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Abstract. In [6] the authors introduced the notion of quasi-polynomial func-
tion as being a mapping f : Xn → X defined and valued on a bounded chain
X and which can be factorized as f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)), where
p is a polynomial function (i.e., a combination of variables and constants using
the chain operations ∧ and ∨) and ϕ is an order-preserving map. In the current
paper we study this notion in the more general setting where the underlying
domain and codomain sets are, possibly different, bounded distributive lat-
tices, and where the inner function is not necessarily order-preserving. These
functions appear naturally within the scope of decision making under uncer-
tainty since, as shown in this paper, they subsume overall preference func-
tionals associated with Sugeno integrals whose variables are transformed by a
given utility function. To axiomatize the class of quasi-polynomial functions,
we propose several generalizations of well-established properties in aggrega-
tion theory, as well as show that some of the characterizations given in [6] still
hold in this general setting. Moreover, we investigate the so-called transformed
polynomial functions (essentially, compositions of unary mappings with poly-
nomial functions) and show that, under certain conditions, they reduce to
quasi-polynomial functions.
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1. Introduction

When we need to summarize, fuse, or merge a set of values into a single one, we
usually make use of a so-called aggregation function, e.g., a mean or an averaging
function. The need to aggregate values in a meaningful way has become more and
more present in an increasing number of areas not only of mathematics or physics,
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but especially in applied fields such as engineering, computer science, and econom-
ical and social sciences. Various aggregation functions have been proposed in the
literature, thus giving rise to the growing theory of aggregation which proposes,
analyzes, and characterizes aggregation function classes. For recent references, see
Beliakov et al. [2] and Grabisch et al. [13].

Among noteworthy aggregation functions is the (discrete) Sugeno integral,
which was introduced by Sugeno [20, 21] as a way to compute the average of a
function with respect to a nonadditive measure. Since its introduction, the Sugeno
integral has been thoroughly investigated and is now considered as one of the most
relevant aggregation functions in the qualitative setting of ordinal information
(e.g., when the values to be aggregated are simply defined on a chain without
further structure). For general background, see also the edited book [14].

As it was observed in [16], Sugeno integrals can be regarded as certain (lattice)
polynomial functions, that is, functions which can be obtained as combinations of
variables and constants using the lattice operations ∧ and ∨. More precisely, given
a bounded chain X, the Sugeno integrals are exactly those polynomial functions
f : Xn → X which are idempotent, that is, satisfying f(x, . . . , x) = x. This conve-
nient description made it possible to naturally extend the definition of the Sugeno
integrals to the case when X is a bounded distributive lattice (see [17]) and to
derive several axiomatizations of this class (as idempotent polynomial functions);
see [7, 9].

In many applications, the values to be aggregated are first to be transformed
by an order-preserving unary function ϕ : X → Y so that the transformed values
(which are usually real numbers) can be aggregated in a meaningful way by a
function g : Y n → Y . The resulting composed function f : Xn → Y is then defined
as f = g ◦ ϕ, that is,

f(x1, . . . , xn) = g(ϕ(x1), . . . , ϕ(xn)). (1)

Such an aggregation model is used for instance in decision under uncertainty,
where ϕ is called a utility function and f an overall preference functional. It is
also used in multi-criteria decision making where the criteria are commensurate
(i.e., expressed in a common scale). For a recent reference, see the edited book [3].

This aggregation model has also been investigated in a purely ordinal decision
setting, where X and Y are bounded chains and g : Y n → Y is a Sugeno integral
or a polynomial function; see for instance [10, 11]. In the special case when X =
Y , the corresponding compositions (1), which we call quasi-polynomial functions,
were recently investigated and characterized by the authors as solutions of certain
functional equations and in terms of necessary and sufficient conditions which have
natural interpretations in decision making and aggregation theory; see [6].

In this paper, after recalling the basic concepts in lattice theory as well as
few well-known results concerning polynomial functions (Sections 2 and 3), we
investigate the quasi-polynomial functions when considered in the more general
setting where the underlying domain and codomain sets are, possibly different,
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bounded distributive lattices, and where the inner unary functions are not nec-
essarily order-preserving. Moreover, we show that some axiomatizations of the
class of quasi-polynomial functions given in [6] still hold in this more general set-
ting and, under certain assumptions, we propose further characterizations of this
class by necessary and sufficient conditions given in terms of generalizations of
well-established properties in aggregation theory. These results also lead to new
characterizations of the class of polynomial functions (Section 4). Finally, we intro-
duce the concept of transformed polynomial function and show that, under certain
conditions, this notion is subsumed by that of quasi-polynomial function (Section
5).

2. Basic notions and terminology

Throughout this paper, let X be an arbitrary bounded distributive lattice with
lattice operations ∧ and ∨, and with least and greatest elements 0X and 1X ,
respectively, where the subscripts may be omitted when the underlying lattice is
clear from the context. A chain is simply a lattice X such that, for every a, b ∈ X,
we have a 6 b or b 6 a. A subset S of a lattice X is said to be convex if, for every
a, b ∈ S and every c ∈ X such that a 6 c 6 b, we have c ∈ S. For any subset
S ⊆ X, we denote by S the convex hull of S, that is, the smallest convex subset
of X containing S. For any integer n > 1, we set [n] = {1, . . . , n}.

