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Abstract 
Thin films of Kesterite Cu2ZnSnSe4 (CZTSe) are prepared via a low energy cost and high material efficiency 

process, to be potentially used as light absorbers in solar cell devices. The fabrication process involves two 

main steps: (i) formation of a metallic stack of Cu/Sn/Zn by sequential electrodeposition of Cu, Sn and Zn 

onto glass/Mo substrates; (ii) reactive annealing at 550°C in presence of Se and SnSe powders to form 

Kesterite. This thesis mainly aims at understanding the mechanisms of metal alloying and selenization 

occurring during step (ii), and their effects on the microstructure of the final film, the presence of 

secondary phases and their distribution in the thin films synthesized. The second objective is to 

understand their effects on the solar cells parameters. 

The stoichiometry of the precursor layers Cu/Sn/Zn is deliberately chosen to be Cu-poor and Zn-rich 

(Cu/(Zn+Sn)<1 and Zn/Sn>1), as it allows to reach the best power conversion efficiencies. Under these 

conditions, Kesterite, SnSe2 and ZnSe are expected. However, a study of different compositions shows 

that the predominant phases present are only Kesterite and ZnSe. SnSe2 is not present because this phase 

is unstable under the conditions of selenization, which leads to a self-regulation of tin content via gas 

phase exchange of SnSe during the selenization. 

Analyses of the selenization of Cu/Sn/Zn layers at short times and lower temperatures allow to 

deconstruct the mechanism of Kesterite formation into sequential steps. Because of the diffusion of 

metals and the formation of alloys, a reorganization of metals is observed prior to the incorporation of 

selenium in the thin films. The layers are then composed of Sn, Cu-Sn and Cu-Zn phases mainly, which are 

found to be segregating at large scales of tens of micrometers. During selenium incorporation, a tin self-

regulation process is established, in which tin is depleted during the first stages of selenization, and then 

tin is replenished. ZnSe segregates at the surface of the absorber layer as large islands of 10-20 

micrometers. By analyzing a specific position of a sample after the different process steps, it is shown that 

the segregation of ZnSe at this large scale is originating in the segregation of metals during alloying. 

Because of the presence of ZnSe on the surface of the films, part of the photocurrent generated in the 

absorber layer is not collected, which decrases the short circuit current of the devices. In this sense, a 

linear decrease of short circuit current is observed when the ZnSe molar ratio is increasing, and confirmed 

by external quantum efficiency (EQE) measurements showing a decrease of current collected through the 

whole range of photon energies. An optimal molar ratio of ZnSe/(CZTSe + ZnSe)=0.2 is found. Below this 

value, the short circuit current decreases, probably due to the formation of other types of harmful 

secondary phases such as Cu2SnSe3 or Cu2Se.  

A strong decrease of open circuit voltage and fill factor of the solar cells is proved to be related to the 

formation of blisters in the thin films, which result in the creation of pinholes due to their fragility. 

Formation of these blisters is supposed to originate from hydrogen evolution under the Cu layer during 

the electrodeposition process. 

Finally, a study of an additional process of prealloying between the steps of electrodeposition and 

selenization is presented, which demonstrates the possibility to increase the open circuit voltage of the 

solar cells by varying the time of this alloying step. A best power conversion efficiency of 7.2% is achieved 

via this method, which is close to the highest value of 9.1% reported for an electrodeposition-based 

process of Kesterite synthesis. 
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1 Introduction 
 

1.1 Photovoltaics as a sustainable source of energy 
As the world population is increasing and should have reached 10 billion by 2060 [1], energy production 

will be one of the main challenges of the next decades. In 2014, 85% of the world energy consumption 

was provided by carbon-emitting and non-renewable sources (oil 31%, natural gas 23%, coal 31%) [2], 

which poses serious problems of climate change and sustainability. An expansion of renewable sources of 

energy is thus necessary, including photovoltaics (PV). 

The majority of installed PV is currently based on crystalline silicon. High power conversion efficiencies 

can be obtained with these solar cells, of more than 22% at large scale (>15000 cm²) [3]. However, despite 

the abundance of silicon, these solar cells are characterized by an energy intensive and high cost 

fabrication process. The indirect bandgap of the material implies that thick layers of high purity material 

of about 200 micrometers need to be used. This technology suffers as well from resource limitations, due 

to the use of silver as front contact [4]. For this reason, alternative solar cell technologies are being 

developed, based on direct bandgap materials, which require only thin films of absorber materials, of a 

few micrometers. Among them, CdTe and Cu(In,Ga)(S,Se)2 (CIGS) are the most common. More recently, a 

strong research activity was concentrated on the development of a new material for thin film solar cells, 

Kesterite Cu2ZnSn(S,Se)4 (CZTS), which only requires earth-abundant elements. This material is the subject 

of the work presented in this thesis. 

 

1.2 Thin film solar cells 

 

1.2.1 Structure of a thin film solar cell 

Thin film solar cells are based on absorber materials which have a direct bandgap. Thus the light can be 

absorbed in a much smaller volume compared to indirect bandgap materials such as silicon, because of 

the higher absorption coefficient, typically in the order 104 – 105 cm-1. The structure of a thin film solar 

cell is presented in figure 1.1. The cell is composed of a stack of several layers. The central part is 

composed of the p-n junction: a p-type semiconductor, called the absorber, coupled with several n-type 

semiconductor window layers. Basically, the p-type absorber layer absorbs the incoming light. Electron-

hole pairs generated in this semiconductor are separated due to the presence of the p-n junction. The 

electrons flow to the n-type layers, while holes are directed to the opposite direction, which creates an 

electrical current. The back contact is made of molybdenum which is a good electrical conductor. The 

front contact layers are composed of a thin layer of CdS (called the buffer layer) followed by i-ZnO (intrinsic 

zinc oxide, not shown on the schematic) and a layer of Aluminum-doped zinc oxide on top, which has the 

property of being conductive and transparent as well. More information is available about this in chapter 

5. 
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Figure 1.1: Schematic representation of a thin film solar cell. 

The electrical characterization of a solar cell is performed by measuring the electrical current density 

generated by the solar cell while varying the voltage. An example of a current density – voltage (J-V) curve 

is shown in figure 1.2. Three different parameters are used to describe this type of curve: the sort circuit 

current (Jsc) which is the current density delivered by the solar cell when there is no difference of potential 

between the contacts; the open circuit voltage (Voc) which is the voltage of the solar cell when no current 

is flowing; and finally the Fill factor (FF), which describes the squareness of the J-V curve. The fill factor is 

the ratio of the area of the rectangle A (in figure 1.2) versus the area of the rectangle B. The rectangle A 

is taken at the J and V values for which the power JxV is maximum, and the rectangle B at Jsc and Voc. 

 

 

Figure 1.2: Current density-voltage (J-V) characteristic of a 7% power conversion efficiency solar cell 

with Voc=386 mV, Jsc=35.5 mA/cm², FF=53%. 

The power conversion efficiency of a solar cell is calculated as the ratio of the power output versus the 

power input (power of light), as in equation 1.1. 
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inputP

VJ maxmax .
     (1.1) 

 

It can be calculated using the values of fill factor, Voc and Jsc. The fill factor being defined by equation 1.2, 

the power conversion efficiency can be written as relation 1.3. 

ocsc VJ

VJ
FF

.

. maxmax    (1.2) 

input

ocsc

P

VJFF ..
    (1.3) 

Thus, Voc, Jsc and FF need to be as high as possible in order to increase the efficiency of the solar cells. 

Further information on solar cells characterization will be provided in chapter 2. 

 

1.2.2 Chalcogenide thin film solar cells 

The Cu2ZnSnS(e)4 absorber material which is the subject of this thesis belongs to the family of 

chalcogenides, including several semiconductors used as absorbers for thin film solar cells: CdTe, CIGS. All 

these materials can be derived via a systematic approach of isoelectronic substitution [5], which consists 

to start from one element (silicon) and then substitute one element by two others, the average number 

of valence electrons remaining the same (figure 1.3). 

 

             

Figure 1.3: Periodic table showing genealogical derivation of semiconductors by isoelectronic 

substitution: (a) derivation Si – GaAs – CdTe – CuInSe2; (b) CuInSe2 – Cu2ZnSnSe4. 

Extensive research has already been performed in the field of CIGS solar cells, for approximately 40 years 

(for a detailed history of evolution of cells efficiencies for each material, see NREL efficiency chart [6]). 

The best device efficiency for this material reaches now 21.7% [7], which is close to the crystalline silicon 

highest efficiency of 25% [3]. Since the middle of the 1990s, Kesterite is emerging as an alternative to 

CIGS. The main advantage is to replace indium by more abundant and cheaper elements. Zinc and tin are 

produced in respectively 20 000 and 500 times larger quantities than indium [8]. Furthermore indium 

price is increasing due to the high demand from the electronic display industry. Another advantage is that 

a) b) 
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Kesterite is similar to CIGS, thus a transition to a Kesterite-based solar cell may take advantage of the 

more mature knowledge gained on CIGS solar cells. Thus, in this thesis often results on Kesterite will be 

compared to those known for CIGS. 

 

 

1.3 Kesterite thin film solar cells 
 

1.3.1 Generalities on Kesterite 

Kesterite is defined as the Zn-rich variety of the mineral Cu2(Zn,Fe)SnS4. By extension, the selenide variety 

Cu2ZnSnSe4 is also called Kesterite. This semiconductor has a p-type conductivity, a direct bandgap and its 

optoelectronic properties are suitable for application as an absorber layer in a solar cell (for more details, 

see section 1.3.2). Its similarity with CIGS offers the advantage to use the same solar cell structure: CdS as 

buffer layer, molybdenum as back contact and ZnO as front contact. Although, this structure is found to 

be not optimal for Kesterite, and alternative materials for buffer layer as well as for back contact will 

probably be necessary to reach efficiencies comparable to CIGS. 

An advantage is also to have the possibility to tune the bandgap of the absorber by using a mixture of 

sulfide and selenide CZTSSe. S and Se are highly miscible in Kesterite, and CZTS has a bandgap of 1.45 eV 

[9], while the bandgap of CZTSe is 1.0 eV [10]. Thus it is possible to optimize the bandgap, which then 

theoretically allows efficiencies higher than 30% [11]. 

Historically, the first reports on the synthesis of Kesterite date from the 1960s [12], [13]. Twenty years 

later, Ito et al. [9] identified CZTS as a suitable absorber for solar cells, by preparing a heterojunction 

cadmium tin oxide – CZTS which showed an open circuit voltage of 165 mV under illumination. The first 

reported power conversion efficiency dates from 1997, when Katagiri et al. [14] presented a value of 

0.66%. The highest reported power conversion efficiency achieved with a Kesterite absorber is currently 

12.6% [15]. Since the past twenty years, many reports on Kesterite solar cells were published. Several 

reviews of the literature available [16]–[32], as well as books on the subject ([5], [33] among others). 

Two main routes can be employed to synthesize Kesterite absorbers: (i) direct synthesis of the Kesterite, 

which is often followed by an annealing step to improve the quality of the material, or (ii) two-step 

synthesis, involving first the deposition of a metallic layer of Cu-Sn-Zn, followed by a reactive annealing at 

500-600°C to incorporate the chalcogen. Route (ii) can then be itself divided into two different types of 

process: physical and chemical deposition. Physical deposition includes evaporation or sputtering of the 

metals, and typically requires high vacuum. With chemical depositions, the metals are dissolved or 

dispersed in solutions, and can be directly deposited on the substrates by ink-coating, spraying, or 

electrodeposition. The advantages of chemical deposition techniques are their lower-cost and high 

material utilization. 
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1.3.2 Optoelectronic properties 

As previously mentioned, CZTSe is a p-type semiconductor, mainly because of the high population of 

acceptor defects CuZn and VCu [34]. It has a direct bandgap with a value of around 1.0 eV [10], which can 

vary from 0.95 eV to 1.05 eV depending on the ordering of the material [35] (caused by the presence of 

ZnCu and CuZn defect complexes, this will be explained further in section 1.3.3). Its absorption coefficient 

is >104 cm-1 [9]. The net carrier concentration is not precisely determined, and many different values can 

be found ranging from 1.2 x 1015 to 3.1 x 1020 cm-3 [34]. 

 

1.3.3 Crystal structure and defects 

The Kesterite crystal structure derives from that of chalcopyrite, which itself derives from the zinc blende 

structure. The Kesterite unit cell is shown in figure 1.4.  

       

Figure 1.4: Crystal structure of Kesterite (figure adapted from [10]). 

Among the possible defects, VCu and CuZn have a low formation energy, and both have a donor behavior, 

thus they are possible candidates for generating a p-type conductivity in the semiconductor. However, all 

high efficiency solar cells are produced by using a Cu-poor and Zn-rich composition, the optimal value 

being in the order of Cu/(Zn+Sn)=0.85 and Zn/Sn=1.1-1.3 [23]. In these conditions, CuZn has a higher 

formation energy and thus VCu is the most likely defect generating the p-type conductivity of the Kesterite. 

Charge-compensated defect clusters are also calculated to be present in relatively high concentrations, 

mainly [CuZn + ZnCu]. These defect clusters create potential fluctuations within the material, which affects 

significantly the bandgap of the material. A way to increase the ordering of the Kesterite (by decreasing 

the concentration of these defect complexes), is to perform a low temperature annealing treatment. Rey 

et al. [35] showed a transition between ordered (low concentration of defect clusters) and disordered 

Kesterite at a temperature of 200 +/- 20°C. Below this temperature, the concentration of [CuZn + ZnCu] 

decreases, and above the concentration increases. Disordered CZTSe has a bandgap of 0.95 +/- 0.01 eV, 
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while ordered Kesterite has a bandgap of 1.05 +/- 0.01 eV. However, improvement of solar cells 

efficiencies by ordering Kesterite has not yet been reported. 

 

1.3.4 Phase stability  

The Kesterite selenide system was studied by Dudchak [36], who proposed to describe it by considering 

the pseudo-ternary system Cu2Se-SnSe2-ZnSe, as shown in figure 1.5. The stability domain of the Kesterite 

phase is relatively narrow compared to CIGS for example. Thus, secondary phases (metal selenide phases 

other than Kesterite) are easily formed during the synthesis process. All secondary phases are reported 

to be detrimental for the solar cell performances. However, among all possible secondary phases, ZnSe 

seems to be the least harmful [37].  

The best Kesterite solar cell devices are made with absorber layers grown with a copper poor and zinc rich 

composition (Cu/(Zn+Sn)<1 and Zn/Sn>1) [23], [24], which leads inevitably to the presence of ZnSe, Cu2Se 

or SnSe2 secondary phases [36], as described in figure 4.1 (adapted from Dudchak). 

 

 

Figure 1.5: Isothermal section of the Cu2Se-ZnSe-SnSe2 system at 670K (adapted from [36]). The red 

dotted line indicates all compositions with Cu/(Zn+Sn)=1, and the green dashed line indicates Zn/Sn=1. 

Domains of Cu-poor/Cu-rich and Zn-poor/Zn-rich are delimited by these two lines, as described on the 

figure. 

 

At the normal temperatures employed for the synthesis of Kesterite (500-600°C), some species have a 

high vapor pressure (SnSe and Se), which can cause decomposition of the Kesterite if the background 
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pressure of the gaseous species is not sufficient. The decomposition reaction 1.4 was reported by Redinger 

et al. [38]: 

𝐶𝑢2𝑍𝑛𝑆𝑛𝑆𝑒4(𝑠) → 𝐶𝑢2𝑆𝑒(𝑠) + 𝑍𝑛𝑆𝑒(𝑠) + 𝑆𝑛𝑆𝑒(𝑔) +
1

2
𝑆𝑒2(𝑔)    (1.4) 

At 550°C, the saturation partial pressure of SnSe is around 3.6x10-3 mbar which is relatively high, thus 

decomposition of Kesterite can occur if the partial pressure of SnSe in the environment is not sufficient. 

This is why the selenization processes need to be done in the presence of additional Sn or SnSe, to provide 

a sufficient background pressure of SnSe, in order to maximize Kesterite formation. Partial pressures of 

ZnSe and CuSe at 550°C are respectively 6.4x10-15 mbar and 1.2x10-13 mbar [39], thus much lower than 

that of SnSe, and these phases do not pose problems of evaporation during the selenization process. 

 

1.4 Objectives and structure of the thesis 
This thesis investigates the synthesis of Kesterite thin films for their implementation as absorbers into 

solar cell devices. The layers are prepared via the two-step method presented previously: metallic layers 

containing Cu, Sn and Zn are first deposited, and then these films are converted to Kesterite by a reactive 

annealing step during which selenium is incorporated in the layers. The choice of a sequential deposition 

of metals was mainly motivated by the fact that this method offers a very easy control of the stoichiometry 

of the samples, which is of great importance to control the secondary phases formed during the 

selenization. The specificity here is to perform the deposition of metals via electrochemical methods, 

which already gave very good results (record power conversion efficiency of 7.2% [40] at the beginning of 

this thesis, which then was increased to 9.1%  [41] at the time of writing the thesis) and offer the strong 

advantage of being a low energy cost and high material efficiency process, if used industrially. Metallic 

stacks of Cu/Sn/Zn are electrodeposited onto glass/Mo substrates, which are then selenized via annealing 

at 550°C in presence of Se to form Kesterite. An intermediate step of annealing at 200-350°C (prealloying 

step) prior to selenization is optionally investigated. It is mainly used in this thesis to study the effects of 

alloying of the metals before the incorporation of selenium in the thin films. For the fabrication of solar 

cells, the layers are selenized directly after the electrodeposition without prealloying step, except for a 

few cases which will be indicated. This choice was made in order to reduce the number of process steps 

and then potentially decrease the variability of the process. The absence of this step could also be a good 

point for the transfer of the process to industry. 

As explained in the previous section, the formation of Kesterite secondary phases is a major problem for 

the fabrication of efficient solar cells. Thus one of the main objectives of this thesis will be to investigate 

the formation of secondary phases, to study which ones are present, and where they form in the layers. 

In this frame, two main objectives will be followed. The first is based on the work of Arasimowicz [42], 

who investigated a very similar process of fabrication and presents results where ZnSe is the main 

secondary phase present, whereas the stoichiometry of the precursor layer should lead to a material 

containing ZnSe and SnSe. Therefore, one goal is to investigate if the same phenomenon occurs with the 

process used for this thesis, and in this case understand why SnSe is absent from the layers after 

selenization. With sulfide Kesterite, which has a close chemistry to the selenide Kesterite, a similar 
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behavior is observed [43], and was explained by a mechanism of self-regulation of tin content via 

evaporation of tin sulfide which allows to end with the exact quantity of tin required to form Kesterite. 

Our objective for this is then to compare the behavior of Sn in the selenide system and compare it with 

the results of Johnson et al. 

A second motivation for this thesis is the investigation of the effect of segregation mechanisms occurring 

during the heating of metallic samples at 200-350°C. This segregation is due to the very low miscibility of 

Zn and Sn, which lead to the segregation of Cu-Zn and Cu-Sn alloys after alloying of the metals. Several 

reports show that different microstructures of metal layers can be obtained by heating different types of 

metal stacks (a Mo/Cu/Sn/Cu/Zn precursor will lead to a bilayer Mo/CuSn/CuZn, whereas Cu/Sn/Zn leads 

to a columnar structure of CuSn and CuZn [44] in the same alloying conditions). These different 

microstructures have then an influence on the segregation of secondary phases in the  [44]. Strong 

improvements of power conversion efficiencies were achieved by using an intermediate step just before 

the selenization in order to alloy the metals and have the required microstructure of precursor. However, 

evidence of the influence of precursor microstructure was only done by comparing very different types of 

samples (e.g. bilayer vs columnar type), and by studying the samples at a scale of a few micrometers which 

is too small to observe the distribution of the alloys. Thus, the objective here is to study the effect of 

prealloying on the segregation of metals at microscopic scale, and then to study the effect of this 

segregation on the formation of ZnSe and on its segregation. The hypothesis here is that alloying occurs 

during the process investigated for the thesis, even if no annealing step at 200-350°C is performed prior 

to selenization: alloying occurs during the heating ramp of the process of selenization, before 

incorporation of selenium in the layer. The second hypothesis is that after alloying occurred, the 

separation of Zn and Sn can not be reversed during the incorporation of selenium, which can explain why 

large aggregates of secondary phases are present after this process.  

Additionally, attention will be brought to the understanding of the effect of ZnSe on the performance of 

solar cells. Previous work from Watjen et al [45] shows that surface ZnSe affects mainly the short circuit 

current of the solar cells by acting as a barrier between the absorber and the CdS, because of its resistivity 

[37]. However, this study from Watjen et al only shows results on a single sample and compares local 

variations of current on areas where ZnSe is more or less present. Thus the objective for this thesis is to 

investigate this effect on different samples which have different amounts of ZnSe, and find at which 

composition the short circuit current of the solar cells is the highest. A hypothesis that can be made is that 

in the range of compositions investigated (Cu-poor and Zn-rich), the short circuit will be increasing when 

the quantity of zinc is decreasing, but only to a certain point, after which the composition becomes too 

close to stoichiometry and other types of secondary phases appear, due to the local inhomogeneity of 

metals in the precursor metallic layer. For instance, Cu2Se or Cu2SnSe3 could be expected, which are 

harmful for the solar cells. 

In order to facilitate the understanding of the results obtained while investigating these different points, 

they will be presented in three chapters (3 to 5) following the order of the process of synthesis of the solar 

cells. Chapter 3 will present all results concerning the electrodeposition of Cu/Sn/Zn stacks, and results 

on the investigation of the effect of alloying of the metals. The work presented is a continuation of works 

realized by Berg [46] and Arasimowicz [42], thus the changes brought to their processes will be presented 
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first, with the consequences of these modifications. Then, the specificities of the layers electrodeposited 

will be detailed, in terms of morphology and composition at macroscopic and microscopic scale. This 

chapter will be concluded by an investigation of the alloying of the metals in these layers. The formation 

and segregation of alloys of Cu-Sn and Cu-Zn at a rather large scale is discussed. 

Chapter 4 investigates the selenization mechanism, and is divided into three parts: a) investigation of the 

mechanism of formation of kesterite and its secondary phases, where alloying prior to incorporation of 

selenium will be discussed, as well as tin self-regulation; b) investigation of the change of composition 

after selenization, which enables to clearly identify the mechanism of Sn self-regulation; c) investigation 

of the effect of segregation of metals before selenization on the segregation of ZnSe secondary phase. 

