UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE LUNIVERSITE DE GRENOBLE
Spécialité : Informatique

Arrété ministériel : 7 ao(t 2006

Présentée par

Jérémie Decouchant

Thése dirigée par Vivien Quéma
et co-encadrée par Sonia Ben Mokhtar

préparée au sein du Laboratoire d’Informatique de Grenoble
et de LEcole Doctorale Mathématiques, Sciences et Technologies de
I'Information, Informatique

Collusions and Privacy
in Rational-Resilient Gossip

Thése soutenue publiqguement le 9 novembre 2015,
devant le jury composé de :

Prof. Noél de Palma

Université de Grenoble, Président

Dr Laurent Réveillére
Enseirb-Matmeca, Rapporteur

Prof. Sébastien Tixeuil
Université Pierre et Marie Curie, Rapporteur
Dr Etienne Riviére

Université de Neuchatel, Examinateur
Prof. Vivien Quéma

INP Grenoble, Directeur de thése

Dr Sonia Ben Mokhtar

CNRS LIRIS, Co-Encadrante de thése

Abstract

Gossip-based content dissemination protocols are a scalable and cheap alternative to
centralized content sharing systems. However, it is well known that these protocols
suffer from rational nodes, i.e., nodes that aim at downloading the content without
contributing their fair share to the system. While the problem of rational nodes that act
individually has been well addressed in the literature, colluding rational nodes is still
an open issue. In addition, previous rational-resilient gossip-based solutions require
nodes to log their interactions with others, and disclose the content of their logs, which
may disclose sensitive information. Nowadays, a consensus exists on the necessity
of reinforcing the control of users on their personal information. Nonetheless, to the
best of our knowledge no privacy-preserving rational-resilient gossip-based content
dissemination system exists.

The contributions of this thesis are twofold.

First, we present AcTinG, a protocol that prevents rational collusions in gossip-based
content dissemination protocols, while guaranteeing zero false positive accusations.
AcTing makes nodes maintain secure logs and mutually check each others’ correctness
thanks to verifiable but non predictable audits. As a consequence of its design, it is
shown to be a Nash-equilibrium. A performance evaluation shows that AcTinG is able
to deliver all messages despite the presence of colluders, and exhibits similar scalability
properties as standard gossip-based dissemination protocols.

Second, we describe PAG, the first accountable and privacy-preserving gossip pro-
tocol. PAG builds on a monitoring infrastructure, and homomorphic cryptographic
procedures to provide privacy to nodes while making sure that nodes forward the
content they receive. The theoretical evaluation of PAG shows that breaking the
privacy of interactions is difficult, even in presence of a global and active opponent.
We assess this protocol both in terms of privacy and performance using a deployment
performed on a cluster of machines, simulations involving up to a million of nodes, and
theoretical proofs. The bandwidth overhead is much lower than existing anonymous
communication protocols, while still being practical in terms of CPU usage.

Keywords. Gossip, selfish nodes, collusions, accountability, privacy, homomorphic
encryption.

Résumé

Les protocoles de dissémination de contenus randomisés sont une alternative bon
marché et pouvant monter en charge aux systémes centralisés. Cependant, il est bien
connu que ces protocoles souffrent en présence de comportements individualistes, i.e.,
de participants qui cherchent a recevoir un contenu sans contribuer en retour a sa
propagation. Alors que le probléme des participants égoistes a été bien étudié dans
la littérature, les coalitions de participants égoistes ont été laissés de coté. De plus,
les manieres actuelles permettant de limiter ou tolérer ces comportements exigent des
noeuds qu’ils enregistrent leurs interactions, et rendent public leur contenu, ce qui peut
dévoiler des informations gé€nantes. De nos jours, il y a consensus autour du besoin de
renforcer les possibilités de controle des usagers de systemes informatiques sur leurs
données personnelles. Cependant, en 1’état de nos connaissances, il n’existe pas de
protocole qui évite de divulguer des informations personnelles sur les utilisateurs tout
en limitant I’impact des comportements individualistes.

Cette these apporte deux contributions. Tout d’abord, nous présentons AcTinG, un
protocole qui empéche les coalitions de noeuds individualistes dans les systemes pair-a-
pair de dissémination de contenus, tout en garantissant une absence de faux-positifs
dans le processus de détection de fautes. Les utilisateurs de AcTinG enregistrent leurs
interactions dans des enregistrements sécurisés, et se vérifient les uns les autres grace a
une procédure d’audit non prédictible, mais vérifiable a posteriori. Ce protocole est un
équilibre de Nash par construction. Une évaluation de performance montre qu’ AcTinG
est capable de fournir les messages a tous les noeuds malgré la présence de coalitions,
et présente des propriétés de passage a I’échelle similaires aux protocoles classiques de
dissémination aléatoire.

Ensuite, nous décrivons P AG, le premier protocole qui évite de dévoiler des infor-
mations sur les usagers tout en les controlant afin d’éviter les comportements égoistes.
P AG se base sur une architecture de surveillance, formée par les participants, ainsi que
des procédures de chiffrement homomorphiques. L’ évaluation théorique de ce proto-
cole montre qu’obtenir le détail des interactions des noeuds est difficile, méme en cas
d’attaques collectives. Nous évaluons ce protocole en terme de protection de I’intimité
des interactions et en terme de performance en utilisant un déploiement effectué sur
un cluster de machines, ainsi que des simulations qui impliquent jusqu’a un million de
participants, et enfin en utilisant des preuves théoriques. Ce protocole a un surcolit en

bande-passante inférieur aux protocoles de communications anonymes existants, et est
raisonnable en terme de colit cryptographique.

Mots-clés. Gossip, utilisateurs égoistes, coalitions, responsabilité, protection vie privée,
chiffrement homomorphique.

Preface

This thesis presents the research conducted in the Erods team of the LIG (Laboratoire
d’Informatique of Grenoble) to pursue the Ph.D. in the specialty "Informatics" from
the Doctoral School "Mathématiques, Sciences et Technologies de I'Information, Infor-
matique" of the University of Grenoble. The research activities have been carried out
under the supervision of Prof. Vivien Quéma (LIG/Grenoble INP) and Dr. Sonia Ben
Mokhtar (LIRIS/CNRS).

This thesis focuses on two problems faced by content dissemination protocols in peer-to-
peer networks: (i) the presence of selfish nodes, following either individual or collective
strategies, and (ii) the protection of the privacy of users which is endangered by the
mechanisms traditionally used to detect selfish nodes.

While the second part of this thesis is currently under submission, novel contributions
to tackle problem (i) have been published in an international conference:

o AcTinG: Accurate Freerider Tracking in Gossip. Sonia Ben Mokhtar,
Jérémie Decouchant, Vivien Quéma. In Proceedings of the International Sympo-
sium on Reliable Distributed Systems (SRDS), Nara, Japan, October 2014 [5]

During these three years, I also had the occasion to do research on a problem, concerning
the management of memory on multicore architectures. We will not detail this thematic
in this document. This work led to a publication in an international conference:

o Large Pages May Be Harmful on NUMA Systems. Fabien Gaud, Baptiste Lep-
ers, Jérémie Decouchant, Justin R. Funston, Alexandra Fedorova, Vivien Quéma
In Proceedings of the USENIX Annual Technical Conference 2014, Philadelphia,
USA, June 2014

Acknowledgments

Je tiens a adresser mes sinceres remerciements a :

M. Vivien Quéma, mon directeur de these, pour avoir guidé mes travaux, et m’avoir
donné la liberté d’explorer différents themes de recherche.

Mme Sonia Ben Mokhtar, ma co-directrice de these, pour ses conseils, et le travail
de rédaction qu’elle a fourni sur nos publications. J’ai particulierement apprécié ses
retours sur les problémes pointus que j’ai rencontré. Ses retours ont trés souvent permis
d’ébaucher une nouvelle solution.

M. Noél de Palma, pour m’avoir fait I’honneur de présider le jury de cette these, et
pour I'intérét qu’il a bien voulu y porter.

M. Laurent Réveillere, et M. Sébastien Tixeuil, pour le temps et les efforts qu’ils ont
consacrés a la révision de ce document et pour I’honneur qu’ils m’ont fait en participant
au jury d’évaluation de ma these.

Baptiste Lepers, Pierre-Louis Aublin, Gautier Berthou, et Amadou Diarra, avec qui
j’ai partagé mon bureau durant mes deux premicres années de these, pour avoir partagé
leurs connaissances avec moi, et pour les bons moments passés ensemble.

Les membres de I’équipe Erods pour la bonne humeur qu’ils ont su maintenir dans
I’équipe, et pour nos relations amicales.

Mon papa, Dominique, ainsi que sa compagne, Sonia, pour m’avoir suivi et soutenu
pendant ma these, et pour la révision patiente et détaillée de ce document. Je remercie
aussi bien siir ma maman, Véronique, ma soeur Delphine et Florian, mon frére Raphaél
et Audrey pour le soutien qu’ils m’ont témoigné et pour leur présence.

La famille de Leslie qui m’a rendu tant de services, et depuis bien avant la période
de ma theése. Pour ne citer que les plus récents et anecdotiques, j’ai apprécié les colis,
les petits toasts, les orangeades et les retouches de vétements avec Michel et Yvonne,
I’hospitalité en période de canicule et les vacances avec Valérie, Yvon et Fiona. Merci
a tous pour votre gentillesse en toutes circonstances.

Finalement, j’aimerais remercier Leslie, qui m’a toujours soutenu pendant ces trois
années. Je lui suis treés reconnaissant d’avoir été présente a mes cotés, et d’avoir rendu
ma vie plus douce.

Terminology

Term used Concept Alternative terms
User The human who uses an application.
Node The virtual representation of a user in a P2P sys-
tem.
The process of serving every node in an audience
. . . . ; Content
Information with a given information. In a P2P context nodes dissemination
dissemination forward to each other this information.)

Gossip protocol

A P2P information dissemination protocol that re-
lies on random exchanges between nodes.

Selfish node

A peer that tries to minimize its participation (e.g.,
upload bandwidth, CPU usage) in a protocol while
maximizing its benefit (e.g., delay to receive a con-
tent).

Rational node,
freerider,
opportunistic node

Byzantine node

A node deviating from the protocol in an arbitrary
or malicious way.

Malicious node

Selfish-resilient

An information dissemination protocol that can
efficiently serve a content to an audience of nodes

Rational-resilient

) . . rotocol
protocol in presence of a given proportion of selfish nodes. P
An information dissemination protocol that can
Collusion-resilient efficiently serve a content to an audience in pres-
protocol ence of selfish nodes that collude to improve their
benefit, or avoid being detected.
S In a content-dissemination system, the node that
ource . . Broadcaster
generates the content to be disseminated.
A chunk of content that a source releases, and that
Update) Chunk, Message
peers want to receive.
Membership The set of nodes that participates in a protocol at a
‘ given moment.
Session Dissemination of one or several contents among a
membership.
Nodes arrival and departure, possibly completely
Churn desynchronized. Maintaining the membership in
presence of churn is challenging.
Interval of time between two successive emissions
Round of updates by the source during which nodes have Gossip period

to complete their exchanges.

