to specify their behavior.

3 FTT-UML: A UML-Profile for Fault-Tolerant Transac tions

The proposed business process modeling langudagséesl on the UML activity and
class diagrams syntax and designed for automaticsfsrmation into COALA, i.e.
the modeling of COALA concepts, described in Sec@p with UML are eased with
our notation: FTT-UML. We define our notation as WML profile, i.e a
customization and extension of existing UML elerseiithe syntactic elements used
are swimlanes representing the participants of a business pso@dso calledoles),
nodes representing activities performed by a participantrepresenting exchanged

data, andedges representing the execution flow (solid lines) loe data flow (dotted

lines). In the following sections, the flows wilklspecified in terms of token flow

through the nodes. A node has pre- and post-congditvhich may be the followings:

« Pre-condition XOR-merge: the node is executeddhencoming token

« Pre-condition AND-join: the node is executed onlyen a token is present for all
its incoming edges

» Post-condition XOR-choice: after execution, a tokienoffered to only one
outgoing edge

» Post-condition AND-fork: after execution, a tokendffered to all the outgoing
edges

3.1 Running example

To illustrate our notation, we will use a simplaming example (see Fig. 2) involving
several organizations, namely a customer, a whelesand a manufacturer; the
management of abnormal situations as payment éaitur production failure; and
nested processes, as shown in Fig. 3.

DI:II:II:I; .

0000/

0000
Sro0|

Custormer WhaleSaler Manufacturer

Fig. 2. Running example

When a customer sends an order to the wholesélerwholesaler launches a
nested proces®rderTreatment (see Fig. 3) consisting in two concurrent sets of
activities for the wholesaler:

» Calculate the price of the order and launch theedeproces$?ayment for the
payment of the customer to the wholesaler;

» Check the stock. In case of an insufficient stdacends a production order to the
manufacturer and launches the nested prdesisiction.

Two failures may occur:

» Production failure, if the manufacturer is unalig@toduce ordered products;

» Payment failure, if the customer is unable to peeywholesaler. If the production
fails, the wholesaler needs to abort the payment.

Customer

| EEEE

Manufacturer

Fig. 3. Nested processes

3.2 Roles

A role in a business process represents a patiiwgparganizational unit. For
satisfying the reusability requirement, a role base independent of the context
where the process is executed, i.e. a role doesepatsent a physical organization,
but the role that an organization has to take & pilocess (for example, the role
wholesaler may be taken by different physical companies ffedint contexts).

Roles are represented by swimlanes, which arecsétines dividing an activity
diagram, as shown in Fig. 4. Each swimlane conttiiesactivities performed by the
corresponding role. From the COALA concepts, thecaion of a process starts
when all its roles are activated, excepted for elsyonous roles (represented by a
stereotyped swimlane «asynch»), which may be @etivduring the execution of the
process (for example, we could imagine that durihg production of the
manufacturer, an expert comes to perform verificetiafter a product was detected
with a missing piece). However all the roles mugtchronize at the end of the
process and leave together with the same outcome.

The designer can specify that a synchronous roks byl activateah times before
the process starts, by addirgh> at the end of the role’s name, or that an
asynchronous role can be activated for an indefinitmber of times by adding:>
(e.g. if the wholesaler performs an invitation tnder for the production, an
indefinite number of manufacturers may join thecpss to make propositions).

Customer Wholesaler | Manufacturer

Fig. 4. Roles’ notation

3.3 Data

Data structures are modeled using class diagraigs3Jand the corresponding data
are used in activity diagrams using object nodeg. (6) represented by rectangles.
Each time a data structure is produced (a tokenesoim an object node: XOR-
merge), a copy of this set of data is made avail&blall the activities that need it (a
token is offered to all the outgoing edges of thgect node: AND-fork). For
example, each order sent by a customer will bestnitted to all the wholesaler’s
departments that need it.

Address Order
+City : string +delivery : Address - 2
+country : string +products : ProductList 1 1 |ProductList |1 1.

Fig. 5. Class diagram modeling data structures

Fig. 6, below, illustrates data operations. In tigsire, we model an agreement
between the customer and the wholesaler: the cestsemds an order, the wholesaler
asks the price for the delivery and the productiben sends back the total price to
the customer. At this moment, the customer cansghtm make a new order replacing
the old one, accept the order, or cancel the psodése process provides as output the
order accepted by the customer.