Chapter 5 is devoted to the analysis of the solar cells into which the Kesterite absorbers are implemented. 

A first study of kesterite composition is done to investigate the effects of the presence of different 

amounts of zinc selenide in the absorber layers. An analysis of the variation of fill factor and open circuit 

voltage is then done, and finally an improvement of open circuit voltage of the solar cells by performing 

an alloying step before the selenization is presented. 
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2 Fabrication and characterization methods 
 

Aim of the chapter 
This chapter presents first all methods of fabrication of the solar cells: substrate used, deposition of 

metals, prealloying, selenization and completion into devices. The methods of characterization of the thin 

films are detailed as well. The technique of identical location analysis which was developed for this thesis 

is presented, together with more conventional methods of imaging, elemental analysis and phase 

identification. Finally, methods of opto-electrical characterization of the solar cells are described.  

 

2.1   Fabrication of absorber layers and solar cells 
The Kesterite absorber layers are fabricated in three main steps: i) Cu/Sn/Zn stacks are electrodeposited 

on glass-Mo substrates, ii) optionally the layers are heated to alloy them and iii) the precursor is heated 

in a selenium and tin selenide atmosphere. Then, the solar cells are completed by deposition of the buffer 

layer (CdS), the window layer (i-ZnO and Al-doped ZnO) and the metallic contact grids. 

 

2.1.1 Electrodeposition and alloying of Cu-Sn-Zn precursors 

 

(a) Electrodeposition of Cu/Sn/Zn stacks 

Cu, Sn and Zn layers are sequentially deposited on the glass/Mo substrates to obtain stacks of 

glass/Mo/Cu/Sn/Zn. 

Basics of electrodeposition: 

The method of electrodeposition is relatively simple and can be described by considering the schematic 

of figure 2.1. It consists to apply a potential difference between two electrodes immersed in a solution 

(electrolyte), in order to reduce metallic ions dissolved in the electrolyte, and form a metallic layer on the 

negative electrode. 

The general equation of a redox reaction is Ox + ne- → Red, with Ox and Red respectively the oxidized and 

reduced agents of a certain redox couple. In case of a metal M, present in solution in a +z oxidized state, 

this equation becomes: 

Mz+
solution + ze- → Msolid.          (2.1) 
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Figure 2.1: Schematic drawing of a two-electrode electrochemical cell. 

When the potential difference between the negative electrode (working electrode) and the positive 

electrode (counter electrode) is sufficient to allow the two reactions to occur, the reduced species Red 

will be oxidized at the counter electrode, and the metal ions Mz+ will be reduced at the working electrode, 

which will cause the deposition of M metal on this electrode. The global equation is as follows (equation 

2.2): 

nMz+
solution + zRed → nMsolid + zOx       (2.2) 

The reducing agent Red which is oxidized at the counter electrode can be either the metal of the cathode, 

or an ion in solution, or the solvent itself. 

For the redox couple M/Mz+, when the reaction 2.1 is at equilibrium (zero current), the Nernst equation 

2.3 describes the potential of the solution for a certain ratio of concentration of each species. 

 








 

M

M
eq

a

a
E

z

 ln
zF

RT
 + E = 0

eq  

           (2.3) 

In equation 2.3, E0
eq is the standard potential, R is the universal gas constant, T is the absolute 

temperature, a is the chemical activity for the relevant species, F is the Faraday constant (the number of 

coulombs per mole of electrons: F = 9.648×104 C mol−1), and z is the number of electrons transferred. 

When the potential is more negative than Eeq, the formation of the metal (reduction reaction) is favored. 

The overpotential  needed to obtain a certain current I is then defined as  = E(I) - Eeq(0), and depends 
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on three different parameters: =  ct +  cr +  conc with  ct ,  cr and  conc being overpotentials due 

respectively to charge transfer, matter transport and crystallization. 

The number of moles of metal deposited +zM
n can be controlled by counting the charge q passed in the 

circuit during the process with equation 2.4. 

zF

q
+zM

n                             (2.4) 

However, parasitic reactions can occur during the deposition, such as the reduction of another species in 

solution, or hydrogen evolution (2H2O+ 2e-→ H2+ 2OH-). Thus, the plating efficiency for each metal on a 

specific substrate needs to be determined first in order to grow a layer with the desired thickness. 

 

Electrodeposition with a three-electrode setup: 

For the specific application of deposition of thin films on substrates of a size of a few centimeters, a three-

electrode setup with a rotating disk electrode for the working electrode is used, as described in figure 2.2. 

It allows a better control of the process compared to a static electrodeposition. In this configuration, a 

third electrode is added, which has a constant potential. It is used as a reference to measure the potential 

of the working electrode during the deposition process. This setup offers the advantage to work under 

constant potential at the working electrode. Furthermore, an electrode which allows to rotate the 

substrate during the electrodeposition (the center of rotation is the center of the sample) is used. It is 

referred to as a “rotating disk electrode” and is used to create a flow of electrolyte to the surface of the 

sample in order to obtain a homogeneous deposition of metals over the sample area and increase the 

mass transport of solution to the surface of the working electrode, thus allowing a fast replenishment of 

the metal ions in the vicinity of the growing metallic layer. 

For the synthesis of Cu/Sn/Zn layers, Cu, Sn and Zn thin films are sequentially electrodeposited on 

glass/Mo substrates using the setup described in figure 2.2. The glass/Mo substrate is attached and 

electrically connected to a disk electrode rotating at 300 rpm, with the Mo layer facing down (in contact 

with the solution). A view of the rotating disk electrode from below is shown in figure 2.3a. An adhesive 

tape is placed around the edges of the sample and on the electrode in order to i) ensure electrical contact 

between the Cu contacts and the molybdenum, ii) also to define the deposition area, iii) isolate the 

electrical contact from the electrolyte. The counter electrode is a platinum wire (99.9%, Mateck, diameter 

of 1 mm, 2cm immersed in the electrolyte). The reference electrode is a saturated calomel electrode 

(E=+0.241 V vs normal hydrogen electrode) from Radiometer Analytical.  
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Figure 2.2: Electroplating cell composed of a reference electrode, a rotating working electrode (in the 

center) supporting the sample, and a counter electrode. All electrodes are immersed in an aqueous 

solution, called electrolyte. Here is described the example of the deposition of a copper layer: Cu2+ ions 

dissolved in the solution are reduced at the surface of the sample to form the Cu layer. 

All the electrodes are immersed in an electrolyte containing cations of the metal to be deposited, in a 100 

mL beaker. The Cu layer is electrodeposited from an aqueous electrolyte containing 3 M NaOH (99.99%, 

Sigma Aldrich), 0.2 M Sorbitol (99%, Sigma Aldrich), 0.1 M Cu (II) sulfate hydrate (99.999%, Alfa Aesar), 

and 0.932 mM Empigen BB detergent (Sigma Aldrich). The Sn layer is electrodeposited from an aqueous 

electrolyte with 1 M methanesulfonic acid (>99.5%, Sigma Aldrich), 50 mM Sn(II) methane sulfonate 

(Sigma Aldrich), and 3.6 mM Empigen BB detergent (Sigma Aldrich). Finally the Zn layer is electrodeposited 

from an aqueous solution containing 3 M KCl (99.995%, Alfa Aesar), 50 mM ZnCl2 (99.999%, Alfa Aesar), 1 

g pH3 Hydrion buffer (Sigma Aldrich), and 0.2g of Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-

(dimethylamino)propyl]urea] quaternized (solution 62 wt. % in H2O, Sigma Aldrich). These electrolytes 

were developed by Scragg and Berg [46], [47]. 

The depositions are performed under constant electric potential at the working electrode. The 

potentiostat used for the process is an Autolab PGSTAT302N. Metal ions dissolved in the electrolytes are 

reduced at the surface of the working electrode and form the metal layers (Mz+ + ze- → M). The thickness 

of the metal layer is controlled by the charge passed during the process. After sequential 

electrodeposition of Cu, Sn and Zn layers, the as deposited samples are as described in figure 2.3b. 
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Figure 2.3: Schematic of (a) glass/Mo substrate mounted on rotating disk electrode (RDE), seen from 

below. All the area outside the dotted square is covered with adhesive tape to isolate connecting wires 

from the electrolyte. (b) schematic of Cu/Sn/Zn stack on glass/Mo substrate after electrodeposition. 

 

(b) Optional prealloying step 

In a few specified cases, the as-electrodeposited metal stacks are annealed under 1 bar nitrogen at 350°C 

in a rapid thermal processing (RTP) oven (AS-one100, Annealsys). Fast heating and cooling ramps are used 

with this type of oven, of typically 10°C/s for heating, and 0.7°C/s for cooling. This step is optional and 

aims at mixing the metals to form alloys of Cu-Sn and Cu-Zn. It is not performed for all samples. 

 

 

2.1.2 Selenization of Cu-Sn-Zn thin films 

 

The selenization process consists of a reactive annealing at 500-600°C in presence of Se and SnSe powders, 

which react with the metals of the Cu-Sn-Zn layer to form selenide compounds. To this end, the 

glass/Mo/Cu-Sn-Zn samples are placed inside a graphite chamber, together with 100 mg of selenium 

powder (99.999%, Alfa Aesar) and 15 mg of tin selenide powder (99.999%, Alfa Aesar). A background 

pressure of 10 mbar of forming gas (10 vol% H2 in N2) in the oven is used. The graphite box is heated to 

the target temperature and kept at this temperature during a certain time (0-30 min) to perform the 

selenization. This reactive annealing can be performed with two different types of oven: a tube furnace, 

and a RTP oven. The main differences between these ovens are the heating and cooling ramps (the RTP 

can perform much faster ramps), and the configuration of the oven (shape, size of the box, type of 

heating…). These specificities are listed in the following. 

 

a) b) 
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Tube furnace selenization: 

A tube furnace oven is used for all “standard” processes, and was used for the selenization of all the 

samples presented in this thesis, except for section 4.2 (the use of a different oven is clearly specified in 

this section). A schematic description of the oven is shown in figure 2.4.  

 

 

 

 

Figure 2.4: Design of tubular oven with graphite box containing two 2.5x2.5 cm² samples and powders 

of Se and SnSe: (a) side view, (b) view from above. 

Two samples are annealed together in a selenization process. SnSe powder is placed between the two 

samples, and Se powder at the edges of the graphite chamber. This configuration was found to give the 

best results. During a process, the temperature is increased to 100°C, and kept at this value for 30 minutes. 

During this time, several flushes of nitrogen and forming gas are done, in order to remove any residual 

water or solvent (isopropanol is used to clean the oven). The temperature is then raised to the target 

value at a rate of 18°C/min. This temperature is held for the desired time, and the oven is left to cool 

naturally to room temperature during three hours. The standard selenization process is done at 550°C for 

30 minutes. 

b) 

a) 
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Rapid thermal processing (RTP) oven: 

The design of this oven differs from the tubular oven, as described in figure 2.5. The heating is from above 

the chamber, and cooling can be performed from under the graphite box. This oven allows faster ramps 

of heating and cooling than the tubular furnace. Typically, the heating ramp is 10°C/sec and the cooling 

ramp 0.7°C/sec. 

 

                        

Figure 2.5: (a) Design of RTP oven, side view, (b) graphite box of RTP oven, view from above. The 

samples represented in yellow have a size of 2.5x2.5 cm². 

The standard selenization process using a RTP oven is done at 550°C for 5 minutes. 

 

 

2.1.3 Fabrication of substrate and finalization of solar cells 

 

The fabrication of glass/Mo substrates and the implementation of selenized samples into solar cell devices 

are standard processes, performed by an ingeneer at the University of Luxembourg. They are briefly 

described in this section. 

(a) Substrate 

Soda-lime glass (SLG) slides of 2.5 x 2.5 cm² size and 2 mm thickness are used as substrates. A molybdenum 

layer of 500 nm thickness is sputtered on the glass. The Mo target purity is >99.95% (AJA International 

Inc.). Prior to the deposition of Cu/Sn/Zn layers, the glass/Mo samples are etched in ammonia (>25%) for 

three minutes, in order to remove molybdenum oxides from the surface. These oxides are removed to 

increase the conductivity of the substrate and avoid drops of electric potential at the surface during the 

electrodeposition. 

a) b) 
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(b) Completion into solar cells devices 

After selenization of the Cu-Sn-Zn layers, completion into full devices was done by etching the absorbers 

surface with aqueous KCN in order to remove residual Se and CuxSe phases. Subsequently, CdS is 

deposited by chemical bath route, i-ZnO, and Al:ZnO layers were sputtered and finally a Ni/Al contact grid 

added. Contact grids were used for all solar cells, except for the cells of section 5.3.2. The size of the 

regular solar cells is 0.5 x 1 cm². Solar cells for mapping purposes have a size of 0.5 x 0.5 cm². Several solar 

cells can be made on a single sample, as shown on figure 2.6. 

 

 

Figure 2.6: Example of solar cells made on a 2.5 x 2.5 cm² sample (the upper and lower edges of the 

complete sample have been removed).  

 

 

2.2   Characterization techniques 
 

2.2.1 Identical location analysis 

The Identical location (IL) technique enables the investigation of an identical location on a sample before 

and after a transformation. It was first presented in 2008 by Mayrhofer et al. [48], and used in their study 

to perform TEM analyses on a catalyst before and after electrochemical treatment. The method consists 

to use TEM grids as references to be able to retrieve the same place after the treatment. 

The method seems useful to follow selenization mechanisms at microscopic scale, and especially to 

understand the origin of large scale segregation of ZnSe in the absorber layers (presented in chapter 4). 

However, the use of TEM grids is not possible, thus a simple technique to mark the surface of the samples 

was developed, as described in figure 2.7. 

Two perpendicular lines are scratched into the sample. Inside three of the quadrants an additional scratch 

is placed (see figure 2.7a) in order to leave one clear identifiable quadrant, by the absence of a scratch. 

1 cm 
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Figure 2.7b shows a zoom of 2.7a with green lines indicating the edges of the scratch and a blue dashed 

box to indicate the area of interest, which is chosen far away from the marking lines to avoid any effect 

of these scratches during the selenization. The area of interest can be analysed by mapping techniques 

such as energy dispersive X-ray spectroscopy (EDX), micro photoluminescence (-PL), and -Raman. The 

precision in location of the area of interest was found to be in the order of 1 micrometer. 

 

Figure 2.7: (a) Optical microscope image of a sample scratched with a cross and an additional scratch in 

three of the quadrants. (b) zoomed optical microscope image of the unscratched quadrant with blue 

dashed box showing the area of interest. 

 

 

2.2.2 Characterization of thin films 

 

This section presents the methods used for imaging, elemental analysis and phase analysis of a sample. 

For more information on these characterization techniques, please refer to the book “Advanced 

characterization techniques for thin film solar cells” [49]. 

 

Imaging: 

The analysis of the morphology of the thin films was done by three different methods: optical microscope 

and scanning electron microscope (SEM) imaging. 

The optical microscope used is a model BX51 from Olympus. The microscope is used in reflection mode, 

where the light source is a halogen lamp. The image of the sample is magnified by a system of lenses (UIS2 

Optical System) and acquired via the software Olympus Stream. 

Area of 

interest 
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SEM imaging is performed using a Hitachi SU-70. An electron beam is generated by the machine with an 

accelerating voltage of 7.0 kV. This electron beam is focused on the surface of the sample, to have a beam 

size of approximately 10-20 nm. Atoms from the sample are excited by the incoming electron beam and 

emit electrons, called secondary electrons. During the imaging, the area analyzed is scanned by the 

electron beam, and the secondary electrons are collected by a detector. This enables to create an image 

representative of the topography of the surface of the sample. Backscattered electrons can also be 

detected (with a different detector) during the scanning. These are electrons coming from the SEM 

electron beam, which are reflected from the sample by elastic scattering interactions with the atoms of 

the sample. Analysis of backscattered electrons provides an image of the composition of the sample. The 

sample can be analyzed in top view or cross section modes. Top view is a view of the surface of the layer, 

while cross section requires to cut the sample, and consists of observing the cut layer (observation of the 

layer in depth) 

Cross section and top view images were also acquired with a dual column focused ion beam microscope 

(FIB, FEI HeliosNanolab). After SEM imaging of the surface, Pt e-beam deposition was used to define the 

cutting line on the sample’s surface and to prevent damage to the layer during milling. An anion beam 

with 30 kV acceleration was used to mill and polish the cross section. The cross section was analyzed in 

the same dual column microscope, with an electron beam of 5 kV energy. The exact position of the cross 

section on the sample is ensured by the presence of the Pt stripe on the surface. 

 

Bulk composition: 

The chemical composition of the bulk material was analysed by energy dispersive X-ray spectroscopy (EDX 

Oxford Instruments INCAXMAX) using the same SEM machine (Hitachi SU-70), with an electron beam of 

20 keV on areas of 400 x 400 m², unless stated otherwise. Because of the excitation of the atoms of the 

sample by the electron beam, X-rays are emitted by the atoms. Each atom has specific X-ray radiations, 

thus the analysis of the X-rays allows to detect and quantify the elemental composition of the layers. 

Because of the high penetration depth of the incoming electrons at the acceleration voltage used, the 

interaction volume of the electrons in the samples is about 1 micrometer. Consequently, the resolution 

of the EDX measurement is approximately 1 micrometer. The presence of different phases at different 

positions in the depth of a sample can significantly affect the results obtained with this method, since 

most of the signal recorded originates from the surface of the sample, where most of the interactions 

between the electron beam and the sample occur. 

In this thesis, the compositions of the films are mostly discussed in terms of molar ratios, with the 

following definitions (equations 2.5, 2.6 and 2.7): 

( )
( )

( ) / 2 ( ) ( )

n Zn
x Zn

n Cu n Sn n Zn

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       (2.5) 
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       (2.6) 
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        (2.7) 

 with n(X) amount of the metal X in moles. 

These ratios are used to describe the metallic films, as well as the metal-selenide ones. The choice of Cu2 

instead of Cu is motivated by the easier description of the compositions in the pseudo-ternary system 

Cu2Se-ZnSe-SnSe2 proposed by Dudchak [36] (see ternary diagram of figure 1.5 in chapter 1). In this system 

Cu, Sn and Zn have the same oxidation state than in Kesterite (Cu +I, Zn +II, Sn +IV).  

Another ratio which is extensively discussed in this thesis is the ZnSe ratio, which is defined in equation 

2.8. It represents the molar fraction of ZnSe in the binary system (Kesterite + ZnSe). 

𝑍𝑛𝑆𝑒

𝐶𝑍𝑇𝑆𝑒+𝑍𝑛𝑆𝑒
=

𝑍𝑛−
𝐶𝑢

2

𝑍𝑛
             (2.8) 

 

EDX mapping analyses were performed as well in the frame of the identical location analysis study 

presented in chapters 3 and 4. The dimensions of area analyzed are 65x48 m². The obtained chemical 

composition maps were divided into 1.02 x 1 m2 units, which corresponds to the resolution of the 

method; thus it gives a total of 64 x 48 points for each map. 

 

Composition depth-profile: 

The compositional depth profile was analysed by secondary-ion mass spectrometry (SIMS). This analysis 

is done by sputtering the layer’s surface with a focused ion beam. Secondary ions ejected from the 

samples are analyzed by a mass spectrometer to determine the elemental composition of the layer. The 

elemental composition is recorded as a function of the sputtering time, thus it gives an information on 

the depth profile of composition in the samples. However, this technique is non quantitative, thus it only 

allows comparisons of profiles of concentration. The profiles are always normalized to the maximum 

value.  

Glow discharge optical emission spectroscopy (GDOES) is another method used for the determination of 

the profiles of composition in depth. Similarly to SIMS, the layer’s surface is sputtered. Atoms ejected 

from the surface are then excited by a plasma. X-rays are emitted by these atoms when coming back to 

their fundamental energy, which are analyzed by an optical detector to determine the nature of the 

elements. 

Phase analysis: 

The phase analysis of the bulk material was examined by X-ray diffraction (XRD), with a Bruker D8 

apparatus. This measurement is done to determine the atomic structure of the material under 

investigation. The sample analyzed is illuminated by a monochromatic beam of X-rays, which are 
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diffracted in several specific directions by the crystals present in the films. These directions can allow to 

identify the structure of the crystals and the phases which are present. XRD measurements were 

performed in grazing incidence mode, where the position of the X-ray source is fixed, while the detector 

is moving. 

The phase analysis at the surface of the samples can also be analyzed by Raman spectroscopy, up to a 

depth of less than 100 nm, depending on the wavelength of illumination. Monochromatic light is shining 

on the sample, and interacts with molecular vibrations of the material. As a result, the energy of the laser 

photons will be shifted up or down. This shift is giving information on the vibration modes of the system, 

and allow to characterize specific compounds. Raman and-Raman spectra were obtained by means of a 

Renishaw inVia Micro-Raman spectrometer. 

The thickness of metallic layers was determined by X-ray fluorescence, which is a technique allowing the 

measurement of the composition of a sample. An X-ray photon beam is focused on the surface of the 

sample to analyze, which causes the ionization of some of the atoms of the material by ejection of an 

electron. In the ionized atoms, electrons in higher orbitals than the electron ejected will fall into lower 

energy states to finally reach the state which was occupied by the electron ejected. This decrease of 

energy of the electrons in the atom are accompanied by emission of photons (fluorescence). The energy 

of fluorescent photons corresponds to the difference of energy between orbitals of the element. Thus it 

is characteristic of the element and the elemental composition of the material can be detected. The 

machine is calibrated to provide metals thickness directly from the intensity of each element. 

 

 

2.2.3 Electro-optical characterization of the solar cells 

 

(a) Basics of solar cells 

The electronic behavior of a solar cell can be described by the equivalent electrical circuit of figure 2.8. It 

contains a source of electrical current, which delivers a continuous current density Jph, a diode in parallel 

of this source of current and two resistances, one in series and the other in parallel. The series resistance 

models the electrical resistance of the materials where the current is flowing, while the parallel (shunt) 

resistance models shunt paths which can exist in the solar cells, due to pinholes, conductive phases in the 

absorber, or defects of the crystal. To achieve good efficiencies, Rs needs to be as low as possible and Rp 

the highest possible.  
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Figure 2.8: Equivalent circuit of a solar cell. 

Equation 2.9 describes the relationship between the current density and the voltage applied to the solar 

cell, under illumination. 

