
A Modular Model Composition Technique

Pierre Kelsen and Qin Ma

Laboratory for Advanced Software Systems
University of Luxembourg

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

{Pierre.Kelsen, Qin.Ma}@uni.lu

Abstract. Model composition is a technique for building bigger models
from smaller models, thus allowing system designers to control the com-
plexity of a model-driven design process. However many current model
composition techniques are themselves complex in the sense that they
merge the internal elements of the participating models in non-trivial
ways. In this paper we apply some of the ideas from modular program-
ming to reduce the complexity of model compositions. Indeed we propose
a model composition technique with a modular flavor that treats the
participating models as black boxes. Our technique has several desirable
features: it is simple, it does not require a separate language for express-
ing the composition, and the understanding of the resulting composed
model is made easier by the modular nature of the model composition.

1 Introduction

Models are the primary artifacts in a model-driven software development pro-
cess. Models help in dealing with the complexity of the underlying domains by
abstracting away irrelevant details. The models themselves can become quite
large, at least if we try to represent complex problem or solution domains. Thus
we need techniques for tackling model complexity.

One such technique is model composition. By composing large models from
smaller models the large models should become easier to understand and to
maintain. Most current model composition techniques permit the specification
of rather complex composition operations. This is shown in the fact that many
techniques are based on a separate language for specifying the composition (such
as weaving models in AMW [1] or the Epsilon Merging Language in [10]). Be-
cause these model compositions can be complex, separate model transformations
need to be defined to perform them: in [1], for instance, this transformation is
generated from the weaving model. Furthermore a system specified by using
complex model compositions is difficult to understand.

The main contribution of this paper is a model composition technique that
has the following desirable features:

– it is simple: the composition is specified by mapping elements of one distin-
guished model (called a fragment) to elements of the other models;

– it is modular: the participating models in the composition are equipped
with an interface: only the elements in the interface can be mapped to by
the fragment

– no additional language is required to express compositions
– it is formally defined

The presentation of this paper is as follows: in the next section we present a
running example that will serve to illustrate the concepts in this paper. In section
3 we introduce formal definitions of models, metamodels and model conformance.
We then introduce the notion of fragment metamodels in section 4. In section 5
we equip models with an interface that will support modularity via information
hiding. We present our model composition technique in section 6. We show that
this technique yields hierarchies of models in section 7. The final two sections
discuss the contributions and put them into the context of existing work (section
8) and present concluding remarks (section 9).

2 A Running Example: the EP Language

In this paper we illustrate our model composition technique using the EP mod-
eling language. EP is a language that allows the specification of the structure
and behavior of a software systems at a platform-independent level [6, 8, 7]. The
central concepts are events - modeling elements that are used to model behavior -
and properties - which are use to model the structure of the state. A metamodel
of the EP language is given in figure 1. We will also use a model conforming
to this metamodel for illustrative purposes: the model describes a document
management system. This model will be first introduced in section 6.

3 Basic Definitions: Models and Metamodels

To formally define our model composition technique, we first need to give for-
mal definitions of metamodels, models and model conformance. We extend the
definitions of [2] by formalizing both models and metamodels as graphs, and the
mapping between a model to its metamodel as graph morphism.
Conventions:

1. In the following formal narrations, for any pair p, we use fst(p) to denote its
first element and snd(p) to denote its second element.

2. For any function f , we use range(f) to denote its co-domain.

3.1 Metamodels

A metamodel consists of a finite set of classes and a finite set of associations
that are basically relations between classes - either associations or inheritance
relations.

Definition 1 (Metamodel). A metamodel M = (N,E,H) is a tuple:

– N is a set of nodes, representing the set of classes.
– E ⊆ (N × µ) × (N × µ), where µ ⊆ Int × {Int ∪ {∞}}. It represents the

set of associations, with the two N ’s being the types of association ends, and
the two µ’s being the corresponding multiplicities. We refer to the first end
of the edge the source, and the second the target.

– H ⊆ N × N denotes the inheritance relation among classes, where for a
given h ∈ H, fst(h) inherits from (i.e. is a sub-type of) snd(h).

An example of a metamodel is that of the EP-language given in figure 1
(ignore for the moment the fragmentation edges indicated by the parallel lines
intersecting the associations).

3.2 Models

Models are built by instantiating the constructs, i.e. classes and associations, of
a metamodel.