Table I — Terminology used in this document.

Contents

Page

Abstract i
Preface v
Acknowledgments vii
Terminology ix
Contents xi
List of figures XV
List of tables xvii
Introduction 1
Scientificcontexto 1
Gossip, coalitions of freeriders and privacy 3
Objectives of thisresearchwork 4
Research location, 5
Organization of this document 5
CHAPTER 1 Gossip with colluding rational nodes 7
1.1. Probabilistic dissemination 8
1.1.1. Structured and unstructured overlays 8

1.1.2. Principlesof gossip 9

1.1.3. Probabilistic guarantees 9

1.2. Selfishbehaviors, 11
1.2.1. BARmodel 11

1.2.2. Utility functions 12

1.2.3. Byzantine fault tolerance or Nash equilibrium 12

1.3. Impactofselfishnodes 13
1.3.1. Individual deviations 13

1.3.2. Collusions e 14

1.3.3. Privacy and selfishnodes 14

PartI Rational collusions in gossip-based dissemination

systems 15
CHAPTER 2 Gossip in presence of rational nodes 17
2.1. Rational resilient dissemination protocols 18
2.1.1. Nashequilibriums 18
2.1.2. Audits and statistical approaches 23

2.2. Accountability techniques 30
2.2.1. Software-only accountability 30
2.2.2. Hardware-assisted accountability 33

2.3. BAR-transformation protocols 37
24, Summary 39
2.4.1. Requirements 40
2.4.2. Drawbacks of existing solutions 41
243. Conclusion 43
CHAPTER 3 AcTinG: accurate freerider detection in gossip 45
3.1. Introduction to AcTinG 46
3.1.1. Principalideas 46

3.1.2. Systemmodel o 47
3.1.3. Protocoloverview 48

32, AcTinG 50
3.2.1. Protocoldetails 51
3.2.2. Membershipprotocol 51
3.2.3. Partnership management 53
3.2.4. Auditprotocol 54
3.2.5. Updateexchanges 56

33. Proofs 56
3.3.1. Riskversus gainanalysis 56
3.3.2. Resilience to (colluding) rational nodes 58

34. BEvaluation 64
3.4.1. Methodology and parameters setting 65
34.2. Impactofcolluders 66
3.4.3. Bandwidth consumption 68
3.4.4. Resilience to massive node departure 68
34.5. Scalability 69

35. Conclusion 71

Part II Privacy and rational resiliency in gossip-based
dissemination systems 73

CHAPTER 4 Privacy in rational-resilient gossip 75
4.1. Principles of gossip and selfish behaviours 76

4.1.1. Selfishbehaviours 77

4.1.2. Requirements against selfish behaviours 79
4.1.3. Accountability solutions 79
4.1.4. Privacy requirements 79
4.2. Rational-resilient gossip protocols 80
4.2.1. Rational resiliency by design 80
4.2.2. Audit-based approaches 81
4.2.3. Virtual currency approach. L L. 82
4.3. Anonymous communication protocols 83
4.3.1. Altruisticrelaying L. 83
4.3.2. Rational resilient relaying 85
4.4. Accountable and privacy preserving approaches 86
4.4.1. Zero-knowledgeproofs 87
4.4.2. Collaborative verification protocols 87
4.5. Preserving privacy in other contexts 88
4.5.1. Peer-to-peer protocols Lo 88
4.6. Summary 90
4.6.1. Requirements it 91
4.6.2. Summary of existing solutions 91
4.6.3. Conclusion 93
CHAPTER 5 PAG: Private and accountable gossip 95
5.1. Systemmodel 97
5.1.1. Communications and cryptographic assumptions 97
5.1.2. Gossipsessions 97
5.1.3. Nodesbehaviors 98
5.1.4. Adversarymodel 98
52. PAGOverview 98
5.2.1. Global membership and monitoring 98
5.2.2. Exchanges of updates using gossip 99
5.2.3. Enforcing accountability using monitoring 100
5.2.4. Enforcing privacy using homomorphic encryptions 101
53. Designof PAG e 103
5.3.1. Forwardingupdates 103
5.3.2. Encryptingasetofupdates 104
5.3.3. Combining all encryptions 106
5.3.4. Practical implementation details. 106
5.4. Security, privacy and accountability 108
54.1. k— PAG: clustering sessions 108
5.4.2. Enforcing P3 under global and active attacks 109
5.4.3. Accountability against selfish deviations 110
5.5. Performance evaluation 113
5.5.1. Methodology and Parameter Setting 113
5.5.2. Probabilistic study of the impact of coalitions 114
5.5.3. Comparison with an accountable gossip protocol and impact of
the number of contents 115

5.5.4. Comparison with anonymous communication systems 116

5.5.5. Impactofupdatessize 119

5.5.6. Cryptographiccosts 119

5.5.7. Scalability 120

5.6. Update Sept. 2016 120
5.7. Conclusion 122
Conclusion 125
References 129
Appendix 135

1. ProVerifcode of PAG 135

.2. Probabilistic evaluation of PAG resiliency to collusions 140

List of Figures

1.1.
1.2.

2.1.
2.2.
2.3.
24.
2.5.

3.1.
3.2.
3.3.
3.4.
3.5.

3.6.
3.7.

3.8.

3.9.

3.10.
3.11.
3.12.

4.1.
4.2.
4.3.
44.

5.1.

Distributed systems architecture paradigms

Example of gossip with 7nodes
Example of gossip with 7 nodes in presence of a rational node

Basic trade illustration of BAR Gossip (Based on [6]).
Global auditing architecture (Basedon [7]).
Example of the architecture of Fireflies (Basedon [8]).
Cross-checking protocol in LiFTinG (Basedon [9]).
[lustration of a secure log (Basedon [10]).

Overview of AcTinG.
Arrivalofanewnode. oL oL
Handling of an omission failure.
Handling of a node departure.
Establishment of new associations between nodes, which may imply
audits.
Update exchanges betweennodes.
Pseudocode of the program that is used to estimate the number of time
a colluding node avoids to send anupdate.
Proportion of missed updates by correct nodes when a given proportion
of the audience collude as a single group.
Proportion of missed updates by correct nodes when 30% of the audi-
ence is rational, and collude in independent groups of equal sizes.
Fault-free case: Cumulative distribution of average bandwidths.
Nodes average bandwidth after a massive departure.
Percentage of nodes that do not receive a viewable stream after a
massive departure. L.

Forwarding of updates in a gossip-based system
Examples of selfish deviations
Accountable gossipo Lo
Sending of an onion using tworelays.

Membership using FireFlies [8]

67

5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.

5.9.

5.10.

5.11.

5.12.

Exchanges of updates between nodes that have different interests . . . 99
Monitoring of nodes to ensure the forwarding of updates 101
Privacy preserving verification of a forwarding of anode B 103
Propagation of messages insideasession. 105
Monitoring part of an interaction between twonodes 107
k— PAG illustration with k=3 108
Privacy presence of a global and active attacker controlling a varying
proportion of the membership. 115
Bandwidth consumption of k¥ — PAG with several 300kbps contents

per cluster and 3 monitors per node [sim] 116
Average bandwidth consumption of nodes running P AG with a 300Kbps
payload. 117
Bandwidth consumption with 1000 nodes and a 300Kbps stream in
function of the size of updates [sim] 119

Scalability of PAG compared to AcT'inG with a 300kbps content [sim] 121

List of Tables

IL.

III.
IV.

IL.

IL.

Terminology used in this document.

Possible attacks on the LiFTinG protocol (Based on [9]).
Values and source of blames emitted during direct verifications in
LiFTinG (Basedon [9]).
Trlnc: Global state of atrinket
TrInc: Per-counter state.

Overhead of colluders in AcTinG.
Average bandwidth and memory usage of AcT'inG in function of the
SYSIEM SIZE. o e e e

Detailed summary of existing approaches.

Maximum video quality sustainable in function of the network links
capacity, and the associated bandwidth consumption, in a system with
1000nodes
Number of RSA-1024 signatures and homomorphic encryptions per
second in a system of 1000 nodes [sim]

70

92

Introduction

Contents

Scientificcontext 0 oo i i e e
Gossip, coalitions of freeriders and privacy
Objectives of thisresearchwork

Researchlocation¢.000eeeeee..

N Nt AW

Organization of thisdocument

In this section, we first present the scientific context of this document, and more
specifically, we focus on the problem of disseminating information inside a P2P network
in presence of selfish nodes. We develop the motivation of our research in the two
following sections. We first analyze the negative impact that selfish nodes have on the
dissemination of information in a P2P system. Then, we detail how selfish-resilient
protocols may allow users to learn information about each others, and explain for which
reasons they may be reluctant to use such protocols. After providing a description of
these two problems, we detail the objectives of this research work. The first contribution
consists in the design of a gossip protocol that is resilient to individual, and collective,
selfish behaviors. The second one is a protocol that limits the information that is revealed
about users, while deterring selfish behaviors. Finally, we give a brief description of the
contents of this document.

Scientific context

The Internet allowed the development of numerous applications which use it to connect
physically distant machines in order to provide elaborated services. In a general way,
in these distributed applications some network nodes provide a service while others
consume it. Several paradigms exist to design applications over a network, including
the client-server and the peer-to-peer approaches, which are illustrated in Figure 1.

The traditional client-server approach is built around a server, which processes the
requests of one or more clients. Using this paradigm, the service quality can suffer
from the nature of the Internet and the habits of the users. Thus, the server can become
a bottleneck if it receives too many requests simultaneously, or if the network links are

2 INTRODUCTION

overloaded. In addition, the server constitutes a single point of failure of the application,
and could crash or even become Byzantine. Due to the cost of high performance
servers, applying this paradigm is not accessible to everyone. In Figure 1, a single
server answers the requests of 4 clients, which use different devices (e.g., a laptop, a
smartphone, a personal computer).

Differently, in the peer-to-peer (P2P) model, the users of the application, called peers,
play both the roles of clients and servers, sharing their resources (CPU cycles, memory,
network bandwidth) to the application, and benefiting in return from it. Using a P2P
architecture instead of a client-server approach can be interesting for several reasons.
First, there is no single point of failure, or bottleneck, and peers can join or leave the
system at any moment. Then, scaling the system up to several thousands of nodes is
easier and cheaper, and it is possible to design an application whose membership is able
to absorb quick and massive joining/departure of nodes without significantly degrading
the quality experience of nodes. In Figure 1, all nodes collaborate with two other nodes,
both in emission and in reception, to benefit from the application.

It is worth mentioning that hybrid approaches (e.g., used in [11, 12]) exist, where some
servers help a P2P system with some tasks. For example, in NetSession [12] peers are
coordinated by a dedicated infrastructure to exchange content. These hybrid approaches
seek to obtain the best of the client-server and peer-to-peer approaches.

!
B =

LETR\
(a) A client-server system

=ije
n!