 

𝐽 = 𝐽𝑝ℎ − 𝐽0𝑒𝑥𝑝 (
𝑞(𝑉+𝐽𝑅𝑠)

𝐴𝑘𝑇
) −

𝑉+𝐽𝑅𝑠

𝑅𝑠ℎ
      (2.9) 

   

where V denotes the applied voltage, J0 the dark saturation current density, q the electron charge, A the 

diode ideality factor, k the Boltzmann constant, T the absolute temperature, Jph the light generated 

current density, and the parasitic Rs (series) and Rsh (parallel) resistances. Electrical currents are described 

in current density (in A/cm²), which corresponds to the current delivered by the solar cell (A) divided by 

its total area. 

A typical current density-voltage (JV) curve is presented in figure 2.9. As described in chapter 1, the 

rectangle F is taken at the J and V values for which the power J×V is maximum. The important parameters 

are the open circuit voltage Voc, which is the voltage obtained when no current flows, the short circuit 

current density and the fill factor. The fill factor is the ratio of the area of the rectangle F versus the area 

of the rectangle E. It describes the squareness of the JV curve. 

The power conversion efficiency () of the solar cell is calculated as the ratio of the power output versus 

the power input (power of light), as in equation 2.10. 

 

inputP

VJ maxmax .
 .           (2.10) 

 

It can be calculated using the values of fill factor, Voc and Isc as follows: the fill factor is defined in equation 

2.11. 

 

ocsc VJ

VJ
FF

.

. maxmax           (2.11) 
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Figure 2.9: Typical JV curve measured under illumination (red curve). 

 

Finally the efficiency can be written as in equation 2.12. 

input

ocsc

P

VJFF ..
           (2.12) 

 

The series and shunt resistances can as well be derived from this type of curve. The series resistance is 

calculated as 
A

B
Rs   and shunt resistance as 

C

D
Rsh   (see equation 2.9). 

The second characterization technique is the quantum efficiency (EQE). An example is given in figure 2.10. 

It measures the proportion of current collected (compared with the intensity of the light) for a certain 

wavelength. It allows to understand the photocurrent collection and find the causes of current losses. 

The right edge (highest wavelengths) of the curve is due to the limit of absorption of the absorber, and 

allows to determine its bandgap. The left edge is due to absorption of the TCO and buffer layer. For further 

information about the characterization of a solar cell, the reader is invited to refer to [50]. 

 

 

Voc 

Vmax 

Jsc 

Jmax 
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Figure 2.10 : External quantum efficiency curve of a Kesterite solar cell. 

 

 

(b) Methods of analysis 

Current-voltage characteristics are measured with a home-built setup. A halogen lamp (100 mW/cm²) is 

used to simulate the AM1.5 spectrum. The measurement is calibrated by measuring the short circuit 

current of a certified reference silicon solar cell. Details on I-V characteristics will be given in the 

introduction of chapter 5. 

A software developed by Thomas Weiss (University of Luxembourg) is used to fit the current-voltage (J-V) 

characteristics obtained, and extract values of series resistances, shunt resistances, as well as diode 

factors. Details on the fitting methodology can be found in a publication of Burgers et al. [51]. 

External quantum efficiency (EQE) measurements were performed using a home-built setup, using a 

Xenon and Tungsten lamp as light sources. The beam area is 1x1 mm². The system is calibrated by the 

measurement of a silicon and a InGaAs photodiode. 
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3 Preparation of metallic Cu-Sn-Zn precursors 
 

Aim of the chapter 
This chapter is devoted to the study of the synthesis of Cu-Sn-Zn metallic precursors. The developed 

process of electrodeposition of Cu/Sn/Zn stacks is presented first, including the specificities of each of the 

layers that constitute the stack, in terms of morphology and composition. The second part investigates 

the effects of metals alloying in the precursors leading to the formation of Cu-Sn and Cu-Zn phases. 

Especially this latter section aims at studying the spatial reorganization of the metals caused by the 

alloying. 

 

3.1  Introduction: electrodeposition and alloying of Cu-Sn-Zn thin films 
 

3.1.1 Background 

 

Electrodeposition for photovoltaics: 

Electroplating is a technique that allows the deposition of a layer of metal or semiconductor on the surface 

of a conductive material. The method was already in use around 200 BC in Peru, for the deposition of gold 

on copper by electroless plating (without external source of electric current) [52]. Modern electroplating 

started in 1805 with the work of Luigi Brugnatelli, who performed electrodeposition of gold using the 

Voltaic Pile invented in 1800. Nowadays, there are many industrial applications of this technique, such as 

the deposition of anti-corrosion layers, or decorative plating (gilding or chrome plating). 

The use of electrodeposition in photovoltaics was motivated by the possibility to prepare thin films of a 

few hundred nanometers relatively easily, with a high control of the thickness, which allows the 

deposition of metals or semiconductors for thin film solar cells. Furthermore, this process is easily 

upscalable, which is a great advantage for further development of the process at industrial scale. In the 

field of Kesterite solar cells, the use of electrodeposition is rather recent: in 2008 and 2009  were reported 

stacked electrodeposition [53], [54] and co-electrodeposition [55] of Cu-Sn-Zn for fabrication of CZTS solar 

cells, followed by a high temperature treatment in presence of sulfur. A first power conversion efficiency 

of around 1% was achieved using stacked electrodeposition [54]. This efficiency rapidly increased to 3.2%, 

reported by Scragg et al. in 2010 [47]. In 2012, a breakthrough was achieved by Ahmed et al. who 

published a 7.3% efficient CZTS solar cell [40], and Guo et al. with a 7% CZTSe solar cell [56], both 

introducing a new prealloying step between the electrodeposition and the selenization/sulfurization. 

More recently, Vauche reported a 9.1% efficient CZTSe solar cell. The increase of efficiency was made 

possible by working on post selenization treatments (etching and prealloying), and buffer layer 

optimization [41], [57]. For more details on the electrodeposition of Kesterite thin films, review articles of 

the activity are available [18], [26]. 
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Concerning the electrodeposition process, sequential deposition of only the metals is the most commonly 

used for Kesterite solar cells. Different stack orderings have been explored, however because of their 

different standard reduction potentials (Cu2+/Cu = 0.34V; Sn2+/Sn = -0.14V; Zn2+/Zn = -0.76V vs. NHE [58]), 

only the sequence Mo/Cu/Sn/Zn avoids issues of metal exchange and reduces problems of layer stripping 

during the sequential electrodepositions. An alternative to this process, that was already mentioned 

briefly, is the so-called co-electrodeposition which consists of electrodepositing several metals or all 

metals at the same time. A power conversion efficiency of 8% was reported [59], by co-electrodepositing 

a Cu-Sn-Zn precursor.  

Other types of electrodeposition processes have been investigated, as described in the review by 

Colombara et al. [18]: co-electrodeposition of Cu, Sn and Zn or co-electrodeposition of Cu, Sn, Zn, S or Se. 

Although a very good result of 8% power conversion efficiency achieved by selenization of a co-

electrodeposited Cu-Sn-Zn layer [60], these techniques still have strong disadvantages compared to 

sequential depositions. The fact that each element has different deposition potentials, different diffusion 

coefficients and different pH range stabilities makes the choice of the electrolyte chemistry very tricky. 

Furthermore, sequential electrodeposition offers the advantage to have a very easy control of the 

stoichiometry of the material, by simply changing the relative thickness of the layers. For these reasons, 

in this thesis only a sequential Cu/Sn/Zn deposition was used.  

 

Alloying of Cu-Sn-Zn thin films: 

In the most usual case of a sequential deposition method, the films have a strong vertical composition 

gradient. To alloy the metals and thus improve inter-mixing of the elements, treatments at temperatures 

of 200°C to 350°C have been reported [40], [44], [57]. Other beneficial effects of this treatment can be 

the improvement of compactness, homogeneity and adhesion to the Mo layer [61]. However, for this 

thesis the majority of the solar cells were fabricated by directly performing the selenization step after the 

electrodeposition of Cu/Sn/Zn. The choice of not performing a deliberate alloying before the selenization 

was motivated by the necessity to keep the process as simple as possible and avoid potential sources of 

non-reproducibility. However, even by avoiding this annealing at 200-350°C, alloying of the metals is 

supposed to occur in the layers during the heating process of the selenization, before incorporation of the 

selenium, and its effects will be described in chapter 4. 

Thermodynamic studies of Sn-Zn-Cu ternary system have been reported at 230°C [62], as well as 250°C 

and 600°C [63]. They show that under the conditions that are commonly used for alloying Cu-Sn-Zn 

precursors (annealing at 200 to 400°C), or for selenization (up to 600°C), a ternary compound Cu-Sn-Zn 

does not exist; only Cu-Sn and Cu-Zn are alloyed, and are slightly miscible with Zn (for Cu-Sn) or Sn (for 

Cu-Zn). The minimization of surface energy for these two coexisting alloy phases will then provide a driving 

force for many important phenomena such as sintering, wetting, and grain coarsening [64]. These 

phenomena lead to segregation of the metal alloys. Vauche et al. reported a bilayer morphology after 

annealing at 200°C, with Cu-Zn at the base of the film, and a Cu-Sn layer at the top. Their motivation to 

use low temperature annealings is to avoid the melting of tin which causes the formation of bumps in 
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their layers. Arasimowicz et al. also reported the formation of a bilayer after annealing at 350°C of a 

Cu/Sn/Cu/Zn precursor [44]. In this specific case, the sequence of stack leads to the formation of Cu-Sn 

layer at the bottom (on the Mo), and Cu-Zn on the top. Another type of morphology, with vertical columns 

(from the bottom to the surface of the film) of Cu-Zn and Cu-Sn after prealloying was described by Ahmed 

et al. [40], and Arasimowicz et al. [44]. 

 

 

3.1.2 Objectives and structure of the chapter 

At the start of this thesis, the best solar cells conversion efficiencies reported were 7.3% by Ahmed et al. 

[40] and 3.2% by Scragg et al. [47] for processes using electrodeposited precursors. Unfortunately, no 

detailed information on the process used by Ahmed was available, especially on the chemistry of the 

electrolytes used for the deposition of the metal stacks. The main difference between the works of Scragg 

and Ahmed is the sequence of the metallic stacks, namely Cu/Sn/Cu/Zn for Scragg and Cu/Sn/Zn for 

Ahmed. It was then hypothesized, based on the work of Arasimowicz [42], that obtaining a Cu/Sn/Zn stack 

was the key point to achieve high efficiency. Thus the first objective which is presented in section 3.2 is 

the investigation of modifications of the process developed by Scragg to achieve a Cu/Sn/Zn stack. 

 
The following section (3.3) aims at describing the layers that are produced with the modified process, and 

compare them with electrodeposited layers presented in the literature. The properties investigated are 

the homogeneity of the thickness over the area, the roughness, and the compactness of the films. This 

part is more descriptive and aims at giving the reader a good understanding of the properties of the 

samples that are produced with the electrodeposition method. Most reports in the literature are 

concentrated on describing the layers at a scale of about 10 micrometers. This section 3.3 compares the 

properties of the layers obtained with this literature, and will as well provide further information on the 

layer’s properties at a scale of more than 50 micrometers, which will then be of importance to investigate 

the segregation of metals during alloying. 

The last section aims at investigating the effects of the alloying of Cu, Sn and Zn metals on the 

homogeneity of the metals in the films. As described in section 3.1.1, the formation of alloys of Cu-Sn and 

Cu-Zn is known is the literature, and the formation of these alloys in Cu-Sn-Zn electrodeposited precursors 

was already reported [40], [42], [57]. However, the study of alloyed thin films at a larger analysis scale 

than previously is reported in section 3.4, and aims at investigating whether large segregations of metals 

could occur during the alloying. In order to investigate this, alloying of the metal stacks is deliberately 

done by annealing the layers at 350°C for 30 minutes. This study is done in the frame of the investigation 

of the hypothesis that the alloying leads to a segregation of the metals at microscopic scale, which then 

induces a segregation of ZnSe during the selenization of the metals. The segregation of ZnSe will then be 

studied in the chapter 4. 
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3.2  Electrodeposition process and stack ordering 

 

3.2.1 Process modifications 

At the start of the project, several groups already had achieved relatively high efficiencies by 

electrodeposition of metals and sulfurization or selenization. A best efficiency of 7.3% had been reported 

by Ahmed et al. [40] by selenization of an electroplated Cu/Sn/Zn stacked precursor. However, full details 

on the chemistry of the electrolytes are not available. Scragg et al. as well obtained efficient solar cells 

using different approaches, as described in table 3.1. They first reported an efficiency of 0.8% [65], using 

a stack Cu/Sn/Zn. However, they report a poor coverage by the Sn layer, which deposits with a very low 

nucleation density. Thus large grains of Sn are growing, but are too far from each other to coalesce at the 

end of the deposition, leaving empty spaces. The same group then improved their process by changing 

the tin solution chemistry [47], and achieved a dense and flat layer of this metal, which was a great 

improvement. However, they report strong difficulties to deposit zinc on the new type of tin. Thus, they 

opted for a different approach, and synthesized stacks of Cu/Sn/Cu/Zn, because of the possibility to 

achieve depositions of Cu on Sn, and of Zn on Cu. This led to a best power conversion efficiency of 3.2%. 

 

Table 3.1: Summary of results obtained with different types of process. The compositions corresponding 

to each solution reference are summarized in table 3.2. 

report Cu 

solution 

reference 

Sn 

solution 

reference 

Zn 

solution 

reference 

Drying  

after Sn 

material ordering Reported 

device 

efficiency 

Scragg [65] Cu1 Sn1 Zn1 Yes CZTS Cu/Sn/Zn 0.8 % 

        

Scragg [47] Cu2 Sn2 Zn2 Yes CZTS Cu/Sn/Cu/Zn 3.2% 

        

Berg [46] 

 

Cu2 Sn2 Zn3 Yes CZTS Cu/Sn/Cu/Zn  

Arasimowicz 

[42] 

Cu2 Sn2 Zn3 yes CZTSe Cu/Sn/Cu/Zn 1% 

        

Crossay Cu2 Sn2 Zn3 no CZTSe Cu/Sn/Zn 5% [66] 
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For this thesis, it was decided to try again to achieve a three-stack precursor, motivated by the recent 

results of Ahmed et al., and by the hope to reduce process steps and thus probably improve its reliability. 

For this, modifications of the process used by Scragg, Berg and Arasimowicz were done. One of the 

modifications was to avoid drying the layers between each deposition step, for two reasons: (i) avoid 

formation of stains on the layers, and (ii) avoid exposure of the layers to air. The electrolytes used are the 

same as those used by Berg and Arasimowicz (see tables 3.1 and 3.2). With this method, dense and 

covering thin films of zinc were achieved, and a power conversion efficiency of 5% was achieved by using 

the Cu/Sn/Zn layers, which was briefly reported in [66]. This was a large improvement, since selenide 

Kesterite solar cells from the Cu/Sn/Cu/Zn stack did not exceed 1%, as reported by Arasimowicz [44]. 

However, the reason for the ability to deposit zinc on tin remains unclear. A probable reason is that the 

new process avoids the formation of a resistive oxide layer on the surface of the tin, but the use of solution 

Zn3 instead of Zn2 which Scragg was using (see table 3.1) could also be the reason for this. The value of 

best efficiency was then increased to 5.9% by Arasimowicz, also by using a 3-stack Cu/Sn/Zn [42] and the 

same electrolytes. 

This modified process was then used for the whole work presented in this thesis, and exclusively Cu/Sn/Zn 

stacked precursors were used. 

 

Table 3.2: Electrolytes used for the deposition of Cu/Sn/Zn or Cu/Sn/Cu/Zn stacks.  

Solution Metal salt complexant Background 

electrolyte 

surfactant 

Cu1 CuCl2 sorbitol NaOH  

Cu2 CuSO4 sorbitol NaOH Empigen 

     

Sn1 SnCl2 sorbitol NaOH  

Sn2 

 

Sn(SO3CH3)2  CH3SO3H Empigen 

Zn1 ZnCl2  pH3 buffer  

Zn2 ZnSO4  K2SO4 + pH3   

Zn3 ZnCl2  KCl + pH3  
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3.2.2 Challenges of using Cu/Sn/Zn stacks 

One of the main problems which appeared during the optimization of deposition parameters for the 

synthesis of the three-stack precursors is the formation of pinholes and delamination of the layer, mostly 

because of the need to deposit relatively thick copper layers (around 200nm). This is reported in the 

literature, and is probably due to hydrogen evolution (reaction 3.1) at the working electrode: 

2H2O+ 2e- → H2+ 2OH-         (3.1) 

A pitting of the layers can be caused by hydrogen bubbles clinging to the surface where the deposition 

occurs. In these micropores, hydrogen can create a compressive stress as more and more gas accumulates 

[67]. 

Direct evidence of this phenomenon was observed by electroplating Cu, Sn and Zn on a Mo substrate 

which is static in the electrolyte (neither stirring the solution, nor rotating the sample). Bump-like features 

appear on the surface of the sample, as can be seen in figure 3.1a), which at some point break and bubbles 

of gas are released from the broken metallic layer. Bare molybdenum is then exposed, which shows that 

the hydrogen gas is forming between the molybdenum and the copper layer. The bumps observed are 

referred to as blisters in the following of this thesis. However, formation of large size blisters (figure 3.1a) 

was only observed for samples grown without stirring of the solution. In the case of samples grown using 

a rotating disk electrode, the flow of liquid on the surface of the sample is higher, which helps to remove 

hydrogen bubbles when they form. All samples presented in this thesis, except for the sample of figure 

3.1a, are grown using a rotating disk electrode. 

The formation of blisters can be described in different steps (figure 3.1b): 

(i) Initiation of the blister: a bubble of hydrogen is stuck inside the Cu layer.  

(ii) Growth: during Cu deposition, H2 is formed preferentially in the vicinity of blisters already 

present, which grow. This occurs mainly during Cu and Zn deposition, which are done with 

the most negative deposition potentials. 

Thus, optimization of the deposition potentials was done by trying to have the least negative possible 

values of potentials in order to decrease at most the formation of hydrogen, and avoid this problem of 

blistering. 

Differences of behavior between samples grown under the exact same conditions were observed: some 

samples did not have any of these blisters, whereas others did, but no final explanation for this 

discrepancy of results was found. A possible explanation is that the molybdenum substrate could have 

micropores, which could “trap” gas bubbles (air remaining after introducing the layer in solution, or H2 

bubbles). Differences of wettability between Mo substrates were often observed, which could tend to 

validate this hypothesis of microstructure differences between Mo samples, but this still needs to be 

investigated. However, the formation of different amounts of blisters on different samples should not 

change the plating efficiency between the different samples: it was calculated that in the worse scenario 

observed, the amount of H2 in the blisters was about 4 orders of magnitude lower than the amount of 

metals. 
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Figure 3.1: (a) Example of Cu/Sn layer deposited on Mo with formation of blisters due to hydrogen 

(sample grown without stirring or rotation), the red ovals highlight some of the bumps. (b) Proposed 

mechanism of formation of blisters, (c) and (d) top view optical microscope images of a Cu/Sn/Zn layer 

as deposited, with blisters. 

The formation of these blisters will then have an impact on further steps of the fabrication of the solar 

cells. After selenization, blisters are still seen in the films, and appear to be very fragile, which then 

strongly decreases the performance of the solar cells. This will be investigated further in the thesis, in 

section 5.3.1. 

In the following section, the specificities of each layer of the three-stack Cu/Sn/Zn are presented, including 

the morphology and composition homogeneity at macroscopic and microscopic scales. 
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3.3  Properties of as electrodeposited layers and stacks 
This section will describe thin films formed after electrodeposition of Cu, Sn and Zn onto Mo 

substrates using the new process presented in section 3.2.1, deposited under standard plating conditions 

described in chapter 2. The parameters studied are the thicknesses of each metallic layer. The final 

composition of the Cu/Sn/Zn stack is given by the relative thicknesses of the individual metal layers, and 

the sum of the three layers informs on the quantity of matter present in the film. Other characteristic 

parameters are the roughness of the films, their compactness, or the size of metals grains. In this section, 

only thin films of Cu/Sn/Zn obtained directly after deposition are considered, with no consideration about 

alloying of metals, which will be described in the next section. Analyses are done at macroscopic scale 

(centimeter scale, which corresponds to the size of an entire sample), and at microscopic scale 

(micrometer scale). 

 

3.3.1 Macroscopic scale 

Figure 3.2 shows digital photographs of typical surfaces of glass/Mo/Cu, glass/Mo/Cu/Sn and 

glass/Mo/Cu/Sn/Zn as electrodeposited. All layers are very reflective, which is a sign of smooth surfaces. 

No macroscopic feature is observable by the naked eye when the depositions are carried out correctly. 

Profilometer measurements on electrodeposited layers of Cu, Cu/Sn and Cu/Sn/Zn show roughness 

averages (Ra) in the order of 10 nm for the Cu layer (5% of Cu thickness), 25 nm for Sn (10% of thickness) 

and 30-40 nm for Zn (15% of Zn thickness). From these measurements, one can conclude that all layers 

are rather smooth. This will be discussed further in the next section, where each metallic layer is analysed 

at the microscopic scale. 

 

 

    

Figure 3.2: Digital photographs of (a) Cu on Mo, (b) Sn on Mo/Cu, and (c) Zn on Mo/Cu/Sn as 

electrodeposited using the standard methodology described in section 2.1.1. 

To assess the homogeneity of thickness and composition of the films over almost the complete sample 

area, X-ray fluorescence (XRF) measurements were done at the scale of several centimeters on Cu/Sn/Zn 

a) b) c) 
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samples using a XRF machine calibrated to determine directly the thickness from these measurements. 

Figure 3.3 shows the thickness variation of the Cu, Sn and Zn layers of a Cu/Sn/Zn sample. Cu and Sn are 

the most homogeneous layers of the stack, with a standard deviation of thickness of respectively 2 nm 

and 3 nm, corresponding to coefficients of variation of around 1% for Cu and Sn. The zinc layer is the least 

homogeneous, with a standard deviation value of 13 nm, which represents around 6% variation of 

thickness. The distribution of thickness is radially-symmetric (the center of symmetry being the center of 

the electrodeposited area), and zinc thickness is increasing at the edges of the thin film. The increase of 

Zn thickness at the edges of the deposition area can be explained by an increase of electric potential (the 

potential becomes less negative) over the distance from the contacts, due to the resistance of the Mo 

layer. This results in a faster growth of Zn at the edges of the sample, because of the more negative 

potential. 