Definition 2 (Model). A model is defined by a tuple M = (N,E,M, τ) where:

– M is the metamodel in which the model is expressed.
– N is a set of nodes. They are instances of nodes in the metamodel M, i.e.
NM.

– E ⊆ N ×N is a set of edges. They are instances of edges in the metamodel
M, i.e. EM. Edges in models are often referred to as links.

– τ is the typing function: (N → NM) ∪ (E → EM). It records the type
information of the nodes and links in the model, i.e. of which metamodel
constructs the nodes and links are instances.

3.3 Model conformance

Not all models following the definitions above are valid, or “conform to” the
metamodel: typing and multiplicity constraints need to be respected.

Definition 3 (Model conformance). We say a model M = (N,E,M, τ) con-
forms to its metamodel M or is well-formed when the following two conditions
are met:

1. type compatible: ∀e ∈ E, τ(fst(e)) ≤ fst(fst(τ(e))) 1 and τ(snd(e)) ≤ fst(snd(τ(e))).
Namely, the types of the link ends must be compatible with (being sub-types
of) the types as specified in the corresponding association ends.

2. multiplicity compatible: ∀n ∈ N, eM ∈ EM,
if τ(n) ≤ fst(eM),
then]{e | e ∈ E and τ(e) = eM and fst(e) = n} ∈ snd(snd(eM)) 2;
if τ(n) ≤ snd(eM),
then]{e | e ∈ E and τ(e) = eM and snd(e) = n} ∈ snd(fst(eM)).
Namely, the number of link ends should conform to the specified multiplicity
in the corresponding association end.

1 ≤ denotes the subtyping relation.
2] returns the size of a set.

As an example of model conformance consider the model named Log in the
upper right part of figure 4: it conforms to the metamodel of the EP-language
given in figure 1 (if we ignore the interface definition).

4 Fragment Metamodels

Our model composition approach will make use of partial models as the glue to
unite the participant models. These partial models, which will be called frag-
ments, have external links to other models. At the level of the metamodel we
need to indicate which associations can be instantiated into external links of
fragments. For this purpose we introduce the notion of fragmentation edges.

Definition 4 (Fragmentation edges of a metamodel). A fragmentation
edge a of a metamodel M = (N,E,H) satisfies the following conditions:

1. a ∈ E.
2. snd(fst(a)) = (,∞), where represents any integer whose value is irrelevant

for this definition.

In other words an association edge in the metamodel is a fragmentation
edge if the maximum multiplicity of its source is not constrained. The intuition
behind this definition is as follows: if an association a from node A to node B
is a fragmentation edge then any B-instance can be the target of an arbitrary
number of links (instances of this association) from A-instances. Thus if we add
to existing models external links (instances of association a) from a fragment this
will not violate the multiplicity constraint of the association. In a later section
(section 6) this observation will be instrumental in proving that the result of the
composition with a fragment is a model conforming to the original metamodel.

Figure 1 gives an example of a metamodel for the executable modeling lan-
guage EP (from [7, 8]) together with nine fragmentation edges indicated by par-
allel lines crossing the associations. These fragmentation edges have been identi-
fied in accordance with the above definition. For instance the association named
target from ImpactEdge (right side of diagram) to LocalProperty (at the top of
the diagram) has an unconstrained source multiplicity (indicated by ’*’) - it is
therefore marked as a fragmentation edge.

The central concept of our model composition technique is that a fragment
which is essentially a partial model that has some external links that are typed
by fragmentation edges. Because of these external links fragments of a model
conforming to a metamodel MM do not conform to MM. In order to be able to
treat fragments also as models (which is desirable in a model-driven approach)
we introduce the notion of a fragment metamodel. The basic idea is to replace
the external links of a fragment by links to referential nodes which represent a
node in another model. At the level of metamodels this is achieved by replacing
the endpoint of each fragmentation edge by a new class having two subclasses:
one subclass represents normal instances of the original endpoint class while
the other subclass represents referential nodes. A simple example of a fragment

Parameter

PropertyTarget

LocalProperty

PushEdgePullEdge

Expression

AbstractEvent

expr

1

0..1

<<ordered>>
parameter *

edge

event

*

1

target1

*

<<ordered>>
parameter
*

realize

0..1

type1

impact
event

*1

type

1

event

model

*

1

property

*

event
*

extend*

implement*

property*

realize
0..1

<<ordered>>

argument

*
0..1

<<ordered>>
parameter

*
0..1

target 1

*

link

1

*

expr1

0..1

Interface

Event

Model

Property

QueryProperty

EventTarget

EventEdge

ImpactEdge

Type

AbstractQuery

*

*

*

*

*

*

*

*

Fig. 1. A metamodel and its fragmentation edges

metamodel is given in figure 2. On the left side of that figure a metamodel
is shown with two fragmentation edges. On the right side the corresponding
fragment metamodel is given. A more involved example is shown in figure 3.
This example will be discussed in more detail at the end of this section.

