
Engineering of Dependable Complex Business Processes
using UML and Coordinated Atomic Actions

Nicolas Guelfi, Guillaume Le Cousin, Benoît Ries

Software Engineering Competence Center
Faculty of Science, Technology and Communication

University of Luxembourg, L-1359 Luxembourg-Kirchberg, Luxembourg
{nicolas.guelfi,guillaume.lecousin,benoit.ries}@uni.lu

Abstract. For many companies, it is widely recognized that languages and
methods for modeling and analyzing distributed business processes are
becoming more and more important. For improving efficiency, the modeling
language should provide reusability, easy understanding by business analysts,
and should ease the validation and verification tasks. In this paper, we present
an approach for developing dependable complex business processes using UML
that satisfies these requirements. The proposed UML notation is designed to be
directly integrated with COALA, a syntactically and semantically well-defined
fault-tolerant advanced transaction model based on Coordinated Atomic
Actions. Structuring concepts like nested business processes and fault-tolerance
through exception handling are first class concepts brought by our approach
that are crucial for modeling cross-enterprise business processes. The modeling
phase is followed by a validation phase by business analysts through animation
of the business process model in a workflow environment. Due to the precise
notation used, automatic verification of crucial properties is accessible through
integration with an automatic verifier.

Keywords. Cross-enterprise business processes modeling, UML, advanced
transaction model, fault-tolerance, validation, verification, methodology, tools.

1 Introduction

Business process modeling became a significant point for companies due to the
growing need of competitiveness, responsiveness from the changes of market, but
also for a better communication and comprehension of the businesses in an
organization. Recently, many organizations cooperate forming partnerships to deliver
solutions in a competitive way. They focus on their core business and outsource
secondary activities to other organizations. Thus, companies require the ability to
model business processes that are related to processes of their partners. As human
dependence on technical infrastructure and systems grows, the threats of major
failures grow accordingly. This fact calls for a concentrated effort to improve the

quality of Information and Communication technology (ICT)-based systems along the
following axes: Security, Dependability and Trust. Concerning dependability, there
are many application areas where system failure may lead to loss of financial
resources, and even loss of human lives (e.g., control of aircrafts and nuclear plants).
In such cases, scientifically rigorous evidence is needed in advance to back up
promises about a product's future service. The problem is complicated by the need for
practical ICT systems to evolve in response to changes in their requirements,
technology and environments, without compromising their dependability. This is even
stronger in applications where system boundaries are not fixed and are subject to
constant urgent change (e.g. in e-business). Scientific and technological advances are
required to (a) demonstrate that commercial and industrial-scale software can be
developed to be truly dependable, and with less development risk than today; and (b)
dependable systems can be evolved dependably including, for a class of applications,
just-in-time creation of required services.

A business process model describes the activities that are carried out to reach a
certain goal, and the execution order of these activities. It may involve many actors
and perform many activities, which may be as simple as sending or receiving
messages, or as complex as coordinating other processes or activities. An activity may
also fail, which implies the integration of a rigorous fault-tolerant mechanism to deal
with abnormal situations.

In order to represent such systems, the modeling language should describe actors
with their role in the process, the activities execution flow (control flow) which may
involve concurrency, and interactions between actors and between activities through
messages exchange (data flow). The language should allow reusability of processes,
and be easily understandable by non-computer specialists as business analysts. It must
also have a well-defined semantics facilitating the validation and verification tasks,
and thus ensuring to the involved organizations that the model is correct and fulfills
the required properties.

We selected the Unified Modeling Language (UML) as the basis for our modeling
language. Amongst all the UML [1] diagrams available, we consider that the UML
activity diagrams syntax is well adapted for the behavior specification because it
allows representing processes with actors, roles, activities execution flow and data
flow in a graphic and comprehensive way [2], [3]. Activity diagrams syntax has been
shown to be useful for business process modeling in [4]. UML Class diagrams
represent the structure of data handled by the business processes. Moreover, UML
provides extension facilities (stereotypes, tagged values and constraints) that allow
building UML profiles for specific application domains, and it allows interoperability
through the standardized open-source XML Metadata Interchange (XMI) format.
Extensible Markup Language (XML) is a simple, very flexible text format, originally
designed to meet the challenges of large-scale electronic publishing, XML is also
playing an increasingly important role in the exchange of a wide variety of data on the
Web and elsewhere. Thus, in this paper, we define the syntax of our modeling
language, which is a customization of UML activity and class diagrams.