In order to provide data manipulation primitivegjet notation includes the
following operations:

* Assign an expression to an object (or data straftor an attribute. This is
specified by an edge going to an object node. &tige has the stereotype «assign»
and is labeled either witkxpression or attribute=expression, respectively to assign
an expression to the object or an attribute ofdibject. For example, in Fig. 6 for
assigning a value to ttietal price object.

« Copy the content of an object or an attribute iatmther object of same type,
specified by an edge from the source object tocioranode, and an edge from
the action node to the target object. For copyimglaject, the latter edge has the
stereotype «copy-of» and is labeled by the namth@fsource object, while for
extracting an attribute the edge has the stereatggract» and its label has the
format object.attribute. The copy is performed at the end of the actiodeno
execution. For example, in Fig. 6 for extracting ttielivery address and the
products from the order.

* Replace the content of an object that is not ustdlfya token still exists in an
outgoing edge of the object node while a new om®ising, instead of queuing the
new token, it replaces the existing one. This =c#jed by adding the stereotype
«replace». For example to replace tnder object for the actiomgreement done
waiting the customer agreement (Fig. 6).

Customer Delivery Company Wholesaler Manufacturer
—————— <treplace>> ~analyze
==form== | order
\ oider | <<extract>> <extract>>
_ '/ _——— Jordey .delwg[y ‘Ji?rdel{pmﬂucts
| [delivery ; Address | [products :ProductList | —
! o e
| /7 evaluate ™ /7 evalate ™
| | delivery | products /
[disagree, \ price / price
make a I] T
new order] | W —————— W
|| delivery price : real —-f price \e products price : real
W L
= ! k<assign>> =
(<<thoice=> N || ldelivery price + products price
} = T T total price : real
Lo —
=" agreement
fagree} 1"\ dona)
- o
[disagree, cancel] - T<<copy-ofs{>
P R tun;g.’r
<<ex}:’ef:l>> ==gutput==>
AgreementFailure agreement ; Order

Fig. 6. Order agreement

3.4 Actions

A role performs actions, represented by action sdderner-rounded rectangles). An
action is executed when all its pre-conditions satsfied (AND-join), and offers a
token to all its outgoing edges (AND-fork). For eyae, in Fig. 6 the actiocalculate
price is executed once the delivery price and the prsdpdce are available. An
action without specific stereotype represents dnlesgs activity, however the two
following stereotypes may be used:

» «form» for information supplying. Incoming objeatspresent data giving details
about the information to supply, while outgoingestig are supplied information.
For example, in the actiamake order, the customer fills in the information related
to his order.

« «choice» for taking a decision. Incoming objecfzresent data giving details about
the decision to take. A decision node having guaegsesenting possible choices
must immediately follow such an action node. Famagle in Fig. 6, the customer
uses theotal price to choose either if he Egree or disagree. Stereotypes «form»
and «choice» may be combined.

A diamond represents either a decision node iutgoing edges have guards (in Fig.

6 the diamond under the action «choice») or a meoge if not (the diamond under

the black dot). A decision node performs an ANDyj6IXOR-choice, while a merge

node performs a XOR-merge / AND-fork.

3.5 Starting point and inputs

A process may take data as input. Object nodesndpathie stereotype «input»

represent such data. The starting point node hiereén initial node (represented by a
black dot) or the only node depending only on «inpmndes (i.e. a node having only
incoming edges from object nodes «input»). Therstnne a unique starting point

amongst all the synchronous roles, which receivésken when the process starts.
The asynchronous roles may have an initial nodectwreceives a token when the
role enters the process.

3.6 Outcomes

A process terminates with a normal outcome if ligective is reached, or signal an
exception to the enclosing process if a problemurgccMoreover a process may
produce outputs. A normal outcome is representiereby a final node (a bull's eye)
if the process does not produce outputs, or bycolniedes with stereotype «output».
In the same way, an exceptional outcome is repredegither by a final node with
stereotype «except» and labeled with the exceptioaime, or by an object node with
stereotype «except» named by the exception’s narderepresenting the exception
parameter. Fig. 6 shows a normal outcome with dpubyagreement:Order) and an
exceptional outcome without parameter (Agreemehifei

3.7 Nested processes

A sub-activity node (represented by an action n@ith an icon in the lower right
corner) models a nested process. A nested proeess d&ble to involve several roles,
the roles of the enclosing process have to spediigh role they want to take in the
nested process. There are two possibilities fdr tha

* In the enclosing process, a role participatinghte hested process has an edge
going to the sub-activity node and labeled with rilaene of the role to take (Fig. 7
shows théMholesaler taking the roldPaid in Payment). If the role in the enclosing
process does not contain the sub-activity noddyag an action node with the
stereotype «invited» in its swimlane (Fig. 7 shatws Customer taking the role
Payer in Payment).