After this informal discussion we define fragment metamodels formally.

Definition 5 (Fragment metamodel). The fragment metamodelM = (N,E,H)
is a metamodel, written MF = (NF , EF , HF). It is constructed as follows:

1. N ⊆ NF , H ⊆ HF .
2. ∀e ∈ E,

if e is not a fragmentation edge of M,
then e ∈ EF ;
else (that is the target of the given edge e, i.e. snd(e) can be “referential”),
let n = snd(e),

(a) if n is not yet cloned, i.e. the referential counterpart does not exist yet,
then create a new node nR. We call nR the referential node of n. More-
over, also create a new node nF (nF is an abstract node in the sense
that no instances can be made from it), and let (n, nF) ∈ HF and
(nR, nF) ∈ HF .
else i.e. n is already cloned, i.e. nF , nR exist, then do nothing.

Fig. 2. A metamodel and its fragment metamodel

(b) Create a new edge eR called the referential edge of e of the following form
(fst(e), (nF , snd(snd(e)))), eR ∈ EF .

The fragment metamodel of the example from figure 1 is given in figure 3. We
highlight all the changes with respect to the original metamodel in figure 1: The
target class of a fragmentation edge in the original metamodel is now extended
into a set of three classes indicated by the dashed contours, in which two new
classes, namely, the referential counterpart class following the naming convention
“XXXR” where “XXX” is the original name, and the common abstract super
class with name “XXXF”, are added. Moreover, the targets of fragmentation
edges in the original metamodel are modified accordingly, leading to the newly
added abstract super classes. These modified associations are highlighted as well
in the diagram.

Definition 6 (Fragment). A fragment is a model that conforms to a fragment
metamodel. Moreover, there is at least one referential instance (or place-holder).

5 Model Interfaces

One way to reduce the complexity of the model composition is information hid-
ing. This has been used successfully at the programming level and was introduced
in the seminal paper of David Parnas [12]. The basic idea of information hiding is
to separate the code into disjoint pieces called modules that expose only a small
subset of their internal elements to the other modules via interfaces. Modular
programming offers several advantages: modules can be developed and tested
independently, they can be reused more easily and they can be changed in more
flexible ways.

In this section we apply the principle of information hiding to models. We
do this by equipping the models with an interface which will be defined below.

Parameter

TypeF

InterfaceR

EventTargetF

LocalPropertyR

AbstractEventR

AbstractQueryF

LocalPropertyF

Type

EventTargetR

TypeR

InterfaceF

LocalProperty

AbstractEventF

AbstractQueryR

PropertyTarget

AbstractEvent PullEdge

Property

AbstractQuery

PushEdge

*
0..1

property

*

parameter

*
0..1

<<ordered>>

*property

1

0..1

*

argument

<<ordered>>

extend
*

expr

link

1

expr1

0..1

<<ordered>>

<<ordered>>

target

1

type1

edge

event

*

1

parameter *

target

1

event

*

realize

0..1

parameter

impact
event

*1

event

implement
*

type

1

realize

0..1

model

*

1

QueryProperty

Event ImpactEdge

Interface

EventTarget

EventEdge Expression

Model

Fig. 3. A fragment metamodel of the EP metamodel

Definition 7 (Modules). A module is a model with an interface.

A module interacts with its context via its interface. Module interfaces are
specified in terms of a set of pairs of form (a, i : C), where C is the name of a
metamodel class, i denotes an instance of C in the module, and a is the name
of a metamodel association of which C is (a sub-class of) the target class. Note
that i is optional. In case of absence, all instances in the module that are of type
C are considered.

Definition 8 (Module interface). An interface of a module specifies a set of
pairs of form (a, i : C), where i is optional. Moreover, a is a fragmentation edge
of the metamodel in which the module is expressed and C ≤ snd(a).