The Cartesian product Xn can be as well regarded as a bounded distributive
lattice by defining ∧ and ∨ componentwise, i.e.,

(a1, . . . , an) ∧ (b1, . . . , bn) = (a1 ∧ b1, . . . , an ∧ bn),

(a1, . . . , an) ∨ (b1, . . . , bn) = (a1 ∨ b1, . . . , an ∨ bn).

We denote the elements of X by lower case letters a, b, c, . . ., and the elements
of Xn by bold face letters a,b, c, . . .. We also use 0 and 1 to denote the least
element and the greatest element, respectively, of Xn and we denote by e any
n-tuple whose components are either 0 or 1, regardless of the underlying lattice.
For k ∈ [n], c ∈ X, and x ∈ Xn, we use xc

k to denote the n-tuple whose ith
component is c, if i = k, and xi, otherwise. We also let x∧ c = (x1 ∧ c, . . . , xn ∧ c)
and x ∨ c = (x1 ∨ c, . . . , xn ∨ c), and denote by [x]c (resp. [x]c) the n-tuple whose
ith component is 0 (resp. 1), if xi 6 c (resp. xi > c), and xi, otherwise.

Let Y be an arbitrary bounded distributive lattice, possibly different from
X. A mapping ϕ : X → Y is said to be a lattice homomorphism if it preserves the
lattice operations, i.e.,

ϕ(a ∧X b) = ϕ(a) ∧Y ϕ(b) and ϕ(a ∨X b) = ϕ(a) ∨Y ϕ(b).

With no danger of ambiguity, we omit the subscripts X and Y . For further back-
ground on lattice theory, see, e.g., [5, 15, 19].

The range of a function f : Xn → Y is defined by Rf = {f(x) : x ∈ Xn}.
The diagonal section of f is the unary function δf : X → Y defined by δf (x) =
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f(x, . . . , x). A function f : Xn → Y is said to be order-preserving (resp. order-
reversing) if, for every a,b ∈ Xn such that a 6 b, we have f(a) 6 f(b) (resp.
f(a) > f(b)). By a monotone function we simply mean an order-preserving or
order-reversing function. As a typical example, we have the ternary median func-
tion med: X3 → X which is given by

med(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1).

For any integer m > 1, any vector x ∈ Xm, and any function f : Xn → X, we
define 〈x〉f ∈ Xm as the m-tuple 〈x〉f = med(f(0),x, f(1)), where the right-hand
side median is taken componentwise. We then clearly have

〈x〉f = 〈x〉δf . (2)

For ϕ : X → Y and x ∈ Xn, we set ϕ(x) = (ϕ(x1), . . . , ϕ(xn)).

Given a function f : Xn → Y , we define the function f̂ : {0, 1}n → Y as

f̂(e) =
∨

e′i∈{0,1}
i∈[n] : ei=1

∧

e′i∈{0,1}
i∈[n] : ei=0

f(e′), e ∈ {0, 1}n. (3)

Note that, for each fixed e ∈ {0, 1}n, from among the 2n operations ∨ and ∧ only n
are considered in (3), for if ei = 0 (resp. ei = 1) then the corresponding ∨e′i∈{0,1}
(resp. ∧e′i∈{0,1}) is ignored and only ∧e′i∈{0,1} (resp. ∨e′i∈{0,1}) is considered. In
particular, we have that

f̂(0) =
∧

e′∈{0,1}n

f(e′) and f̂(1) =
∨

e′∈{0,1}n

f(e′).

For instance, if n = 2, we have

f̂(0, 1) =
(
f(0, 0) ∧ f(1, 0)

) ∨ (
f(0, 1) ∧ f(1, 1)

)
. (4)

If f is order-preserving then f̂ = f |{0,1}n . However, note that f̂ is always order-
preserving.

Remark 1. Note that there are (2n)! ways of rearranging the ∨ and ∧ in expression
(3) and thus (2n)! ways of constructing such an order-preserving function from a
given f : Xn → Y , each of which producing a possibly different order-preserving
function. For instance, let f : {0, 1}2 → {0, 1} be the Boolean addition, i.e., ad-

dition modulo 2. Then, as defined in (3), f̂ is the binary conjunction ∧. On the

other hand, if f̂ had been defined as

f̂(e) =
∧

e′i∈{0,1}
i∈[n] : ei=0

∨

e′i∈{0,1}
i∈[n] : ei=1

f(e′), e ∈ {0, 1}n, (5)

then f̂ would have been the binary disjunction ∨. To avoid such ambiguities, we

only refer to f̂ as given in (3).
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3. General background on polynomial functions

In this subsection we recall some important results on polynomial functions that
will be needed hereinafter. For further background, we refer the reader to [5, 7, 8,
9, 12, 15, 19].