The semantics is given using an automatic transformation of our UML models into
a COALA model. The correspondence of formal semantics between UML and
COALA is not an issue in this paper. The formal semantics is provided by the
COALA model, thus business analysts must know that only the COALA models has

well-defined meaning, and thus only the COALA models, but not the UML models,
should be used, and modified if necessary, for the final system validation. The UML
models and the transformation from UML models to COALA models ease the formal
specification of transactions to business analysts by modeling in a visual and more
intelligible way for non-experts. COALA is a textual modeling language based on the
Coordinated Atomic Action (CAA) concept [5], [6]. CAA provides a conceptual
framework for dealing with cooperative or competitive concurrent processes. This is
done by integrating three concepts:
• Conversations: provide cooperative activities, and is used to implement

coordinated and disciplined error recovery;
• Nested transactions: maintain the consistency of shared resources in presence of

failures and competitive concurrency, and allow a hierarchical transactions
structure;

• Exception handling for error recovery.
Using the CAA concepts for modeling business processes allow cooperation between
business partners, nesting transactions for a better reusability, fault-tolerance by using
a transaction system [7], [8] for accessing shared resources, and exception handling
for reacting as well as possible to an abnormal situation. The COALA language [9]
provides a well-defined semantics of CAA and our approach aims at providing to
COALA a UML-based syntax adapted to business process modeling, and suitable for
verification and validation.

As for now, the modeling phase is followed by a validation phase handled by
business analysts. During this phase, the models are transformed into XML
Processing Description Language (XPDL) standardized format that is computed by a
XPDL-compliant workflow engine. Business experts simulate the system behavior
with the help of the workflow engine; i.e. they cooperatively validate the business
model by playing roles of the business processes, and participate in the execution of
the processes by receiving messages and sending answers. Since the validation cannot
prove the absence of errors, but only detect some of them, we suggest to improve the
current way of validation, by introducing an additional and complementary approach
based on formal proofs and on the formal semantics of COALA given in terms of
COOPN/2 (Concurrent Object-Oriented Petri Nets) expressions, allowing the
verification of properties for all possible scenarios. We focus our work on the
specification process, however an alternative approach for validation could be to use
an execution platform that handles middleware implementations of CAAs like the
DRIP platform [10]. This alternative approach differs by focusing on the generation
of an executable prototype of the whole system.

This paper is structured as follows. Section 2 describes the coordinated atomic
actions and COALA concepts, which are used to build our notation. This notation is
described in Section 3. Section 4 describes the development process used for
engineering complex business processes. Section 5 concludes and presents future
work.

2 Coordinated Atomic Actions and COALA

The CAA concept [5], [6] facilitates the design of reliable distributed systems. It
allows several threads (or roles) to perform a set of operations cooperatively using the
conversation concept [11], [12] through internal objects. CAAs may be nested.
Several nested CAA may be started concurrently and may be in competition for
shared resources. To maintain the consistency of these resources in the presence of
failures and competitive concurrency, the nested transaction model [13] is used.
Moreover, CAAs integrate exception handling, in order to perform coordinated error
recovery involving all the threads, or to propagate an exception to the enclosing CAA
(possibly after having undone all its effects through the transaction system). The
COALA language [9] provides a well-defined semantics to CAA in order to carry out
dynamic properties verifications.