[]V J

=ije

L
(b) An example of peer-to-peer system

p EN— .
[—— w

Figure 1 — Distributed systems architecture paradigms

Historically, file sharing applications were the firsts to adopt the P2P paradigm. Nowa-
days, these applications are mainly represented by BitTorrent. In a file sharing applica-
tion each user is interested in obtaining a copy of at least one file. Each file is splitted
in fragments, and nodes have to collaborate to obtain all the fragments, and reconstitute
the file. Users will receive fragments from those who have it, and send it to the others.
In this case, each peer has to dedicate some of its upload bandwidth to send fragments
to other nodes, even if it does not benefit from doing it. Other types of applications that
relied on the P2P approach include phone applications (Skype [79]), instant messaging
(Jabber [80], ICQ [81]), live streaming (SopCast [82], Veetle [83]), and even social
networking (Diaspora [84]), in which client sites are peer nodes.

In this document, we are focusing on the problem of information dissemination in
P2P networks, which consists in efficiently providing a given content to a set of nodes.
Indeed, this is a central service in various applications, for example used to update the
list of peers in an applications, or share a multimedia content.

A simple yet efficient way to disseminate content in a network of peers is to use random
exchanges between nodes. More precisely, each user has to choose randomly a given
number of other users to which it will send fragments of the content it already owns.
Then, each of these users that received these fragments will have to forward further this
content to other peers. After a given number of hops each member of the audience will
have received all the fragments with high probability. This paradigm, called gossip, has
the advantage of being simple, of ensuring probabilistic guarantees on the dissemination
success, and of easily tolerating the arrival, or departure, of nodes.

Gossip, coalitions of freeriders and privacy

As we previously said, users in a P2P system are expected to share their resources and
benefit from the system in return. It has been shown that some users tend to be selfish,
as they try to avoid contributing to the system, for various reasons, while trying to
maximize their benefit. For example, in DSL networks, nodes have more bandwidth
available in download than in upload, and peers may be tempted to participate to a
gossip session even if they are not able to contribute properly to it. Another possible
reason is that users may want to minimize their participation in a protocol to hide it
from their Internet Service Provider (ISP).

In addition, selfish nodes can collude to collectively decrease their contribution to the
system, or to increase more their benefit. For example, nodes located inside a same local
area network could be more interested in exchanging chunks between them, because
the latencies of their exchanges are lower and their throughput higher. These exchanges,
which are not random, could degrade the performance of the global gossip system. For
example, if all exchanges between nodes have to be balanced (i.e., a user must send the
same number of fragments that it is receiving), then these nodes will receive updates
from their coalition more frequently, and collaborate less with other nodes. Identifying
collective rational deviations in state-of-the-art protocols, and designing a gossip-based

4 INTRODUCTION

protocol protected from rational coalitions constitute the first contribution of this thesis.

The impact of individual or collective selfish nodes is particularly acute in the case of
live streaming applications. In these applications, a particular node produces content,
for example a video, creates the fragments, and immediately starts spreading the frag-
ments in the audience of users, which have to share them. Regularly, some fragments
are supposed to have been received by all nodes and are then delivered to the media
application of nodes. These updates will not be exchanged in upcoming exchanges.
Thus, if some nodes have not received the updates due to selfish behaviors, they will
suffer from a degradation of their experience quality.

In order to protect a protocol from selfish nodes, which do not participate as they are
supposed to, system designers usually try to detect all kind of faults and evict the guilty
nodes, or try to design a system in which the best interest of nodes is to participate
correctly. As we will see later in this document, in the first case, the details of the
interactions of nodes can be learned by other participating nodes, while in the second
case all rational behaviors cannot be avoided. There is a tension between the idea of
verifying the behavior of nodes and the idea of protecting their privacy. Nowadays,
Internet users are aware that their private information is worth something. For example,
two billions dollars are used each year in the United States to buy personal data [85].
As a consequence, users may want to have more control on their data, and may avoid
to use protocols that do not offer them this possibility. Conciliating both privacy and
resistance to selfish nodes is the second problem we tackle in this document.

Objectives of this research work

We highlighted two problems that P2P content sharing applications face. First, we
have shown that selfish peers threaten the good dissemination of content, either by
deviating individually, or by elaborating collaborative strategies to game the system.
Thus content dissemination systems have to detect selfish behaviors and evict the guilty
nodes, or to provide incentives for nodes to stick to the protocol. We defined, prototyped
and evaluated AcT'inG, a gossip-based protocol that deters and detects collusions of
selfish nodes. The performance of AcT'inG was evaluated on a testbed comprising 400
nodes running on 100 physical machines, and compared its behavior in the presence
of collusions to two state-of-the-art protocols. The performance evaluation shows that
AcTinG is able to deliver all messages. It also shows that AcT'inG is resilient to
massive churn. Finally, using simulations, we showed that AcTin(G exhibits similar
scalability properties as standard gossip-based dissemination protocols.

Then, we argued that detection methods typically leak information about users, either
to a central entity, or to other users. Nowadays, people are becoming reluctant to use
systems that collect information about them. Designing a gossip protocol that limits
selfish behaviors and protect the users’ privacy is an interesting challenge. The second
objective of this work is to define and prototype such a gossip protocol. We evaluated
this protocol, named P AG, using deployments on a cluster of 48 machines, simulations
involving up to 10000 nodes, and a cryptographic protocol verifier. The performance

evaluation of PAG, performed using a video live streaming application, shows that
PAG is compatible with the visualization of live content on commodity Internet
connections. Furthermore, P AG’s bandwidth consumption scales logarithmically with
the number of users thanks to the inherited properties of gossip.

Research location

This research has been made in the Erods team of the LIG (Laboratory of Informatics
at Grenoble). This team is interested in the construction and the management of Cloud
systems, but also in distributed and multicore systems.

Organization of this document

This thesis is organized into 5 Chapters, and 2 Parts:

Chapter 1 shortly reviews the fundamental concepts behind gossip-based content dis-
seminations, presents the problems caused by selfish nodes and how protocols generally
deal with them. We also explain that selfish nodes may collude and thus perturb the
dissemination of information, and that traditional mechanisms designed to deal with
selfish nodes may endanger the privacy of users.

Rational collusions in gossip-based dissemination systems
Part I treats the problem of collusions of selfish nodes in gossip, and is made of Chap-
ters 2 and 3.

Gossip in presence of rational nodes

Chapter 2 presents an overview of the works related to rational-resilient gossip-based
dissemination. We detail gossip protocols that were specially designed to detect or
deter selfish deviations, accountability approaches and general Byzantine-tolerant ap-
proaches. We identify the requirements of a gossip protocol accounting for collective
selfish behaviors, and present a summary of whether existing approaches match them.

AcTinG: accurate freerider detection in gossip

Chapter 3 proposes a novel gossip-based protocol, named AcT'inG, designed specially
to tolerate collective selfish deviations. This chapter provides an overview and details
of our prototype of AcTinG. Nodes running this protocol are shown to have all interest
in sticking to it, and if they do not, would not harm the dissemination of updates and
eventually be detected. AcTinG is evaluated using deployments on a cluster of 40
machines, simulations involving up to one million nodes, and scalability metrics.

Privacy and rational resiliency in gossip-based dissemination
systems

Part II treats the problem of privacy in selfish-resilient gossip, and is made of Chapters 4
and 5.

6 INTRODUCTION

Privacy in rational-resilient gossip

Chapter 4 studies the problem of protecting the privacy of nodes while tolerating selfish
nodes in gossip. First, we formalize the requirements to tolerate both selfish behaviors
and protect the privacy of users in gossip. Then, we explain that existing selfish-resilient
gossip protocols may leak information about users. Moreover, we assert that some
anonymous communication protocols are both accountable and privacy-preserving but
suffer from poor performance. In the same way, we introduce some solutions that
combine both privacy and accountability, but we claim that they cannot be applied to

gossip.

PAG: Private and accountable gossip

Chapter 5 proposes and evaluates a gossip-based protocol, named PAG, that forces
nodes to participate actively in the dissemination of a content, while limiting the infor-
mation they can learn the one about the other. First, we detail our assumptions about
nodes and about the system. Then, we introduce the intuition behind PAG that relies
on homomorphic encryptions. We also explain how this intuition is implemented in
practice, using message exchanges. In addition, we detail the practical details that make
P AG practical. Finally, the security of PAG is assessed using a cryptographic protocol
verifier, simulations and a prototype of PAG is used to evaluate its performance on a
deployment on a cluster of 48 machines.

Lastly, we conclude this document and expand on the possible future works. Exten-
sions include designing a more lightweight privacy-preserving dissemination algorithm
and handling collusions in PAG. Another challenge is to exclude faulty nodes while
preserving the privacy of correct nodes.

Chapter

Gossip with colluding rational nodes

Contents
1.1. Probabilistic dissemination 8
1.1.1. Structured and unstructured overlays 8
1.1.2. Principlesofgossip 9
1.1.3. Probabilistic guarantees 9
1.2. Selfishbehaviors 11
1.2.1. BARmodel 11
1.2.2. Utlity functions 12
1.2.3. Byzantine fault tolerance or Nash equilibrium 12
1.3. Impactofselfishnodes. 13
1.3.1. Individual deviations 13
1.3.2. Collusions 14

1.3.3. Privacy and selfishnodes 14

8 CHAPTER 1. GOSSIP WITH COLLUDING RATIONAL NODES

In this chapter, we introduce the fundamental concepts we will use throughout this
document. This chapter has been thought as an extension of the introduction in the
sense that it motivates the problems that are studied in this thesis. As such, the following
chapters are more detailed, and develop notions that are quickly presented here.

First, in Section 1.1 we describe the theoretical foundations of gossip. Then, in Sec-
tion 1.2 we present selfish behaviors which form a subset of the possible deviations
that nodes could follow, and explain how these particular deviations are traditionally
modeled. Finally, we describe in Section 1.3 the impact of individual or collective
selfish deviations on the dissemination of updates, but also more surprisingly on the
privacy of users.

SECTION 1.1
Probabilistic dissemination

In this section, we introduce the various existing ways to disseminate content in a
peer-to-peer audience. Among them, we detail the gossip paradigm, and precise its
probabilistic dissemination guarantees.

1.1.1 Structured and unstructured overlays

During the last decade, several peer-to-peer information dissemination methods have
been developed. Some are based on a static overlays that nodes have to maintain and
through which information is propagated, e.g., dissemination trees [13, 14,15,16,53] or
meshes [17,54], while others like gossip uses an unstructured approach.

In a tree-based structured overlay, nodes are organized in a tree, and the disseminated
content flows from the root of the tree towards the leaves. Maintaining a quality of
service in presence of churn in trees is challenging because when an internal node
disappears its subtree stop receiving the content. In addition, the participation of nodes
to the system is not equally distributed among them, as leaves do not forward the
content they receive to any nodes. For example, in a binary tree more than half of
the nodes are leaves. In addition, nodes higher in a tree have to participate more than
the others, and it is necessary to take this into account when creating or maintaining
a tree. SplitStream [14] tries to overcome these drawbacks using several trees which
simultaneously disseminate parts of the content.