A (lattice) polynomial function on a lattice X is any map p : Xn → X which
can be obtained as a composition of the lattice operations ∧ and ∨, the projections
x 7→ xi, i ∈ [n], and the constant functions x 7→ c, c ∈ X.

Fact 1. Every polynomial function p : Xn → X is order-preserving and satisfies
δp(c) = 〈c〉p for every c ∈ X. In particular δp(c) = c for every c ∈ Rp.

Polynomial functions p : Xn → X satisfying Rp = X are referred to as (dis-
crete) Sugeno integrals. By Fact 1, Sugeno integrals are exactly those polynomial
functions q : Xn → X satisfying q(0) = 0 and q(1) = 1, and thus every polyno-
mial function p : Xn → X is of the form p = 〈q〉p for a suitable Sugeno integral
q : Xn → X (see [17]). The following result is due to Goodstein [12].

Proposition 2. Every polynomial function is completely determined by its restric-
tion to {0, 1}n. Moreover, a function g : {0, 1}n → X can be extended to a poly-
nomial function f : Xn → X if and only if it is order-preserving, and in this case
the extension is unique.

As observed by Goodstein [12], polynomial functions on bounded distributive
lattices have neat normal form representations. To this extent, for each I ⊆ [n],
let eI be the element of Xn whose ith component is 1, if i ∈ I, and 0, otherwise.
Let αf : 2

[n] → X and βf : 2
[n] → X be the functions defined by αf (I) = f(eI)

and βf (I) = f(e[n]\I), respectively.

Proposition 3. A function f : Xn → X is a polynomial function if and only if

f(x) =
∨

I⊆[n]

(
αf (I) ∧

∧

i∈I

xi

)
or f(x) =

∧

I⊆[n]

(
βf (I) ∨

∨

i∈I

xi

)
. (6)

The expressions given in (6) are usually referred to as the disjunctive normal
form (DNF) representation and the conjunctive normal form (CNF) representa-
tion, respectively, of the polynomial function f .

In the sequel, we will make use of some characterizations of polynomial func-
tions obtained in [7, 9]. For the sake of self-containment, we recall these results.

Let S ⊆ X. A function f : Xn → X is said to be

• S-idempotent if δf (c) = c, for every c ∈ S.
• ∧S-homogeneous if f(x ∧ c) = f(x) ∧ c for all x ∈ Xn and c ∈ S.
• ∨S-homogeneous if f(x ∨ c) = f(x) ∨ c for all x ∈ Xn and c ∈ S.
• median decomposable if f(x) = med

(
f(x0

k), xk, f(x
1
k)
)
for all x ∈ Xn and

k ∈ [n].

Theorem 4. Let f : Xn → X be a function. The following conditions are equivalent:

(i) f is a polynomial function.
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(ii) f is median decomposable.
(iii) f is order-preserving, and ∧Rf

- and ∨Rf
-homogeneous.

In the case when X is a chain, Theorem 4 can be drastically refined for the
conditions provided only need to be verified on n-tuples of a certain prescribed
type (see [8]). Moreover, further characterizations are available, and given in terms
of conditions of somewhat different flavor, as the following theorem illustrates.

Let σ be a permutation on [n]. The standard simplex of Xn associated with
σ is the subset Xn

σ ⊂ Xn defined by Xn
σ = {x ∈ Xn : xσ(1) 6 xσ(2) 6 · · · 6 xσ(n)}.

Theorem 5 ([8]). Let X be a bounded chain. A function f : Xn → X is a polynomial
function if and only if it is Rf -idempotent, and comonotonic minitive and comono-
tonic maxitive, that is, for every permutation σ on [n], and every x,x′ ∈ Xn

σ ,

f(x ∧ x′) = f(x) ∧ f(x′) and f(x ∨ x′) = f(x) ∨ f(x′), resp.

4. Quasi-polynomial functions and quasi-Sugeno integrals

The notions of polynomial function and Sugeno integral can be naturally extended
to functions defined on a bounded distributive lattice X and valued on a possi-
bly different bounded distributive lattice Y via the concepts of quasi-polynomial
function and quasi-Sugeno integral.

Definition 6. We say that a function f : Xn → Y is a quasi-polynomial function
(resp. a quasi-Sugeno integral) if there exist a polynomial function (resp. a Sugeno
integral) p : Y n → Y and a unary function ϕ : X → Y , satisfying ϕ = 〈ϕ〉ϕ, such
that f = p ◦ ϕ, that is,

f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)). (7)

Remark 2. The condition ϕ = 〈ϕ〉ϕ in Definition 6 simply ensures that the values
of ϕ are not too scattered with respect to ϕ(0) and ϕ(1). More precisely, the values
of ϕ lie in the interval [ϕ(0) ∧ ϕ(1), ϕ(0) ∨ ϕ(1)]. In the case when ϕ is monotone,
this condition is satisfied since it translates into saying that ϕ(0) 6 ϕ(x) 6 ϕ(1)
or ϕ(1) 6 ϕ(x) 6 ϕ(0).