Fig. 1, below, illustrates an enclosing CAA involving three roles of which two
carry out a nested CAA. This section will detail progressively the elements of the
figure.

enclosing CA action

nested CA action

Role1

Role2

Role3
Raise E1

signal E2

= raise E2

handling E1

handling E2
outcome

agreement

The CA action
ends with normal
or exceptional
outcome

access to internal object access to external object

Fig. 1. Coordinated Atomic Actions

2.1 Fundamental Concepts of CAA

Roles. A CAA is composed of one or more roles (Fig. 1 shows three roles) executed
in parallel to perform cooperatively a transaction fulfilling the ACID properties. The
ACID model is one of the oldest and most important concepts of database theory. It
sets forward four goals that every database management system must strive to
achieve: Atomicity, Consistency, Isolation and Durability. The goal of a CAA
consists in coordinating its roles. Each thread that wants to participate in a CAA takes
a role by activating it. The CAA cannot start until all the roles are activated, i.e. roles
start together.

Objects. The CAA concept defines two kinds of objects. Internal objects (shown as
circles inside the CAA in Fig. 1) are internal to the CAA and are used to support

cooperative concurrency allowing the roles to agree upon the set of operations they
wish to perform on the external objects. External objects (shown as circles outside of
the CAA in Fig. 1) may be accessed by other CAAs executed concurrently, by using a
transaction system ensuring the ACID properties.

Outcomes. All the roles exit a CAA at the same time, after each role has voted for its
outcome. The four possible outcomes are:
• Normal. Indicates that the CAA was terminated and committed its results correctly

while satisfying the ACID properties during execution.
• Exceptional. Indicates that the ACID properties were satisfied, but an exception

was signaled to the enclosing CAA.
• Abort. Indicates that the CAA has aborted and undone all its operations while

satisfying the ACID properties
• Failure. Indicates that an error occurred and the ACID properties could not be

satisfied.

Nesting. A CAA can be nested into another one (as shown in Fig. 1). According to
the nested transactions model, the effects of a CAA only become permanent when the
top level enclosing CAA terminates. Nevertheless the effects of a nested CAA are
visible to its enclosing CAA as soon as the nested CAA terminates.

Exceptions and Handlers. A CAA may contain two kinds of exceptions: internal
and interface exceptions. In Fig. 1, exception E1 is internal to the nested CAA, and
E2 is an interface exception of the nested CAA while it is internal to the enclosing
CAA in order to handle it.

Internal exceptions are totally managed in the CAA, whereas interface exceptions
correspond to the list of exceptions that the CAA may signal to its enclosing CAA (E2
is propagated to the enclosing CAA that handles it). By default, two interface
exceptions exist: abort and fail (corresponding respectively to the abort and failure
outcomes).

Due to the concurrent nature of the targeted systems, several exceptions may occur
at the same time, and an exception requires all the roles to perform the recovery
actions cooperatively. CAAs apply the following rules to handle exceptions:
• If internal exceptions are raised concurrently, an exception graph [14] is used to

determine which handler to activate.
• When an internal exception is raised, all the roles activate the corresponding

handler. If roles have entered a nested CAA, the resolution mechanism waits until
the nested CAAs terminate (blocking method).

• If an interface exception is signaled by at least one role, all the roles signal the
exception. If different interface exceptions are signaled, the CAA attempts to abort,
if it fails the fail exception is signaled.

• If an interface exception is signaled while another role raises an internal exception,
the raised exception is ignored.

2.2 COALA Language

COALA (COordinated atomic Action LAnguage) [9] is a formal language used for
the specification of CAAs. A CAA is defined within a COALA module, which
comprises two sections:
• An interface section, which is visible to other CAAs. It declares the list of roles

with their parameters (the external objects), and the list of interface exceptions
with their parameters;

• A body section, which is private and hidden to other CAAs. This section contains:
- The list of internal objects,
- The list of parameterized internal exceptions,
- A resolution graph which lists the combinations of internal exceptions that can

be raised concurrently together with the resolved exception,
- A description of each role, consisting in the roles’ behavior, the declaration of

which handler must be activated for each resolved exception, and the behavior of
each handler.
COALA provides additional features compared to the ones provided by the basic
CAA concepts. A role is allowed to create new threads; however, a thread must
terminate in the CAA where it was created. A role may be asynchronous, i.e. the role
may enter the CAA during its execution and the CAA is allowed to start before the
role is activated, however all the roles must synchronize at the end of the CAA and
leave together. A role may require to be activated more than one time, possibly an
indefinite number of times for asynchronous roles.