A mesh consists in a static graph, which links all the nodes interested in a similar
content. Contrary to trees, where the root is the only node distributing the content,
in a mesh several nodes may receive the content in different places of the graph, and
simultaneously propagate it in different directions. Typically, nodes retrieve content
from several nodes in parallel, rather than just from one node, which improves the
resilience of the system to nodes failures. For this reason, it is also easier to repair a
mesh than a tree without affecting the service quality.

In gossip, nodes exchange contents the one with the others without using static associa-
tions, like in trees and meshes. This unstructured approach is thus simpler to create and

1.1. PROBABILISTIC DISSEMINATION 9

maintain. We detail gossip in details in the following parts.

1.1.2 Principles of gossip

The gossip paradigm has been inspired by the probabilistic studies on epidemic diffusion.
Such studies tried to model the mechanisms that nature deploys to spread an infection
among a population of individuals. In gossip, once a message is received by a node, the
node is then infected and contagious, which means that it can propagate the disease to its
neighbors during a given period of time. After some time, using this infect-and-spread
approach, all nodes are infected, i.e., received the message. Gossip protocols represent
a simple, yet efficient, approach to disseminate a message in a system.

Parameters. In [55], the authors discuss the parameters that are implicitly used in the
previous paragraph. Each time a node receives a message for the first time, it forwards
this message to a random subset of nodes, whose size is called the dissemination fanout.
The period during two forwardings is called a dissemination round. In addition, nodes
forward a message during a limited number r of rounds, which is called the number
of dissemination repetitions. Following the analogy of an infectious disease, r is the
number of rounds after which a node stays alive, or contagious, after its infection. The
special case where r equals 1 is called the infect-and-die model.

Ilustration. Figure 1.1 provides an example of a file dissemination using gossip in a
system of 7 nodes. In this situation nodes forward a newly received message to 2 other
random nodes during 1 round. During round number 1, the source of the dissemination
owns a file that it transmits to two other nodes. Nodes that have received the file are
represented in black, while those who have not are represented in white. The two nodes
that received the message from the source forward this message to two other nodes
during round 2. During round 3, the nodes that have received the message for the first
time forward it, and after four rounds, all the nodes in the system have received the
message. One may see that using gossip a node may receive several times the same
message, which is the case of many nodes in the illustration. In practice, determining
the ideal fanout and number of dissemination repetitions usually depends on the targeted
application, and on the assumptions that the system designer takes (e.g., concerning
churn).

1.1.3 Probabilistic guarantees

In this section, we provide theoretical results that prove that gossip is both an efficient
and scalable method to disseminate information in a set of N nodes.

Atomic dissemination. Kermarrec et al. [56] have analytically and experimentally
studied the probability that all nodes receive a given message, a situation which is
called atomic dissemination. Their results show that in the infect-and-die model, where
nodes forward a message during only one round after its reception, if the fanout of
nodes is close to In (V) + ¢, where c is a constant, then the probability to ensure atomic

10

CHAPTER 1. GOSSIP WITH COLLUDING RATIONAL NODES

o

ol

(a) Round 1/4 (b) Round 2/4

(c) Round 3/4 (d) Round 4/4

Figure 1.1 — Example of gossip with 7 nodes

1.2. SELFISH BEHAVIORS 11

dissemination is equal to:
(1.1) Patomic = e

Another interesting result is that even if nodes participate differently to the system
atomic dissemination can be enforced. Indeed, it is enough that nodes participate to the
dissemination in average by forwarding to O(In(NV)) other nodes.

Latency of dissemination. When the fanout of nodes is on average close to [n(V)+c,
nodes receive all the messages with high probability. Under this assumption and in the
infect-and-die model, Bollobds [1] has shown that nodes receive a message in average
R rounds after its emission, where:

In(N)

1.2) R= W

+0(1)
As R grows slowly with IV, this equation proves the scalability of gossip.

We have seen that gossip is efficient to propagate messages inside a population of nodes
if the fanout of nodes is correctly chosen as atomic dissemination is then ensured with
high probability. In addition, the fanout of nodes and the latency of dissemination
increase slowly with the system size, which proves its scalability.

SECTION 1.2
Selfish behaviors

In this section we present the types of deviations that nodes may execute in a gossip
protocol. We first introduce the BAR model that consider three types of nodes. The
following sections explain how rational nodes can be modeled using utility functions,
and how it is possible to protect a protocol against selfish deviations.

1.2.1 BAR model

Assuming the existence of only two categories of nodes, correct and faulty nodes, limit
the number of faults that can be tolerated in a system to one third of the membership.
Considering a new category of faults, rational deviations, allowed researchers to build
protocols that tolerate an unbounded number of rational nodes in addition to a bounded
number of Byzantine nodes. Contrary to the two other categories of nodes, altruistic
and Byzantine, the precise definition of rational nodes depends on the protocol they
participate in.

In the Byzantine Altruistic Rational (BAR) model [18], nodes are classified into three
categories.

e Byzantine nodes. First defined in [57] Byzantine nodes may deviate arbitrarily
from a protocol. Nodes may be broken, for example if they are misconfigured or
malfunctioning, but may also behave deterministically, e.g., to harm other users.

12 CHAPTER 1. GOSSIP WITH COLLUDING RATIONAL NODES

e Rational nodes. These nodes are self-interested and seek to maximize their
benefit according to a known utility function. Rational nodes deviate from the
protocol in any way that increases their benefit.

o Altruistic nodes. They strictly follow the protocol, and are often named correct
nodes.

Nodes may be rational for several reasons, for example, they may want to save their
resources [19], or they may limit their participation in order to avoid being detected if
they illegally share files [58].

1.2.2 Utility functions

Rational nodes deviate from the protocol in any way that increases their benefit. How-
ever, defining this benefit depends on the application that nodes are running. For system
designers, tolerating rational nodes can be done in two ways: (i) first, rational nodes can
be considered Byzantine, and if all deviations can be detected they would be handled
correctly, (ii) second, the protocol can be adapted to encourage rational nodes to follow
it. The first approach is usually more costly in terms of resources than the second one.

To evaluate precisely the benefit of nodes, and later convince rational nodes to partici-
pate correctly, it is conventional to define a utility function that accounts for the costs
and the benefits of nodes when they participate in a protocol. The costs of nodes may
include computation cycles, storage, network bandwidth, overhead associated to send-
ing or receiving messages, power consumption, etc. Their benefit can be represented,
for example, as the fraction of released updates they receive, or as the (lowest possible)
jitter in the case of live-streaming. In this last case, jitter is the proportion of time
during which the stream is not viewable. Due to the use of error correction methods
(e.g., FEC!) jitter is not exactly equal to the proportion of missing updates. Erasure
codes [20,21,22] and Multiple Description Coding [59] are techniques that can help
reduce the average jitter of a application that disseminates multimedia content.

In Figure 1.2 we use the same gossip scenario we presented in Figure 1.1 to introduce
a situation in which a single rational node has a negative impact on the dissemination
of an update. This time, node 1 is a rational node, and is represented in red. During
round 2, node 1 chooses not to forward the update it should send to nodes 2 and 6.
Consequently, at the end of round 3, nodes 2 and 6 did not receive the update everyone
else received. In this situation, these two nodes would have no other possibility to
receive this update, while node 1 decreased its participation.

1.2.3 Byzantine fault tolerance or Nash equilibrium

System designers have two ways to protect their protocol from rational nodes: detect-
ing all kind of faults using Byzantine fault tolerant methods, or establishing a Nash
equilibrium. The first method consider all deviations equally and is generally costly.
The second one, however can be more easily attained.

'FEC stands for Forward Error Correction

1.3. IMPACT OF SELFISH NODES 13

(a) Round 2/4 (b) Round 3/4

Figure 1.2 — Example of gossip with 7 nodes in presence of a rational node

John Nash developed in 1951 some theoretical basis of game theory that are intensively
used today in fields like economy, geopolitics and computer science. In [60], he intro-
duced the notion of equilibrium that was later named after him. Simply stated, a Nash
equilibrium consists in a situation where the players stick to their behavior because of
their assumptions about other players.

Applied to gossip, where the players are the nodes, it means that a node that makes
the assumption that the other nodes are correct, or altruistic, because it does not know
them will deviate from the protocol if its utility function tells it to do so. Thus, system
designers can build their protocols and model the utility of nodes in such a way that the
best strategy for individual rational nodes is to stick to the protocol.

SECTION 1.3
Impact of selfish nodes

In this section, we introduce individual and collective rational deviations, and the threats
that current detection mechanisms imply on the privacy of users.

1.3.1 Individual deviations

The authors of [61] found that 70% of the users of Gnutella where freeriders in a 24-hour
period. In addition, the top 1% of contributors returned 50% of all contributions.

Several protocols have been devised to deal with the problem of rational nodes in
different kind of collaborative systems, among which spam-filtering content dissemina-
tion [23], N-party transfer [62], and file transfer protocols [61].

In Figure 1.1, we detailed an example of dissemination in presence of a rational

14 CHAPTER 1. GOSSIP WITH COLLUDING RATIONAL NODES

node. This simple example illustrated how selfish deviations can heavily harm the
dissemination of updates in a system. Gossip protocols have to consider this situation
and be designed to avoid this situation. We will further examine in chapter 2 the
protocols that have been devised to treat the problem of individual selfish nodes in
gossip-based systems.

1.3.2 Collusions

Collective deviations, or collusions, are situations where some nodes deviate from
the protocol according to a strategy collectively defined. This type of deviation have
been observed in P2P file sharing systems [24,25]. To define their strategy, nodes
could silently communicate (i.e., outside the official protocol), which has also been
observed [26]. Collective deviations are more subtle than the individual ones. They are
generally defined in reaction to mechanisms that aim at limiting the impact of individual
deviations. As a consequence, depending on the protocol nodes are running they will
be different.

As an example, a possible way to force nodes to communicate is to use tit-for-tat, or
balanced, exchanges where a node cannot receive more updates from its partner than it
is sending to it. In these kinds of systems, one possible colluding strategy is for two (or
more) nodes to exchange updates off-the-record the one with the other as soon as one
of them received it. This way, the colluding nodes receive updates sooner than other
nodes, and do not miss them. However, this strategy does harm the dissemination of
updates. When correct nodes would want to exchange updates with colluding nodes
the resulting exchanges will be poor in term of number of updates exchanged. The
messages that colluding nodes receive are less propagated in the system. We examine
more in details the possible strategies of colluding nodes in state-of-the-art protocols,
in chapters 2 and 3.

