TESMA: Towards the Development of a Tool for
Specification, Management and Assessment of Teaching
Programs

Nicolas Guelfi

University of Luxembourg
6 rue Coudenhove Kalergi
Luxembourg
+352.46 66 44 5251

nicolas.guelfi@uni.lu

ABSTRACT

Defining and managing teaching programs at university or other
institutions is a complex task for which there is not much
support in terms of methods and tools. This task becomes even
more critical when the time comes to obtain certifications w.r.t.
official standards. In this paper, we present an on-going project
called TESMA whose objective is to provide an open-source
tool dedicated to the specification and management (including
certification) of teaching programs. This tool has been
engineered using a development method called Messir for its
requirements elicitations and introduces a domain-specific
language dedicated to the teaching domain. This paper presents
the current status of this project and the future activities
planned.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education — accreditation, curriculum, self-assessment.

General Terms
Documentation, Design, Languages.

Keywords

Teaching Programs Development, Tool-support, Software

Engineering, = Domain-Specific =~ Languages, = Automatic
Generation.
INTRODUCTION

The University of Luxembourg is a young university (created in
2003). In this “start-up” context, we have been setting up new
programs at bachelor, master and doctorate levels providing
different education certificates. All those programs are offered
to our students by three faculties. The need for a tool to support
the task to define and manage (including certification) the
education program came rapidly. The market analysis for this
category of tools showed that no tool was available. A project
has been started to engineer a method and a tool to support
those needs. This project has been conducted following a
software engineering process that had the following main steps:

e Requirements analysis: to provide the initial
requirements for the TESMA tool, a requirement

Benjamin Jahié¢

University of Luxembourg
6 rue Coudenhove Kalergi
Luxembourg
+352. 691 30 74 38

benjamin.jahic.001 @student.uni.lu

Benoit Ries

University of Luxembourg
6 rue Coudenhove Kalergi
Luxembourg
+352.46 66 44 5267

benoit.ries@uni.lu

specification document has been produced using the
Messir method [1].

e Design: to state the main choices concerning the
TESMA architecture and interfaces.

e Implementation: to reach an operational system
usable for validation w.r.t. the requirements.

e Those steps have been performed iteratively to
produce the TESMA tool in an incremental way.

The content of this paper provides details on the requirements
analysis, design and implementation of the TESMA tools. It
also ends with a short related work section which summarizes
what we have found when we did our market analysis.

1. TESMA REQUIREMENTS

Following part of the Messir method [1], we have elicited the
actors that are concerned by teaching programs. They are:

e The institution director who represents the institution
and validates new programs, courses and course
modifications (e.g. the dean of a faculty, the head of a
teaching unit, ...).

e The program director who specifies his programs and
validates course modifications made by instructors.

e The instructor, who specifies, manages and maintains
the courses he gives.

o The student, who tunes his curriculum (elective
courses, ...) and receives information about his
curriculum.

e The secretary, who is a delegate of any of the
institutional actors (institution director, program
director or instructor) and also ensures
interoperability with other institution information
systems.

e The quality officer who evaluates and validates the
programs with respect to the universities internal
laws. He’s also responsible of program certification
processes.

<<primary>>
<<active>>

actlnstitutionDirector

ugCreateTeachingProgram %
actProgramDirector
ugSpecifyProgram

ary>>
ugManageProgram
actinstructor
ary>> %

/ actSecretary
ondary>:
ctive>>

actStudent

ugSpecifyCourse

suSpecifyAndManageTeachingProgram

\

ugManagelndivualCurriculum
ugManageProgramCertification

actQualityOfficer

Figure 1. TESMA summary use-case.

You can find above a use-case model made in the context of the
Messir method that displays the actors contributing to the high-
level summary use-case dedicated to managing a teaching
program.