2.3 COALA’s Semantics

COALA’s semantics is defined as a translation from COALA programs into their
formal description in COOPN/2 [15], which is an object-oriented specification
language, based on Petri nets and algebraic data types. Three generic COOPN/2
classes are defined (Caa, Role and Scheduler), specifying the general behavior of
CAA, roles, and access to external objects. The translation consists in generating a
COOPN/2 class for each CAA and each role of the COALA program. Each of these
classes inherits from one of the basic abstract classes (Caa or Role) and defines new
axioms to specify their behavior.

3 FTT-UML: A UML-Profile for Fault-Tolerant Transac tions

The proposed business process modeling language is based on the UML activity and
class diagrams syntax and designed for automatic transformation into COALA, i.e.
the modeling of COALA concepts, described in Section 2, with UML are eased with
our notation: FTT-UML. We define our notation as a UML profile, i.e a
customization and extension of existing UML elements. The syntactic elements used
are swimlanes representing the participants of a business process (also called roles),
nodes representing activities performed by a participant or representing exchanged

data, and edges representing the execution flow (solid lines) or the data flow (dotted
lines). In the following sections, the flows will be specified in terms of token flow
through the nodes. A node has pre- and post-condition, which may be the followings:
• Pre-condition XOR-merge: the node is executed for each incoming token
• Pre-condition AND-join: the node is executed only when a token is present for all

its incoming edges
• Post-condition XOR-choice: after execution, a token is offered to only one

outgoing edge
• Post-condition AND-fork: after execution, a token is offered to all the outgoing

edges

3.1 Running example

To illustrate our notation, we will use a simple running example (see Fig. 2) involving
several organizations, namely a customer, a wholesaler and a manufacturer; the
management of abnormal situations as payment failure or production failure; and
nested processes, as shown in Fig. 3.

Fig. 2. Running example

When a customer sends an order to the wholesaler, the wholesaler launches a
nested process OrderTreatment (see Fig. 3) consisting in two concurrent sets of
activities for the wholesaler:
• Calculate the price of the order and launch the nested process Payment for the

payment of the customer to the wholesaler;
• Check the stock. In case of an insufficient stock it sends a production order to the

manufacturer and launches the nested process Production.
Two failures may occur:
• Production failure, if the manufacturer is unable to produce ordered products;
• Payment failure, if the customer is unable to pay the wholesaler. If the production

fails, the wholesaler needs to abort the payment.

Fig. 3. Nested processes

3.2 Roles

A role in a business process represents a participating organizational unit. For
satisfying the reusability requirement, a role has to be independent of the context
where the process is executed, i.e. a role does not represent a physical organization,
but the role that an organization has to take in the process (for example, the role
wholesaler may be taken by different physical companies in different contexts).

Roles are represented by swimlanes, which are vertical lines dividing an activity
diagram, as shown in Fig. 4. Each swimlane contains the activities performed by the
corresponding role. From the COALA concepts, the execution of a process starts
when all its roles are activated, excepted for asynchronous roles (represented by a
stereotyped swimlane «asynch»), which may be activated during the execution of the
process (for example, we could imagine that during the production of the
manufacturer, an expert comes to perform verifications after a product was detected
with a missing piece). However all the roles must synchronize at the end of the
process and leave together with the same outcome.

The designer can specify that a synchronous role must be activated n times before
the process starts, by adding <n> at the end of the role’s name, or that an
asynchronous role can be activated for an indefinite number of times by adding <*>
(e.g. if the wholesaler performs an invitation to tender for the production, an
indefinite number of manufacturers may join the process to make propositions).