 

 

Figure 3.3: Distribution of thickness of (a) Cu, (b) Sn, (c) Zn from XRF measurements at NEXCIS. The film 

is plated with charges 2.2 C of Cu, 1.4 C of Sn, 2.8 C of Zn. (d) shows the area of the samples (dashed 

blue line) where the XRF measurements a, b and c were done. 

 

The thickness maps of figure 3.3 were obtained by measuring 16 different points inside the zone of 

analysis. The deposition being radially-symmetric, a representation of the percentage of zinc thickness 



48 
 

increase as a function of the distance to the center can be plot using all these data points. This graph is 

shown in figure 3.4a. This allows to characterize the Zn thickness increase over the area of the sample, 

and use it as a reference to estimate the composition of the films at different positions. This was found to 

be in good agreement with the other samples prepared throughout the thesis work. Figure 3.4b shows an 

estimated percentage of increase of zinc over the area of a complete sample, from the data of figure 3.4a. 

This model will be used for the following of the thesis. 

 

 

 

Figure 3.4: Evolution of (a) percentage of increase of thickness of the zinc layer from the center of the 

sample, as a function of distance to the center of the sample, (b) expected increase of zinc layer 

thickness (%) on a complete sample. 

 

Several samples with different thicknesses of Cu, Sn and Zn were analyzed with XRF to assess the 

reproducibility of the process, as well as to calculate the faradaic plating efficiencies for each of the 

deposition steps. Figure 3.5 shows the evolution of thickness of each layer, compared to the coulombic 

charge passed during each deposition. The electrodeposition process is robust, as there is a linear 

relationship between charge and thickness for all deposition processes. Faradic plating efficiencies of 82 

%, 96 % and 63 % are calculated for Cu, Sn and Zn respectively. Thus the composition of the film can be 

easily controlled taking into account these efficiencies by electroplating until a certain charge is passed. 

 

a) b) 
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Figure 3.5: Evolution of the thickness of each metallic layer with the charge passed during 

electrodeposition of the corresponding metal. 

 

In conclusion, the main characteristics of each layer are summarized in table 3.3. Each layer is smooth, 

and no macroscopic feature is observable optically. The slight increase of roughness average values for 

tin and then for zinc layers are probably due to the fact that these layers are deposited on surfaces that 

are already rough (copper is deposited on a flat surface of Mo, whereas zinc is deposited onto a surface 

of tin which is already rough). Cu and Sn are laterally homogeneous, whilst Zn has a radial thickness 

variation over the area, with the thickness at the edges being typically 15 to 20% thicker than at the center. 

A similar problem of thicker zinc deposits at the edge of the samples was reported by Berg [46], in the 

case of deposition of zinc on a Cu substrate. It was solved in this case by increasing the concentration of 

zinc in the electrolyte. For the electrodeposition of Zn on Sn studied here, the concentration of zinc is 

already very close to the solubility limit, thus it was not possible to investigate even higher concentrations 

to improve the homogeneity of the zinc layer. 

Table 3.3: Summary of properties of each layer of a Cu/Sn/Zn electrodeposited stack. 

Layer Plating efficiency (%) Thickness standard 

deviation (total area) 

(%) 

Roughness average 

(nm) 

Copper 82  1  10  

Tin 96  1  25  

Zinc 63  6  30 – 40  
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3.3.2 Microscopic scale 

At the micrometer scale, SEM top view images (figures 3.6a, 3.6b and 3.6c) show dense and relatively 

smooth layers for all metals. The Cu layer is composed of grains of about 200 nm size, Sn of grains of 200 

nm to 1 m and Zn about 200 nm. 

In terms of morphology (grain size, roughness), these layers are very similar to the electrodeposited 

champion 9.1% Cu/Sn/Zn stack presented by Vauche et al. [41], [57], except for the zinc layer, which in 

their case seems to be more porous and rougher. A disadvantage of having very compact layers may be a 

lower tolerance to the lateral compressive stress caused by volume expansion during the selenization 

process. SEM images show the layers to be laterally homogeneous in morphology. The morphologies can 

also be compared with reports of Berg [46] who deposited Cu, Sn and Zn layers using the same electrolytes 

than in this thesis. The morphologies are very similar for Cu and Sn (very similar shape and size off grains). 

The zinc layer is quite different with much smaller grains. This is probably due to the different stack 

ordering used by Berg, Cu/Sn/Cu/Zn, where Zn is deposited on Cu instead of tin in the case presented 

here. Different substrates can infer different nucleation densities for instance, which can be the cause for 

differences in final grain sizes. 

    

               

Figure 3.6: SEM top view images of (a) Cu layer on glass/Mo, (b) Sn layer on glass/Mo/Cu, (c) Zn layer 

on glass/Mo/Cu/Sn, as electro-deposited; (d) schematic representation of an as-deposited Cu/Sn/Zn 

stack, side view. 

a) b) 

c) 
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To assess the lateral homogeneity of composition at the microscopic scale, an EDX map of a Cu/Sn/Zn 

sample as deposited was measured on a 65 x 45 m2 area. From this EDX map, molar fractions of each 

metal are calculated and their distribution is displayed as maps, shown in figure 3.7. To be consistent with 

the representation of compositions on the Kesterite quasi-ternary diagrams, the same molar fractions are 

used in the case of the EDX maps, as described in section 2.2.2 (equations 2.5, 2.6 and 2.7).  

 

 

Figure 3.7: EDX mapping of Cu/Sn/Zn sample as deposited: (a), (b) and (c) lateral chemical maps 

displaying molar fractions of respectively Cu2, Sn and Zn. The color scale of chemical maps is the same 

for 3.7a, 3.7b and 3.7c, and will remain consistent for all chemical maps presented in this thesis. (d) 

compositions of every point of the chemical maps 3.7a, 3.7b and 3.7c, each point of the ternary diagram 

is color-coded to represent the number of points of the chemical map which have the same 

composition. 

The chemical maps generated from the EDX mapping on the surface of a Cu/Sn/Zn are shown in figure 

3.7a, 3.7b and 3.7c. They perhaps reveal a minor segregation of the metals, at a scale of about 1-3 

micrometers for all three metals. However, the overview of compositions on the analysed area (figure 

3.7d) shows a fairly narrow distribution of compositions, meaning that no strong lateral segregation of 
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metals has occurred at this step of the process at the microscopic scale. No equivalent study at this scale 

of more than 50 micrometers can be found in the literature. 

 

3.3.3 Summary: electrodeposited stack properties 

After the analysis of Cu/Sn/Zn stacks electrodeposited on glass/Mo substrates, four key figures (figure 

3.8) and three main properties of these films can be underlined: 

 

 

Figure 3.8: Key figures describing as deposited Cu/Sn/Zn samples: (a) cross section schematic, (b) 

evolution of zinc thickness laterally, (c) lateral chemical maps displaying molar fractions of Zn. (d) 

compositions of every point of the chemical map 3.8c, each composition being color-coded to represent 

the number of points which have the same composition. 

 

A few key characteristics can be listed: 

i) For all layers, the morphology is dense and the surface is flat and smooth. 
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ii) The composition at microscopic scale is fairly homogeneous (figure 3.8c and 3.8d), compared to 
distributions of elements at microscopic scale after alloying (the distribution of elements after alloying 
will be described in section 3.4), or after selenization (in section 4.4). 

iii) The composition at microscopic scale is homogeneous over the total sample area (2.1x2.1 cm²), except 
for an increase of zinc molar fraction at the edges, due to an increased thickness of zinc towards the edges 
of the deposit (figure 3.8b). A homogeneous zone can be used on the center of the sample, of about 1x1 
cm², where the thickness standard deviation of Zn is comparable to that of Cu and Sn. 

iv) There is a strong in-depth inhomogeneity, due to the architecture of the layers prepared, as stacks 
Cu/Sn/Zn (figure 3.8a). 

 

 

3.4  Alloying of Cu/Sn/Zn stacks 
 

3.4.1 Introduction 

This section presents results on the alloying of precursor layers at 350°C. the first objective is to study the 

effects of alloying at the scale of the sample, and especially investigate the effect of the composition 

change over the surface, induced by the gradient of composition of zinc (increase of zinc content towards 

the edges of the deposited films). The second objective is to study the samples surface at a scale of 65 x 

45m², which was not yet done in the literature, with the objective to investigate the size of the 

segregation of metals in the layers after alloying. This study involves the use of mapping tools to 

understand in detail the lateral repartition of the metals. Focused ion beam (FIB) cross section images are 

also presented, to investigate the in-depth distribution of phases. 

 
 

3.4.2 Description of alloyed sample at macroscopic scale 

The standard alloying process which was used for this work was performed at 350°C for 30 min, in a RTP 

oven, which allows fast heating and cooling ramps (see chapter 2). A first analysis of a sample after alloying 

was done to investigate the in-depth distribution of metals (figure 3.9). It appears that the three metals 

are uniformly distributed in-depth, thus the structure is probably not a bilayer of Cu-Zn and Cu-Sn, and is 

rather columnar as described by Ahmed [40]. An increase of Zn signal is seen at the surface of the layer, 

which indicates the presence of a Zn-rich layer at the surface, probably ZnO. 

 



54 
 

 

Figure 3.9: Glow discharge optical emission spectroscopy (GDOES) in-depth analysis of a Cu/Sn/Zn 

sample after alloying at 350°C for 30 min. Each element is normalized at its maximum value. The blue 

dashed bar indicates the probable limit between the layer and the Mo back contact. 

Figure 3.10a shows a photograph of a sample after this process. A change of color is observed: the silver 

grey color of the zinc top surface is replaced by a brown color after alloying, due to the formation of alloys 

of Cu-Sn and Cu-Zn, and perhaps also because of the formation of an oxide layer on the surface of the thin 

film. 

Another interesting feature which is observable on the picture of the alloyed sample (figure 3.10a) is the 

formation of a nearly-circular pattern of around 1.6 cm diameter, whose center corresponds to the center 

of the deposited area. This circular feature is not optically present in the as electrodeposited precursor, 

but is observed for all alloyed samples samples. This pattern was analysed, with the help of a profilometer 

and EDX to understand what it is, as well as what is its origin. For this, the sample presented in figure 

3.10a was marked at different positions, as shown in figure 3.10b, to determine precise areas where EDX 

analyses are performed. 

Figures 3.10c shows the evolution of the ratio Sn/(Cu+Sn+Zn) at the different positions of interest. The 

values far from the circle are nearly identical (positions 1 and 4), however close to the circle a strong 

increase of tin is observed on position 2, and a strong decrease at position 3, which corresponds to the 

circle. It can thus be speculated that the optical feature observed as a circle is a zone of the sample from 

which tin has migrated towards the center of the sample. 
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Figure 3.10: (a) Digital photograph of a Cu/Sn/Zn stack after alloying at 350°C for 30 min; (b) 

enlargement of image 3.10a (red square), the red numbers mark the positions of the EDX analyses, in 

the vicinity of the circular pattern. (c) and (d) evolution of ratios Sn/(Cu+Sn+Zn) and Zn/(Cu+Zn) as a 

function of position in the vicinity of circular pattern. 

If the zinc ratio is calculated by excluding tin, as Zn/(Zn+Cu) shown in figure 3.10d, the evolution of this 

ratio is as expected, increasing due to the increased quantity of zinc towards the edge of the sample (due 

to the electrodeposition, explained in 3.3.1), which strengthens the idea that Cu and Zn did not migrate, 

and only tin migration is responsible for the change of Sn/(Cu+Sn+Zn) ratio. Furthermore, tin being the 

only liquid species at the alloying temperature, it is the most likely to diffuse over a large distance of more 

than 600 microns. 

To help understand the driving force of this phenomenon, chemical alloying reactions occurring during 

the annealing have to be considered (reactions 3.2 and 3.3). 

Cu+Zn  CuZn   G = -8 to -12 kJmol-1 at 300 K      (3.2) 

6Cu+5Sn  Cu6Sn5   G = -7 kJmol-1 at 473 K       (3.3) 

Assuming a linear relationship between Gibbs free energy of reaction and reaction rates, because of the 

higher Gibbs formation energy of CuZn compared to Cu6Sn5, Cu alloys preferentially with Zn. Thus, as a 
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first approximation, the reaction of formation of Cu-Zn alloys can be considered first, and tin reacting 

afterwards. Figure 3.10d shows that from point 1 to point 4, there is a linear increase of Zn/(Cu+Zn) ratio 

from values of 0.43 to 0.49, which is in agreement with the model of section 3.3.1 (figure 3.4b). 

Figure 3.11a shows that at 350°C, in the range of Zn/(Cu+Zn)= 0.42 to 0.5, two different systems are 

present: below Zn/(Cu+Zn)=0.47, a phase of ’ CuZn is present together with a phase, constituted 

mostly of Cu. Above Zn/(Cu+Zn)=0.47, only a phase pure of ’ CuZn is present. This is shown in figure 

3.11b, to compare this observation with the data of Zn/(Cu+Zn) at different positions close to the circular 

pattern of the prealloyed sample. 

Figure 3.11b shows clearly that the position of the circle (position 3) corresponds to a change from a 2-

phase Cu-Zn system to a single phase system. In this single phase system, all Cu is alloyed with Zn, thus Sn 

migration is favored towards the inside of the sample, where the  Cu phase is present, with which Sn can 

alloy. Thus, this decrease of free copper could be the driving force for the migration of tin. As said before, 

non-alloyed tin is liquid at the temperature of the alloying, which can explain the ease for this metal to 

migrate over a relatively long distance. 

 

 

Figure 3.11: (a) Phase diagram of Cu-Zn reproduced from [68], the green dotted line indicates the 

temperature of 350°C, (b) evolution of ratio Zn/(Cu+Zn) as a function of position in the vicinity of circular 

pattern (figure identical to 3.10d), with indication of corresponding alloy phases at 350°C and dotted 

red line indicating phase transition, from phase diagram of figure 3.11a. ’ is the phase CuZn. 
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3.4.3 Microscopic analysis after alloying 

This section describes all changes that occurred in the thin film of Cu-Sn-Zn after alloying. The results 

presented in this section are all obtained by studying a single sample, at a specific position, unless stated 

otherwise. The sample is referred to as “reference sample”, and the specific position as “position of 

interest”. In the following chapter, this reference sample will be analysed at the same position after 

selenization, using the identical location microscopy method, which was adapted for the needs of this 

thesis (see chapter 2, identical location analysis). In case of the analysis of a different sample, the term 

“sister sample” refers to a sample which was grown under the exact same conditions as the reference 

sample. 

Microscopic scale analysis was performed on the reference sample on the area of interest. Figure 3.12 

compares the top view SEM images of a sample before alloying (figure 3.12a), and after annealing at 350°C 

for 30min (figure 3.12b). A clear change is observable: the image of the as electrodeposited sample is 

uniform over the total area, whereas the annealed sample has regions with different brightness. Two 

distinct regions are clearly observed: 10-20 m sized dark islands (region 1) surrounded by a speckled 

brighter area (region 2). It is also interesting to note that these same different regions are observable with 

an optical microscope, by comparing figures 3.12b and 3.12c. 

          

 

Figure 3.12: SEM top view image of (a) as deposited sister sample, and (b) annealed sample (reference 

sample). (c) optical microscope image of the reference sample, at the identical position. 

c) 

a) b) 

Region 1 

Region 2 
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To analyse the structure of an annealed sample in-depth, a sister sample grown under the same conditions 

as the reference sample was used to perform a focused ion beam microscope analysis of a cross section. 

The images are presented in figures 3.13a and 3.13b. The similarity of the surface in figure 3.13a to that 

of figure 3.12b should be noted. Figure 3.13b is a zoom showing where the cross sectional image was 

taken. Figure 3.13c shows an image of the cross section. Region 1 appears single phase and 

compositionally homogeneous in-depth, i.e. this region is called phase 1, whereas region 2 seems 

constituted of a second phase (phase 2) along with grains of phase 1. 

 

 

             

Figure 3.13: (a) Top view SEM image of an annealed sister sample, (b) zoom of top view SEM image 

3.13a showing where the cross section was cut, (c) the SEM cross section image.  

 

Grazing incidence XRD measurements of the reference sample show the presence of Cu5Zn8 and Sn phases 

(figure 3.14). The additional presence of CuZn and Cu6Sn5 is possible, but not certain due to the 

combination of overlapping peaks with other phases and the absence of unique peak for these alloys in 

the diffractogram. From the Cu-Sn-Zn phase diagram of Huang et al [63], these four alloys can be expected. 

A more detailed composition analysis will follow (chemical mapping of the surface of interest, figure 3.15). 

a) 
b) 

c) 
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Figure 3.14: XRD patterns of reference sample after prealloying at 350°C for 30 min. 

To identify the composition of the two regions, an EDX map of the area of interest was measured. From 

this EDX map, molar fractions of each metal are calculated and their distribution is displayed as maps. 

Figure 3.15 compares the SEM top view image of this area with the chemical maps of the same area 

displaying molar fractions of Zn, Sn and Cu. The reader is here reminded that the molar fractions displayed 

on the chemical maps are defined identically to the molar fractions shown on ternary diagrams 

(considering the ternary system Cu2 – Sn – Zn), for easier comparison between figures. 

To aid the comparison between the image and the maps of figure 3.15, a contour line is displayed on each 

figure, corresponding to a molar fraction of Sn=0.25. After comparison of the three chemical maps shown 

on this figure, several points can be noted: 

(i) The tin map shows the highest compositional variation (molar fraction ranging from 0.1 to 0.6), among 

the three maps (zinc between molar fractions of 0.3 and 0.6, Cu between 0.1 and 0.4). There is a clear 

correlation between region 1 of the SEM picture figure 3.15a) and tin-poor areas of the chemical map. 

(ii) There is a compositional anti-correlation between the tin and the zinc, as well as between tin and 

copper. Zinc and copper dominate region 1, but there is still a significant amount of these metals in region 

2. 

From these observations, region 1 can be assigned to a Cu-Zn phase, and region 2 to phases containing 

Cu-Sn-Zn. Knowing that a ternary Cu-Sn-Zn phase does not exist under the conditions that are 

investigated, it can be assumed that region 2 contains two binary metal alloys, Cu-Sn and Cu-Zn. This is in 

accordance with the observations made with FIB cross section analysis of alloyed sample (figure 3.13), 

where it was concluded that region 1 contains a single phase (Cu-Zn), while region 2 contains 2 phases: 

inclusions of this same phase of region 1 (Cu-Zn), in another phase (Cu-Sn). 
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Figure 3.15: (a) SEM top view image of the reference sample after annealing at 350°C (repeated from 

figure 3.12 for convenience) and molar fraction maps of (b) Zn, (c) Sn and (d) Cu. The color scale of the 

chemical maps is the same for 3.15b, 3.15c and 3.15d. Contour lines (orange in figure 3.15a, black for 

others) are the same for the four figures, and are defined by a molar fraction of Sn=0.25 (see figure 

3.15c). 

To investigate further the composition of the area of interest, figure 3.16a provides an overview of all 

compositions of the area on the common Cu2-Zn-Sn ternary. The green oval delimiting the as 

electrodeposited composition is much smaller compared to the composition spread after alloying, which 

confirms that a strong lateral inhomogeneity in composition was generated during this step. A clear 

bimodal distribution of composition is revealed, with a narrow tin-poor area, and a broader area more 

tin-rich. It is interesting to note that there is a near-invariance of ratio Cu/Zn, in other terms the changes 

of composition observed are mainly dominated by a change of tin molar fraction. 

Sn-poor compositions, which are attributed to region 1 of the area of interest (figure 3.15), are centered 

on (0.34 Cu2, 0.15 Sn). Considering the phase diagram of Huang et al. [63] (figure 3.16b), it corresponds 

mostly to phase ’CuZn(5% Sn). 

The more Sn-rich compositions (that were attributed to region 2 of the area of interest) range from 0.25 

Sn to 0.5 Sn. The broader dispersion of composition is due to the coexistence of CuZn and CuSn alloys, as 
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was described previously. Figure 3.16b shows that these compositions are mainly in a three phase field 

lying mostly along the ’CuZn(5%Sn) and Sn (+2% Zn and 2% Cu) tie line with a minority composition of 

Cu6Sn5 [63]. A larger solubility of the tin and the zinc is expected because here the alloying step is carried 

out at 350°C. Metallic Sn was clearly detected by XRD in accordance to the phase diagram. 

 

 

 

Figure 3.16: (a) Compositions of every point of the chemical maps of figure 3.15, each composition being 

color-coded to represent the number of points which have the same composition. The green oval shows 

the limit of spread of compositions of the map of the as-deposited sample (figure 3.7d). (b) 

superposition of the data from figure 1.16a onto 250°C ternary phase diagram from Huang et al. [63]. 

The reader’s attention is drawn to the fact that the 3.16b ternary diagram has Cu-Sn-Zn as axes, and not 

Cu2-Sn-Zn, to match the ternary coordinates of Huang et al. 

 

In terms of phase composition, these results are consistent with what was known previously [44]. 

Concerning the size of the metals segregation after alloying, the results are very different to what was 

previously reported. In the same case of a tri-layer Cu/Sn/Zn precursor, Arasimowicz [42] reported the 

formation of a columnar structure of Cu-Zn and Cu-Sn alloys. This is similar to the case shown here, except 

for the size of the Cu-Zn alloys. Our analysis method at a larger scale allows the observation of segregated 

alloys of a size of 10-20 microns, which is one order of magnitude larger than previously reported. It seems 

clear that chemical segregation of zinc and tin to such a large scale will influence the Kesterite growth. 

Formation of large sizes of alloys results from a successive coarsening of the phases, which is due to the 

tendency of the system to decrease the interfacial area between the different phases. It is described in 

metallurgy [69] or in emulsions where it is referred to as “Ostwald ripening” [70]. In order to form the 

maximum Kesterite phase during the selenization step, diffusion of tin and zinc will therefore have to 
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occur at this length scale, otherwise formation of ZnSe and Cu2SnSe3 is expected respectively on the Sn-

poor and Sn-rich areas. 

 

3.5 Summary: electrodeposition and metals alloying. 
The electrodeposition process of Cu/Sn/Zn stacks has been proved to be robust, and the layers formed 

are smooth and dense. The thicknesses are uniform over the entire deposition area, except for the zinc 

layer for which there is a 15-20% thickness increase at the edges. However, the samples have a 

homogeneous zone of 1.2 x 1.2 cm2 in the center. Partial delamination is some times detected, forming 

blisters of 10-20 micrometers diameter in the layers, because of the formation of hydrogen between the 

Mo substrate and the copper layer during the electrodeposition.  