The concepts managed by the TESMA actors are analysed and
specified in the Messir concept model which is a UML class
diagram. Among all the concepts that are necessary to specify
the operations executed by the actors we have:

e concepts related to the actors and for which TESMA
has to handle an internal representation: students,
instructors, ...

e concepts related to the programs: course details,
teaching periods, course evaluation, ...

e concepts related to program certification: standard
description, standard coverage by an existing
program, ...

In Messir those concepts are specified using an UML class
diagram. Figure 2 provides a partial diagram view that models
the concepts related to a program (institution, program,
courses).

[1..1] rnctinstitution

I

© ctinstitution
@ sepRegion : ptinteger
(& name : ptString
@ address : ptString

® ctCourse

@ reference : ptinteger
& name : ptString

@ statute : ptString

@ credits : ptinteger

@ description : ptString
@ prerequisites : ptString rel29

[1..*]IrnctCourse

[1..1]rnctCourse rel30

rel28 [1..1] rnctProgram

© ctProgram

@ name : ptString

@ email : ptString

@ iscedLevel : ptinteger

@ iscedCategory - ptinteger

© iscedSubCategory : ptinteger

[1..*] rnctActor

® ctActor
@ seplD : ptString

[1..*]rnctProgram

Figure 2. TESMA concepts.

The requirements analysis phase has allowed to determine a
first version of the functionalities and data that should be
handled in the first increment. The next section presents the
design and implementation of this first version.

2. TESMA DESIGN AND

IMPLEMENTATION

After having analysed the TESMA actors, concepts and
functionalities. We have started to design a first version of the
tool. A major design choice made is to allow the specification
of programs using a domain-specific language (DSL) defined
using the Xtext [2] framework. Thus, we designed TESMA as a
plugin to the Eclipse workbench [3]. It is composed of three
main architectural components illustrated in Figure 3 at the top
of the diagram. Our components are based on stable Eclipse
plugins themselves based on the Eclipse Modelling Framework
(EMF) [4].

Documentation Textual Graphical TESMA
Generator Editor Editor
| Xtend | | Xtext | | Sirius |
" Eclipse

Technologies

Eclipse Modeling Framework |
Eclipse Workbench

Figure 3. Architectural components overview.

2.1 Textual Editor

The main feature of the Textual Editor is to allow the
specification of the teaching programs (this specification is
called TESMA model in the remaining part of this paper) with
the TESMA DSL. It also offers other supporting features, as for
instance: syntactical validation rules, syntax highlighting,
templates proposal, etc.

Xtext is an open-source framework that eases the development
of domain-specific languages and offers features to provide a
textual editor to the TESMA DSL. Xtext is based on EMF,
which is the underlying-core library handling the TESMA
model.

The TESMA DSL is designed to be intuitive, customizable and
loosely coupled. In order to have an intuitive DSL, we have
chosen to design its grammar using mainly keywords in natural
language. Institutions may use different terminologies for the
concepts used in our approach, this is why we designed the
grammar of our DSL to be customizable. The institutions have
the possibility to choose their own naming conventions. Lastly,
the rules of the grammar are loosely coupled, i.e. optional cross-
references are mostly used instead of containment relations.

2.2 Graphical Editor

The Graphical Editor provides a representation of the TESMA
Model in a tabular view and offers the possibility to modify the
TESMA model. The graphical editor provides typical table
handling features like data sort, import/export from/to Excel
sheets, hide/show columns, multiple rows selections.

The technology used to develop our graphical editor is Sirius
[5], an open-source software Eclipse project that eases the
creation of custom graphical modelling workbenches. Both
Xtext and Sirius are based on EMF, which allows the TESMA
tool-support to interact between Xtext and Sirius using EMF as
underlying-core library for the TESMA model as represented in
Figure 4.

Thanks to our tabular format, the graphical editor is intuitive
and usable by non-computer experts. All the program’s
attributes are easy to access and modify. The modifications can
be performed directly inside the graphical editor view.

2.3 Documentation Generator

The main feature of the Documentation Generator is to
generate documents of different types, like Excel sheets, CSV
files and PDF files. The Documentation Generator may be
configured to produce a customized PDF file, e.g. by not
generating some of the sections inside the pdf files.