1.3.3 Privacy and selfish nodes

In order to protect a protocol from selfish nodes, which do not participate as they are
supposed to, system designers usually try to detect all kind of faults and evict the guilty
nodes, or try to design a system in which the best interest of nodes is to participate
correctly. As we will see later in this document, in the first case, the details of the
interactions of nodes can be learned by other participating nodes, while in the second
case all rational behaviors cannot be avoided, e.g., collective deviations. There is a
tension between the idea of verifying the behavior of nodes and the idea of protecting
their privacy. Nowadays, Internet users are aware that their private information is worth
something. For example, two billions dollars are used each year in the United States to
buy personal data [85]. As a consequence, users may want to have more control on their
data, and may avoid to use protocols that do not offer them this possibility. Conciliating
both privacy and collusions resistance is the second problem we tackle in this document
detailed in chapters 4 and 5.

PART 1

RATIONAL COLLUSIONS IN
GOSSIP-BASED DISSEMINATION
SYSTEMS

16

Chapter

Gossip 1n presence of rational nodes

Contents

2.1. Rational resilient dissemination protocols 18
2.1.1. Nashequilibriums 18
2.1.1.1. BAR Gossip and FlightPath 18

2.1.2. Audits and statistical approaches 23
2.1.2.1. Enforcing fairness in a live-streaming protocol . 23

2.1.2.2. SecureStream 25

2123, LiFTinG 26

2.2. Accountability techniques 30
2.2.1. Software-only accountability 30
22.1.1. PeerReview 30

2212, AVM 33

2.2.2. Hardware-assisted accountability 33
2221, A2M . ..o 34

2222, Trlnc oo 35

2.3. BAR-transformation protocols 37
B B 1111111 2 39
24.1. Requirements 40
2.4.2. Drawbacks of existing solutions 41

24.3. Conclusion 43

18 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

Using a gossip-based protocol to disseminate information in large-scale P2P systems is
a simple yet reliable and scalable approach. However, in the basic version of gossip
users are not forced to participate in the dissemination. They can receive the content,
maximize their benefit, and yet try to minimize the cost they pay in return, which often
consists in upload bandwidth or CPU cycles they dedicate to the application.

In order to tolerate selfish nodes, a first approach consists in designing specific gossip-
based dissemination protocols that encourage nodes to participate correctly. The ideas
behind these protocols is to provide incentives that will reward the participation of
nodes, and/or to detect and punish the deviations of nodes. The second possibility is to
apply generic accountability mechanisms on top of a gossip protocol to compare the
behavior of nodes with the execution of a correct node.

This chapter, which reviews the works related to collective rational deviations in
dissemination protocols, is organized as follows: Section 2.1 provides some background
about existing rational-resilient gossip protocols. Section 2.2 details accountability
approaches that could be applied on top of any gossip protocol to verify the correctness
of nodes. Section 2.3 presents methods that transform a P2P protocol into a Byzantine
tolerant protocol. Section 2.4 identifies the requirements of a gossip protocol accounting
for collective selfish behaviors, and presents a summary of whether the related works
match these requirements. Section 2.4.3 concludes this chapter.

SECTION 2.1
Rational resilient dissemination protocols

In this section, we present the existing rational resilient gossip-based dissemination
protocols. For each of them, after providing an overview of their data dissemination
scheme and of their defense mechanisms against rational behaviors, we underline
the weaknesses that colluding nodes can seize. In sections 2.1.1.1 we present a live-
streaming protocol which is built around the principle of Nash equilibrium. We later
describe, in sections 2.1.2.1 and 2.1.2.3, solutions which use the principle of distributed
auditing to check the correctness of nodes.

2.1.1 Nash equilibriums

In the following, we present two live-streaming protocols, based on gossip, that are
shown to be Nash equilibriums, which means that individual selfish nodes stick to the
protocol believing that it is the best strategy they could apply.

2.1.1.1 BAR Gossip and FlightPath

BAR Gossip [6] is the first P2P gossip-based live-streaming protocol designed explicitly
to tolerate both rational and Byzantine (i.e., arbitrary) behaviors. It was later modified
into Flightpath [27] to increase its scalability and improve its churn management.

Streaming model and main ideas. In gossip-based content dissemination systems,
chunks of data are exchanged at each round between randomly selected partners. It is

2.1. RATIONAL RESILIENT DISSEMINATION PROTOCOLS 19

precisely this randomness that gives gossip protocols their robustness. However, such
non-determinism refrains the system from easily checking the legitimacy of partner
selections. For example, without determinism nodes could exchange updates only with
their accomplices, or sometimes avoid to forward them. Thus, while traditional gossip
elects partners randomly, BAR Gossip employs a verifiable pseudo-random number
generator (PRNG) and signature schemes to build the partner selection algorithm. In-
deed, the randomness of associations is preserved, and hence so is the robustness of the
dissemination algorithm, while the legitimacy of associations can be verified.

BAR Gossip makes several assumptions about nodes and communications synchrony.
Nodes are uniquely identified, and maintain their clocks synchronized within § seconds
of each others, and communicate over point-to-point, synchronous and unreliable links
using both TCP, and UDP. During the streaming session, time is divided into rounds
of duration (7" + J) seconds, where 7" is a time interval sufficient to complete the
exchanges of updates required by the two possible exchange protocols. The source
of the video stream is supposed to be altruistic (i.e., to strictly follow the protocol).
Each round, it generates some new updates, and send them to a random fraction of
the audience. The membership is assumed to be static: nodes have to subscribe to the
session prior to its start, and non-Byzantine nodes remain in the system for the whole
duration of the broadcast.

The role of POMs. All messages that a node sends are signed, and when a node
does not comply with the protocol it takes the risk of being denounced to the source of
the stream via the generation of a verifiable proof of misbehavior (POM). This POM
links a fault with its author using cryptographic primitives, possibly joining several
messages sent from the guilty node. A centralized trusted entity periodically collects
the POMs from nodes. The interaction relies on a balanced cost principle: interacting
with the trusted entity has a constant cost, independently of the presence of a POM. The
identity of non replying nodes is also communicated to the source. These nodes are
then evicted from the live streaming session by means of an eviction list that the source
sends together with the updates it generates.

Exchange protocols. Updates exchanges between two nodes, called partners, can
follow two schemes:

e Balanced exchanged protocol where the two partners exchange the same number
of updates.

e Optimistic push protocol where the two partners exchange a different number of
updates.

These two exchange protocols share the same basic structure, illustrated in Figure 2.1,
made of four steps. We briefly describe these steps and explain why rational nodes are
encouraged to follow them.

e Partner selection. A node chooses a gossip partner to exchange updates with.
The identity of this node is obtained using a PRNG which is seeded using the
current round number signed with the initiator’s key. The first number generated

20 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

is deterministically mapped into the identity of a gossip partner. The chosen
gossip partner can verify this computation, and denounce the initiator using the
signed message it sent, which in this case constitutes a POM.

e History exchange. The two parties learn about the unexpired updates the other
party holds. In particular, the initiator sends a hashed history, and only after
obtaining the other node’s history in clear it sends its history in clear. The
contacted node can check that the hashed history and the clear one are consistent
the one with the other. Otherwise, these two messages constitute a POM again
the initiator.

e Update exchange. Each party copies a subset of these updates into a briefcase
that is sent, encrypted, to the other party. Depending on the exchange protocol,
the number of updates that is placed in these briefcases may not be the same.
Particularly, using the balanced exchange protocol nodes are encouraged to
announce all their updates if they want to maximize the number of updates they
will receive. Each of them sends a briefcase message containing the encrypted
updates that it is supposed to send, and their ids in clear.

e Key exchange. The nodes swap the keys needed to access the updates in the
briefcases they received. If a node does not send the right key, the other one
would be able to constitute a POM. Also, if a node does not respond to a key
request, the requester node continues sending the request, thus consuming the
download bandwidth of the other node.

The two protocols differ in the way they select the updates that will be placed in the
briefcases. The balanced exchange protocol uses a tit-for-tat principle where both
nodes profit from the same number of new updates. The authors have proved that this
exchange protocol is a Nash equilibrium [60], which means that the best strategy nodes
could follow is the protocol. The keystone of this protocol is a principle of deferred
gratification: when interacting with each others, the best option of nodes is to correctly
follow each step of the balanced exchange protocol to finally benefit from it.

On the contrary, the optimistic push protocol is designed to help nodes that have fallen
behind in the broadcast, and allow a peer to receive more updates than it can give in
return. This protocol is not a Nash equilibrium. However, during unbalanced exchanges,
the same quantity of data (but not the same number of updates) is exchanged, through
the sending of updates that are about to expire (old updates), or of junk data. This
results in a waste of bandwidth, but this is designed to prevent free rides.

FlightPath: an approximate Nash equilibrium. To improve its performance and
to obtain a dynamic membership, the authors of BAR Gossip modified it into another
protocol named FlightPath. The core of the protocol remains the same, but several
modifications are introduced. FlightPath exhibits better performance, decreasing the
jitter and the bandwidth consumption of nodes, than its predecessor. In opposition with
BAR Gossip, where the set of participating peers is defined at the beginning of the
streaming session, FlightPath allows a dynamic membership, and deals more efficiently
with realistic conditions, where nodes can leave or join the system at any moment. This

2.1. RATIONAL RESILIENT DISSEMINATION PROTOCOLS 21

Sender (S) Receiver (R)
History request
T
73
»nse/ Check selection 3
m
x
History divulge g_
S
Check history «Q
D)
Briefcase Briefcase c
o
o
Check briefcase >‘< Check briefcase %
m
x
(@]
>
41 - - - - - - - _ L _ Q
~ @
Key Key 2 oy
Decrypt briefcase Decrypt briefcase ;”
S
Q
S
«Q
)

Y Y

Figure 2.1 — Basic trade illustration of BAR Gossip (Based on [6]).

gain is allowed thanks to an evolution of the system goal, which is now to reach an
approximate Nash equilibrium, allowing a bounded imbalance in trades.

In an approximate Nash equilibrium [2], rational peers deviate from the protocol if
and only if they expect to increase their benefit by a proportion of ¢ doing so. The
advantages of using a e-Nash equilibrium consist in giving more freedom to design
practical solutions. FlightPathuses BAR Gossip as a basis, but the authors claim to have
improved performance while decreasing the overhead of the protocol. For example,
nodes do not have to waste network bandwidth by sending garbage data to balance
bandwidth consumption, the load can be redirected away from a busy peer, trades with
"poor" peers can be avoided and the use of arithmetic coding of data provide more
opportunities for useful trades.

FlightPath optimizations. Gossip protocols are well-known for their robustness, but
the authors explain that the very randomness of partner selection, basis of this robustness,
may induces difficulties to propagate updates by a hard deadline in live streaming system.
To overcome this issue, this article introduces two kinds of improvements, the first three
have an influence on the peak bandwidth of the protocol, and the other three on jitter.

e Reservation. This mechanism seeks at limiting the number of concurrent trades of
any peer, for each round. Too many exchanges may lead a peer to the impossibility
of finishing all exchanges in time, but also to receive duplicate updates.