It is easy to see that the functions p and ϕ in (7) need not be unique. For
instance, if f is a constant c ∈ Y , then we could choose p ≡ c and ϕ arbitrarily,
or p idempotent and ϕ ≡ c. We make use of the following lemma to show that we
can always choose δf for ϕ.

Lemma 7. Every polynomial function p : Xn → X satisfies p(x) = p(〈x〉p), p(x ∨
c) = p(x) ∨ 〈c〉p, and p(x ∧ c) = p(x) ∧ 〈c〉p for every x ∈ Xn and every c ∈ X.

Proof. Since p is ∨Rp
- and ∧Rp

-homogeneous, we have p(x) = p(〈x〉p). We then

have p(x)∨ 〈c〉p = p(〈x〉p)∨ 〈c〉p = p(〈x∨ c〉p) = p(x∨ c). The last identity can be
proved dually. ¤
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Proposition 8. Let p : Y n → Y be a polynomial function, ϕ : X → Y a unary
function, and set f = p◦ϕ. Then, we have δf = 〈ϕ〉p and f = p◦δf . In particular,
if p is a Sugeno integral, then we have ϕ = δf .

Proof. By Fact 1, we have δf = δp ◦ϕ = 〈ϕ〉p and hence, by Lemma 7, f = p◦ϕ =
p ◦ 〈ϕ〉p = p ◦ δf . The second part follows immediately. ¤

To explicitly describe all possible factorizations of quasi-polynomial functions
into compositions of polynomial functions with unary maps, we shall make use of
the following useful tool.

Lemma 9. Let p : Y n → Y be a polynomial function, ϕ : X → Y a unary function,
and set f = p ◦ ϕ. Then 〈p(x)〉f = p(〈x〉ϕ) for every x ∈ Y n. In particular, if
ϕ = 〈ϕ〉ϕ, then f = 〈f〉f .

Proof. For every x ∈ Y n, we have

〈p(x)〉f = med
(
f(0), p(x), f(1)

)

=
(
f(0) ∧ f(1)

) ∨ (
p(x) ∧ (

f(0) ∨ f(1)
))

=
〈
ϕ(0) ∧ ϕ(1)

〉
p
∨ (

p(x) ∧ 〈
ϕ(0) ∨ ϕ(1)

〉
p

)
(by Proposition 8)

= p
(
(ϕ(0) ∧ ϕ(1)) ∨ (x ∧ (ϕ(0) ∨ ϕ(1))

)
(by Lemma 7)

= p(〈x〉ϕ).

In particular, if ϕ = 〈ϕ〉ϕ, then 〈f〉f = 〈p ◦ ϕ〉f = p ◦ 〈ϕ〉ϕ = p ◦ ϕ = f . ¤

The following proposition provides alternative factorizations of a quasi-polyno-

mial function. Let pf : Y
n → Y be the unique polynomial function extending f̂

(see Proposition 2).

Proposition 10. Let f : Xn → Y be a quasi-polynomial function, p : Y n → Y a
polynomial function, and ϕ : X → Y a unary function satisfying ϕ = 〈ϕ〉ϕ. Then
we have f = p ◦ ϕ if and only if pf = 〈p〉f and δf = 〈ϕ〉p. In particular, we have
f = pf ◦ δf .

Proof. We first establish the following claim.

Claim. If f = p ◦ ϕ, then δf = 〈ϕ〉p, f = p ◦ δf , and f̂ = 〈p〉f |{0,1}n .

Proof of the claim. The first two formulas follow immediately from Proposition 8.
By Lemma 9, for every e ∈ {0, 1}n, we have 〈p(e)〉f = p(〈e〉ϕ), where 〈e〉ϕ is the
n-tuple whose ith component is ϕ(0) ∨ ϕ(1), if ei = 1, and ϕ(0) ∧ ϕ(1), if ei = 0.
Since p preserves ∨ and ∧ componentwise, when expanding p(〈e〉ϕ) in terms of ∨
and then in terms of ∧, we obtain 〈p(e)〉f = f̂(e). To illustrate, if e = (0, 1), we



8 Miguel Couceiro and Jean-Luc Marichal

have

〈p(0, 1)〉f = p
(
ϕ(0) ∧ ϕ(1), ϕ(0) ∨ ϕ(1)

)

= p
(
ϕ(0) ∧ ϕ(1), ϕ(0)

) ∨ p
(
ϕ(0) ∧ ϕ(1), ϕ(1)

)

=
(
p(ϕ(0), ϕ(0)) ∧ p(ϕ(1), ϕ(0))

) ∨ (
p(ϕ(0), ϕ(1)) ∧ p(ϕ(1), ϕ(1))

)

=
(
f(0, 0) ∧ f(1, 0)

) ∨ (
f(0, 1) ∧ f(1, 1)

)

= f̂(0, 1) (by (4)). ¤
(Necessity) Suppose that f = p ◦ ϕ. By the claim, we have δf = 〈ϕ〉p and

pf |{0,1}n = f̂ = 〈p〉f |{0,1}n . This completes the proof since two polynomial func-
tions having the same values on {0, 1}n coincide by Proposition 2.