The technologies used to develop the documentation generator
are Xtend [2], Latex and the apache.poi library, for handling
Excel sheets. Xtend is a programming language based on Java.
It provides a compact syntax and eases the generation of natural
language text. Latex is a document preparation system, which
uses libraries, keywords and plaintext for writing scientific
documents in pdf format. Finally, the apache.poi library
provides the necessary tools for generating Excel sheets, which
are used as teaching material.

The Documentation Generator has been designed to ease
information retrieval in the generated Latex files. Additionally,
it is designed to automatically update the final report, when the

user manually adds data into the reserved appropriate folders.
Finally, the different Latex files are imported inside one Latex
file, which is compiled into a pdf file containing the program
description.

Textual
Editor
Graphical
Editor

3. ILLUSTRATION

We illustrate the TESMA approach with a course of a Master
program named “Software Engineering Environment” (SEE) at
the University of Luxembourg. Figure 5 is a screenshot of the
TESMA tool-support in the Eclipse environment.

The TESMA model describing the SEE course have been
specified using the approach described in this paper. The
teaching program description of this example includes a number
of textual files using the TESMA DSL syntax. The course run
information is illustrated in Figure 5 by specifying the course
teaching team organisation and dividing the teaching term into
small periods and defining the tasks, tests for each period. The
tasks and tests are defined in separate folders and referenced to
the teaching period. At that point, TESMA is able to generate a
part of the Teaching Material, like evaluation criteria, task lists
and course information.

Figure 4. TESMA process overview.

[] o runtime-EclipseApplication - Java - UNILU_Sample/Courses/MICSCourses.tes - Eclipse Platform
-

WO O OB GGl G
=Rl
5 2 MICSCourses.tes ¢ =l
" 1= Course required MICS2_33 belongs MICS { e
name "Software Engineering Environments" oL
reference 2.33 @
academicyear 2016/2017 B
term MICS.Semester3
module MICS.Semester3.module43
hoursPerWeek 2]
totalHours 120 5
) description "Software engineers need means for quality engineering..."
) credits 5
1 languages "french","english"]
weblink "https://www,u[‘\i.lu/MICS/SEE” Oz

coursemoderator guni

//Teaching and Students

boards SEEBoard

promotions MICS_SEE_CLASS

organisation orgl typeof lecture {
instructor guni : hours 30,weight 1,language "english, french’
instructor beri : hours 30,weight 1,language "english, french'
instructor alca : hours 30,weight 1,language "english, french’

}
Period (Semester,1,0) start 17.09.2015 end 17.12.2015 {
Period (Lecture,2,1) start 17.09.2015 end 08.10.2015 {
Period (Lecturel,3,1) start 17.09.2015 {tasks tla}
Period (Lecture2,3,2) start 24.09.2015 {tasks t2a,t2b}

}
Period (CheckPoint3,2,2) start 17.12.2014 {tests oralCheckpoint3}
Period (FinalExam,3,1) start 15.01.2015{tests finalExam}

Writable Insert 12:27

Figure 5. SEE specification in TESMA tool.

All other concepts can be specified using the TESMA DSL
including the coverage of an education standard by an education
program.

In this case study for the SEE course, we created for each
category of TESMA model clement a file containing all
information related. In this case, one institution, one program
and one course have specified, which represent about 10 textual
files. We defined 10 instructors and 7 students for this example
case, which are grouped in a single file. The total description in
our case needs about 500 lines of specification text (>1000 in

case of certification). The specification text size mostly depends
on the preciseness of the specifier. If the specification is done in
details, the number of lines increases quickly. In general, it
could vary from 100 to 1500 lines.

4. RELATED WORK

A number of related works have been performed in the past in
the field of education programs and course specifications,
especially for K-12 classes in high schools. However, we could
not find methods, which are supported by tools, which help to
design detailed teaching programs. On the one hand, some
university guidelines are available online, e.g. [6,7], without
offering supporting software applications. On the other hand, a
few software applications are available, that do not offer
comprehensive and customizable guidelines. We present in the
following, three of these tools.