22 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

o Splitting need. During a round, if a peer has many partners it can split its demands
among them instead of demanding every missing update to each. There is a limit
between two few demands per peer and risking not to obtain all updates, and
demanding too many and wasting bandwidth.

e Erasure codes. For each round, the source codes all the stream data in more
updates that normally necessary introducing erasure codes. The probability to
trade similar updates during a round is decreased.

e Tail inversion. to reduce jitter, peers have the possibility to request updates that
do not come from the current round. Instead of requesting updates in most-recent-
first order, a peer has the option to receive updates coming from the two most
recent rounds first and then updates in oldest-first order.

e Imbalance ratio. each peer bounds by « the proportionality factor between the
downloads and uploads coming from any other node. When o = 0, every trade
is balanced, allowing an unlucky peer to fall behind. At the opposite, if « = 1,
free-riders can game the system. Experimentally, the authors set o to 10%. This
is the basis of their e-Nash equilibrium.

e Trouble detector. Each peer monitors its performances during each round. If they
fall below a certain threshold, peers can initiate more than one trade in a round to
avoid jitter. This solution is only a security net, because increasing the number of
concurrent trades also increases the bandwidth dedicated to uploading.

Dynamic membership. FlightPath also presents two schemes to handle nodes that
want to join or leave the system during a streaming session, a phenomenon that is also
called churn. In a BAR environment one has to be careful in providing benefit to any
peer who has not earned it. Two mechanisms are proposed : the first allows the tracker
to modify the membership list and to disseminate it to all relevant peers, the second lets
a new peer immediately begin to trade so that it does not have to wait in silence until
the tracker’s list takes effect.

In the first solution, a tracker periodically assigns new membership to reflect joins and
leaves. An epoch is defined as a set of A successive rounds. If a peer joins in epoch
e, the tracker places it into the membership that will be used in epoch e + 2. At the
boundary between epochs e and e + 1, the tracker shuffles the membership list and
transmits it to the source. Shuffling prevents Byzantine peers from attempting to place
themselves at specific indexes. The tracker notifies nodes about this new membership
list with a new kind of updates, partial membership lists, that are exchanged in priority
compared with other updates (digests or stream updates).

The second proposition organizes peers as tubs such that the first tub contains the oldest
peers and subsequent tubs contain younger and younger peers. A peer selects partners
from its own tub and also from any other peer older than itself. However, the probability
that a peer from tub ¢ selects from a tub ¢’ < ¢ decreases exponentially with ¢t — ¢'.

2.1. RATIONAL RESILIENT DISSEMINATION PROTOCOLS 23

2.1.2 Audits and statistical approaches

Other protocols, which are not based on Nash equilibriums, have been devised to deal
with selfish nodes. These solutions make nodes maintain a log of their interactions and
audit each others in order to detect deviations and punish them. These protocols are
explained in this section.

2.1.2.1 Enforcing fairness in a live-streaming protocol

The live-streaming system presented in [7], the fault model of nodes and the approach
are quite different compared to those of BAR Gossip, and FlightPath, where nodes are
free to avoid to initiate some type of exchanges. In this work, any node not contributing
its fair share of data may be expelled from the system. Nodes trying to maximize their
utility are classified as Byzantine, and a punishment-based system is designed to evict
them from the system. This punishing approach differs radically from the one used in
BAR Gossip where a rational node is encouraged to stay and participate in the system
by mean of a controlled exchange protocol.

Mesh overlay. The basis of the work presented in this publication consists in auditing
a live-streaming system in order to encourage nodes to participate. Contrary to gossip,
where partners are chosen randomly, nodes are here part of a mesh, and trade with
a given static set of neighbors. These neighbors are randomly determined by the
streaming system initially, to make it harder for malicious users to take profit of this
kind of configuration.

Characterization of a system under attack. The expected average behavior of a
streaming system working in ideal conditions, without Byzantine nodes, is determined
through simulations which monitor the minimum, average, and maximum download
and upload factors of nodes. These simulations showed that when the maximum upload
factor authorized per node increases, some nodes participate more in the dissemination
of data than other, even though all of them are behaving correctly. When a proportion
of the peers is behaving opportunistically the minimum upload factors of correct nodes
are increased. Thus, the principle of this solution is to monitor the upload factor of
nodes, and when it is greater than a determined threshold evict all nodes that do not
participate enough in the dissemination.

Auditing approach. The auditing method consists in monitoring the maximum up-
load factor measured in the membership to detect the presence of rational nodes.
However, the minimum upload factor does not follow a clear pattern, making it hard
to identify the minimum contribution of correct nodes under compromised scenarios.
Therefore, applying a minimum threshold for the upload factor to detect opportunistic
nodes may also punish correct nodes if it is not carefully chosen.

Auditing infrastructure. The auditing infrastructure has two functions: (i) collect
accountable information about the download and upload factors of nodes; and (ii)
determine the best threshold and apply it to evict nodes that do not participate enough.
Each task is assumed by a different component. We illustrate the different components

24 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

of the monitoring infrastructure in Figure 2.2. In this figure, node .S is the source of the
content that nodes A to F' share with each others. Local auditors are based on nodes A
to F', while global auditors GG1, G'2 and (3 periodically audit the whole system.

Local Auditors. Local auditors are hosted on the nodes participating in the system,
and are not trusted as any node can be malicious. It is important to distinguish a
local auditor from the live streaming application from which it obtains the history of
exchanged packets.

e Local auditors periodically compile the history of exchanged packets of the node
they control. This history is then signed and published to an assigned subset of
neighbors. This level of indirection is used to prevent nodes from masking their
real upload and download factors by presenting different information to different
auditors.

e Each local auditor checks that its node’s neighbors sent more data than the
minimum threshold. If not, it emits an accusation against the node that is
transmitted to a global auditor. Local auditors also verify that the quantity of
data received from, or sent to, a neighbor is exactly what it says to have sent,
or received. If these checks fail then the local auditor tells its local streaming
application not to further exchange packets with the suspect neighbor (in this
situation it is not possible to say if it is really misbehaving).

Global Auditors. Global auditors are trusted components that run on dedicated exter-
nal nodes. They have a global membership knowledge and interact with one another and
local auditors. Their number is not fixed, and may vary depending on some parameters,
such as the size of the system.

e Global auditors periodically sample the state of the system by querying local
auditors. Then they cooperate and establish the minimum threshold according
to a given strategy. Once a threshold has been chosen, it is gossiped to all local
auditors.

e They also verify accusations issued by local auditors against particular nodes
and, after validation, expel misbehaving nodes from the system. The validation is
made by verifying the node’s local history. Expelling a node consists in informing
all its immediate neighbors of its status.

Choice of a threshold. Several strategies may be designed to establish a threshold to
detect selfish nodes. We briefly present those that are described in the following:

e Constant threshold. Using a fixed threshold would either not detect enough
selfish nodes, or evict correct nodes. In addition, selfish nodes that would learn
the threshold would simply adapt their contribution in order not to be detected.

e Increasing threshold. The session starts with a upload threshold of 0.5, and once
the average download factor of nodes is lower than 0.98 the system increases
the threshold until the situation is considered normal again, in which case the
threshold is decreased.

2.1. RATIONAL RESILIENT DISSEMINATION PROTOCOLS 25

\
; ; ; > Global auditors

Streaming system
and
Local auditors

Figure 2.2 — Global auditing architecture (Based on [7]).

e Percentile-based threshold. In this strategy, the system periodically samples the
participation factors of nodes, and if the system seems to be compromised, the
threshold is set to the upload factor value that marks the lowest 10 percent.

2.1.2.2 SecureStream

SecureStream is a P2P live-streaming system built upon Fireflies, which is an intrusion-
tolerant membership protocol.

Fireflies. Fireflies [8,63] is a scalable Byzantine membership protocol, which presents
nodes with a reasonably up-to-date view of the membership. As illustrated in Figure 2.3,
the nodes are organised on several rings. The position of a node on the rings, which
depends on their identifier, defines the nodes it monitors and those it is monitored by.
In Figure 2.3, node A is monitored by nodes E, F and G, and monitors the nodes B, D,
and F.

Fireflies is composed of three subprotocols:

e Pinging protocol. Nodes ping their neighbors to detect failures.

e Gossip protocol. An intrusion-tolerant protocol is used to disseminate information
between nodes with probabilistic guarantees on the delay.

o Membership protocol. Nodes can suspect their neighbors, and it is possible for
nodes to lift these accusations.

Exchanges. SecureStream relies on Fireflies to define the neighbors of a node, with
which it then exchanges updates. The protocol use a pull-based approach, which means
that nodes inform their neighbors about the updates they own, and they subsequently
request those they are interested in. The integrity of packets is ensured using linear
digests: the hashes of n packets are grouped, and the whole is signed. This approach
decreases the overhead of cryptographic signatures, while being more secure than
message authentication codes (MAC). Nodes cannot request more than a predefined

26 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

Figure 2.3 — Example of the architecture of Fireflies (Based on [8]).

quantity of packets from each of its neighbor, which makes it harder for malicious
nodes to over-request their neighbors.

Auditing architecture. The protocol also provides an auditing mechanism, which
is very close to the one of [7] we presented previously, to ensure nodes participate in
uploading at least a certain percentage of the received stream. Nodes have to participate
more than a particular specified threshold (statically defined by the system administrator,
or dynamically). To reach this goal, two types of auditors are deployed in the system.
Local auditors execute on the participating peers, while global auditors run on external
dedicated nodes. The local auditors have to collect information about what a node
received, or sent, and have to verify it by asking the neighbors of a node for the
exchanges they made. If they discover that a node did not participate enough in the
dissemination, they report the case to global auditors, which are also in charge of
determining the minimum forwarding threshold value.

2.1.2.3 LiFTinG

LiFTinG [9] is the first protocol to detect colluding freeriders in gossip-based content
dissemination systems. LiFTinG approach is close to the one of the protocol [7] we just
described. The main difference is that histories can be cross-compared, and associations
between nodes must respect statistical randomness. Furthermore, the mechanism of
eviction is not the same. Nodes are affected a score, and each detected fault, depending
on its gravity, makes this score increase. Once a given threshold has been crossed, the
node is evicted from the system.

Exchange protocol. LiFTinG defines a three-phase gossip protocol where data is
disseminated using an asymmetric push scheme. Nodes propose packets identifiers to a
dynamically changing random subset of other nodes. They, in turn, request packets of
interest, which are subsequently pushed by the proposer.

Nodes in the system communicate using lossy links (UDP) and can receive data from
any other node in the system. It is assumed that nodes can pick uniformly at random a

2.1. RATIONAL RESILIENT DISSEMINATION PROTOCOLS 27

set of nodes in the system. This is usually achieved through full membership (as in BAR
Gossip or FlightPath) or a peer sampling protocol [28,29,64]. A source broadcasts a
stream to a set of peers, using the same three-phase gossip protocol that is used by other
nodes. The stream content is divided into multiple updates uniquely identified by their
ids.