Without explicit specification, each module is equipped with a default inter-
face which is the set of all the fragmentation edges of the metamodel together
with the corresponding target classes. The default interface exposes all the in-
stances of the target class of some fragmentation edge of the metamodel with
respect to the corresponding association indicated by the fragmentation edge.

If we view models as components, it is worthwhile noting that our approach
differs from the classical definition of information hiding in component-based sys-
tems in terms of import and export interfaces. In our framework models simply

do not have import interfaces but only export interfaces (as defined above). That
is, models cannot access features that they do not ”implement”; only fragments
have this capability.

On the right side of figure 4, we show two modules - named Document and Log
- of the EP metamodel (from figure 1) that are part of a document management
system: their interfaces are shown at the bottom of each model. As an example
consider the pair (type,Document : Interface) that is part of the interface of
the Document module. The presence of this pair means that a fragment can
have as external link a type link to the Document interface of the Document
module. Here type is the fragmentation edge from PropertyTarget (a superclass
of Property, itself a superclass of LocalProperty) to Type in the EP-metamodel
(see at the top of figure 1). In other words a fragment can use elements of type
Document; in the example we see indeed that the fragment DocumentLog uses a
property document of type Document.

6 Model Integration

We call our model composition technique model integration. We perform model
integration using a set of modules and a fragment by mapping all the referential
edges of the fragment to instances of some participant modules. Moreover, the
mapping should meet two conditions (which will be more precisely defined in
definition 9):

1. typing is respected, in the sense that the type of the target of the mapped
referential edge should be a sub-type of the type of the referential instance;

2. interfaces of the modules are respected, in the sense that if an instance is
not exposed with respect to an association in the interface, it is forbidden
to map a referential edge to it that is typed by the referential counterpart
of the association.

An example of a model integration scenario is shown in figure 4. In this
example the fragment (shown at left) has five external links into the Log module
and one external link into the Document module. The referential instances of
the fragment, which are the source nodes of the dashed arrows, are all mapped
to some type compatible instances that are exposed in the interfaces of the
participant models.

Module integration is formally defined as follows.

Definition 9 (Integration Mapping). An integration mapping of a fragment
F over a set of modules {M1 : I1, . . . ,Mk : Ik} having a common metamodel M
is a function mapping each referential edge er = (n, nr) of the fragment to some
instance ni of some model Mi such that

1. if the type of nr is the referential class node of a class node nM in the
metamodel M, then the type of ni is a subtype (direct or indirect) of nM.

2. if τF (er) is the referential association edge of an association eM in the meta-
model M, we have (eM, ni : nM) ∈ Ii.

DocumentLog
<<Fragment>>

Document
<<Module>>

Log
<<Module>>

documents:LocalProperty

:ImpactEdge

:ImpactEdge

logItems:LocalProperty

LogItem:Interface

message:AbstractQuery

logItem:Parameter

Document:Interface

DocCollection:Model

Video:ModelBook:Model

description:AbstractQuery

implement

property

impact
event

target

impact
event

target

property

event

model

event

model

type

property

<<ordered>>
parameter

type

property
type

implement

Log:Model

logging:Event

clearLog:Event:PushEdge

document:LocalProperty

actionDescription:LocalProperty

item:Parameter

documentLog:LocalProperty

DocLogItem:Model

:PushEdge

message:QueryProperty

:EventTargetR

:TypeR

:EventTargetR

:InterfaceR

:AbstractQueryR

:TypeR

property

edge

event

model

<<ordered>>

edge

event

property

model
property

<<ordered>>

parameter

argument

event
event

type

target

property

type

implement

realize

target
clearLog:Event

logging:Event

:Expression

DocumentLog:Model

Interface: {(target, Event), (type, Model),
(implement, LogItem:Interface), (realize, AbstractQuery)}

Interface: {(type, Document:Interface), (type, Model)}

Fig. 4. Model integration of a fragment (left) and two modules (right)

To illustrate this definition consider the fragment DocumentLog in figure 4. The
integration mapping over modules Log and Document is indicated by the dotted
edges. For instance the referential edge (: PushEdge, : EventTargetR) (at top
of figure) is mapped to element clearLog of type Event. This is consistent with
the definition since first EventTargetR is a referential class of EventTarget and
Event is a subtype of EventTarget and second (target,Event) is in the interface
of module Log.