(Sufficiency) Since f is a quasi-polynomial function, there exist a polynomial
function q : Y n → Y and a unary function ψ : X → Y , satisfying ψ = 〈ψ〉ψ, such
that f = q ◦ ψ. By the claim, we then have δf = 〈ψ〉q, f = q ◦ δf , and

〈q〉f |{0,1}n = f̂ = pf |{0,1}n = 〈p〉f |{0,1}n , (8)

which, by Proposition 2 and (8), implies that

〈q〉f = 〈p〉f . (9)

Therefore, we have

p ◦ ϕ = p ◦ 〈ϕ〉ϕ
= 〈p ◦ ϕ〉p◦ϕ (by Lemma 9)

= 〈p ◦ ϕ〉δp◦ϕ (by (2))

= 〈p ◦ ϕ〉〈ϕ〉p (by Proposition 8)

=
〈
p ◦ 〈ϕ〉p

〉
〈ϕ〉p (by Lemma 7)

= 〈p ◦ δf 〉δf
= 〈p ◦ δf 〉f (by (2))

= 〈p〉f ◦ δf (by definition of 〈·〉f )
= 〈q〉f ◦ δf (by (9))

= 〈q ◦ δf 〉f
= 〈f〉f
= f (by Lemma 9). ¤

Remark 3. As mentioned in Remark 1, there are several ways of constructing an
order-preserving function from a given f : Xn → Y , e.g., using an expression in
DNF (as in (3)) or using an expression in CNF (as in (5)). Even though, in general,
different constructions may lead to different order-preserving functions (as in the
case of the Boolean sum), by the claim it follows that, if f is a quasi-polynomial
function, then all possible rearrangements of ∨ and ∧ produce the same order-

preserving function f̂ . However, the converse statement does not hold, since there
are order-preserving functions which do not constitute quasi-polynomial functions.
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Recall that every polynomial function p : Xn → X can be represented as 〈q〉p
for some Sugeno integral q : Xn → X. Using this fact, we obtain the following
result.

Proposition 11. A function f : Xn → Y is a quasi-polynomial function if and only
if it is a quasi-Sugeno integral.

Proof. Since Sugeno integrals are polynomial functions, it follows that every quasi-
Sugeno integral is a quasi-polynomial function. For the converse, let f : Xn → Y
be a quasi-polynomial function as described in (7). Let q : Y n → Y be a Sugeno
integral such that p = 〈q〉p. Since q is ∧Y - and ∨Y -homogeneous (see Theorem 4),
we have q ◦ 〈ϕ〉p = 〈q ◦ ϕ〉p = 〈q〉p ◦ ϕ = p ◦ ϕ = f , which shows that f is a
quasi-Sugeno integral. ¤

Remark 4. Proposition 11 shows that monotone quasi-polynomial functions are
of interest in the ordinal settings of decision making since they coincide with
monotone quasi-Sugeno integrals, which were characterized as overall preference
functionals for instance in decision under uncertainty; see [11].

We now consider a number of characterizations of the class of quasi-polynomial
functions. These characterizations are inspired from those obtained by the authors
[6] in the special case when X = Y is a bounded chain.

We say that a function f : Xn → Y is quasi-median decomposable if, for every
x ∈ Xn and every k ∈ [n], we have

f(x) = med
(
f(x0

k), δf (xk), f(x
1
k)
)
. (10)

Note that every unary function ϕ : X → Y satisfying ϕ = 〈ϕ〉ϕ (in particular, every
monotone unary function) is quasi-median decomposable. The following theorem
provides a characterization for quasi-polynomial functions in terms of quasi-median
decomposition.

Theorem 12. A function f : Xn → Y is a quasi-polynomial function if and only if
it is quasi-median decomposable.

Proof. To verify that the condition is sufficient, just observe that applying (10)
repeatedly to each variable of f we can straightforwardly obtain a representation
of f as f = p ◦ δf for some polynomial function p. Moreover, we have δf = 〈δf 〉δf .

Conversely, suppose that f : Xn → Y is a quasi-polynomial function. By
Proposition 8 and Lemma 9, we have f = 〈f〉f and there exists a polynomial
function p : Y n → Y such that f = p ◦ δf . By Theorem 4, for every x ∈ Xn and
every k ∈ [n], we have

f(x) = 〈f(x)〉f =
〈
med

(
p(δf (x)

0
k), δf (xk), p(δf (x)

1
k)
)〉

f
,

that is, since med and 〈·〉f commute,

f(x) = med
(〈p(δf (x)0k)〉f , δf (xk), 〈p(δf (x)1k)〉f

)
. (11)
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However, by using Lemma 9 twice, we obtain

〈p(δf (x)0k)〉f = p(〈δf (x)0k〉δf ) = p
(〈
δf (x)

δf (0)∧δf (1)
k

〉
δf

)

=
〈
p
(
δf (x)

δf (0)∧δf (1)
k

)〉
f

and, since p preserves ∨ and ∧ componentwise, we also have

〈p(δf (x)0k)〉f = 〈f(x0
k) ∧ f(x1

k)〉f = f(x0
k) ∧ f(x1

k).