The study of alloying process showed that at macroscopic scale, the increase of zinc content at the edges 

induces local diffusion of tin at the scale of a few hundred micrometers, which is thought to be due to a 

lack of pure copper in zones where zinc thickness is increasing. At microscopic scale, the formation of Cu-

Sn and Cu-Zn alloys, and their segregation at large scales of 10 – 20 micrometers are observed. This was 

never reported in the literature, and this observation was made possible by analyzing samples at a larger 

scale than previously reported. It can be anticipated that using a precursor with such a metal segregation 

will have an effect on the subsequent selenization step: if Zn and Sn cannot diffuse at these scales, the 

segregation will remain, which will induce a segregation of secondary phases. This will be investigated in 

the following chapter. 
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4 Selenization of Cu-Sn-Zn thin films 
 

Aim of the chapter 
The objective of this chapter is to investigate the mechanism of formation of kesterite and its secondary 

phases during the selenization of metallic precursors. Knowing that the domain of existence of single 

phase kesterite is very narrow [71], it is crucial to understand the formation route of the secondary phases 

and the origin of their segregation, since these compounds are harmful for the efficiency of the solar cells 

[37]. Knowing the reaction mechanism should allow to tune the process in order to select the type of 

phases present, their quantity and ultimately their position in the films in order to have the least harmful 

phase(s) remaining, or to have it (them) in a place where it (they) can be removed. 

 

4.1  Introduction 

4.1.1 Background 

The mechanism of formation of Kesterite and secondary Kesterite phases has already been studied by 

several groups, in the selenide Kesterite system as well as in the sulfide case, which is often comparable. 

However, no clear mechanism of formation is established for the moment. This is mainly due to the fact 

that many different fabrication processes are investigated, where the precursors are different: mixed 

metals and chalcogen precursor layers were investigated [72], as well as metals-only precursors [42] which 

are investigated in this thesis. The metallic precursors can be stacks of metal layers, with different stacking 

orders, or can be alloys of Cu-Sn and Cu-Zn with many different possible microstructures, such that a strict 

comparison between reaction mechanisms of different processes is difficult. Selenization or sulfurization 

processes can also strongly differ from a study to the other: type of oven, sealed/non-sealed annealing 

chamber, among others are as many parameters which can strongly influence the reaction pathway. 

However, similarities between all studies can be observed, which will be compared with the results that 

were obtained for the thesis. 

Several mechanisms of reaction have been proposed by Hergert et al. [73] for the formation of Kesterite: 

either the simultaneous reaction of binary chalcogenides (reaction 4.1), or a sequential reaction, with 

Cu2SnSe3 as an intermediate product (successively reactions 4.2 and 4.3): 

Cu2Se + SnSe2 + ZnSe ⇌ Cu2ZnSnSe4        (4.1) 

Cu2Se + SnSe2 ⇌ Cu2SnSe3         (4.2) 

Cu2SnSe3 + ZnSe ⇌ Cu2ZnSnSe4         (4.3) 

 

However, these binary and ternary selenide phases are not formed simultaneously, due to their different 

stabilities, and the different kinetics of reaction of each species. Thermodynamically speaking, the 

standard Gibbs free energy of formation of a compound represents the gain of energy obtained during 

the reaction of formation, starting from elemental reactants. Thus the more negative the free energy of 

formation of a compound is, the more it is stable. Values of standard Gibbs free energies of formation of 

the binary selenides are: ZnSe (-310 kJ/mol) < Cu2Se (-200 kJ/mol) < SnSe (-170 kJ/mol) < SnSe2 (-105 
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kJ/mol) < CuSe2 (-25 kJ/mol) [42]. ZnSe is thus the most stable phase, compared to Cu-Se or Sn-Se phases. 

However, most of the studies of the mechanism of formation of selenides agree on the fact that Cu-Se 

species are formed first in the selenide system at temperatures around 250-350°C [42], [74]–[78]. The 

reaction pathway is thus mainly governed by kinetic factors. After formation of binary selenides, Kesterite 

is starting to form in the films at temperatures around 320-370°C [74], [75], [78]. Furthermore, in several 

cases where the precursor sample has a Cu-poor and Zn-rich composition (target composition for the solar 

cells to achieve the best power conversion efficiencies), it was reported that at the surface only ZnSe 

remains, and no SnSe is detected [42], [74]. However, no study of the reason for the absence of Snse is 

provided in the literature. This will be investigated in this chapter.  

Concerning the segregation of secondary phases, the microstructure of the metallic samples before the 

selenization seems to strongly influence the position of the phases. Arasimowicz et al. investigated a very 

similar process to that presented in this thesis, and demonstrated that selenizing a sample composed of 

a bi-layer Mo/Cu-Sn/Cu-Zn leads to the formation of ZnSe on the whole surface of the absorber, whereas 

using a precursor with a succession of columns of Cu-Sn and Cu-Zn leads to the formation of only small 

islands of ZnSe on the surface of the Kesterite layers. This will as well be investigated further in this chapter 

in order to elucidate the reason of this behavior. 

 

 

4.1.2 Structure and objectives of the chapter 

 

One main objective is to understand why mainly ZnSe and Kesterite are remaining at the end of the 

selenization process. Considering the copper poor and zinc rich (Cu/(Zn+Sn)<1 and Zn/Sn>1) precursor 

compositions, SnSe is also expected, but Arasimowicz [42] shows that mainly ZnSe is present by using a 

very similar synthesis process to the one investigated for this thesis. No explanation of this phenomenon 

is provided in the literature, but a similar phenomenon was observed by Johnson et al. in the sulfide case. 

In a recent publication, they report the observation of a self-regulation mechanism of Cu/Sn ratio in the 

synthesis of Cu2ZnSnS4 films [43]: in the presence of SnS (g) phase during the selenization, the evaporation 

of SnS from the sample (in case of tin excess), or the incorporation of SnS from the gas phase in case of 

lack of tin in the sample self-regulates the Cu/Sn ratio. Thus a hypothesis is that the same occurs in the 

selenide system, which will be investigated in this chapter. For this, the first objective is to clearly establish 

the reaction mechanism, and to follow the composition of the films during each step of the selenization. 

Then different compositions of precursors will be investigated to study this tin self-regulation mechanism 

more globally. 

As described in 4.1.1, many studies on reaction mechanism were already reported by other groups, but 

most of them investigate it by performing annealings at different temperatures, to see which species are 

formed first. However, here the objective is to study the kinetics of reaction by deconstructing the 

mechanism into simple sequential steps. Thus the selenization process will be stopped after different 

times to analyze the phases present, their position and the composition of the films. This approach was 

already investigated by Berg [46] in the sulfur case, however it appears that at temperatures higher than 

500°C the reaction is too fast and the material is already fully converted to Kesterite even at very short 

times <1 min.  
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In order to tackle this problem of the reaction being too fast to allow the observation of its sequential 

steps, a second study of the mechanism was performed, with a lower temperature (400°C) in order to 

decrease the reaction rates and have the possibility to observe the reactions occurring during the 

selenization. The results will be compared with a similar study by Arasimowicz [42], who also investigated 

the reaction mechanism at different selenization times. The method reported in that case is different and 

consisted to increase the background pressure of gas in order to lower significantly the diffusion of 

selenium during the selenization, and thus decrease its activity. The type of annealing chamber is also 

different in the case of Arasimowicz, since it is not tightly closed and allows a significant quantity of 

selenium to leave the reaction chamber and thus differs more from the standard selenization processes 

investigated in this thesis. 

Then a study of the evolution of composition after a standard selenization process (550°C for 30 minutes) 

is done, in order to show evidence of the tin self-regulation mechanism and understand for which 

compositions it occurs. 

The second main objective of this chapter is to investigate the segregation of ZnSe on the surface of the 

absorbers, and especially the influence of the presence of a large segregation of metals in the precursors 

before incorporation of selenium. It is very probable that during a standard selenization process, the 

metals will alloy before the incorporation of selenium in the film. Figure 4.1 shows the evolution of the 

temperature and of the vapor pressure of selenium as a function of the time of annealing during the 

selenization process. During the heating ramp, the vapor pressure of selenium is too low thus the layers 

are only subjected to heating, before the incorporation of selenium. 

 

  

Figure 4.1: Evolution of the temperature and vapor pressure of selenium during a selenization process 

at 550°C (only the heating part from 100°C to 550°C and an arbitrary dwelling time at 550°C are 

represented). Selenium vapor pressures are calculated in [44] from [79]. 
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Thus, the objective is to analyze the consequences of the alloying process on the layers obtained. The 

hypothesis is that the formation of large alloys of Cu-Zn that was described in chapter 3 creates a 

segregation of zinc and tin, which are then the cause for the segregation of ZnSe. 

 This chapter is built with the following structure:  

i) Investigation of Kesterite formation mechanism (short time, low temperature 

selenizations) 

 

ii) Composition change after selenization: self-regulation of Cu/Sn ratio. 

 

iii) Investigation of influence of metals segregation in the precursor on the segregation of 

ZnSe phase. 

 

 

 

4.2  Mechanism of Kesterite formation 
 

4.2.1 Timescale of Kesterite formation 

 

Preliminary investigations on the timescale of Kesterite formation were done at 550°C on stoichiometric 

precursor samples. The choice of stoichiometric samples was motivated by the need to maximize the 

formation of Kesterite phase, and to avoid as much as possible secondary phases of any type. For this 

purpose, 2.5 x 2.5 cm2 samples are cut, to provide four identical samples on which to perform the 

selenizations at four different times. Samples were selenized for various times at 550°C, 500 mbar N2/H2, 

with 100 mg Se and 15 mg SnSe in the reaction box. This process is done in an RTP oven to allow fast 

heating and cooling of the samples. 

 

The phases present in the thin films are detected by XRD and Raman spectroscopy. These two techniques 

are complementary: XRD can probe the samples in the full depth of the material, whereas Raman 

spectroscopy is very surface sensitive, and analyses until less than 100 nm from the surface with a green 

laser (even lower with a blue laser). Because of their very similar XRD patterns, it is not possible to 

discriminate CTSe and ZnSe from Kesterite. Kesterite can only be distinguished by observing minor XRD 

peaks which are unique for this phase (at 2theta angles of 36.2° and 38.9°). Raman spectroscopy can 

differentiate these phases. 

 

Figure 4.2a shows Raman spectra on the samples after selenization times of 30 s, 60 s, 120 s and 240 s. It 

can be observed that Kesterite (major CZTSe peak at 194 cm-1 [80], [81]) is already formed after only 30 s 

at the surface of the films. XRD diffractograms of the same samples (figure 4.2b) also show that the two 

Kesterite unique peaks at 22.2° and 28.5° are present, which indicates that Kesterite is present in all the 

layers. No Cu-Zn, Cu-Sn or pure metallic phase is observed, thus all metals reacted with selenium and the 
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films are totally selenized. This observation is comparable to the case of sulfur: the sulfurization of a 

metallic sample at 550°C for a nominal time of 0 min (the sample is directly cooled down when the 

temperature reaches 550°C) leads to a film which does not contain any metallic phase [82]. 

 

 

Figure 4.2: (a) Raman spectra and (b) XRD patterns of samples selenized at 550°C for times between 30 

s and 240 s. 

 

SIMS measurements were performed on all the absorbers synthesized for the study. Interestingly, only 

little change in the evolution of the chemical depth profiles was observed between the different 

selenization times. A typical SIMS compositional depth profile is shown in figure 4.3a. 

Figure 4.3a shows that Cu and Sn have nearly the same evolution from the surface to the half of the depth. 

In the second half of the sample to the bottom of the layer, Cu decreases more slowly than Sn and Zn, 

indicating a probable presence of high concentration of Cu at the back of the absorber. In the case of Zn, 

the signal is decreasing at the back of the film, indicating a larger concentration of ZnSe on the surface. 

This is in agreement with SEM top view image (see figure 4.3b) showing large areas covered with ZnSe, 

and also in agreement with results reported by Arasimowicz [42] who reports segregation of ZnSe at the 

front of the thin films. A detailed microscopic study on ZnSe formation will be presented in section 4.4. 
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Figure 4.3: Stoichiometric Cu/Sn/Zn metallic stack selenized for one minute at 550°C in a Se and SnSe 

atmosphere: (a) SIMS composition depth profile, the signal of each element was normalized to its 

maximum value, the blue dashed bar indicates the probable position of the interface sample/back 

contact; (b) SEM top view image. 

The only significant change with selenization time that was observed in this study concerns the evolution 

of composition, measured by EDX (figure 4.4). At early selenization times, a strong deviation from 

precursor composition is observed. The sample after 30s selenization appears to contain less Sn and more 

Zn, which can be explained by i) loss of Sn and/or ii) overestimation of Zn due to ZnSe patches at the 

surface of the samples. The evaporation of Sn is described by the following equation 4.4 [38]: 

 

 2 Cu2ZnSnSe4 ⇌ 2 Cu2Se(s) + 2 ZnSe(s) + 2 SnSe(g) + Se2(g).     (4.4) 

 

 

 

Figure 4.4: (a) Evolution of the composition of stoichiometric samples after selenization at 550°C for 

different times. (b) is a zoom of 4.4a. 
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With longer selenization, the composition recovers back to near the initial composition. This phenomenon 

has not been reported in the literature to the best of our knowledge, and a tentative of explanation of the 

mechanism can be done as described in figure 4.5. 

 

    

Figure 4.5: Schematic of sample during selenization (a) at time< t1, and (b) at time > t1. 

 

Figure 4.5 represents the sample in the selenization chamber, together with SnSe powder on the side (Se 

powder is not represented here). t1 is defined as the time when SnSe vapor evaporating from the SnSe 

powder starts to reach the sample. Before the time t1, the SnSe vapor pressure on top of the sample is 

only generated by the evaporation of SnSe from the sample. Thus, during the selenization, the SnSe 

formed evaporates, and ZnSe and Cu2Se formed segregate respectively at the front and at the back of the 

layer. Then, for time >t1, the vapor of SnSe from the powder in the graphite chamber reaches the surface 

of the sample, which causes a re-incorporation of Sn in the sample, this sample reacting with Zn and Cu 

to form Kesterite. This re-incorporation occurs until the composition reaches the precursor composition. 

In conclusion, this study of selenization at 550°C showed that after 30s at this temperature, the samples 

are already totally selenized. Only tin gas phase exchange is observed; phase formation (for Kesterite) and 

disappearence (ZnSe and Cu2Se) are supposed. XRD, Raman and SIMS analyses all suggest that Kesterite 

formation is nearly complete after a selenization process at 550°C for 30 s. Thus lower selenization 

temperatures were investigated, and the temperature of 400°C was retained for the following study. 

 

4.2.2 Mechanism of selenization 

In order to investigate the Kesterite reaction mechanism the temperature was lowered to 400°C to 

decrease the rate of reactions and have the opportunity to observe the intermediate reactions. At this 

temperature, most of the literature investigating selenization temperatures shows that Kesterite is 

forming (see section 4.1.1). For this study, 2.5 x 2.5 cm2 samples of the same composition as the reference 

sample of chapter 3 are cut, to provide four identical samples on which to perform selenizations at four 

a) b) 
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different times. The results will be presented by technique: first the in-depth distribution of elements is 

analysed on samples selenized for 1 s, 30 s, 100 s and 300 s by SIMS, then the same samples are analysed 

with XRD, Raman and finally EDX. 

After only 1 s of selenization at 400°C, SIMS measurements (figure 4.6a) show that Se is only detected at 

the surface of the sample (zone 1 of the spectrum). In this surface zone, the only other element detected 

by SIMS is zinc. This thin layer (100-200 nm) of Se and Zn can be observed on the SEM cross section image 

4.6b. It probably contains ZnSe together with condensed pure Se. The sample bulk (region 2 on spectrum 

4.6a) is only composed of Cu, Sn and Zn which are alloyed. 

 

 
  

Figure 4.6: (a) SIMS composition depth profile and (b) SEM cross section image of a sample after 1s 

selenization at 400°C. The dashed lines on figure 4.6a indicate the limits between different zones of the 

samples: substrate, sample region 1 and sample region 2. 

 

The evolution of distribution of the elements at different selenization times is presented in the following 

figure 4.7. These results confirm the observations of Arasimowicz, who shows very similar depth profile 

SIMS results by investigating different times of selenization with a high background pressure of N2/H2. 

Because of the different processes investigated, the times corresponding to each type of profile are 

different. Only the first profile (after 1s selenization) is not observed in the study by Arasimowicz: the first 

profile reported corresponds to a nearly fully selenized sample which resembles that of figure 4.7b. This 

figure 4.7b shows that after 30 s, Se is much more incorporated in the film than after 1 s. This remarkably 

leads to a strong shift of Sn content to the back of the layer, as evidenced by SIMS, suggesting that either 

Sn diffuses to the back of the sample, as proposed by Arasimowicz [42] or Cu and Zn diffuse to the front 

of the film, and react with Se to form Cu2Se and ZnSe. This is in accordance with thermodynamic and 

kinetic data [83]. 

An alternative explanation for the tin depletion from the surface can be given by considering results from 

the previous study (section 4.2.1). Due to the lower background pressure of SnSe at early selenization 

stages, SnSe easily evaporates if it does not react either to form the ternary Cu2SnSe3, or to form Kesterite. 
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Thus, part of the SnSe appearing at the surface evaporates, which could explain why Sn content is 

decreasing from the back to the surface of the sample. Then, at longer selenization times, Sn appears at 

the front of the sample, by reaction of gas phase SnSe (SnSe powder is present in the selenization chamber 

to provide a partial pressure of SnSe in the vapor phase) with Cu2Se and ZnSe to form Kesterite, as 

described in section 4.2.1. This can be the origin of the tin self-regulation mechanism. 

 

Figure 4.7: SIMS composition depth profiles of samples selenized at 400°C for (a) 1 s; (b) 30 s; (c) 100 s 

and (d) 300 s. 

Figure 4.7 shows that for Cu and Zn, at 30 s and 100 s the profiles are relatively similar, both are quite 

homogeneously distributed in the films (with a decrease at the back of the layers, due to the higher Sn 

content). However, at 300 s Zn is more at the surface of the sample, which indicates a probable 

segregation of ZnSe at the surface. Interestingly, at 300 s the Cu seems to be diffusing into the MoSe2 back 

contact. 

XRD analyses were performed as well on the same samples. It allows following the phase formation or 

disappearance as a function of the selenization time. However, due to the complexity of the system 

displaying numerous possible phases, three of which have a large number of common reflection peaks 
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(Kesterite, Cu2SnSe3 and ZnSe), it is quite difficult to detect without doubt certain phases. Only the study 

of unique peaks associated only to one of the phases can lead to a conclusion on the presence of the 

phase, but such unique peaks are normally the least intense. A summary of the phases that can be 

detected is thus presented in figure 4.8, showing at which times of selenization these phases appear or 

disappear in the samples. For more details on the method of detection of these phases and which XRD 

peaks were studied, the complete results are shown in the appendix A. 

 

 

Figure 4.8: Evolution of observed crystalline phases after selenization at 400°C identified by XRD 

measurements. The CZTSe bar at the top of the figure represents the evolution of the unique Kesterite 

peaks. 

After 1 s selenization, only metallic phases are detected, which confirms the analysis done with SIMS data, 

stating that only a 100-200 nm thin top layer contains Se, and the rest of the layer is composed of alloys 

of Cu-Sn and Cu-Zn. Kesterite appears to form only after 100 s in the samples, which as well correlates 

with SIMS results, showing Sn arrival to the front of the samples and thus reacting with Cu, Zn and Se to 

form Kesterite. Cu2Se phase is also detected, but only in the layers selenized for 30 s and 100 s. 

Micron resolved Raman measurements were performed to analyse the surface of the samples. This 

analysis area is very local compared to SIMS (≈ 2500 µm2) and XRD (≈ 0.5 cm2). Thus, it is possible to 

distinguish between different zones of each sample, and in particular to avoid Cu2Se crystals on the 

surface. The following results concern measurements performed on samples regions free from the large 

surface Cu2Se crystals. Only the green laser excitation spectra are shown in figure 4.9. 

After 1s, the Raman signal is very low. Only two peaks corresponding to ZnSe (Raman mode at 250 cm-1 

[84]) and perhaps a very small Kesterite peak (major CZTSe peak at 194 cm-1 corresponding to the A1 

vibrational mode arising from Se vibrations [80], [81]) are detected. After 30s, a Cu2Se peak appears (263 

cm-1 [85]), which is detected on all areas of the samples that were analysed (even by avoiding the large 

Cu2Se crystals), suggesting that Cu2Se is present everywhere on the surface at this stage of selenization. 

The Kesterite peak is already present after 30 s, and is increasing at 100 s and 300 s. Blue excitation Raman 

spectra show the presence of ZnSe on the surface of the samples at all the times. 
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Figure 4.9: Raman spectra of the surface of samples after selenization at 400°C for different times. The 

laser wavelength is 532 nm. 

Large area EDX measurements were made on all the samples, and the metallic composition was calculated 

and plotted onto a ternary phase triangle shown in figure 4.10. As shown on ternary diagrams of this 

figure, the evolution of composition of the samples as a function of selenization times is indicated by the 

arrows. The composition measurements are difficult to interpret due to the non-uniform depth 

distribution of the elements as observed in the SIMS depth profiles. Nevertheless, in accordance with the 

previous measurements, a general trend can be observed: first the decrease of Sn quantity at the front of 

the sample, and a segregation of ZnSe at the top of the layer which leads to an overestimation of Zn by 

EDX. The segregation of ZnSe at the front induces a decrease of Cu and Sn contents in this area for the 

longer selenization times (300 s). 

 

Figure 4.10: (a) Composition of samples selenized at 400°C for different times measured by EDX. (b) is 

a zoom of 4.10a. 
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Figure 4.11 shows images of the surface of the samples selenized at 400°C. Cu2Se grains (large dark grains 

on the surface) are present at 30 s and 100 s only. This is in agreement with XRD results. Top view images 

also show a quite inhomogeneous distribution of ZnSe on the surface. ZnSe grains appear as small brighter 

grains, and form islands of some 10 - 20 microns on the surface. The apparition of Cu-Se phases at the 

beginning of the process followed by its disparition from the surface was reported in several studies [74], 

[76], [77]. 

 

        

          

Figure 4.11: SEM top view images of samples selenized at 400°C for (a) 1 s, (b) 30 s, (c) 100 s, (d) 300 s. 

 

Considering the evidence gathered by all analyses of the composition and phases present in the films, a 

summary of the selenization mechanisms is proposed in figure 4.12. It describes the most probable 

structure of the samples at each of the times investigated in the study.  