« If the name of the role is the same in the enctppiocess as in the nested process,
and there is no edge to the sub-activity node éabelith the role’s name, then it is
considered that the role of the enclosing procalssstthe same role in the nested
process. This in order to have clearer diagrams.

Providing inputs to a nested process is modeleobf®ct nodes having an edge to the
sub-activity node (objegprice for the proces$ayment in Fig. 7). However, if the
process has several inputs having the same tyges ih an ambiguity to know which
incoming object corresponds to which input. To reenthis ambiguity, the edge from
an object to the sub-activity may have the stepotinput» and be labeled with the
name of the corresponding nested process’ input.

After the nested process was terminated, the ewectiow follows the outgoing
edges corresponding to the outcome: edges haviaegstéreotype «except» and
labeled by the name of the signaled exception g@e®dwithout the stereotype
«except» for a normal outcome. Such edges go injecbnodes if the exception has
a parameter or if the nested process producestsuipuFig. 7,Production may have
a normal outcome producirigoducts or signal an exceptioAbort with a parameter
of type Notification). To remove the ambiguity when several outputsehhe same
type, the edges may have the stereotype «outpdtbeartabeled with the name of the
nested process’ outputs.

Undone the effects of a nested process is modeglexh kedge with the stereotype
«compensate» going to the nested process’ subtgactode (in Fig. 7 the edge from
the objectfailure to the sub-activityPayment indicates that if the nested process
Production fails the effects of the nested proc&syment must be undone). If the
nested process is running, it interrupts its abtisj undoes all its effects and signals
the Abort exception. If the nested process is already textad) there are two
possibilities:

« If it succeed, a compensating nested process (ewdsy an activity diagram
having the stereotype «compensate») is used tiei its effects.

« Ifit signaled theAbort exception, nothing is done.

Then the execution flow continues on the outgoidgeecorresponding to th&bort

exception.

Customer Wholesaler Manufacturer

<<input=>

order der

(7 receive order 2

|

¢ calcuiate price \) /7 esthoigess
— _

\
)
- check stock S

price : real

y/Paid [enough
/7 =<invitad==\ Payer (/ Payment -) stock]

insufficient stock]

create
(production j

N order

-

: ProductionOrder (/- Eraguctio) -\\
broductoncnder | 2)

L= A
—

R

<<exgept>> %
Abort |
iz

| Q ship products

)/
<<except>> e | -
abort | ee

= 2
| L_:‘.[-) (_ addinstock)< ﬂ : Products ‘ fﬁ‘h"

,,,,,,,,,,, failure ; Notification |& —!

Fig. 7. OrderTreatment process

3.8 Internal exceptions

As a CAA's role, a role of a business process ragseran internal exception by using
an action node with stereotype «raise» and nameithebgxception to raise. Such a
node must not have outgoing edges. For resolvinguroent exceptions into a single
exception to raise, an exception graph may be figeavithin a swimlane having the
stereotype «ExceptionResolution». Such a swimlan@ans an oriented graph,
where action nodes represent exceptions, as showkigi 8. A role may have a
handler for each resolved exception, which is assilof the role’s activities starting
from an action node with the stereotype «handler$ mamed by the exception’s
name. For a parameterized exception, the actiosexrdias an incoming edge from
an object node and the action «handler» has arpiogtgedge to an object node
representing the parameter.

<<ExceptionResolutions=

exception graph

C resolved(param) >
(E1)(: E2(param))

Fig. 8. Exception graph

4 Validating and Verifying Business Process Models

Our work is part of the E-fficient project, whiching at providing the business
experts with a tool set for the modeling and thiea#ion of e-business transactions.