Similarly, we have 〈p(δf (x)1k)〉f = f(x0
k)∨f(x1

k). Combining this with (11), we see
that f is quasi-median decomposable. ¤

We say that a function f : Xn → Y is quasi-∨-homogeneous (resp. quasi-∧-
homogeneous) if for every x ∈ Xn and c ∈ X, we have

f(x ∨ c) = f(x) ∨ δf (c) (resp. f(x ∧ c) = f(x) ∧ δf (c)).

Note that, for every quasi-∨-homogeneous (resp. quasi-∧-homogeneous) function
f : Xn → Y , the diagonal section δf preserves ∨ (resp. ∧).

A function f : Xn → Y is said to be horizontally ∧-decomposable (resp.
horizontally ∨-decomposable) if for every x ∈ Xn and c ∈ X, we have

f(x) = f(x ∨ c) ∧ f([x]c) (resp. f(x) = f(x ∧ c) ∨ f([x]c)).

By considering functions f : Xn → Y whose diagonal section δf is a lattice
homomorphism (i.e., δf preserves both ∨ and ∧), we can further extend some of
the characterizations presented in [6] to the present setting. Note that any of these
preservation conditions immediately ensures the order-preservation of δf , in which
case, by Fact 1 and Proposition 8, if f is a quasi-polynomial function, then it is
necessarily order-preserving.

Theorem 13. Let f : Xn → Y be an order-preserving function whose diagonal
section δf is a lattice homomorphism. The following are equivalent:

(i) f is a quasi-polynomial function.
(ii) f is quasi-∧-homogeneous and quasi-∨-homogeneous.
(iii) f is quasi-∧-homogeneous and horizontally ∨-decomposable.
(iv) f is horizontally ∧-decomposable and quasi-∨-homogeneous.

Proof. We show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i). The equivalence (i) ⇔ (iv) follows
dually.

So suppose that f : Xn → Y is a quasi-polynomial function whose diagonal
section δf is a lattice homomorphism. By Propositions 8 and 11, we may assume
that f = p ◦ δf for some Sugeno integral p : Y n → Y . Since p is ∧Y -homogeneous,
we have for every c ∈ X,

f(x ∧ c) = p(δf (x ∧ c)) = p(δf (x) ∧ δf (c)) = p(δf (x)) ∧ δf (c)

= f(x) ∧ δf (c),

which shows that f is quasi-∧-homogeneous. Dually, it can be shown that f is
quasi-∨-homogeneous.
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To see that (ii) ⇒ (iii), suppose that f : Xn → Y satisfies (ii). Since f is
order-preserving, for every c ∈ X, we have

f(x ∧ c) ∨ f([x]c) = (f(x) ∧ δf (c)) ∨ f([x]c) = f(x) ∧ (δf (c) ∨ f([x]c))

= f(x) ∧ f([x]c ∨ c) = f(x),

thus showing that (iii) holds.
To show that (iii) ⇒ (i), by Theorem 12, it is enough to show that (iii)

implies that f is quasi-median decomposable. Let x ∈ Xn and take k ∈ [n]. Since
f is horizontally ∨-decomposable, we have

f(x) = f(x ∧ xk) ∨ f([x]xk
).

By quasi-∧-homogeneity, we have

f(x ∧ xk) = f(x1
k ∧ xk) = f(x1

k) ∧ δf (xk)

and by the definition of [x]xk
, we have f([x]xk

) 6 f(x0
k). Thus,

f(x) =
(
f(x0

k) ∨ f(x)
) ∧ f(x1

k) =
(
f(x0

k) ∨ (f(x1
k) ∧ δf (xk))

) ∧ f(x1
k)

= f(x0
k) ∨

(
f(x1

k) ∧ δf (xk)
)

= med
(
f(x0

k), δf (xk), f(x
1
k)
)
,

which completes the proof of the theorem. ¤

Let Y be a bounded chain. We say that a function f : Xn → Y is quasi-
comonotonic minitive (resp. quasi-comonotonic maxitive) if for every permutation
σ on [n] and every x,x′ ∈ Xn such that δf (x), δf (x

′) ∈ Y n
σ , we have

f(x ∧ x′) = f(x) ∧ f(x′) (resp. f(x ∨ x′) = f(x) ∨ f(x′)).