 

 

 

a) b) 

c) d) 

Cu2Se 

Cu2Se 
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Figure 4.12: Schematic representation of Kesterite formation mechanism. 

At 400°C after 1 s selenization: only the first 100-200nm reacted with Se, to form mainly ZnSe.  

After 30 s, the layer is partially selenized, Sn has evaporated as SnSe from the front. Cu2Se forms large 

crystals at the surface of the samples, and is also mixed with ZnSe and some Kesterite at the surface.  

After 100 s, Sn supplied from SnSe gas phase is reincorporated in the film to react with ZnSe, Cu2Se and 

Se to form Kesterite with the reaction 4.5. 

ZnSe (s) + Cu2Se (s) + SnSe (g) + Se ⇌ Cu2ZnSnSe4 (s)                 (4.5) 

The quantity of Kesterite is then sufficient to be detected unambiguously by XRD. Cu2Se is still present on 

the top of the layers.  

After 300 s, more Kesterite has formed and Sn is no more segregated at the back. At the surface of the 

sample, more ZnSe is present, and Cu2Se is no longer detected. Diffusion of Cu to the back of the layer is 

detected by SIMS, possibly in the MoSe2, however no evidence of the presence of Cu2Se at the back of the 

layer was found. 

This first study helps to understand how and when Kesterite and secondary phases form during the 

selenization process, which is a first step to the global understanding of phase formation. During the 

beginning of the incorporation, binary selenides are formed as expected and in agreement with the 

literature. The novelty of this study is to show that during this first formation of binary selenides, a high 

quantity of tin is disappearing from the front of the layers, most probably due to the evaporation of SnSe. 

Then, the reincorporation of Sn in the layers is observed, via reaction of SnSe with ZnSe and Cu2Se to form 

Kesterite (or formation of CTSe). The supply of tin via gas phase seems to be sufficient to convert all the 

Cu2Se into Kesterite. The second important analysis step is the study of selenization under a standard 
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selenization process (550°C for 30 min), to investigate the evolution of composition after this step, which 

will be presented in the following. 

 

 

4.3  Self-regulation of tin content. 

 
This section aims at understanding the changes of composition which occur during a standard 

selenization, and in particular study in details the effects of the decomposition reaction of Kesterite 4.6 

[38], which was already presented in the introduction 1.3.4: 

2 Cu2ZnSnSe4 ⇌ 2 Cu2Se(s) + 2 ZnSe(s) + 2 SnSe(g) + Se2(g).                (4.6) 

For this, Cu-Sn-Zn samples of different compositions are selenized using the “standard selenization 

process”, which corresponds to an annealing at 550°C for 30 min in a tubular furnace, in presence of Se 

and SnSe powders. These samples are analysed with EDX after this process, to measure their composition, 

which changes strongly, as will be described now. 

A very broad range of compositions was chosen (figure 4.13, square points). The compositions before and 

after selenization are shown in figures 4.13a and 4.13b. Interestingly, only four samples out of the eight 

prepared have a near-invariant composition after selenization: points 4, 5, 6 and 7. This can be explained 

by the fact that they are in domains of the phase diagram where the phases present have all very low 

vapor pressures: point 4 is composed of Cu2ZnSnSe4 and Cu2SnSe3, point 5 corresponds to pure Kesterite, 

point 6 contains Cu2ZnSnSe4 and ZnSe, and point 7 a mixture of Cu2Se and Cu2ZnSnSe4. For points 1, 2 and 

3, the change of composition is quite important: all compositions have apparently lost tin, and the final 

compositions remarkably lie all on the line of the ternary phase diagram which corresponds to Cu/Sn=2. 

Thus, there is a self-regulation of the ratio Cu/Sn in this region, which can easily be explained by the 

combination of the following equations 4.7 and 4.8. 

2 Cu2ZnSnSe4 ⇌ 2 Cu2Se(s) + 2 ZnSe(s) + 2 SnSe(s) + Se2(g).     (4.7) 

SnSe (s) ⇌ SnSe (g)          (4.8) 

At 550°C, the vapor pressure of SnSe is 3.6x10-3 mbar [39]. Thus, until complete formation of Kesterite 

and ZnSe, all excess SnSe evaporates, and the excess tin is lost from the sample. 

Furthermore, this regulation seems to also occurs for tin-deficient samples, for which Cu/Sn>2. In the case 

of sample 8, a slight increase of tin content is observed, however the incorporation of tin is not sufficient 

to reach Cu/Sn=2. This can be explained by a consumption of SnSe(s) provided by the equation (4.8), to 

form Kesterite by reacting with ZnSe and Cu2Se (reaction 4.7). Similarly, in the case of sulfide compounds 

Berg et al. [86] showed that Kesterite absorbers can be formed by performing a sulfurization process on 

a sample containing Cu and Zn only. All tin necessary for the formation of Kesterite is provided via 

evaporation of SnS. 
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A very similar observation was recently reported, in the case of sulfur annealings [43], where a same self-

regulation of Cu/Sn ratio is found to occur, with the difference that this regulation also occurs fully for tin-

deficient samples, for which Cu/Sn>2. These samples also reach Cu/Sn=2 after sulfurization. 

 

 

  

Figure 4.13: (a) Composition of Cu-Sn-Zn samples as deposited (squares), and after selenization (crosses) 

at 550°C for 30 min with Se and SnSe, plot on the usual Cu2-Sn-Zn ternary diagram. The name of each 

sample is a number, placed next to the plot of the as deposited composition. Each color corresponds to 

a single sample. (b) is a zoom of the central part of the ternary diagram (a). For samples in the Zn-rich 

region, a predicted composition after tin loss is represented (triangle points). 

 

To go further into the analysis of composition change, the expected composition of samples 1, 2 and 3 

assuming tin loss was calculated, and plotted in figure 4.13b (triangles). These compositions were 

calculated by only subtracting the amount of tin necessary to reach a value of Cu/Sn=2. It can be seen that 

tin loss occurred, but also a gain of zinc had to occur for points 2 and 3. This can be explained easily by the 

fact that ZnSe has a tendency to grow on the surface of the samples, which causes an overestimation of 

zinc ratio by EDX. 

A second more detailed study was done in the domain of Cu-poor, Zn-rich compositions, as shown in 

figure 4.14. 

 

 

 

 

 

a) b) 
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Figure 4.14: (a) Composition of Cu-Sn-Zn samples as deposited (squares), and after selenization (crosses) 

at 550°C for 30 min with Se and SnSe, plot on the usual Cu2-Sn-Zn ternary diagram. Each color 

corresponds to a single sample. (b) is a zoom of the central part of the ternary diagram (a). 

 

The change of composition after selenization of these samples show clearly the same effect (figure 4.14), 

which was just described: all samples lose their excess tin, such that their composition reaches final ratio 

Cu/Sn=2. And here as well, an overestimation of zinc is observed, an effect which is increasing with the 

zinc excess of the sample, due to surface ZnSe. All samples grown for this study were implemented into 

solar cell devices, the results are presented in the next chapter. 

This study shows that under the standard selenization conditions used for this thesis (annealing at 550°C 

for 30 min in presence of Se and SnSe powders, in 10mbar N2/H2), no SnSe phase is expected to remain 

on the samples after selenization if the precursors have a composition with Cu/Sn<2 and Cu/Zn<2 (the 

domain where are the points of figure 4.14), because of the evaporation of all excess Sn via formation of 

volatile SnSe. Only Kesterite and ZnSe are the phases expected.  

In the following section and chapters of this work, all samples presented are grown with ratios of Cu/Sn<2 

and Cu/Zn<2, thus the predominant secondary phase is ZnSe. The last section of this chapter will be 

concentrated on this secondary phase, which becomes now clearly the main challenge to achieve efficient 

solar cells. 

 

 

 

 

 

a) b) 
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4.4  Segregation of zinc selenide 
As was shown in section 4.2, ZnSe mainly appears on the surface of the absorbers, and a large segregation 

of this phase at the scale of dozens of micrometers is usually observed. This section presents an 

investigation of the causes of large segregation of surface ZnSe, and tries to provide solutions in order to 

minimize this problem. The results of the investigation have been published in reference [87]. 

To explain the size of ZnSe “islands” on the surface of the thin films, it was first hypothesized that 

prealloying mechanisms could be the origin of the segregation. As a reminder, it was shown in section 

3.4.3 that Cu-Zn alloys of large sizes are segregating because of alloying mechanisms at 350°C. 

Furthermore, even if the standard process used for this thesis does not include any deliberate prealloying 

(annealing at 200-350°C) treatment before the selenization, the selenization step necessarily includes a 

first part during which the sample is only heated, and the temperature is not sufficient to evaporate Se 

(section 4.1.2). 

Thus, for the study that is about to be presented, the samples were prealloyed after electrodeposition, in 

order to be able to first observe the segregation of metals, and afterwards to compare the repartition of 

elements before and after selenization. For this analysis, the same sample which was presented in the 

section 3.4.3 (effect of alloying), called reference sample, is analysed at the exact same “position of 

interest” after selenization, by the same method of EDX mapping, combined with other techniques such 

as micro-Raman, micro-PL and XRD. For easier comparison, some of the results already described in 

chapter 3 will be shown again. The analysis of this sample at the same position is made possible by marking 

of the surface (identical location technique, described in chapter 2). This type of investigation at a large 

scale (50 micrometers) on an identical location is the first to be reported. All previous literature reports 

on the alloying of precursor samples are done at a low scale of less than 10 micrometers (at this scale, the 

extent of Cu-Zn islands cannot be detected), and without tracking of the segregation of metals at an 

identical location on a sample. 

Figures 4.15a and 4.15b show images of the surface of the reference sample at the exact same position, 

before and after selenization. To analyse the distribution of elements, the same method was applied as 

described in chapter 3: an EDX map of the area of interest after selenization was measured, and from this 

EDX map molar fractions of each metal are calculated and their distribution is displayed as maps. All molar 

ratios presented in this section 4.4 are metallic molar ratios, as described in section 4.1. They are the same 

as the molar fractions presented in chapter 3, for an easier comparison with previous results. 

Figures 4.15c and 4.15d are shown here as a reminder and an example of the composition maps that were 

obtained from EDX mappings. They display molar fractions of tin before and after selenization. As a broad 

reminder of the investigations of the section 3.4 (alloying), the area of interest is composed of a Cu-Zn 

phase in region 1, and of a mixture of Sn, Cu-Sn and Cu-Zn in region 2. For more details, the reader is 

invited to refer to section 3.4.3. 
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Figure 4.15: Images and chemical maps of the reference sample on the area of interest: (a) SEM image 

after alloying at 350°C for 30 min, (b) SEM image after selenization, (c) tin molar fraction distribution 

after alloying and (d) tin molar fraction distribution after selenization. The molar fraction color scale is 

the same for all chemical maps presented in the thesis. 

 

To investigate in details the changes that occurred after selenization, the distribution of compositions 

over the total area measured with EDX is first considered. These compositions are displayed in figure 4.16a 

(before selenization) and 4.16b (after selenization). There is a noticeable change in the distribution of 

composition from bimodal and globally invariant Cu2/Zn ratio for the metallic alloy precursor to unimodal, 

with globally invariant Cu2/Sn ratio for the selenized absorber layer (figure 4.16b). Most of the 

compositions in the area of interest are centered on the Kesterite composition (0.33 Cu2 0.33 Sn) with a 

tail of compositions along the Cu2ZnSnSe4–ZnSe tie line. Less than 3 % of the area of interest has a 

composition where Cu2SnSe3 could be present. The extension of compositions to very zinc-rich zones of 

the ternary diagram (ratio of Zn of around 0.7) can be explained by the formation of ZnSe preferentially 

at the surface of the films, which then induces an overestimation of the Zn content measured by EDX. 
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Figure 4.16: (a) Compositions of every point of the chemical maps after alloying. The green oval shows 

the limit of spread of compositions of the map of the as-deposited sample (figure 3.8b); (b) 

compositions of every point of the area of interest after alloying (faded points) and after selenization 

(bold points). Each composition on these diagrams has been color-coded to represent the number of 

points which have the same composition. 

 

Figure 4.17a, 4.17b and 4.17c show the Sn, Cu2 and Zn molar fractions over the position of interest. As 

expected from the distribution of compositions of figure 4.16b, the element which has the highest 

amplitude of molar fractions is zinc. Considering only the zinc chemical map (4.17c), the position of ZnSe 

phase should be in areas for which Zn molar fraction is the highest. Studies of Choubrac et al. show for 

example that the domain of stability of Kesterite phase extends only to a zinc molar fraction of around 

0.41 [71] at 750°C. It is thus expected that at a lower temperature of 550°C, this domain of stability is 

reduced. Over the value of zinc molar fraction of 0.41, ZnSe phase must then exist, together with Kesterite. 

This was confirmed by µ-PL/Raman measurements of the position of interest. The PL intensity was 

measured and integrated in the range 1.22-1.52 eV in figure 4.18 (which is the fingerprint region for doped 

ZnSe in Kesterite [88]), providing a PL map (figure 4.17d). A good agreement is observed between the PL 

map and regions of the selenized film with Zn molar fraction > 0.45. 

 

 

 

a) b) 
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Figure 4.17: Chemical maps displaying Sn (a), Cu2 (b) and Zn (c) molar fractions of area of interest after 

selenization. (d) micro-PL map showing integrated intensity between 1.22 and 1.52 eV of area of 

interest after selenization. All maps are overlaid with a contour map of iso-Zn with molar fraction 0.45 

(in black for a, b, c and in green for d). The molar fraction color scale is the same for all the chemical 

maps (a, b and c). 

 

Examples of PL and Raman spectra from very low and very high ZnSe containing areas are shown in figure 

4.18. The Raman spectra confirm the presence of Kesterite in both areas. This also shows that ZnSe is on 

or near the top surface, because otherwise, its luminescence emission would be absorbed by the Kesterite 

which has a bandgap below 1eV. 
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Figure 4.18: Examples of PL spectra obtained in high-zinc (black) and low-zinc (red) areas with Raman 

spectra of Kesterite observed in both cases (inset). 

The comparison of zinc chemical maps before and after selenization provides very interesting insight on 

the origin of segregation of ZnSe: unexpectedly it appears that the location of ZnSe on the area of interest 

coincides more with the position of Zn-poor and Sn-rich areas before selenization (falling outside the black 

contour lines on map 4.19a). Quantitatively, 73% of the areas that have a ratio of Zn>0.45 are on zones 

which had a ratio of Sn>0.25 before selenization. It thus means that 73% of the ZnSe is placed on areas 

which were rich in tin (region 2) before the selenization, which confirms this tendency of formation of 

ZnSe on formerly Zn-poor and Sn-rich regions. 

 

 

 

             

Figure 4.19: Chemical maps displaying Zn molar fraction of area of interest (a) after alloying and (b) 

after selenization. Black contour lines are the same for the two figures, and are defined by a molar 

fraction of Sn<0.25 (see figure 4.15c). 

Molar 

fraction 

a) b) 
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The greater presence of ZnSe in regions which were initially tin rich could be explained by different 

kinetics of formation of kesterite in the two different zones described, as shown on the mechanism 

proposed in figure 4.20. During the selenization of the layer, Kesterite will form faster in the tin-

poor areas (zone 1 in figure 4.20) than in the Sn-rich areas. This is due to the fact that Sn-rich areas 

contain mainly tin, with inclusions of Cu-Zn as described previously. Thus most of the selenium 

incorporated in the tin rich zone 2 will be “lost” by evaporation of SnSe. Differently in zone 1, 

Kesterite will directly form because of the presence of mainly Cu and Zn, the tin being provided 

either by gas phase (from zone 2 or from the SnSe powder present in the selenization box). As 

shown by the quasi-ternary diagrams with plots of the distribution of compositions before 

selenization (figure 4.16a), the ratio Cu/Zn is nearly invariant over the sample surface. Thus Cu/Zn 

can be assumed to be identical in zones 1 and 2. Furthermore, the value of Cu/Zn is lower than 2 

(Cu is the limiting factor for the formation of Kesterite which requires two copper atoms for one 

zinc atom), thus the formation of Kesterite will decrease this ratio. Finally, because of the higher 

rate of formation of Kesterite in zone 1, Cu/Zn becomes lower in zone 1 than in zone 2, which is 

then a driving force for the migration of Cu from zone 2 to zone 1, and of Zn in the opposite 

direction. This is supposed to be the reason for the preferential formation of ZnSe in zone 2. 

 

 

 

Figure 4.20: Mechanism of selenization proposed showing the preferential growth of ZnSe on area 

which are rich in tin before the selenization. 

It can be concluded that the extent of metal alloy segregation occurring during a heating step affects 

significantly the extent of secondary phase segregation in the selenized Kesterite film. Counter-intuitively, 

ZnSe appears to segregate preferentially on areas formerly poor of Zn. Reducing the physical size of the 

metal alloys formed should reduce secondary phase segregation and improve device efficiency. 
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4.5  Summary: formation and segregation of Kesterite and secondary 

phases 
 

The study of section 4.2 investigates the mechanism of reaction of selenization of metallic Cu-Sn-Zn layers. 

It shows the order of formation of the different selenide phases, which confirms the literature available 

on the subject. It further investigates a new concept of Sn self-regulation mechanism which is evidenced 

here and also in section 4.3 which shows that during selenization, any sample grown in the Cu/Zn and 

Cu/Sn region will lose its excess Sn to finally reach a ratio of Cu/Sn=2. This is due to the evaporation of 

SnSe. This study shows that after selenization, the system is expected to be mainly biphasic (Kesterite 

together with ZnSe). Thus, investigations were then concentrated on the formation of ZnSe phase, and 

especially its large scale segregation on the surface of the samples. 

The last study (section 4.4) employs a method which is reported for the first time in the field of analysis 

of Kesterite solar cells, and consists to analyse a sample at a specific location at several stages of a process. 

Here, this investigation shows that the large extent of segregation of ZnSe at the surface of the absorber 

is due to alloying mechanisms, which lead to segregation of Cu-Sn and Cu-Zn compounds at scales of 10 -

20 micrometers. Unexpectedly, ZnSe is found to preferentially form on the places which formerly were 

poor in tin. This was explained by a lowering of formation rate of Kesterite in Sn-rich areas. 

By combining the results of chapter 3, sections 4.2 and 4.4, a mechanism can be proposed as described in 

figure 4.21. Alloying of the metallic Cu/Sn/Zn stacks induces the formation of Cu-Zn islands of 10-20 

micrometers, surrounded by Sn (and some Cu-Sn) with inclusions of Cu-Zn, as shown on figure 4.21a. 

When selenium starts to be incorporated in the layers, it will form first Cu2Se and ZnSe in the zone 1 of 

figure 4.21b. CZTSe will form as well later by incorporation of SnSe from the gas phase (SnSe evaporating 

from the SnSe powder or from zone 2). In zone 2, mainly tin is present, thus most of the selenium 

incorporated will form SnSe which evaporates because Cu2Se and ZnSe are not yet present to react with 

SnSe. This is described in figure 4.21b, and corresponds approximately to a process time of 30s in the 

study of section 4.2.2. The higher rate of formation of Kesterite in zone 1 compared to zone 2 will decrease 

the ratio Cu/Zn in zone 1 faster than in zone 2, such that Cu/Zn (zone 1) < Cu/Zn (zone 2). This induces a 

migration of Cu from zone 2 to zone 1, and of zinc in the opposite direction. Probably the SnSe layer is too 

thin to be detected (the SnSe formed directly evaporates). 

In the following step described (figure 4.21c), the film is fully selenized. ZnSe and Cu2Se still remain in zone 

1, and react with SnSe from the gas phase to form Kesterite (corresponds to 100 s of the study in section 

4.2.2). 

Finally, due to the migration of Cu to zone 1, the quantity of ZnSe in zone 2 is higher than in zone 1, which 

causes the segregation of ZnSe in zone 2.  

This proposed mechanism is the first in the literature to propose an explanation for the tin self-regulation 

mechanism, and as well the first to show the link between segregation of metals during alloying and 

segregation of selenide phases. 
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Figure 4.21: Schematic representation of formation mechanism of Kesterite, by combining results from 

chapter 2, section 4.2 and section 4.4. 
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5 Solar cells  
 

Aim of the chapter 
This chapter presents results concerning absorbers which were implemented into solar cell devices. The 

objective here is to analyze the performance of the solar cells prepared from the absorber layers described 

in chapters 3 and 4, and understand what parameters can be detrimental for the solar cells, in order to 

improve their power conversion efficiency. In particular, the effect of the presence of ZnSe in the layers 

will be investigated. 

 

5.1  Introduction 
 

5.1.1 Background 

The highest efficiency reported for a pure selenide CZTSe device is 11.6 %, with an open circuit voltage of 

423 mV, a short circuit current of 40.6 mA.cm-2 and a fill factor of 67.3 % [89]. The absorber is prepared 

by co-evaporation. For an electrodeposited precursor, the value of highest efficiency is 9.1%, with a Voc of 

421 mV, a Jsc of 33.4 mA.cm-2 and a FF of 64.6 % [41].  

The bandgaps of the best selenide Kesterite devices usually reported are 1-1.02 eV [59], [89]–[91]. The 

corresponding open circuit voltage values are ranging from 380 mV to 430 mV, which correspond to a 

much higher Voc deficit (difference between theoretical maximum Voc and measured Voc) than in the case 

of CIGS solar cells. Thus, improving the open circuit voltage of the Kesterite solar cells is currently one of 

the major objectives in this field. 

Concerning the composition of Kesterite solar cells, as already mentioned in the previous chapter, it is 

widely accepted that secondary phases should be avoided [24]. However, the best efficiencies are 

obtained with Cu-poor and Zn-rich compositions [24], [92], [93], in order to limit the formation of 

detrimental secondary phases and to avoid some defects in the Kesterite. Secondary phases avoided are 

CuxSe, which creates shunts in solar cells because of its high conductivity [29], and Cu2SnSe3 which is 

reported to reduce their open circuit voltage [37], [94]. Thus, the ZnSe secondary phase is kept as the 

least harmful phase. It is reported to act as an insulator between the surface of the absorber and the 

CdS/ZnO/transparent conductive oxide, and reduces the short circuit current of the solar cells [45]. Having 

a Cu-poor and Zn-rich composition can as well promote the formation of VCu which is the most likely defect 

generating the p-type conductivity of the Kesterite. This composition also decreases the density of defects 

such as the anti-site CuZn deep acceptor defect [34] or the deep donor defect SnZn which can act as a 

recombination center [23]. 