We detail below the three phases of the protocol:

o Propose phase. At every gossip period, each node proposes the set of updates it
received since its last propose phase to a random set of f nodes. The fanout f is
the same for all nodes in the system.

o Request phase. Upon reception of a proposal of a set of updates, a node deter-
mines the subset it needs and requests these updates.

o Serving phase. When a proposing node receives a request corresponding to a
proposal, it serves the updates requested. If a request does not correspond to a
proposal it is ignored, and non-requested updates are not served.

Rational deviations. Freeriders (or rational nodes) allow themselves to deviate from
the protocol in order to minimize their contribution while maximizing their benefit.
In addition, freeriders may adopt any behavior not to be expelled, including lying to
verifications, e.g., to cover up the bad actions of colluding freeriders. However, it is
assumed that freeriders have no interests in wrongfully accusing correct nodes. There
are three different ways in which a freerider may deviate from the protocol : bias the
partner selection, drop messages they are supposed to send, or modify the content of
the messages they send.

The study of the methods with which a node can game the protocol gives three charac-
teristics the system has to provide to prevent them. They are listed below.

o Quantitative correctness. a node must propose to f nodes at each period.
o Causality. received updates must be proposed in the next gossip period.

o Statistical validity. communication partners must be randomly selected.

Verifications. The verifications in LiFTinGare of two kinds, direct and a posteriori.
Verifications can lead to the emission of blames or expulsions depending on the gravity
of the misbehavior.

e Direct verifications. They are performed regularly, while the protocol is running
and check if requested updates are all served and if received updates are further
proposed to f nodes (quantitative correctness and causality).

e A posteriori verifications. They are launched sporadically, and require each node
to maintain an history of its past interactions. In practice, a node stores a trace
of the events of the last & seconds (ny, = h/T, gossip periods). The history
is audited to check the statistical validity of the random choices made when

28 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

Attack Type Detection

Fanout decrease Quantitative correctness Direct cross-check

Partial propose Causality Direct cross-check

Partial serve Quantitative correctness Direct check

Bias partner selection Entropy Entropic check, a posteri-
ori cross-check

Table I — Possible attacks on the LiFTinG protocol (Based on [9]).

selecting communication partners (entropic check). The veracity of the history is
checked by cross-checking the involved nodes with probability p...

Direct checks aim at verifying locally that every requested updates is served. This
detection is always performed. Direct cross-checks are in charge of ensuring that every
served update is further proposed to f nodes during next round. If node p; was served
a given update by pg, it has to transmit to pg the list of nodes to which it proposed
the received update. Then pg can contact these nodes to check if p; told the truth. In
practice, this is done with probability p.c.

We reproduce in table I the classification of all possible deviating behaviors along with
the type of verification that allows their detection.

Blaming Architecture. The detection of freeriders is achieved by means of a score
assigned to each node. When a node detects that some other node freerides, it emits
a blame message containing a blame value against the suspected node. Summing up
the blame values results in a score. For scores to be meaningful, blame values are
homogenized. Each node is monitored by a set of M other nodes named managers,
distributed among the participants. When the score of a node is beyond a fixed threshold,
the manager spreads through gossip, a revocation message against the node making the
participants progressively expel it from the system. The mapping nodes-managers is
done through a hash function, whose entry is the node IP address.

We give in Table II the blame values corresponding to direct verifications (quantitative
correctness and causality). For a given node, R is the set of received update and S is
the set of those that were served to neighbors. Figure 2.4 presents the type of message
exchange involved in cross-checking.

The history of nodes are checked through an entropic check. When inspecting the local
history of a node, the verifier computes the number of occurrences of each node in the
set of proposals sent by p during the last h seconds. The uniformity of the distribution
of these number of occurrences is then compared to a perfectly uniform distribution,
with a tolerance threshold equals to . The value of v must be set in order to be tolerant,
and to limit the number of false positives (i.e., correct nodes being blamed). A posteriori

2.1. RATIONAL RESILIENT DISSEMINATION PROTOCOLS

29

Po

e 4+ serve(c;)

ackl[i](p2, p3)

(pec)? confirmlil(p,)

P1 D2

propose(c;)

request(c;)

serve(c;)

L ——
/\\

\\’

answer: yes/no

/

4/

Figure 2.4 — Cross-checking protocol in LiFTinG (Based on [9]).

Cause

Blame value

Blame emitter

Non received update (di-
rect)

% for each of the (|R| —

|S|) missing update

requester

Non received ack (cross-
checking)

f

initial sender

Missing or negative an-
swer (cross-checking)

initial sender

Table II — Values and source of blames emitted during direct verifications in

LiFTinG (Based on [9]).

30 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

cross-checking is achieved by polling all, or a subset of the nodes mentioned in the
history for an acknowledgement. Each non verified allegation results in a blame.

Cause Blame value Blame emitter
Non acknowledged pro- | 1 verifier
posal

SECTION 2.2

Accountability techniques

Contrary to the protocols described in the previous section, accountability mechanisms
are not specific to gossip-based dissemination protocols, but are designed to be applied
on top of them to verify that the logs of nodes are identical to those that a correct
execution could generate. In this section, we present some accountability techniques
that either rely purely on software solutions, or also use specialized hardware.

2.2.1 Software-only accountability

The first set of accountability techniques do not rely on trusted hardware but use specific
data structures based on cryptographic mechanisms. In this section we describe two
protocols that use such accountability techniques.

2.2.1.1 PeerReview

In PeerReview [10], nodes must execute actions that are deterministic. Each of them
maintains a secure record of the messages it exchanges with other nodes. The cor-
rectness of each node is then periodically, and independently, checked by other nodes,
using a reference implementation that replays its log. This reference implementation
can make snapshot of its state, and initialize itself from a given snapshot. Each node is
in possession of a cryptographic pair of private/public keys, linked to a unique node
identifier, that is be used to sign messages. A node that does not answer to a message
cannot be exposed (presented as faulty) by the system, but is eventually suspected by
every correct node. The reason is that under bad network conditions, which are not rare
in the Internet, messages sent by correct nodes can be lost. Correct nodes do not com-
municate with suspected nodes, consequently a suspected node has to follow correctly
a challenge/response protocol to be able to communicate anew with them. Each node
is associated to a set of nodes, which are called its witnesses. These witnesses collect
information about the node, check it correctness and make the results available to the
rest of the system. For the system to work correctly, it is necessary to be able to map
each node to its set of witnesses. It is assumed that each node has at least one correct
witness. The processing overhead of PeerReview grows linearly with the number of
peers which are in charge of checking a node actions. However, the message overhead
depends on the targeted strength of fault detection. If every fault has to be eventually
detected, then the overhead grows with the square of the number of nodes in the system.
If a probabilistic detection is enough, this overhead can be logarithmic with the total
number of nodes.

2.2. ACCOUNTABILITY TECHNIQUES 31

Tamper-evident log. On each node, the core of PeerReview consists in a secure log,
which is an append-only list of the node inputs and outputs in chronological order. The
log also contains periodical state snapshots and some annotations from the detector
module.

The nodes use a hash function H, and A_ 7 is a known value which is needed for the
computation of hash values. Each log entry e = (s, 1, cr) contains a sequence
number s, a type ?; and some type-specific content c;. Sequence numbers must
be strictly increasing. Additionally, each record includes a recursively defined hash
value hy = H (hi_1||skl|tr||H (ck)). Figure 2.5 illustrates a fraction of a secure log
containing 3 log entries. The hash value H16 is obtained from the previous hash value
H15 and from the log entry (S15,715,C15), and is later used to compute the rest of
the hash chain. This chaining mechanism along with the communication of a given
hash value prevent nodes from tampering with the log entries added before this hash
value.

§17,T17,C17

S16, T16, C16

§15, T15, C15

Figure 2.5 — Illustration of a secure log (Based on [10]).

An authenticator ai = 0 (sk||hx) is a signed statement by node j that its log entry ey,
has hash yalue hy. o;(.) means that the argument is signed with j’s private key. By
sending a7, to a node 4, a node j commits to having logged entry e, and to the contents
of its log before ey,.

Any node can also use ai to inspect e, and the entries preceding it in j’s log. To inspect
x entries, ¢ challenges j to return the last = entries and hy_,. If j responds, ¢ calculates
the hash value /. from the response and compares it with the value in the authenticator.
Moreover, i can use a?f as verifiable evidence to convince other nodes that an entry ey,
exists in j’s log.

Commitment protocol. The commitment protocol role is to ensure that a node log is
consistent with the set of messages it has sent or received. When two nodes exchange
messages, they both engage themselves to log them, by including authenticators in the

32 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

message, and in its acknowledgement. These authenticators cover the corresponding
log entry. A log entry for a received message must include a matching authenticator;
therefore, a node cannot invent log entries for messages it never received. Authentica-
tors cannot be forged because they are signed.

When node 7 is about to send a message m to node j, it creates a new entry (sx, SEN D, {j,m}),
where sy, is the chosen entry number, attaches hy_1, sx and o;(sg||hg) to m, and sends
the result to j. Thus, j has enough information to calculate h; and to extract a};, which
must be valid. If it is, j creates its own log entry (s;, RECV, {i, s, m}) and return an
acknowledgement with h;_1, s; and o;(s;||ly) to i. This allows j to extract and verify
a{ . If it does not receive a valid acknowledgement, ¢ sends a challenge to j’s witnesses.

Consistency protocol. If a node i receives authenticators from another node 7, it
must eventually forward these authenticators to the witnesses of j. Then, periodically,
each witness of j picks the authenticators with the lowest and highest sequence number,
and challenges 7 to return all log entries in between. If j is not correct, then its witness
obtained a verifiable evidence that j is faulty. Finally, each witness uses the log entries
to extract all the authenticators that 7 has received from other nodes, and sends them
to the corresponding witness sets. This propagation of the authenticators is planned to
prevent faulty accomplices to mutually protect themselves.

Audit protocol. Each witness w of a node ¢ periodically takes its most recent authen-
ticator from ¢ (say a};), and then challenges i to return all log entries since its last audit,
up to and including ej. Then w appends the new entries to its local copy A,; of i’s log.
Node w can also create an instance of ¢’s reference implementation and initialize it with
a recent snapshot from \,,;. Then, it replays all the inputs starting from that snapshot
and it compares the outputs with those of the log.

Challenge/Response protocol. If nodes decide not to answer to messages, the above
protocols are not useful. When a node j concludes that a node ¢ does not answer, it
indicates the suspected state for ¢ and creates a challenge for . Node j sends the chal-
lenge to ¢’s witnesses, that forward it to ¢. If ¢ does not send a response, the witnesses
indicate that 7 is suspected. Challenges can take two forms.

The first kind of challenges, audit challenge, consists in demanding to node ¢ to return
a log segment which is delimited by two known values a}, and a} (whose signatures
are controlled). If ¢ is correct, then it should answer the challenge with the correct log
segment.

Send challenges are the second possibilities, they are triggered when a node did not
acknowledged a message m. After extracting and checking the authenticator from
m, any correct node is convinced that 7 must acknowledge m, and is waiting for this
acknowledgement to release its suspicion.