By Theorem 5, it follows that every quasi-polynomial function whose di-
agonal section δf is a lattice homomorphism is quasi-comonotonic minitive and
maxitive. Moreover, it is easy to verify that if a function is quasi-comonotonic
minitive (resp. quasi-comonotonic maxitive), then it is quasi-∧-homogeneous (resp.
quasi-∨-homogeneous). Thus, using Theorem 13 (ii), we obtain the following char-
acterization of quasi-polynomial functions valued on bounded chains.

Theorem 14. Let X be a bounded distributive lattice, Y a bounded chain, and
f : Xn → Y an order-preserving function whose diagonal section δf is a lattice
homomorphism. Then f is a quasi-polynomial function if and only if it is quasi-
comonotonic minitive and quasi-comonotonic maxitive.

Remark 5. Theorems 12, 13, and 14 extend to the present setting some results ob-
tained in [6] when X = Y is a bounded chain. Order-preserving quasi-polynomial
functions are also characterized in the latter case by order-preservation and hori-
zontally ∧- and ∨-decompositions (see [6, Theorem 11]). It remains open whether
this result still holds in the present general setting.

We now use Theorem 13 to derive further characterizations of the class of
polynomial functions. We first recall the following lemma given in [9].
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Lemma 15. A unary function f : X → X is a polynomial function if and only if
f is a solution of the equation f ◦ f = f , is a lattice homomorphism, and has a
convex range.

The following proposition provides conditions under which a quasi-polynomial
function is a polynomial function.

Proposition 16. Let f : Xn → X be a quasi-polynomial function. Then f is a
polynomial function if and only if it is Rf -idempotent and δf is a lattice homo-
morphism with a convex range.

Proof. The necessity is straightforward (see [9]). Let us prove the sufficiency. Since
f is Rf -idempotent, we have δf ◦ δf = δf and, by Lemma 15, δf is a polynomial
function. Since f is a quasi-polynomial function, by Proposition 8, f is a polyno-
mial function. ¤

By combining Theorem 13 with Proposition 16, we obtain the following char-
acterizations of the class of polynomial functions.

Corollary 17. Let f : Xn → X be an order-preserving and Rf -idempotent function
whose diagonal section δf is a lattice homomorphism with a convex range. The
following are equivalent:

(i) f is a polynomial function.
(ii) f is quasi-∧-homogeneous and quasi-∨-homogeneous.
(iii) f is quasi-∧-homogeneous and horizontally ∨-decomposable.
(iv) f is horizontally ∧-decomposable and quasi-∨-homogeneous.

5. Transformed polynomial functions and Sugeno integrals

We have defined quasi-polynomial functions by considering polynomial functions
whose variables are first transformed by a certain unary function. Instead of trans-
forming the variables, we could transform the polynomial function itself. This leads
to the following definition.

Definition 18. We say that a function f : Xn → Y is a transformed polynomial
function (resp. a transformed Sugeno integral) if there exist a polynomial function
(resp. a Sugeno integral) p : Xn → X and a function ψ : X → Y such that f = ψ◦p,
that is,

f(x1, . . . , xn) = ψ(p(x1, . . . , xn)). (12)

The functions ψ and p in (12) need not be unique. For instance, if f is a
constant c ∈ Y , then we could choose ψ ≡ c and p arbitrarily. However, if c ∈ X,
then we could as well choose p ≡ c and ψ arbitrarily except ψ(c) = c. The following
result shows that we can always choose δf for ψ.

Proposition 19. Let f : Xn → Y be a transformed polynomial function as described
in (12). Then, we have f = δf ◦ p. In particular, if p is a Sugeno integral, then we
have ψ = δf .
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Proof. Since any polynomial function p : Xn → X is Rp-idempotent, we have
δf ◦ p = ψ ◦ δp ◦ p = ψ ◦ p = f . The second part follows immediately since then
δp = idX is the identity function on X. ¤

We also have the following result, which is the counterpart of Proposition 11.

Proposition 20. A function f : Xn → Y is a transformed polynomial function if
and only if it is a transformed Sugeno integral.

Proof. Clearly, any transformed Sugeno integral is a transformed polynomial func-
tion. Conversely, let f : Xn → Y be a transformed polynomial function as de-
scribed in (12). Let q : Xn → X be a Sugeno integral such that p = 〈q〉p = δp ◦ q
(cf. Fact 1). It follows that f = ψ ◦ p = ψ ◦ δp ◦ q = δf ◦ q is a transformed Sugeno
integral. ¤

Denote the domain of a function f by Df . Recall that a function h is a
right-inverse [1, p. 25] of a function f if Dh = Rf , Rh ⊆ Df , and f ◦ h =
idRf

. It can be shown that the statement “every function has at least one right-
inverse” is equivalent to the axiom of choice. Even though, in general, we have to
appeal to the axiom of choice in order to ensure the existence of right-inverses,
this requirement is not necessary in many concrete situations, for instance, when
dealing with monotone functions over the real numbers.

We say that f is quasi-idempotent if Rδf = Rf . The terminology “quasi-
idempotent” is justified by the following result (see [18] for the real case).