Customer Wholesaler Manufacturer

Fig. 4. Roles’ notation

3.3 Data

Data structures are modeled using class diagrams (Fig. 5) and the corresponding data
are used in activity diagrams using object nodes (Fig. 6) represented by rectangles.
Each time a data structure is produced (a token comes in an object node: XOR-
merge), a copy of this set of data is made available to all the activities that need it (a
token is offered to all the outgoing edges of the object node: AND-fork). For
example, each order sent by a customer will be transmitted to all the wholesaler’s
departments that need it.

Fig. 5. Class diagram modeling data structures

Fig. 6, below, illustrates data operations. In this figure, we model an agreement
between the customer and the wholesaler: the customer sends an order, the wholesaler
asks the price for the delivery and the production, then sends back the total price to
the customer. At this moment, the customer can choose to make a new order replacing
the old one, accept the order, or cancel the process. The process provides as output the
order accepted by the customer.

In order to provide data manipulation primitives, the notation includes the
following operations:
• Assign an expression to an object (or data structure) or an attribute. This is

specified by an edge going to an object node. This edge has the stereotype «assign»
and is labeled either with expression or attribute=expression, respectively to assign
an expression to the object or an attribute of the object. For example, in Fig. 6 for
assigning a value to the total price object.

• Copy the content of an object or an attribute into another object of same type,
specified by an edge from the source object to an action node, and an edge from
the action node to the target object. For copying an object, the latter edge has the
stereotype «copy-of» and is labeled by the name of the source object, while for
extracting an attribute the edge has the stereotype «extract» and its label has the
format object.attribute. The copy is performed at the end of the action node
execution. For example, in Fig. 6 for extracting the delivery address and the
products from the order.

• Replace the content of an object that is not used yet. If a token still exists in an
outgoing edge of the object node while a new one is coming, instead of queuing the
new token, it replaces the existing one. This is specified by adding the stereotype
«replace». For example to replace the order object for the action agreement done
waiting the customer agreement (Fig. 6).

Fig. 6. Order agreement

3.4 Actions

A role performs actions, represented by action nodes (corner-rounded rectangles). An
action is executed when all its pre-conditions are satisfied (AND-join), and offers a
token to all its outgoing edges (AND-fork). For example, in Fig. 6 the action calculate
price is executed once the delivery price and the products price are available. An
action without specific stereotype represents a business activity, however the two
following stereotypes may be used:
• «form» for information supplying. Incoming objects represent data giving details

about the information to supply, while outgoing objects are supplied information.
For example, in the action make order, the customer fills in the information related
to his order.

• «choice» for taking a decision. Incoming objects represent data giving details about
the decision to take. A decision node having guards representing possible choices
must immediately follow such an action node. For example in Fig. 6, the customer
uses the total price to choose either if he is agree or disagree. Stereotypes «form»
and «choice» may be combined.

A diamond represents either a decision node if its outgoing edges have guards (in Fig.
6 the diamond under the action «choice») or a merge node if not (the diamond under
the black dot). A decision node performs an AND-join / XOR-choice, while a merge
node performs a XOR-merge / AND-fork.

3.5 Starting point and inputs

A process may take data as input. Object nodes having the stereotype «input»
represent such data. The starting point node is either an initial node (represented by a
black dot) or the only node depending only on «input» nodes (i.e. a node having only
incoming edges from object nodes «input»). There must be a unique starting point
amongst all the synchronous roles, which receives a token when the process starts.
The asynchronous roles may have an initial node, which receives a token when the
role enters the process.

3.6 Outcomes

A process terminates with a normal outcome if its objective is reached, or signal an
exception to the enclosing process if a problem occurs. Moreover a process may
produce outputs. A normal outcome is represented either by a final node (a bull’s eye)
if the process does not produce outputs, or by object nodes with stereotype «output».
In the same way, an exceptional outcome is represented either by a final node with
stereotype «except» and labeled with the exception’s name, or by an object node with
stereotype «except» named by the exception’s name and representing the exception
parameter. Fig. 6 shows a normal outcome with an output (agreement:Order) and an
exceptional outcome without parameter (AgreementFailure).