Definition 10 (Module integration: syntax). An integration is defined over
a set of valid modules {M1 : I1, . . . ,Mk : Ik}, via a valid fragment F = (NF , EF ,MF , τF),
with respect to a mapping function ρ, where:

1. Ii is the interface of module Mi, i = 1, . . . , k.
2. Mi = (Ni, Ei,Mi, τi), i = 1, . . . , k, have the same metamodel M.
3. The metamodel of F i.e. MF is the fragment metamodel of M.
4. ρ is an integration mapping of F over module set {M1 : I1, . . . ,Mk : Ik}.

To define the semantics of model integration, we define the result of integrating
models M1, . . . ,Mk conforming to metamodelM with fragment F to be another
model M conforming to the same metamodelM as the participating models Mi.
Informally this result model is defined by identifying (collapsing) the endpoint
of a referential edge with the instance which the referential edge is mapped to.
To illustrate this, consider the module integration depicted in figure 4: the edge
named target from : PushEdge to referential node : EventTargetR and the
dotted edge from : EventTargetR to clearLogEvent will be collapsed into an
edge from : PushEdge to clearLogEvent named target. This transformation is
repeated for all referential edges leaving the fragment. This is expressed formally
in the following definition:

Definition 11 (Model integration: semantics). The semantics of an inte-
gration returns a model M = (N,E,M, τ), where:

1. N = (
⋃

i=1,...,k Ni) ∪ (NF \Nr), and

τ(n) =

{
τi(n) n ∈Mi

τF (n) n ∈ NF

2. E = (
⋃

i=1,...,k Ei)∪ {v(eF) | eF ∈ EF }, where τ(ei) = τi(ei) for all ei ∈ Ei,
and
(a) if τF (eF) ∈ EO

MF
, then v(eF) = eF and τ(v(eF)) = τF (eF);

(b) otherwise, i.e. τF (eF) ∈ ER
MF

,
i. if snd(eF) 6∈ Nr, then v(eF) = eF ;

ii. otherwise v(eF) = (fst(eF), ρ(snd(eF), eF)).
And in both cases τ(v(eF)) = ori(τF (eF)).

It follows from this definition that the result model of model integration is a
well defined model according to Definition 2. The following theorem shows that
it is also a valid one, i.e., it conforms to the same metamodel as the models that
participate in the module integration.

Theorem 1. The result model M = (N,E,M, τ) of an integration over a set
of disjoint Mi = (Ni, Ei,M, τi), 1 ≤ i ≤ k, via F = (NF , EF ,MF , τF), with
respect to ρ, is a valid model conforming to the metamodel M.

Proof. See [9].

7 Integration Hierarchies

By repeatedly applying model integration steps we can build up, starting from
a set of disjoint modules, a hierarchy of modules which we now formally define.

Definition 12 (Module Hierarchy). A module hierarchy is a directed acyclic
graph whose nodes are either modules or fragments, such that:

1. all sink nodes (i.e., nodes with no outgoing edges) and source nodes (i.e.,
nodes without incoming edges) are modules;

2. each node that is a fragment has as successors a set of modules and has an
associated integration mapping over these modules;

3. each node that is a module has either no successors (representing a unit
module), or it has as successor a single fragment (representing a model that
is derived by integrating the fragment with its successor modules).

The following theorem holds.

Theorem 2. All the models that correspond to the module nodes in a module
hierarchy are valid models conforming to the original metamodel.

Proof. See [9].

The system model is represented by the union of all the top models, i.e.,
those corresponding to the source nodes in the hierarchy. Moreover, the system
model is also a valid model conforming to the original metamodel.

Theorem 3. The union of all the models that correspond to the source nodes
in a module hierarchy is a valid model conforming to the original metamodel.

Proof. This theorem holds as a corollary of Theorem 2, if we consider that there
exists a special empty fragment that integrates all these top models.

We introduce a more compact representation of module hierarchies called
integration hierarchies.

Definition 13 (Integration hierarchy). The integration graph for a module
hierarchy is obtained by collapsing each edge in the module hierarchy graph that
leads from a module node to a fragment node into the fragment node.