Proposition 21. Let f : Xn → Y be a function. Under the axiom of choice, f is
quasi-idempotent if and only if there is an idempotent function g : Xn → X and a
function ψ : Rg → Y such that f = ψ ◦ g. In this case, ψ = δf .

Proof. Sufficiency is straightforward. We have Rδf = Rψ = Rψ◦g = Rf . For the
necessity we observe that, if h : Rδf → X is a right-inverse of δf , then the function
g : Xn → X, defined by g(x) = x1 if x1 = · · · = xn and g(x) = (h◦f)(x) otherwise,
is idempotent and satisfies f = δf ◦ g. ¤

The following theorem yields a characterization of transformed polynomial
functions whose diagonal sections are lattice homomorphisms. These functions are
clearly order-preserving by Fact 1 and Proposition 19.

Theorem 22. Let f : Xn → Y be a function and assume that δf is a lattice ho-
momorphism. Then, under the axiom of choice, f is a transformed polynomial
function if and only if it is a quasi-idempotent quasi-polynomial function.

Proof. Suppose f : Xn → Y is a quasi-idempotent quasi-polynomial function. Let
h : Rδf → X be a right-inverse of δf , i.e., δf ◦ h = idRδf

, and define ψ = δf and

p = ph◦f , where ph◦f is the unique polynomial function extending h ◦ f |{0,1}n (see
Proposition 2), that is,

ph◦f (x) =
∨

I⊆[n]

(
(h ◦ f)(eI) ∧

∧

i∈I

xi

)
.
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Since δf preserves ∨ and ∧, we have ψ ◦ p = δf ◦ ph◦f = pf ◦ δf = f , which shows
that f is a transformed polynomial function.

Conversely, suppose f : Xn → Y is a transformed polynomial function. By
Propositions 20 and 21, f is quasi-idempotent. Moreover, by Proposition 19, we
have f = δf ◦ p = pδf◦p ◦ δf = pf ◦ δf , which shows that f is a quasi-polynomial
function. ¤

Remark 6. (i) We have seen in the proof of Theorem 22 that a transformed
polynomial function f : Xn → Y whose δf is a lattice homomorphism satisfies
the equations f = pf ◦ δf = δf ◦ ph◦f for any right-inverse h of δf . In a sense,
the transformation and polynomial function commute since ph◦f has just the
same ∨-∧ form as pf .

(ii) Quasi-idempotency is necessary in Theorem 22. Indeed, the real quasi-polynomial
function f : [0, 1]2 → [0, 1], defined by f = p ◦ ϕ, where ϕ(x) = 1 if x ∈ [ 12 , 1]

and 0 otherwise, and p(x1, x2) = med(x1 ∧ x2,
1
2 , x1 ∨ x2), is not quasi-

idempotent since f(1, 0) = f(0, 1) = 1
2 /∈ Rδf .

(iii) By combining Theorem 22 with existing characterizations of quasi-polyno-
mial functions (such as those presented in Section 4), we immediately generate
characterizations of transformed polynomial functions.

By combining Proposition 16 and Theorem 22, we obtain the following result
which yields conditions under which a transformed polynomial function is a poly-
nomial function. Observe that, in Theorem 22, the appeal to the axiom of choice
is used only to show that the conditions are sufficient.

Proposition 23. Let f : Xn → X be a transformed polynomial function. Then f
is a polynomial function if and only if it is Rf -idempotent and δf is a lattice
homomorphism with a convex range.

6. Concluding remarks and future work

In this paper we considered quasi-polynomial functions as mappings defined and
valued on, possibly different, bounded distributive lattices, and not necessarily
order-preserving. The relevance of this concept in fields such as decision making
was made apparent by showing that monotone quasi-polynomial functions coin-
cide exactly with those overall preference functionals which can be factorized into
Sugeno integrals applied to a utility function. We provided several axiomatizations
for this class of quasi-polynomial functions, which subsume those presented in [6],
and explicitly described all possible factorizations of a given quasi-polynomial func-
tion as a composition of a polynomial function with a unary map. Moreover, we
introduced the notion of transformed polynomial function as a natural counterpart
of quasi-polynomial function, and characterized the class of transformed polyno-
mial functions accordingly. As it turned out, under the axiom of choice, those
transformed polynomial functions whose diagonal section is a lattice homomor-
phism constitute a proper subclass of quasi-polynomial functions.
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Looking at natural extensions to this framework, we are inevitably drawn to
consider the multi-sorted setting. More precisely, we are interested in mappings
f : X1 × · · · ×Xn → Y which can be factorized as a composition

f(x1, . . . , xn) = p(ϕ1(x1), . . . , ϕn(xn))

where p : Y n → Y is a polynomial function, and each ϕi : Xi → Y is a unary map
defined and valued on, possibly different, bounded distributive lattices Xi and Y .
These functions appear naturally within the scope of multicriteria decision making
(see for instance Bouyssou et al. [4]), and their axiomatization constitutes a topic
of future research.
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