In this range of optimal composition, ZnSe is the main secondary phase present. A study by Watjen et al. 

[45] shows on a single sample that the presence of ZnSe on the surface of the thin films causes a local 

decrease of the short circuit current collected. However, no investigation of the optimal ratio of ZnSe 

present in the films is available in the literature. An investigation of the optimal composition to reach 

highest values of power conversion efficiency, FF, Voc and Jsc was presented by Fairbrother et al. [92], 
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however the system is very different from that presented in this thesis, since no tin self-regulation 

mechanism is occurring in their case. 

 

5.1.2 Objectives and structure of the chapter 

In this chapter 5, the first objective is to understand more deeply the role of ZnSe on the short circuit 

current of the solar cells. Thus, solar cells with different compositions are investigated (same samples as 

in section 4.3 where the tin self-regulation mechanism was described). Knowing from Watjen [45] that 

surface ZnSe has a blocking effect on the short circuit current of the solar cells, it is hypothesized that 

there should be an optimal value of ratio of ZnSe for achieving high short circuit currents: decreasing ZnSe 

reduces the problem of current blocking, but then the composition should reach a point where other 

secondary phases should arise, due to local inhomogeneities of metals in the precursors. These other 

phases, such as Cu2Se, being more harmful than ZnSe should then decrease the solar cells power 

conversion efficiencies. Investigating this is one objective of this chapter, and this investigation will be 

compared with the work by Fairbrother et al. [92] who studied as well the effect of a change of 

composition of the material on the characteristics of the solar cells, but in a different system where self-

regulation of tin does not occur. 

The following section (5.3) investigates the origin of low shunt resistances in the devices which was often 

observed during the work done for this thesis. They significantly affect the performance of the solar cells. 

Mini solar cells of 0.3x0.3 cm² are prepared on the full samples, in order to obtain a mapping of the cells 

parameters over their total area. It is shown that the probable origin of low shunt resistances is the 

formation of fragile blisters in the layers, which then cause short shunting paths from the CdS layer directly 

to the Mo back contact. Finally, section 5.4 describes a study of the effects of a prealloying step prior to 

selenization, used as an answer to reduce shunt paths in the solar cells. The effect of the duration of this 

additional step on the open circuit voltage is presented. 

In this chapter, a new way of quantifying the composition of the samples is proposed, based on the 

findings of the previous chapter. As shown in section 4.3, a self-regulation of tin content occurs during the 

selenization of the samples (Cu/Sn=2 after selenization). If this Cu/Sn self-regulation is assumed, the 

system becomes one-dimentional, and is fully determined by the ratio of ZnSe/(ZnSe + Kesterite). Thus, 

in addition to the ratios usually reported, namely Cu/(Zn+Sn) and Zn/Sn, two new ratios would be 

introduced to describe the system, which seem to be more representative. 

The system is assumed to be Cu-poor, and in the conditions of Cu/Sn self-regulation. Thus Cu is the limiting 

factor for the formation of Kesterite, and the quantity of Kesterite will be at maximum equal to the initial 

quantity of Cu/2. By assuming a complete conversion of Cu to Kesterite, the following occurs: 

Ratio 1:  
𝑍𝑛−

𝐶𝑢

2

𝑍𝑛
  

Ratio 1 represents the molar fraction of ZnSe in the binary system (Kesterite + ZnSe): 

𝑍𝑛𝑆𝑒

𝐶𝑍𝑇𝑆𝑒+𝑍𝑛𝑆𝑒
=

𝑍𝑛−
𝐶𝑢

2

𝑍𝑛
 . 
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Ratio 2:   
𝑆𝑛−

𝐶𝑢

2

𝑆𝑛
 

Ratio 2 represents the percentage of tin which will be lost. 

With this notation a precursor sample is defined by i) ratio 1 which quantifies the expected molar fraction 

of ZnSe and by ii) ratio 2 which predicts what percentage of the initial tin will be lost during the 

selenization. 

 

 

5.2  Effects of composition 

5.2.1 Experimental details and objectives 

For the purpose of the study presented in this section, Cu/Sn/Zn precursors were electrodeposited with 

different thicknesses of Cu, Sn and Zn layers, in order to vary the stoichiometry of the metallic stack, while 

maintaining a constant total thickness of the complete stack. Results on these samples were already 

presented in section 4.3, to demonstrate the self-regulation mechanism of Cu/Sn in the Cu-poor and Zn-

rich domain of compositions. The absorbers were implemented into solar cell devices, and the results will 

be presented in the next sections: 5.2.2 offers a global view of the compositions by investigation a wide 

range of stoichiometries, including Cu-rich and Cu-poor samples and the resulting efficiencies. Section 

5.2.3 presents in details the Cu-poor and Zn-rich region of compositions, and the effects of Zn content on 

the short circuit current of the solar cells. Finally, 5.2.4 presents the evolution of the two other 

characteristics of the solar cells studied here, namely the open circuit voltage and the fill factor. In this 

section, only results from solar cells made in the central part of the samples are presented, in order to 

stay in the homogeneous composition zone, as shown in figure 5.1. The two cells considered for each 

sample in section 5.2 are thus in the area where the zinc content varies by less than 5%.  

 

Figure 5.1: Position of two central cells on the map of zinc thickness increase (map from figure 3.4b). 

The positions are indicated by the black dashed lines. 
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5.2.2 Global view of composition changes 

The first study of composition is done with a wide range of stoichiometries, as shown in figure 5.2a. This 

was already presented in section 4.3, and shows that most of the compositions are near-invariant after 

selenization, except for samples prepared in the Cu-poor and zinc rich area, where tin regulation occurs, 

via evaporation and absorption of Snse during the process, and results in a constant ratio of Cu/Sn=2. 

Solar cells were prepared with these samples and the corresponding efficiencies are shown in figure 5.2b. 

The results obtained here confirm what is reported in the literature: all solar cells for which the ratio Cu/Zn 

is over or equal to two have very low efficiencies. Only cells grown with a ratio Cu/Zn of less than two are 

working, and the best efficiency is obtained with a ratio of Cu/(Zn+Sn)=0.71 and Zn/Sn=1.31 before 

selenization. Reasons for low efficiencies in the Cu/Zn>=2 region are most probably the presence of CuxSe 

which creates shunts in solar cells [29], and Cu2SnSe3 which is reported to reduce their open circuit voltage 

[37], [94]. Thus, Cu-poor compositions have to be used in order to avoid any of these harmful secondary 

phases. 

Attention was then concentrated on understanding the effects of the presence of ZnSe, which is the 

predominant secondary phase in the cells that are studied in this thesis. A specific study of the influence 

of zinc ratio is presented in the following. 

 

 

 

Figure 5.2: (a) Composition of Cu-Sn-Zn samples as deposited (squares), and after selenization (crosses) 

at 550°C for 30 min with Se and SnSe, plot on the usual Cu2-Sn-Zn ternary diagram. Each color 

corresponds to a single sample (5.2a is a reproduction of figure 4.13a for convenience). (b) zoom of 

figure 5.2a, with a change of color coding representing the efficiencies () of the solar cells. The blue 

dashed line and the green dotted line represent respectively the compositions for which Cu/Zn=2 and 

Cu/Sn=2. 
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5.2.3 Current blocking behavior of ZnSe 

Here, similarly as in section 5.2.2, the samples presented in section 4.3 were implemented into solar cells, 

and the effect of composition change on their characteristics is discussed. As a reminder, two series of 

samples are prepared, one has Zn/Sn=1.27, the other Zn/Sn=1.18, and each series contains four different 

values of Cu/(Zn+Sn): 0.51, 0.61, 0.71 and 0.81. In section 4.3, it was shown that the regulation of tin 

content in the absorbers during selenization via gas phase exchange of SnSe resulted in the presence of 

mostly two phases: Kesterite and ZnSe. The objective of this section is to understand the effect of ZnSe, 

by studying solar cells made with different ratios of ZnSe. As a reminder of the results presented in section 

4.3, figure 5.3a shows the evolution of composition after selenization for the eight samples prepared for 

this study.  

 

 
 

 
Figure 5.3: (a) Composition of Cu-Sn-Zn samples as deposited (squares), and after selenization (crosses) 

at 550°C for 30 min with Se and SnSe, plot on the usual Cu2-Sn-Zn ternary diagram. Each color 

corresponds to a single sample. (b) zoom of the central part of the ternary diagram 5.3a. 5.3a and 5.3b 

are reproductions of figure 4.14, for convenience. (c) evolution of ratio ZnSe/(ZnSe + CZTSe) as a 

function of ratio of ZnSe. For each sample, the values of the two cells made in the center are displayed. 

c) 

a) b) 
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The self-regulation of Cu/Sn ratio is clearly visible: after selenization, all compositions lie on the axis CZTSe-

ZnSe (axis of iso Cu/Sn=2). This results in samples containing mainly Kesterite, and ZnSe at different ratios. 

 The evolution of Jsc of the corresponding solar cells is presented in figure 5.3c. Again, here only solar cells 

in the center of the samples are shown. A strong relationship between the short circuit current and the 

ZnSe ratio is revealed here: Jsc is linearly decreasing as a function of ZnSe ratio. This result is very 

interesting and goes further than the study of Watjen et al. [45], where the blocking current effect of ZnSe 

is demonstrated, but only on a single sample by comparing areas covered by ZnSe, and others not. In the 

case of the present study, samples with a higher zinc content result in selenized samples with higher 

amount of ZnSe. It was shown in the previous chapter 4 that ZnSe mainly segregates at the surface of the 

samples, thus the coverage of the absorber by ZnSe is higher when the ZnSe ratio increases. This 

consequently increases the insulated areas between absorber and CdS/ZnO/transparent conductive 

oxide. These results were published in [95]. 

 

Complementary analyses were performed on these samples, in order to get a more comprehensive view 

of the effects of ZnSe at the surface of the absorbers. EQE spectra of four samples of the series Zn/Sn=1.17 

are presented in figure 5.4, to study the losses of current as a function of the wavelength of incoming 

light. This figure 5.4 shows a general decrease of the whole spectrum, independent of the wavelength, as 

the ZnSe molar ratio is increased. 

 

 
 

Figure 5.4: EQE spectra of devices obtained from absorbers with ZnSe mole fractions of 0.25, 0.34, 

0.43 and 0.53. 

 

 

The observations of modifications in EQE spectra that were made can be explained by considering the 

schematic cross section of a solar cell half covered with ZnSe, in figure 5.5. Because of the resistivity of 

ZnSe (because of its high bandgap), electrons generated in the absorber underneath the ZnSe cannot be 

collected by the transparent conductive oxide. Thus, all the light absorbed in zone 1 (see figure 5.5) will 

be lost. This phenomenon is independent of the wavelength of the incoming photon, and corresponds to 

the large current losses observed in figure 5.4. This was as well published in [95]. 
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Figure 5.5: Schematic cross section of solar cell device, with partial surface ZnSe coverage. 

 

As a conclusion, it was shown in this section that there is a linear relationship between the short circuit 

current of the solar cells and the ratio of ZnSe in the absorbers, due to the insulating effect of this phase. 

The next section presents the evolution of the other cells parameters (Voc and FF) of the same solar cells 

than that shown in the present paragraph. 

 

 

 

5.2.4 Variation of other cells parameters 

 

 

As mentioned before, the very same solar cells than in the latter section 5.2.3 are presented here, which 

consist of two sets of four solar cells: one has a precursor composition Zn/Sn=1.27, the other Zn/Sn=1.18, 

and each series contains four different values of Cu/(Zn+Sn): 0.51, 0.61, 0.71 and 0.81. In this new section, 

the evolutions of open circuit voltage and fill factor are studied. 

 

A first overview is given by figure 5.6. There is a quite strong scattering of the values of both Voc and FF 

(figure 5.6a), which cannot be correlated to values of ratio of ZnSe. These changes are relatively higher 

than the changes of Jsc, and consequently the efficiencies of the solar cells also have a very scattered 

behavior, which is not correlated to the changes of composition (figure 5.6b). 

 

 

 

 

 

 

 

 

 

 

 

 

 



94 
 

 

 

       
   

Figure 5.6: Evolutions of (a) open circuit voltage and fill factor and (b) device efficiency as a function of 

ZnSe ratio. For each sample, the values of the two central cells are displayed on each graph. 

 

Further analyses of these solar cells are done, by fitting the IV curves of each solar cell, and extracting the 

values of series resistance and shunt resistance. This allows to find an underlying relationship between 

the shunt resistance of the solar cells and the Voc, as described in figure 5.7: there is a relatively strong 

correlation between the increase of shunt resistance and the open circuit voltage of the solar cells. 

 

 

 

 

   
 

Figure 5.7: (a) Evolution of the Voc of the center cells of all samples as a function of their shunt resistance. 

(b) scattering of shunt and series resistance measured under illumination for different values of ZnSe 

ratios. 

 

As shown in figure 5.7a, the main drawback for the open circuit voltage of the solar cells seems to be the 

too low shunt resistances of some solar cells. Figure 5.7b shows no correlation between values of Rsh and 

a) b) 

a) b) 
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ratio of ZnSe. Values of series resistance are all staying reasonably low and are not harmful in this case for 

the cells performances. 

 

Figure 5.8 shows as an example the current voltage (JV) curves of two solar cells, the best cell obtained 

for the study, together with a cell obtained with a sample which has a close value of ZnSe ratio (0.34 vs 

0.36), but with a much lower efficiency. Clearly, an important loss of efficiency is due to the higher slope 

of the curve at low values of voltage, which is characteristic of a higher Rsh (see the introduction of this 

chapter). 

 

 
Figure 5.8: IV curves of samples with ZnSe ratio of 0.36 (black curve, 4.9% efficiency), and ZnSe ratio of 

0.34 (red curve, 2.5%). 

 

Thus, large changes of Voc and FF are observed between different samples, with no relation with the 

change of composition, and these changes are correlated to strong changes of shunt resistances. These 

changes of shunt resistance will be investigated further in the next section (5.3). 

 

 

5.2.5 Summary 

 

As was described in this section, the change of ZnSe content in the layers affects the short circuit current 

strongly: ZnSe segregates on the surface of the films and creates a current blocking barrier, by shading 

the Kesterite absorber. The more ZnSe is present on the surface, the higher is the surface covered, and 

thus the lower the current. It was also demonstrated that the cells can often suffer from low shunt 

resistances, which decreases the Voc and fill factor. The causes of these low Rsh are not yet explained in 

this section, and will be investigated in the next section. 

 

As a summary, the perspective is enlarged to all the solar cells which were prepared in the central 

homogeneous area of a sample. These cells include several rounds of cells that were made identically to 

the ones that are presented in this section, except for the selenization (some samples are selenized alone 

in the graphite box, whereas two samples are selenized together for a standard process, and one sample 

is selenized with more selenium). For all these cells, the relationships found in this section were tested, 

with no consideration about the changes of process parameters, to study the potential universality of 
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these phenomena. Figure 5.9 presents the data of all solar cells built in the homogeneous central area of 

the samples. These cells have all a Cu-poor and Zn-rich stoichiometry. 

 

       

          

Figure 5.9: Evolution of (a) the average Voc and (b) the average fill factor as a function of the average 

shunt resistance of cells in the center of samples. Averages are calculated for the two central cells of 

each sample. 

The first relationship tested is the evolution of shunt resistance, which seems to be the strongest 

parameter influencing the cells efficiencies. Figure 5.9 shows the evolution of Voc and FF for all cells, and 

apparently the observation made is holding here. Above Rsh values of about 100 Ohm.cm², decent open 

circuit voltages of about 300 mV and fill factors of about 40-50% are quasi-guaranteed. This strengthens 

the idea that shunt paths could be a main problem for the solar cells prepared via the process studied for 

this thesis. 

Similarly, two other sets of samples were prepared with different precursor compositions. The results of 

these two new sets of samples are presented in figure 5.10a together with the results previously shown. 

Here, low values of ZnSe ratios are investigated in order to detect the optimal value of this ratio. A value 

where Jsc is maximum is found around 0.2 ZnSe/(ZnSe+CZTSe). Jsc attains values of 35-40 mA/cm² at this 

ZnSe ratio. As explained previously, the decrease of Jsc at values of Znse ratio lower than 0.2 can be due 

to multiple reasons: formation of other types of secondary phases such as Cu2Se or Cu2SnSe3, formation 

of detrimental defects in the Kesterite, or alteration of the p-type behavior of Kesterite, due to the lower 

presence of VCu defects.  

This can be compared with the study of Fairbrother et al. [92] who investigated the effect of the 

composition of the absorber for a wide variation of compositions, as shown in figure 5.10b. the 

compositions represented on their graph are compositions after selenization, and it can be clearly seen 

that in their case no self-regulation of tin is observed. If it was the case, all compositions should lie on the 

red line of figure 5.10b (ZnSe line). This is probably due to the different process investigated in the study 

of Fairbrother: the Cu-Sn-Zn precursors are cosputtered, thus all metals are intimately mixed in the films. 

This probably allows to decrease the evaporation of tin, which probably occurs strongly in the process 

described for this thesis because of the presence of large segregation areas containing free tin, as 

a) b) 
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described previously. Nevertheless, the study of Fairbrother et al. shows that optimum values of Jsc is 

obtained for a range of composition values from (Cu/Zn=1.1; Cu/Sn=1.4) to (Cu/Zn=1.6; Cu/Sn=1.8). 

 

         
Figure 5.10: a) Evolution of average Jsc with ratio of ZnSe for cells from the study of section 5.2.3 (in 

blue) together with data from two other sets of solar cells (in green and red). The solar cells are made 

in the center of the samples (each point of the graph is the average of the short circuit current of the 

two central cells of a sample). b) data extracted from [92] and re-plotted, showing the dependence of 

Jsc on the composition of the CZTSe absorber. The values of ZnSe/(CZTSe+ZnSe) of 0.5 and 0.25 (with 

Cu/Sn=2) are plotted on the graph, in order to aid the comparison with figure 5.10a. 

 

Thus, the conclusion of these investigations is that very reproducible values of short circuit currents are 

obtained, which are directly influenced by the molar ratio of ZnSe. An optimal value of molar ratio of ZnSe 

is found at 0.2, which allows the achievement of short circuit currents of about 35 mA/cm². Voc and FF are 

varying between a sample to another because of significant variations of Rsh between samples, which 

causes are not yet understood, and are the subject of the next section. 

 

 

5.3  Evolution of shunt resistance 
 

5.3.1 Changes of shunt resistance within samples 

In order to explain the low values of shunt resistances in the solar cells, a natural hypothesis is the 

presence of shunt paths through the absorber, which could be due to pinholes, or to conductive phases 

present in the layers. However, since very Cu-poor compositions are used, only ZnSe and Kesterite are 

expected, the second hypothesis seems to have a low probability to be true. Thus it was decided first to 

compare several samples with very different efficiencies, and find if pinholes can be observed.  An analysis 

of optical microscope images of absorbers before cell finishing is done, with the objective to find 

a) b) 
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morphological features which could be or lead to pinholes. A good candidate was found by comparing 

two solar cells from a same batch, with extreme differences of efficiencies. 

Figure 5.11 shows the surface of absorbers which give good (5.11a) and very low (5.11b) efficiencies. On 

image 5.11b many darker dots can clearly be seen. An analysis of a different sample at different focus 

distances (figures 5.11c and 5.11d) show that the dots observed are protruding features, referred to as 

“blisters” in this chapter. Their height on the sample considered here is of about 6 micometers, compared 

to the surface of the sample. By comparing other samples, it appears that most of the samples which 

present these dots on the surface give then poor device efficiencies. These blisters appear to be very 

fragile, and thus easily a formation of pinholes is observed from these blisters, as shown in the following. 

 

 

            

        

Figure 5.11: Optical microscope images of absorber layer surfaces. After cell completion the cells reach 

power conversion efficiencies of (a) 5.3% and (b) 0%. (c) and (d) are images of a different absorber. 

5.11c is focused on the layer, and 5.11d is focused on the surface of the blisters. The focus difference is 

6 micrometers. 

 

c) d) 

a) b) 
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A test is realized to assess the possibility of formation of pinholes from the blisters which are on the 

surface of an absorber layer, and is shown in figure 5.12. After simply a gentle touch (compressive stress) 

of the surface at the position where the blisters are seen, the material breaks and delaminates, leaving 

bare Mo, which thus may be a source of shunting in the solar cells. A further indication that these blisters 

are probably harmful for the devices is the study of optical microscope images of all absorbers which gave 

solar cells of efficiencies above 5.5%, presented in appendix B. On none of the images these blisters are 

seen. 

 

 

   

Figure 5.12: Absorber layer with blisters (a) before, and (b) after a gentle touch of the surface. A few 

pinholes are already present in image 5.12a, and more pinholes appear after applying mechanical 

compressive stress (touching) on the surface. The new pinholes appear at positions of former blisters 

(the red circles on the images highlight some of them). 

From this observation, selection rules were implemented to avoid making solar cells with any sample 

which contains blisters. Thus before cell completion, all absorbers were analysed with optical microscope, 

and samples containing blisters were discarded. An improvement of the reproducibility was then 

observed, with much less variation of Voc and FF than for example in the case of the composition study 

that was presented in section 5.2. Further information on the pinholing effect will be shown in the next 

section, where four samples are analysed on the complete 2x2 cm2 area by making mini solar cells of 0.1 

cm² to provide a mapping of solar cells efficiencies. This next study shows especially that blisters can be 

much smaller than those observed in the present paragraph (50-100 micrometers values of diameter for 

the larger blisters will be presented). A better reproducibility of the process is also visible. 

 

5.3.2 Solar cells mapping 

This section presents a study of a series of four samples (A, B, C and D), which all passed the “blister test” 

successfully. They were prepared identically, except for sample A. This sample was already used for 

normal 0.5x1 cm² solar cells, and after measurement of the efficiency, the CdS/ZnO/contacts were etched 

with 10% HCl for one minute. The absorber was then reused in the study presented now, and 

a) b) 
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CdS/ZnO/grids were deposited in the same batch as samples B, C and D. For each sample, small solar cells 

of 0.33x0.33 cm² were built on the complete absorber area (around 2.1x2.1 cm²), in order to obtain a 

mapping of cells parameters over the complete samples area. The 0.1 cm² solar cells were scribed and 

measured at IRDEP (Institut de Recherche et Developpement sur l Energie Photovoltaique, Chatou, 

France). The precursor compositions are Cu/(Zn+Sn)=0.8 and Zn/Sn=1.2. This corresponds to a 

ZnSe/(CZTSe+ZnSe) ratio of 0.2, which is the optimal value for obtaining high Jsc, as presented in section 

5.2. 