In figure 5 we give an example of an integration hierarchy for a document
management system. The three nodes at the bottom represent disjoint models
representing the graphical user interface (Gui), the document business domain
(Document) and the logging (Log). One level up in the figure the DocumentGui
fragment integrates the Gui and Document models: it represents the graphical
user interface adapted to managing documents. At the same level the Docu-
mentLog fragment integrates the Document and Log models; it provides logging
facilities for the Document model. At the top level the fragment named DMS
integrates the lower level models into a complete document management system.

At this point we would like to briefly explain why our approach facilitates
model comprehension. First note that the base models (at the lowest level of the
integration hierarchy) are self-contained. We can express this using terminology
of component-based systems by saying that our models have only an export
interface but not an import interface. At higher levels we hook up a fragment
to the export interfaces of lower level models. The fragment uses a language
(the fragment metamodel) very similar to the metamodel of the participant
models. Furthermore the composition mechanism itself is quite simple: it consists
in simply identifying referential nodes of the fragment with instances in the
interface of the participant modules (as described in the previous section).

DocumentLog
<<Fragment>>

DocumentGui
<<Fragment>>

Gui
<<Module>>

Log
<<Module>>

Document
<<Module>>

DMS
<<Fragment>>

Fig. 5. Model integration of a fragment (left) and two modules (right)

8 Discussion and Related Work

We start by reviewing the main contributions of this paper. These are, as claimed
in the introduction, the following features of the composition technique: (a)
it is simple, (b) it is modular, (c) it does not require an additional language
to express composition, and (d) it is formally defined. As far as simplicity is
concerned we note that the input to the composition are the fragment, a set of
modules, and a mapping of the referential edges in the fragment to instances of
the models. The actual composition (expressed in definition 11) simply collapses
the referential edge with the target instance, a straightforward transformation.
The modularity of our approach is based on the idea of equipping models with
interfaces hiding some of the elements inside the model from the view of the
fragment. The resulting concept of a module was presented in section 5. Because
of the simplicity of the composition mechanism (described above) we do indeed
not require a separate language for expressing the composition. Finally we have
given formal definitions of the concepts related to model integration, underlining
its formal foundation.

We now consider related work. Only fairly recently a common set of defini-
tions for model composition was proposed and a set of requirements for model
composition languages and tools was derived [2]. The definitions in that paper are
based on examining three model composition frameworks: the Glue Generator
Tool [2, 3], the Epsilon Merging Language [10], and the Atlas Model Weaver [1].
The model composition techniques expressible in these frameworks may be called
white-box model composition techniques: they are usually based on having full
access to the modelling elements within each model. They also differ from our
approach by allowing composition operations of high complexity to be specified.
Of course this also means that these techniques are more expressive than ours:

in particular they do not restrict participating models to conform to the same
metamodel.

A model composition technique with a more modular flavor that treats the
component models as black boxes was defined in [11]: their approach, named the
Collaborative Component Based Model approach (CCBM) leverages software
component principles and focuses on the specification of how models collaborate
with each other. The Collaborative Component Based Model approach achieves
black-box reuse of unmodified models and preserves them. Thus, in CCBM,
models are units of reuse and integration is modular and incremental, just as for
software components in Component Based Software Engineering (CBSE) [4].

In our paper we propose a model composition technique similar in spirit
to the CCBM approach described above. It is also not based on transforming
the component models but rather provides additional plumbing - the fragments
- that connects the component models without changing them. Our approach
differs from the CCBM approach in two ways: first the glue models used for
composing models have a metamodel (the fragment metamodel) closely related
to the metamodel of the participant models while in the CCBM approach another
language (JPDD) is used for specifying the glue between the participant models.
Furthermore their composition mechanism is less general in the sense that it only
addresses how operations of the participant models collaborate.

Another work [13] addresses the problem of information hiding at the level
of metamodels that are instances of MOF. Besides its focus on metamodels
this work differs from our approach in the way it expresses information hiding:
it assumes that each metamodel has import and export interfaces. Metamodel
composition is expressed by binding elements in import interfaces to elements in
export interfaces. In our framework, on the other hand, models have only export
interfaces. Composition is realized by combining export interfaces via fragments.

The authors of [5] develop a theory of model interfaces and interface com-
position in the context of dealing with soft references across XML models, i.e.,
untyped, string-based references between XML documents. Their definition of
model interfaces is heavily influenced by the assumption that models are stored
as XML files: their interfaces are based on the attribute names of the XML mod-
els and are not applicable to the more general setting underlying our approach.