3.7 Nested processes

A sub-activity node (represented by an action node with an icon in the lower right
corner) models a nested process. A nested process being able to involve several roles,
the roles of the enclosing process have to specify which role they want to take in the
nested process. There are two possibilities for that:
• In the enclosing process, a role participating to the nested process has an edge

going to the sub-activity node and labeled with the name of the role to take (Fig. 7
shows the Wholesaler taking the role Paid in Payment). If the role in the enclosing
process does not contain the sub-activity node, it has an action node with the
stereotype «invited» in its swimlane (Fig. 7 shows the Customer taking the role
Payer in Payment).

• If the name of the role is the same in the enclosing process as in the nested process,
and there is no edge to the sub-activity node labeled with the role’s name, then it is
considered that the role of the enclosing process takes the same role in the nested
process. This in order to have clearer diagrams.

Providing inputs to a nested process is modeled by object nodes having an edge to the
sub-activity node (object price for the process Payment in Fig. 7). However, if the
process has several inputs having the same type, there is an ambiguity to know which
incoming object corresponds to which input. To remove this ambiguity, the edge from
an object to the sub-activity may have the stereotype «input» and be labeled with the
name of the corresponding nested process’ input.

After the nested process was terminated, the execution flow follows the outgoing
edges corresponding to the outcome: edges having the stereotype «except» and
labeled by the name of the signaled exception or edges without the stereotype
«except» for a normal outcome. Such edges go into object nodes if the exception has
a parameter or if the nested process produces outputs (in Fig. 7, Production may have
a normal outcome producing Products or signal an exception Abort with a parameter
of type Notification). To remove the ambiguity when several outputs have the same
type, the edges may have the stereotype «output» and be labeled with the name of the
nested process’ outputs.

Undone the effects of a nested process is modeled by an edge with the stereotype
«compensate» going to the nested process’ sub-activity node (in Fig. 7 the edge from
the object failure to the sub-activity Payment indicates that if the nested process
Production fails the effects of the nested process Payment must be undone). If the
nested process is running, it interrupts its activities, undoes all its effects and signals
the Abort exception. If the nested process is already terminated, there are two
possibilities:
• If it succeed, a compensating nested process (modeled by an activity diagram

having the stereotype «compensate») is used to obliterate its effects.
• If it signaled the Abort exception, nothing is done.
Then the execution flow continues on the outgoing edge corresponding to the Abort
exception.

Fig. 7. OrderTreatment process

3.8 Internal exceptions

As a CAA’s role, a role of a business process may raise an internal exception by using
an action node with stereotype «raise» and named by the exception to raise. Such a
node must not have outgoing edges. For resolving concurrent exceptions into a single
exception to raise, an exception graph may be specified within a swimlane having the
stereotype «ExceptionResolution». Such a swimlane contains an oriented graph,
where action nodes represent exceptions, as shown in Fig. 8. A role may have a
handler for each resolved exception, which is a sub-set of the role’s activities starting
from an action node with the stereotype «handler» and named by the exception’s
name. For a parameterized exception, the action «raise» has an incoming edge from
an object node and the action «handler» has an outgoing edge to an object node
representing the parameter.

Fig. 8. Exception graph

4 Validating and Verifying Business Process Models

Our work is part of the E-fficient project, which aims at providing the business
experts with a tool set for the modeling and the validation of e-business transactions.

However, we believe that our approach may be integrated into other methods
involving business process modeling and validation. The first phase of an E-fficient
project consists in the identification by business analysts of the need for e-business
transactions. These needs arise from business opportunities that bring some added
value to one or more organizations. These needs are represented within UML use case
diagrams together with a class diagram representing the structure and the relations of
the entities involved in the e-business transactions. Once the need of business
processes has been clearly identified, their behavior is specified using our notation.