Figure 5.13 shows optical microscope images of the four absorbers, before deposition of CdS, ZnO and 

contact grids. No blister can be observed on any of these samples, and optically the surface appears to be 

homogeneous. The solar cells are presented in the following figure 5.14. 

 

                  

                  

Figure 5.13: (a), (b), (c) and (d) are optical microscope images of the surface of the absorbers of samples 

A, B, C and D respectively, prior to deposition of CdS. 

The solar cell devices efficiencies are shown in figure 5.14, together with the pictures of some of the 

samples with the solar cells scribed. As one can see, in this case metallic grids are not used, because of 

the small size of the solar cells, and electrical contact is made directly on the TCO surface for IV 

measurements. All efficiencies measured are displayed on the maps of figure 5.14. The first observation 

a) b) 

d) c) 
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is that all samples reach similar efficiencies, with best values of around 5.5% for all of them. This is an 

indication that the process is more reproducible, probably thanks to the exclusion of blister-containing 

absorbers. Then, a general observation from these efficiency maps is that the highest values are obtained 

in the edges of the samples for most of them, namely B, C and D. Sample A is very homogeneous laterally. 

Variations of cells parameters are thus investigated in order to understand the origin of the differences of 

efficiency. 

 

 

 

                                                    

 

      

Figure 5.14: (a), (b), (c) and (d) are digital images and maps of cells power conversion efficiencies of 

respectively samples A, B, C and D. No picture of sample C is available. 

 

The relationships between efficiency and the three main J-V characteristics are presented in figure 5.15, 

in order to explain the differences of efficiency observed within samples. Apparently, the changes of 

efficiency are mainly driven by changes of fill factor and open circuit voltage. The figure 5.15c showing the 

evolution of efficiency as a function of Jsc is much more scattered than the figures 5.15a and 5.15b, where 

a correlation is clearly seen.  

 

 

sample A sample B sample C sample D 

b) c) d) a) 
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Figure 5.15: Evolution of power conversion efficiency as a function of (a) open circuit voltage, (b) fill 

factor, and (c) short circuit current. All solar cells made on the four samples A, B, C and D are presented 

there. 

After analysis of the data in figure 5.16, it appears that again the differences of Voc and fill factor are mainly 

due to variations of shunt resistance. As a consequence, a rather good correlation between the shunt 

resistance of the devices and the efficiency is found, which is due to the relatively low variation of short 

circuit current between cells, because of their similar composition. Between the center and the edge of 

these samples, the ZnSe ratio is expected to vary from 0.21 in the center to 0.33 at the edges, which 

corresponds to a variation of Jsc of about 5 mA/cm², if referred to the figure 5.10. This corresponds to the 

data of figure 5.16a and will be discussed further in the following. For further analysis, the surface of the 

samples was analysed with an optical microscope with a higher magnification than previously used, in 

order to observe the morphology of the samples at different positions, and see if differences can be found 

between center and edges of samples. The analysis was done on sample D, which has the highest variation 

between center and edge of the substrate. 

a) b) 

c) 
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Figure 5.16: (a) Evolution of Jsc and (b) evolution of FF and Voc as a function of shunt resistance. (c) 

evolution of efficiency as a function of shunt resistance. All data from the cells of samples A, B, C and D 

are displayed in each of these graphs. 

For this analysis, an optical microscope with a higher magnification than previously is used. As shown in 

figure 5.17, 5 cells with a wide variation of power conversion efficiency are chosen from the center to the 

edge of sample D. These cells are analysed with the optical microscope at two random positions for each 

solar cell. The results are presented in appendix C. Blisters are detected here again, but at a much smaller 

scale than previously. And it is obvious that their quantity is decreasing from the center of the samples to 

their edges. From each of the images, the percentage of the surface covered with blisters is measured by 

ImageJ analysis. The average value for the two images of each cell is measured, and the results are 

presented in figure 5.18. 

 

 

 

c) 

b) a) 
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Figure 5.17: Position of solar cells analysed by optical microscope on sample D: (a) on efficiency map, 

and (b) name of the solar cells. 

Thus, the blistering and pinholing effect is clearly related to the decrease of shunt resistances, as can be 

seen in figure 5.18. This strengthens the hypothesis that was made at the beginning of this section, which 

is that most of the losses of fill factor and Voc are due to low shunt resistances, mainly due to pinholing 

effects. The last parameter which remains to be studied in this series of four samples (A, B, C and D) is the 

short circuit current. 

 

          

           

Figure 5.18: (a) Evolution of coverage of the surface by blisters on solar cells 1, 2, 3, 4 and 5 of figure 

5.17b, (b) evolution of the shunt resistance of the solar cells with the blister surface coverage. 

In the present study, samples A, B, C and D have a ZnSe molar ratio of about 0.21. From the graph 5.10 

(evolution of Jsc with ZnSe ratio, in the section 5.2), the short circuit current expected is 34 mA.cm-2. The 

solar cells which are the further from the center of the sample lie in the range of around +10% of zinc, 

which corresponds to a ZnSe ratio of 0.3. For these cells, the expected short circuit current is around 30 

mA/cm2. 

b) 

a) b) 

a) 
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To compare these data with Jsc values of the solar cells, a number is attributed to each of the solar cells of 

a sample, which increases with increasing distance between the solar cell and the center of the sample, 

as shown in figure 5.19a. From this cell numbering, averages of the cells with the same number are 

calculated. For these calculations of average values of Jsc, two very low efficiency cells were discarded 

from sample B (<2%). The results are shown in figure 5.19. The cell numbers are not proportional to the 

distance to the center, they are only meant to compare values of Jsc of cells at different positions. 

 

                        

Figure 5.19: (a) Numbering of solar cells for average calculations. Numbers are given taking as reference 

the numbering used for pinholes counting (figure 5.17b): the same number is attributed to all cells 

which are equidistant to the center of the sample. (b) average short circuit current for each type of solar 

(see figure 5.19a for the correspondence of numbers on the samples). Only samples B, C and D are 

presented here, because sample A has only a measurement of a part of its surface. 

As expected, figure 5.19 shows that Jsc values range from 30 to 33 mA.cm-2. However, there is no trend of 

decrease of their values towards the edges of the samples (34 mA/cm2 was expected for cell 0, and 30 

mA/cm2 was expected for cell 5). The differences of ZnSe ratio are probably too low to result in significant 

changes of Jsc. 

The results of this section 5.3.2 show a good reproducibility of the process, since the four samples all reach 

efficiencies between 5 and 6% for their best solar cells, which tends to show that the selection of 

absorbers is fruitful. Furthermore, the analysis of distribution of cells efficiencies shows that best 

efficiencies are constantly attained at the edges of all the samples. Further examination shows that this is 

due to losses of shunt resistance from the edges towards the center of the samples, due to micrometer-

sized blisters which become more and more abundant from edges to center. Thus, the same pinholing 

behavior than that presented in section 5.3.1 is detected here, but at a lesser extent since only the central 

part of the samples is affected. 

 

a) 

b) 
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5.3.3 Origin of formation of blisters 

 
The blisters present in the selenized thin films are most probably originating from the electrodeposition. 

Blistering of Cu/Sn/Zn stacks during the deposition of the metals was described in section 3.2.2. The size 

of blisters observed in chapter 3 was of about 50-100 micrometers diameter (figure 3.1), and the size of 

the blisters observed in chapter 5 is also about the same (figures 5.11 and 5.12). Furthermore, the fact 

that the blistering of the samples during electrodeposition is not controllable and occurs at different 

extents for different samples explains the strong discrepancies of Rsh values for solar cells made with 

similar processes, and the need to select the samples before deciding to implement them into solar cell 

devices. 

 

5.4  Effect of prealloying before selenization 

 
The influence of the alloying step at 350°C between electrodeposition and selenization is investigated in 

this last section, with the initial motivation to try to improve the adhesion of the metallic layers and reduce 

problems of blistering. For this, four samples were prepared with a precursor composition of 

Cu/(Zn+Sn)=0.8 and Zn/Sn=1.2. Each of them was annealed for a different time (1 min, 5 min, 25 min and 

125 min). The samples were then selenized with a standard process (550°C for 30 min in 10 mbar N2/H2). 

Figure 5.20a shows that very high Voc values are obtained at times of 1, 5 and 125 min. The values are 

higher than the best Voc which were previously obtained: without prealloying process, the best Voc values 

were 350 mV, and here values of 390 mV are obtained with 1 min prealloying. The distributions of their 

values are very narrow as well, which shows a very good homogeneity over the complete surface of the 

samples, which also differs from non-prealloyed samples. These high values of Voc result in increased 

efficiencies: a best solar cell of 7.2% conversion efficiency is obtained at 1 min prealloying. 

 

 

                

Figure 5.20: Evolution of (a) Voc and (b) efficiency of solar cells from samples prealloyed for various 

times. 16 solar cells are built on each sample. 

a) b) 

prealloying prealloying 
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The alloying of 25 min gives different results: Voc values are lower and more scattered, which resembles 

more the samples made without prealloying. Figure 5.21 shows the J-V curve of the best solar cell, 

obtained by using the sample alloyed for 1 min. The fact that at longer times of prealloying the Voc is 

decreasing is in contradiction with findings of Jiang et al [96], who found an increase of all cells parameters 

(efficiency, Jsc, FF and Voc) with increasing time of prealloying. In this paper, the reason which is given for 

the improvement observed is an increased smoothness of the film after longer prealloying, which then 

reduces the interface absorber/CdS, and thus decreases interface recombination. However, it is rather 

difficult to make a clear comparison between our study and the study of Jiang et al, because of the 

different types of layers obtained between Jiang s process and the process of this thesis. 

Short times of prealloying (1 to 5 minutes) process clearly allow to reach very high values of Voc of around 

390 mV, which are homogeneous over the full surface of the samples. However, a drawback of this process 

is that values of FF and Jsc become very variable over the surface, which affects the efficiency of the solar 

cells. 

 

 

Figure 5.21: J-V characteristics of the best solar cell obtained (1 min prealloying). The power conversion 

efficiency is 7.2%, Voc=386 mV, Jsc=35.5 mA/cm² and FF=53%. 
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5.5  Conclusion 

 
This chapter shows that there is a strong linear relationship between the ratio of ZnSe and the short circuit 

current of the devices. The short circuit current of the solar cells increases with decreasing ZnSe ratio, up 

to a value of ZnSe/(CZTSe+ZnSe) of about 0.2, for which the Jsc values are typically around 35-40 mA/cm². 

This is due to a higher surface coverage by ZnSe, which can be detected by the optical absorption by this 

secondary phase, as evidenced in EQE spectra. Below a ZnSe ratio of 0.2, a strong drop of short circuit 

current is observed, thus 0.2 ZnSe is the optimal value for Jsc. Concerning other cells parameters, the Voc 

and the fill factor are shown to strongly depend on the shunt resistance of the solar cells. Low shunt 

resistances seem to be the highest drawback for achieving high power conversion efficiencies. 

It is shown that the probable origin of low Rsh is the formation of fragile blisters in the layers, which appear 

during the electrodeposition process (the phenomenon was described in chapter 3). These weak parts of 

the absorber easily result in pinholes, and can cause short shunting paths from the CdS layer directly to 

the Mo back contact. Furthermore, this hypothesis is strengthened by analyzing complete samples of 2x2 

cm², analysed by making mini solar cells (0.1 cm²) on the total surface. This provides a mapping of cells 

characteristics over the area. The best efficiencies are achieved at the edges of the samples, due to 

different proportions of blisters in the center than in the edge of the samples. A correlation of proportion 

of blisters versus solar cells shunt resistance is established. 

Additionally, the time of the alloying step between electrodeposition and selenization proposed by 

Ahmed [40] or Vauche [57] was investigated. Short prealloying times seem to be very beneficial for the 

open circuit of the devices, since high Voc values of around 390 mV are obtained, with a solar cell of 7.2%. 

This value is close to the best reported efficiency for an electrodeposition-based process, which is 9.1% 

[41]. However, the effects of this process on FF and Jsc are still not understood. 

Finally, the improvements of the power conversion efficiencies achieved during this thesis can be 

summarized as shown in figure 5.22. At the start of the project, the highest efficiency of the laboratory 

for a selenide Kesterite solar cell was about 1%. This efficiency was increased by changing the type of 

metallic precursor from Cu/Sn/Cu/Zn to Cu/Sn/Zn. Further improvement was obtained by increasing the 

short circuit current of the solar cells thanks to the optimization of the ZnSe ratio. Finally, the value of 

7.2% was obtained by increasing the open circuit voltage of the solar cell via prealloying of the metallic 

precursors. 
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Figure 5.22: Best solar cells power conversion efficiencies achieved over the period of the project. 
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6 General conclusions and perspectives 
 

6.1 Alloying and selenization of Cu/Sn/Zn stacks 
This thesis brings mainly insight into the phenomenon of segregation of zinc selenide during the 

selenization of metallic layers of Cu-Sn-Zn. By employing a novel method of analysis at a specific position 

of a sample after different steps of the synthesis, a spatial correlation between the segregation of zinc 

selenide and the segregation of metals during alloying is established. By analyzing the thin films at scales 

larger than previously reported in the literature, it was shown that segregation of Cu-Zn and Cu-Sn at very 

large scales of 10-20 micrometers occur during the alloying. This segregation of metals then affects the 

selenization process: a preferential growth of ZnSe on areas which were rich of tin before the selenization 

is observed, attributed to the decrease of rate of formation of Kesterite on the tin-rich zones because of 

evaporation of tin selenide. 

It was also shown that a mechanism of self-regulation of the tin content in the layers is established during 

the selenization. During the beginning of the selenization process, loss of tin is observed, and is due to the 

high vapor pressure of tin selenide at the temperature used for the conversion to selenide (550°C). The 

strong loss of tin at the beginning is probably due to the presence of large amounts of free tin segregated 

at large scales in the alloyed precursor. The large segregation of tin reduces the possibility of tin selenide 

to react with Cu-Se or ZnSe, thus a large quantity of SnSe evaporates during the first stages of the 

selenization process. At longer selenization times, a replenishment of tin in the layers is observed, due to 

the reaction of SnSe with Cu-Se and ZnSe, all needed Sn being provided via gas phase.  

An investigation of the influence of precursors composition was done, in a domain with Cu/Sn<2 and 

Zn/Sn>1 (which is included in the Cu-poor Cu/(Zn+Sn)<1 and Zn-rich Zn/Sn>1 domain). The study shows 

that the process of tin evaporation and replenishment leads to a self-regulation of tin content to Cu/Sn=2. 

It can be explained by the fact that SnSe can only react with a copper-containing species, to form either 

Kesterite or Cu2SnSe3. Thus during the replenishment in the last part of the selenization process, only a 

stoichiometric amount of tin with respect to Cu2 can be incorporated, which explains the value of Cu/Sn=2. 

As a consequence, the thin films after selenization are mainly composed of Kesterite and ZnSe. ZnSe 

mainly segregates at the surface of the films, forming large scale aggregates of 10-20 micrometers 

diameter.  

 

6.2 Solar cells parameters 
The effect of the presence of ZnSe at the surface of the absorbers was investigated. ZnSe affects the short 

circuit current of the devices made with absorbers of different compositions, because of its resistivity. It 

acts as an insulator between the absorber and the CdS/ZnO layer. A linear relationship between the 

increase of ZnSe/(CZTSe+ZnSe) ratio and the decrease of Jsc is found for ZnSe/(CZTSe+ZnSe)>0.2. Below 

this ratio, a strong drop of short circuit current is observed, thus the optimal value is 

ZnSe/(CZTSe+ZnSe)=0.2. 

The presence of blisters in the absorbers is detected. These blisters are protuberant parts of the layers, 

with a void underneath. They originate most probably from the electrodeposition process, during which 
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each layer of metal is deposited to form the Cu/Sn/Zn stack. During this process, hydrogen can be formed 

by reduction of water, and bubbles of this gas can be trapped in the layers. Their growth creates 

compressive stress, which causes delamination of the layers between the copper and the molybdenum 

substrate. Further expansion of the hydrogen bubbles causes the formation of blisters, which then remain 

even after selenization. These blisters are fragile and easily create pinholes, leaving bare molybdenum 

apparent. This creates shortcuts in the devices, which decreases their shunt resistance, and decreases the 

Voc and FF of the solar cells. A higher amount of blisters is generally found in the center of 2.1x2.1 cm² 

samples than in their edges, which results in higher efficiencies reached at the edges, where nearly no 

blisters are detected. The increased presence of blisters in the center of the samples can be due to the 

increasing relative speed from the center to the edge of the rotating electrode, which can more efficiently 

remove hydrogen bubbles forming on the surface. 

Finally, further investigation of the effect of precursor microstructure was done by adding an intermediate 

step, in order to alloy the Cu/Sn/Zn stacks, prior to selenization. The time of alloying is investigated, and 

shows an increase of Voc of more than 10% at 1 min prealloying. A best power conversion efficiency of 

7.2% was obtained via this process, close to the 9.1% record value obtained with a similar process [41]. 

 

 

6.3 Recommendations for further studies 
 

From the results of this work, several points can be considered to improve the process and its 

understanding. 

 

6.3.1 Investigation of the effect of precursor microstructure on the selenization. 

Two observations are considered for this paragraph: the results of section 4.4 (segregation of ZnSe) 

showing that the microstructure of a prealloyed sample has an effect on the mechanism of selenization 

and directly affects the microstructure of the selenized sample, and the observation of section 5.4 

suggesting that the prealloying time has an effect on the Voc of the solar cells. From these findings, it can 

be hypothesized that different alloying times result in different microstructures of alloyed films of Cu-Sn-

Zn, which in turn change the properties of the solar cells. 

To test this hypothesis, two investigations can be performed, on (i) the effect of prealloying time on 

microstructure, with optical microscope analysis and (ii) the selenization of different types of 

microstructures. Investigation (i) is relatively easy since it only requires to observe the microstructure 

after alloying, whereas (ii) would require to decorrelate alloying and selenization. For this, it would be 

ideal to perform a controlled prealloying in the selenization chamber, and directly start the selenization. 

This would avoid to have a first process of prealloying, and then perform the selenization in a second 

separate step, which is again including a prealloying during the heating ramp. To perform in one single 

process a controlled alloying (to obtain a controlled metallic alloy microstructure), a new oven design is 

required. 
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An ideal selenization furnace for this purpose would allow to decorrelate the heating ramp (when the 

sample is purely heated, without incorporation of selenium), from the selenization itself (when selenium 

reacts with the metals). A possible example of oven design is shown in figure 6.1. The oven proposed is 

composed of three zones, which allow controlling independently the temperature of the sample, of the 

Se powder and of the SnSe powder. Each powder is put in a quartz ampoule, which is connected to the 

graphite box where the reaction occurs via a quartz tube. Thus, the flow rate of selenium and tin selenide 

can be accurately controlled by the temperature of each of the zones. The quartz container in which the 

powders are is necessary to drive all the vapors of Se and SnSe generated directly inside the reaction 

chamber. Without these quartz elements, most of the vapors would condense on the cold parts of the 

oven, outside the heating zones. 

 

 

Figure 6.1: Three-zone oven with independent heating of sample, Se and SnSe. 

 

In this way, a very large field of investigation would be opened, and probable improvement would occur. 

A very interesting experiment would be to investigate the effect of incorporating the chalcogen at 

different times of heating of the sample, to follow the work which was done by investigating different 

prealloying times and led to increased Voc values. Probably different sizes of Cu-Zn and Cu-Sn can then be 

achieved, and different sizes of ZnSe aggregates will result. 

 

6.3.2 Decrease of blistering effect 

Another objective would be to try to decorrelate several parameters which decrease the efficiencies and 

make the analysis of the process difficult. The blistering effect would be the first problem to address, and 

could make the understanding of the synthesis much easier by getting rid of a source of non-reliability of 

the process, and by improving the homogeneity of the solar cells parameters over the samples surface. 

For this, changes in the electrodeposition process need to be investigated, in order to avoid formation of 

hydrogen between copper and Mo during copper deposition. Electrodeposition potentials have already 

been optimized during the thesis, thus other changes need to be done, such as changes of the chemistry 

of the electrolytes. Also alternative back contacts could be tested, on which hydrogen deposition 

overpotential could be increased, thus decreasing the problem of hydrogen formation. It has already been 

shown that it is possible to synthesize device-quality CZTSSe thin films on materials such as Au, W, or Pt 

2 - SnSe 1 - Se sample 

Heating 

zone 1 

Heating 

zone 3 

Heating 

zone 2 



114 
 

[97]. Even Mo substrates grown using different sputtering modes (RF and DC) are reported to have an 

influence on the growth of metallic thin films, as reported by Jubault [98], and could be tested. 
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Appendix A: XRD analyses of samples selenized at 400°C. 
 

Detection of Cu5Zn8: 

                  
 

Detection of Kesterite: 

                 
      

Detection of ZnSe/Cu2SnSe3/Cu2ZnSnSe4:                     Detection of CuxSe: 
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Appendix B: Images of surface of absorbers reaching highest 

efficiencies (over 5.5%). Each image corresponds to a different sample. 
 

   
Figure: samples on which the best solar cell has an efficiency of (a) 7.2%, (b) 6.9%, (c) 6%. 

    
Figure: samples on which the best solar cell has an efficiency of (a) 6%, (b) 5.8%, (c) 5.7%. 

   
Figure: samples on which the best solar cell has an efficiency of (a) 5.7%, (b) 5.7%, (c) 5.6%. 

   
Figure: samples on which the best solar cell has an efficiency of (a) 5.6%, (b) 5.5%, (c) 5.5%. 

2 mm 2 mm 2 mm 

2 mm 2 mm 2 mm 

2 mm 2 mm 

2 mm 
2 mm 2 mm 

10 mm 
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Appendix C: Study of blistering effect within a sample 
 

        

 

    

Figure: (a) and (b) optical microscope images of two positions randomly chosen on cell 1. Measurement 

of ratio of area covered with blisters gives 0.025 in figure (a) and 0.026 in figure (b). 

 

   

Figure: cell 2 – 0.018 and 0.015 



118 
 

   

Figure: cell 3 – 0.0074 and 0.0082 

 

   

Figure: cell 4 – 0.0036 and 0.0052 

 

   

Figure: cell 5 – 0.00215 and 0.00157 
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