9 Conclusion

In this paper we have presented a modular technique for composing models con-
forming to the same metamodel. It differs from most existing model composition
techniques in three important ways: first, information hiding is realized by each
model offering an export interface (using terminology from component-based sys-
tems) but no import interface. This means that models are really self-contained:
they cannot access features that they do not ”implement”. Second, a separate
language for expressing the composition is not required since the composition
only requires mapping referential nodes in the fragment to instances in the par-
ticipating models. Third, for the reason just given the composition itself is quite

simple. All of these differences help in reducing the coupling between the partic-
ipant models and the composed model, thus facilitating the comprehension and
maintenance of the composed model.

In this paper we have only taken into account metamodels that are expressed
visually using the class diagram notation. Further textual constraints (expressed
for instance in OCL) have not been taking into account. Considering additional
constraints not expressed visually will likely lead to a more complicated definition
of fragmentation edges. This will be the subject of future work.

Another line of future investigations concerns the model comprehension as-
pects of our model composition technique. The benefits for model comprehension
are addressed rather summarily in the present paper (at the end of section 7).
Future work will address this question in more detail. In particular we are inter-
ested in the reverse process of building model hierarchies. Suppose we have an
existing model. Can we decompose it into a model hierarchy, thereby facilitating
the comprehension of the initial model?

References

1. Atlas model weaver project, 2005. http://www.eclipse.org/gmt/amw/.
2. Jean Bézivin, Salim Bouzitouna, Marcos Del Fabro, Marie P. Gervais, Frédéric

Jouault, Dimitrios Kolovos, Ivan Kurtev, and Richard F. Paige. A canonical scheme
for model composition. In the Proceedings of 2nd European Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA 2006), volume
4066 of Lecture Notes in Computer Science, pages 346–360, 2006.

3. Salim Bouzitouna and Marie-Pierre Gervais. Composition rules for PIM reuse.
In the Proceedings of 2nd European Workshop on Model Driven Architecture with
Emphasis on Methodologies and Transformations (EWMDA04), pages 36–43, 2004.

4. George T. Heineman and William T. Councill. Component-Based Software Engi-
neering: Putting the Pieces Together (ACM Press). Addison-Wesley Professional,
2001.

5. Anders Hessellund and Andrzej Wasowski. Interfaces and metainterfaces for models
and metamodels. In MoDELS ’08: Proceedings of the 11th international confer-
ence on Model Driven Engineering Languages and Systems, pages 401–415, Berlin,
Heidelberg, 2008. Springer-Verlag.

6. Pierre Kelsen. A declarative executable model for object-based systems based on
functional decomposition. In the Proceedings of 1st International Conference on
Software and Data Technologies (ICSOFT 2006), pages 63–71, Setúbal, Portugal,
2006.

7. Pierre Kelsen and Qin Ma. A formal definition of the EP language. Technical
Report TR-LASSY-08-03, Laboratory for Advanced Software Systems, University
of Luxembourg, May 2008. http://democles.lassy.uni.lu/documentation/TR_

LASSY_08_03.pdf.
8. Pierre Kelsen and Qin Ma. A lightweight approach for defining the formal semantics

of a modeling language. In the Proceedings of ACM/IEEE 11th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2008),
volume LNCS 5301, pages 690–704, 2008.

9. Pierre Kelsen and Qin Ma. A modular model composition technique. Technical
Report TR-LASSY-09-01, Laboratory for Advanced Software Systems, University

of Luxembourg, May 2009. http://democles.lassy.uni.lu/documentation/TR_

LASSY_09_01.pdf.
10. D.S. Kolovos. Epsilon project. http://www.cs.york.ac.uk/~dkolovos.
11. Audrey Occello, Anne-Marie Dery-Pinna, Michel Riveill, and Günter Kniesel. Man-

aging model evolution using the CCBM approach. In the Proceedings of 15th An-
nual IEEE International Conference and Workshop on the Engineering of Com-
puter Based Systems (ECBS-MBD workshop), pages 453–462. IEEE Computer
Society, 2008.

12. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, December 1972.

13. Ingo Weisemöller and Andy Schürr. Formal definition of mof 2.0 metamodel com-
ponents and composition. In MoDELS ’08: Proceedings of the 11th international
conference on Model Driven Engineering Languages and Systems, pages 386–400,
Berlin, Heidelberg, 2008. Springer-Verlag.