The modeling phase is followed by a validation phase by business analysts through
animation of the business process model in a workflow environment. This animation
is performed using a translation of the activity diagrams into a XPDL file [16] and
class diagrams into XML Schemas [17]. These files are then used by a workflow
engine, which allows business experts to cooperatively validate the business process
model. Each expert plays one or more roles in the processes and participates in the
execution of the processes by receiving messages and sending answers. Thus,
business experts validate the processes by playing different possible scenarios.
Validating a specification by animating it, is widely recognized to be a useful
technique for business experts. But the successful application of this technique
depends on the relevance of the chosen scenarios.

The validation by animation allows detecting errors and inconsistencies, but it
cannot prove their absences. We suggest to complement this technique with an
approach based on formal proofs that allows verifying a property for all possible
scenarios. The properties to verify may be exhibited from errors discovered by
business experts during the validation phase. [18] identifies four categories of
properties to verify:
• Structural properties, which allow checking that diagrams are well formed

according to the rules presented in section 3. This can be done by using the model
checking tool USE to verify class and activity diagrams. The properties are
specified with the OCL language.

• Static properties, which are related to a single state of the process.
• Dynamic properties, which are related to two or more states of the process. For

verifying such properties together with static properties, we investigate the
relevance of the use of COOPN. Actually, we perform an automatic transformation
of business processes into a COALA program, providing its specification in
COOPN language. The COOPN language is based on Petri nets and is provided
with a prototyping tool for simulating the specification [19].

• Real time properties, which aim at evaluating the process in term of time response.
Such properties are very useful in business processes since these processes are
often time-critical (for example, a payment deadline or a maximum execution time
for an activity or a process). [20] presents an approach for specifying real time
constraints on an UML activity diagram by specializing the UML profile RT-UML
[21], and for specifying real time properties by using a pseudo-english language
translated into TCTL formulas [22]. This approach transforms an activity diagram
into a timed automaton and use KRONOS tool for verifying properties expressed
with TCTL formulas.

5 Conclusion

In this paper, we have presented an approach for modeling business processes using
UML and CAA. We have shown how business analysts can develop business
processes by using our extension to UML: FTT-UML. We have also shown that
models done with our UML notation are specifically designed to be transformed into
COALA models, which can then be verified with formal tools thanks to COALA’s
semantics based on the COOPN/2 formal specification language. CAA brings
concepts for modeling cooperative and competitive concurrent processes with fault-
tolerance, while UML provides a well-adapted syntax and interoperability through the
standardized XMI format. We have defined an UML profile specializing activity
diagrams for the business processes’ behavior specification and class diagram for
describing data structures.

The modeled business processes are validated by business experts through
animation in a workflow environment and automatically transformed into a COALA
program for future verification of static and dynamic properties.

Next step is to use COOPN/2 tools [23] to perform these verifications. The
integration of our notation with [18] and [20] is also in progress in order to verify the
four property categories: structural, static, dynamic and real-time properties. In [18]
the verification of structural properties is based on the formal approach promoted by
USE tool; in [20] KRONOS tool is used to verify temporal properties specified in
pseudo-english.

BPMN [24] (Business Process Modeling Notation) has been proposed by BPMI
and allows the generation of executable BPEL4WS [25]. This notation is very close to
UML activity diagrams, and we believe that a UML profile provide the same
capabilities. Moreover, BPMI and OMG plan to integrate the two notations in the
future. [26] proposes a notation based on UML activity diagram for workflow
modeling supported by a verification tool, but nested processes and exception
handling are not integrated in this work. Our approach brings transactional and fault-
tolerance capabilities through the CAA concepts, and aims at allowing validation and
automatic verification.

6 References

[1] OMG, Unified Modeling Language Specification Version 1.5, 2003
[2] H.-E. Eriksson, M. Penker, Business Modeling with UML: Business Patterns at Work, John

Wiley & Sons, 2000
[3] R. Eshuis, Semantics and Verification of UML Activity Diagrams for Workflow Modelling,

Ph.D. Thesis, University of Twente, 2002
[4] M. Dumas, A.H. Hofstede, UML Activity Diagrams as a Workflow Specification Language,

4th International Conference on the Unified Modeling Manguage, Modeling Languages,
Concepts, and Tools, vol.2185, Toronto, Canada, Springer-Verlag, pp.76-90, 2001