However, we believe that our approach may be iatedr into other methods
involving business process modeling and validatime first phase of an E-fficient
project consists in the identification by businesslysts of the need for e-business
transactions. These needs arise from businesstopjigs that bring some added
value to one or more organizations. These needsepresented within UML use case
diagrams together with a class diagram represetitiegtructure and the relations of
the entities involved in the e-business transastiodBnce the need of business
processes has been clearly identified, their beh&vispecified using our notation.

The modeling phase is followed by a validation phlag business analysts through
animation of the business process model in a wamk#nvironment. This animation
is performed using a translation of the activitpgtams into a XPDL file [16] and
class diagrams into XML Schemas [17]. These files then used by a workflow
engine, which allows business experts to coopelgtivalidate the business process
model. Each expert plays one or more roles in tioegsses and participates in the
execution of the processes by receiving messagds sanding answers. Thus,
business experts validate the processes by plaglifigrent possible scenarios.
Validating a specification by animating it, is wigerecognized to be a useful
technique for business experts. But the succesgiplication of this technique
depends on the relevance of the chosen scenarios.

The validation by animation allows detecting errarsd inconsistencies, but it
cannot prove their absences. We suggest to complethes technique with an
approach based on formal proofs that allows vergfya property for all possible
scenarios. The properties to verify may be exhibifeom errors discovered by
business experts during the validation phase. [#i8htifies four categories of
properties to verify:

» Structural properties, which allow checking thatlgtams are well formed
according to the rules presented in section 3. Ghmsbe done by using the model
checking tool USE to verify class and activity demgs. The properties are
specified with the OCL language.

« Static properties, which are related to a singieestf the process.

» Dynamic properties, which are related to two or enstates of the process. For
verifying such properties together with static @Enes, we investigate the
relevance of the use of COOPN. Actually, we perfamautomatic transformation
of business processes into a COALA program, progidits specification in
COOPN language. The COOPN language is based onreetrand is provided
with a prototyping tool for simulating the speciion [19].

» Real time properties, which aim at evaluating theeess in term of time response.
Such properties are very useful in business presessice these processes are
often time-critical (for example, a payment deagllor a maximum execution time
for an activity or a process). [20] presents anregugh for specifying real time
constraints on an UML activity diagram by specializthe UML profile RT-UML
[21], and for specifying real time properties byngsa pseudo-english language
translated into TCTL formulas [22]. This approacinsforms an activity diagram
into a timed automaton and use KRONOS tool forfyiexy properties expressed
with TCTL formulas.

5 Conclusion

In this paper, we have presented an approach fdeling business processes using
UML and CAA. We have shown how business analysts davelop business
processes by using our extension to UML: FTT-UMLe Wave also shown that
models done with our UML notation are specificallysigned to be transformed into
COALA models, which can then be verified with fofnteols thanks to COALA'’s
semantics based on the COOPN/2 formal specificatiorguage. CAA brings
concepts for modeling cooperative and competitimecarrent processes with fault-
tolerance, while UML provides a well-adapted syraad interoperability through the
standardized XMI format. We have defined an UML fipgospecializing activity
diagrams for the business processes’ behavior feagicin and class diagram for
describing data structures.

The modeled business processes are validated byebssexperts through
animation in a workflow environment and automaticédansformed into a COALA
program for future verification of static and dynerproperties.

Next step is to use COOPN/2 tools [23] to perfotmese verifications. The
integration of our notation with [18] and [2[3] also in progress in order to verify the
four property categories: structural, static, dyitaend real-time properties. In [18]
the verification of structural properties is basedthe formal approach promoted by
USE tool; in [20] KRONOS tool is used to verify tponal properties specified in
pseudo-english.

BPMN [24] (Business Process Modeling Notation) has been peabby BPMI
and allows the generation of executable BPEL4AWS [B3is notation is very close to
UML activity diagrams, and we believe that a UMLofile provide the same
capabilities. Moreover, BPMI and OMG plan to integr the two notations in the
future. [26] proposes a notation based on UML activity diagram workflow
modeling supported by a verification tool, but edstprocesses and exception
handling are not integrated in this work. Our applobrings transactional and fault-
tolerance capabilities through the CAA concepts| aims at allowing validation and
automatic verification.