PDF Syllabus builder [8] is an open-source tool, which only
offers a template PDF form for writing course syllabi. TESMA
covers many additional features, for instance it generates
automatically reports in PDF format. The design of the reports
is standardized and generated by the TESMA tool.

Jump-Rope [9] is a proprietary tool, based on a web application.
It supports a curriculum design tool, standards based
gradebook, accurate attendance, administrator tools. TESMA
has similar features and is more flexible in terms of
customization of its textual language. Moreover, the use of
MDE techniques allows the automatic reconfiguration of the
user interface and the generated documents.

Build-Your-Own-Curriculum [10] is a proprietary tool, based on
web-application developed for K-12 classes in the United
States. It supports the feature of defining standardized courses,
classroom managements, evaluations and assignments. TESMA
is similar to this kind of tools, but has two major advantages:
firstly, it is based on MDE technique, which allows customizing
the documentation generation process in a flexible way.
Secondly TESMA is an open-source project, which allows
adapting freely its code to the institution’s taste.

S. CONCLUSION AND FUTURE WORK

In this paper, we have shown how our project of engineering a
tool for educational program and course specification based on
a textual domain-specific language with a graphical editor has
been developed. It generates documents out of the specification,
which can be used by the institution’s staff. Our tool and
method has been successfully used on a small, yet real,
example. As a future work we plan to iterate the process to
stabilize the requirements and the tool design and
implementation. We also plan to study the automated
generation of a web application from the language grammar in

order to provide a user-friendly front-end that is mapped to our
textual language grammar.

6. REFERENCES

[1] Guelfi, N. 2016. The Messir Scientific Approach to
Requirements Engineering. Laboratory for Advanced
Software Systems Technical Report, TR-LASSY-16-01.
University of Luxembourg.

[2] Bettini, L. 2013. Implementing Domain-Specific
Languages with Xtext and Xtend. Packt Publishing
Ltd.,Birmingham, UK.

[3] Beck, K., Gamma, E. 2003. Contributing to eclipse —
Principles, Patterns, and Plugins. Addison-Wesley
Professional.

[4] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.
2008. EMF: Eclipse Modeling Framework, 2" Edition.
Addison-Wesley Professional.

[5] Viyovi¢, V., Maksimovi¢ M. and Perisi¢ B. 2014. Sirius: A
rapid development of DSM graphical editor. In
Proceedings of the IEEE 18th International Conference on
Intelligent Engineering Systems (Tihany, Hungary, July 3-
5,2014). INES 2014. IEEE, 233-238. DOI=
http://dx.doi.org/10.1109/INES.2014.6909375.

[6] University of Washington. Course and Syllabus Design.
Online, retrieved on July 2016.
http://www.washington.edu/teaching/teaching-resources/
preparing-to-teach/designing-your-course-and-syllabus/.

[7] Cornell University Center for Teaching Excellence.
Writing a Syllabus. Online, retrieved on July 2016.
http://www.cte.cornell.edu/teaching-ideas/designing-your-
course/writing-a-syllabus.html.

[8] Joeckel, G., Longhurst, M. PDF syllabus builder: open
source tool for online instructors, course developers and
instructional designers. Online, retrieved on July 2016.
http://olc.onlinelearningconsortium.org/effective_practices
/pdf-syllabus-builder-open-source-tool-online-instructors-
course-developers-and-i.

[9] Olsen, J., Meyer, J. Curriculum Design Tool. Jump Rope.
Online, retrieved on July 2016.
https://www .jumpro.pe/features/curriculum-design-tool/.

[10] School Software Group. Build Your Own Curriculum
(BYOC): Evaluating a K—12 online curriculum
management system. ProQuest. Online, retrieved July
2016. http://www.schoolsoftwaregroup.com/.