[5] J. Xu, B. Randell, A. Romanovsky, C.M. Rubira et al. , Fault Tolerance in Concurrent
Object-Oriented Software through Coordinated Error Recovery, Proceedings of the
25th International Symposium on Fault-Tolerant Computing, Pasadena, IEEE Computer
Society, pp.499-508, 1995

[6] B. Randell, A. Romanovsky, R. Stroud, A. Zorzo, Coordinated Atomic Actions: from
Concept to Implementation, Technical Report n°TR 595, Department of Computing,
University of Newcastle upon Tyne, 1997

[7] P. Bernstein, V. Hadzilakos, N. Goodman, Concurrency Control and Recovery in Database
Systems, Addison Wesley, 1987

[8] K. Ramamritham, P.K. Chrysanthis, Advances in Concurrency Control and Transaction
Processing, Executive Briefing Serie, IEEE Computer Society Press, 1997

[9] J. Vachon, COALA: A Design Language for Reliable Distributed Systems, Ph.D. Thesis,
Swiss Federal Institute of Technology, Lausanne, Switzerland, #2302, 2000

[10] A. Zorzo, R. Stroud, An Object-Oriented Framework for Dependable Multiparty
Interactions, OOPSLA-99, pp.435-446, 1999

[11] B. Randell, System Structure for Software Fault Tolerance, IEEE Transactions on
Software Engineering, vol.SE-1, pp.220-232, 1975

[12] B. Randell, J. Xu, The Evolution of the Recovery Block Concept, Software Fault
Tolerance, pp. 1-21, 1995

[13] J. Moss, Nested transactions: an approach to reliable distributed computing,
Massachusetts Institute of Technology, 1981

[14] R.H. Campbell, B. Randell, Error recovery in asynchronous systems, IEEE Transactions
on Software Engineering, vol.12, IEEE Press, pp.811-826, 1986

[15] O. Biberstein, D. Buchs, N. Guelfi, Object-Oriented Nets with Algebraic Specifications:
The CO-OPN/2 Formalism, Advances in Petri Nets on Object-Orientation, Lecture
Notes in Computer Science, Springer-Verlag, 2001

[16] WfMC, XML Processing Description Language, http://www.wfmc.org/standards/docs/TC-
1025_10_xpdl_102502.pdf, 2002

[17] W3C, XML Schema Type Formats, http://www.w3.org/TR/xmlschema-2/,
[18] N. Guelfi, A. Mammar, B. Ries, A Formal Approach for the Specification and the

Verification of UML Structural Properties: Application to E-Business Domain,
Submitted to the 6th International Conference on Formal Engineering Methods
(ICEFM), Seattle, WA, USA, 2004

[19] S. Chachkov, D. Buchs, From Formal Specifications to Ready-to-Use Software
Components: The Concurrent Object Oriented Petri Net Approach, International
Conference on Application of Concurrency to System Design, Newcastle, IEEE Press,
pp.99-110, 2001

[20] R. Annonier, N. Guelfi, A. Mammar, Verification of Real-Time e-Business Transactions
using RT-UML and KRONOS, Submitted to, 2004

[21] OMG, UML Profile for Schedulability, Performance and Time, Specification OMG, 2003
[22] R.A, C.C, D.L. Dill, Model-Checking in Dense Real-Time, Information and Computation

104(1), pp.2-34, 1993
[23] C. Péraire, S. Barbey, D. Buchs, Test Selection for Object-Oriented Software Based on

Formal Specifications, IFIP Working Conference on Programming Concepts and
Methods (PROCOMET'98), Shelter Island, New York, USA, pp.385-403, 1998

[24] BPMI, Business Process Modeling Notation (BPMN) 1.0, BPMI.org, 2004
[25] Microsoft, IBM, Siebel, BEA, SAP, Business Process Execution Language for Web

Services, 2003
[26] R. Eshuis, R. Wieringa, Tool Support for Verifying UML Activity Diagrams, vol.30, IEEE

Press, pp.437-447, 2004