6 References

[1] OMG, Unified Modeling Language Specification Version 1.5, 2003

[2] H.-E. Eriksson, M. PenkeBusiness Modeling with UML: Business Patterns at Work, John
Wiley & Sons, 2000

[3] R. Eshuis Semantics and Verification of UML Activity Diagrams for Wor kflow Modelling,
Ph.D. Thesis, University of Twente, 2002

[4] M. Dumas, A.H. HofsteddJML Activity Diagrams as a Workfl ow Specification Language,
4th International Conference on the Unified ModgManguage, Modeling Languages,
Concepts, and Tools, vol.2185, Toronto, Canadanggn-Verlag, pp.76-90, 2001

[5] J. Xu, B. Randell, A. Romanovsky, C.M. Rubittaa¢ , Fault Tolerance in Concurrent
Object-Oriented Software through Coordinated Error Recovery, Proceedings of the
25th International Symposium on Fault-Tolerant Catimy, Pasadena, IEEE Computer
Society, pp.499-508, 1995

[6] B. Randell, A. Romanovsky, R. Stroud, A. Zorgmordinated Atomic Actions: from
Concept to Implementation, Technical Report n°TR 595, Department of Comgytin
University of Newcastle upon Tyne, 1997

[7] P. Bernstein, V. Hadzilakos, N. Goodm@&ancurrency Control and Recovery in Database
Yystems, Addison Wesley, 1987

[8] K. Ramamritham, P.K. Chrysanthi&dvances in Concurrency Control and Transaction
Processing, Executive Briefing Serie, IEEE Computer Societgd3, 1997

[9] J. VachonCOALA: A Design Language for Reliable Distributed Systems, Ph.D. Thesis,
Swiss Federal Institute of Technology, LausannafzZgwand, #2302, 2000

[10] A. Zorzo, R. StroudAn Object-Oriented Framework for Dependable Multiparty
Interactions, OOPSLA-99, pp.435-446, 1999

[11] B. Randell,System Structure for Software Fault Tolerance, IEEE Transactions on
Software Engineering, vol.SE-1, pp.220-232, 1975

[12] B. Randell, J. XuThe Evolution of the Recovery Block Concept, Software Fault
Tolerance, pp. 1-21, 1995

[13] J. MossNested transactions: an approach to reliable distributed computing,
Massachusetts Institute of Technology, 1981

[14] R.H. Campbell, B. RandelError recovery in asynchronous systems, IEEE Transactions
on Software Engineering, vol.12, IEEE Press, pp&24, 1986

[15] O. Biberstein, D. Buchs, N. Guelfdbject-Oriented Nets with Algebraic Specifications:
The CO-OPN/2 Formalism, Advances in Petri Nets on Object-Orientation,tLee
Notes in Computer Science, Springer-Verlag, 2001

[16] WEMC, XML Processing Description Language, http://www.wfmc.org/standards/docs/TC-
1025_10_xpdl_102502.pdf, 2002

[17] W3C, XML Schema Type Formats, http://www.w3.org/TR/xmlschema-2/,

[18] N. Guelfi, A. Mammar, B. RiesA Formal Approach for the Specification and the
Verification of UML Structural Properties: Application to E-Business Domain,
Submitted to the 6th International Conference omfab Engineering Methods
(ICEFM), Seattle, WA, USA, 2004

[19] S. Chachkov, D. Buch&rom Formal Specifications to Ready-to-Use Software
Components: The Concurrent Object Oriented Petri Net Approach, International
Conference on Application of Concurrency to Sysiesign, Newcastle, IEEE Press,
pp.99-110, 2001

[20] R. Annonier, N. Guelfi, A. MammaX/erification of Real-Time e-Business Transactions
using RT-UML and KRONOS, Submitted to, 2004

[21] OMG, UML Profilefor Schedulability, Performance and Time, Specification OMG, 2003

[22] R.A, C.C, D.L. Dill,Model-Checking in Dense Real-Time, Information and Computation
104(1), pp.2-34, 1993

[23] C. Péraire, S. Barbey, D. Bucfiest Selection for Object-Oriented Software Based on
Formal Specifications, IFIP Working Conference on Programming Concepts a
Methods (PROCOMET'98), Shelter Island, New York AJ$p.385-403, 1998

[24] BPMI, Business Process Modeling Notation (BPMN) 1.0, BPMI.org, 2004

[25] Microsoft, IBM, Siebel, BEA, SAPBusiness Process Execution Language for Web
Services, 2003

[26] R. Eshuis, R. Wiering&,00l Support for Verifying UML Activity Diagrams, vol.30, IEEE
Press, pp.437-447, 2004