Evidence transfer protocol. When a correct node has collected enough evidence
to prove that node j is not correct, it has to propagate this proof. To achieve this,

2.2. ACCOUNTABILITY TECHNIQUES 33

any correct node is able to obtain the challenges collected by the witnesses of a node.
Generally, a node collects the challenges that concern a node it communicates with.
Eventually, each correct node come to the same conclusion concerning the correctness
of a node.

PeerReview is a general method that can be used with any protocol to check the correct
behavior of nodes. Its utilization of tamper-evident log allows the detection of any
deviation. Combined with CSAR [30], PeerReview can be applied to non-deterministic
protocols. The authors of PeerReview studied how their ideas can be applied with
virtual machines. We present their work in the next Section. No specialized hardware is
needed. However, nothing forces nodes to execute the audit phase.

2212 AVM

Accountable Virtual Machines (AVMs) run a binary software image in a virtualized copy
of a computer system. The method presented in [31] adapts the ideas of PeerReview to
virtual machines which are in charge of detecting the possible deviations of a hosted
program. AVMs are virtual machines that also provide the following services:

e Logs. Maintain a tamper-evident log (similar to the one presented in PeerReview)
with enough information to reproduce the entire execution of a node.

e Authenticators. Associate each outgoing message with a cryptographic signature
that links it to the log of the execution that produced it.

e Snapshot. Generates a snapshot of its state, and initialize itself with a snapshot to
allow the verification of the correctness of a node based on a snapshot and the
log of events from the moment this snapshot was taken.

Improvements over PeerReview. The interest of accountable virtual machines is
their capability to record non-repudiable information. The log of all inputs and outputs
that they generate allows auditors to check that the hosted software behaves correctly,
checking if it corresponds with the log of an execution known to be correct. The idea of
this paper is close to the one of PeerReview, but using virtual machines does not imply
to understand and modify the source code of the untrusted application. In addition,
using a virtual machine permits the simultaneous monitoring of several applications.

Audits. When user A wants to audit user B, he has to retrieve a segment of B’s log
and use B authenticators he previously learned about to check the integrity of the log.
If this verification fails, A can transmit to all users the authenticator that will serve as
a proof of B’s misbehavior. In order to verify the execution, A needs a snapshot of
the initial state of A at the beginning of the log segment, and will replay the execution
using a reference implementation of the state machine used by B.

2.2.2 Hardware-assisted accountability

In this section, we now describe accountability techniques that rely on specific trusted
hardware in addition to software procedures to obtain accountability. The main interest

34 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

of these methods is to show that the overhead of accountability can be significantly
reduced through the use of simple trusted hardware.

2221 A2M

A2M uses trusted hardware to provide an abstraction of a trusted log, that can be used
to build accountable systems at a lower cost. The aim of [32] is to demonstrate the
advantages of using a minimal trusted hardware in the fault tolerance domain. This
work proposes Attested Append-Only Memory (A2M) to provide the abstraction of a
trusted log, whose aim is to suppress equivocation (the act of telling different stories to
different people) which limits performances of fault-tolerant systems.

A2M Usage. A service can mitigate the effects of Byzantine faults using an A2M to
store information that cannot be altered. During setup, the untrusted component must
make known to all possible verifiers the authentication keys for its A2M module and
the identifier of the A2M log used for each distinct purpose.

To prove that it has committed a data item D in its log, a component can execute
append(q, h(D)). The hashing operation allows to use the same size for all entries in the
A2M. An interested verifier can establish that the data item is, indeed, in the untrusted
component’s committed state by demanding the attestation given by a call to lookup.

Thanks to the collision-resistant properties of the hash function, for a given cumulative
hash value, there is a single path of data items appended to a given log.

Attested Append-Only Memory. Using an A2M implementation within the trusted
computing base, a protocol can assume that a seemingly correct host can give only a
single response to every distinct protocol request. An A2M equips an untrusted host
with a set of trusted logs. Each log has a unique identifier ¢ and consists of a sequence
of values, each annotated with a log-specific sequence number and an incremental
cryptographic digest of all log entries up to itself. Only a suffix of the log is stored in
A2M, starting from position L > 0 and going up to position H > L.

Interface. A call to append(q,x) takes a value z, appends it to the log with identifier
q, increments the highest assigned sequence number H by 1, places it in it z, and
computes the cumulative digest dyy = h(H||z||dg—1), where dy = 0.

The lookup method takes a log number ¢, a sequence number n and a nonce z and
return an attestation. This method indicates if the sequence number was unassigned
(n > H), forgotten (n < L), assigned (in this case, the log value and the digest value
are returned), or skipped (see below). An important fact is that the response given by
the A2M is signed by it, and thus cannot be forged. A special call (¢,z) executes lookup
on the last value of the log.

truncate(q,n) allows the log to forget all entries with sequence numbers lower than n
in log queue q, setting L to n. A call advance(q,n,d,x) allows log g to skip ahead by
n values, using a computation similar to the one in append where dp 1 is replaced

2.2. ACCOUNTABILITY TECHNIQUES 35

by d, and finally to affects . All the skipped slots will return a skipped status when
concerned by a call to lookup.

A2M is based on a hardware solution, and provides an API which can be used as a
tamper-evident log. The overhead of using tamper-evident log based protocols is then
lowered, because logs are made tamper-evident by construction. However, using trusted
hardware is far from being a general possibility in nowadays large scale systems, as
they are not easily available for customers.

2.2.2.2 TrInc

TrInc [33] is another hardware-based accountability solution whose main contribution
is to reproduce the features of A2M at a lower cost. In Trlnc, a trusted hardware that
consists essentially in a non-decreasing counter, and a shared session key, provides
unique attestations. The authors prove that despite its light-weight characteristics, TrInc
can reproduce, or improve previous protocols such as A2M and PeerReview.

One goal of Trlnc, in comparison with previous works, is to minimize the additional
communication overhead and the number of non-faulty participants required. To use
Trlnc, a participant has to attach a trusted piece of hardware, called a trinket, to its
computer. This device is linked with the computer over an untrusted channel. This
trinket provides attestations for messages that will be bind with a counter value, but
they are further stored in untrusted memory.

When a message has to be send by the computer, it is associated to an attestation from
the trinket. In this attestation, the trinket ensures that a counter value is associated to
the message and, implicitly, that this value will never be reused for any other message.
A trinket provides the possibility to create new counters. Thus, on a given trinket, each
counter has a unique identifier. All trinket participating in a same system have the
possibility to own the same shared symmetric key, related to the session, and stored in
trusted memory, unexposed to untrusted parties.

Trinkets. Each trinket owns a unique identity 7, and a public/private key pair (Kpup, Kpriv)
which are both provided by its manufacturer. The manufacturer also provides an attesta-
tion A that proves the values I and K,,; belong to a valid trusted trinket. A trinket can

also tell how many counters it has created through a value M, which cannot decrease.

A trinket also possess a FIFO queue containing the most recent counter attestations
generated by the trinket allowing it to recover after a power failure. These attributes
constitute the global state of a trinket, and are summarized in table II1.

Each counter has some attributes (see table IV), which are its identity 4, its current value
c and its associated key K. The identity 7 is equal to the value M had when the counter
was created. Counter c is initialized to 0, and can only increase. The key K contains a
symmetric key to use for attestations of this counter.

TrInc APL. An attestation < COUNTER, I,i,c,c , hash(m) >, for a message
m, can be generated for two different reasons. If it binds the counter to a message, the

CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

Notation Meaning

Kprin Unique private key of this trinket

Kpup Public key corresponding to K.,

I ID of this trinket, the hash of K,

A Attestation of this trinket’s validity

M Meta-counter: the number of counter this trinket has
created so far

Q Limited-size FIFO queue containing the most recent
few counter attestations generated by this trinket

Table III — TrInc: Global state of a trinket

Notation Meaning

7 Identity of this counter , i.e., the value of M when it
was created

c Current value of the counter (starts at 0, monotoni-
cally non-decreasing)

K Key to use for attestations, or 0 if K, should be
used instead

Table IV — Trlnc: Per-counter state.

2.3. BAR-TRANSFORMATION PROTOCOLS 37

counter value is increased. If it is an attestation of the counter value, this value does not
evolve.

A trinket can generate attestations based on the identity of a counter, the value that
should replace the counter value, and the hash of the message that should be bound to
the counter value. It is the same procedure that is applied to know the value of a counter.
Attestations are signed using the shared session key, if it exists, or the private key of the
trinket. Some other functions of the TrInc API allow the trinket to return its certificate,
to create or to free a counter, and to receive a session key which will be affected to a
counter.

When node A wants to send a message to node B, it first obtains an attestation from
its trinket, and sends it along with the message to node B. It is also necessary for A
to send its certificate C' = (I, Kpyp, A), where I is the trinket identity, K, its public
key and A an attestation that [and K,,;, belong to a valid trinket. BB can then learn A
public key and verify that this is a valid trinket’s public key. If the trinket uses a session
key, B can check whether the attestation is really issued from this key.

Sessions. At the beginning of a session, the session administrator generates a sym-
metric key K. To allow a certain user to join the session, he asks that user for his
trinket certificate C. It can then answer it with the session key through a message
{KEY, K} K, that can only be decrypted by the user. At the same time, the user can
initialize a counter from this message and set the session key associated. Any node that
knows this key is allowed to check the node attestations.

SECTION 2.3
BAR-transformation protocols

Nysiad [34] presents a technique which transforms a distributed system which is crash-
tolerant into a Byzantine-tolerant one. Relying on the principles of State Machine
Replication (SMR) [65], each node is replicated on a given number of other nodes,
called the replicas. The number of replicas per node is determined depending on the
assumption of the maximum number of replicas that can be simultaneously faulty. The
replicas run a replication protocol which ensures that they remain synchronized with
the replicated node, named the primary. Nodes are supposed to execute a deterministic
state machine that transitions in response to receiving messages or expiring timers.
To maintain their synchronization, the replicas have to treat the messages the primary
received in the same order, even in case of network failure. If a replicated node does
not faithfully follow the protocol, its replicated state machine is stopped, or considered
as crashed, which is a case that the original translated protocol can handle.

Nysiad architecture. In a ¢-guard graph, the state machine replicas of each node,
which are also called its guards, are assigned to at least 3¢ + 1 nodes, including the node
itself. Furthermore, each two nodes have (at least) 2t 4+ 1 common guards, which are
called the monitors of the two nodes. Nysiad makes the assumption that an upper bound

38 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

t of guards of a node can be Byzantine, and that message communication between
non-Byzantine guards is reliable. The assignments of guards to nodes is made by a
centralized, Byzantine-tolerant service called the Olympus. The Olympus certifies the
guards of a host, and is involved only when the communication graph changes as a
result of churn, or new communications pattern in the pattern.

In the following we present the three protocols that constitutes the basis of the SMR
system run by guards, and the epoch protocol that the Olympus executes to reconfigure
the guard graph in case of churn. The three protocols of the replicas are the following:

e Replication protocol. The guards of a host remain synchronized.

e Artestation protocol. Only messages corresponding to a faithful protocol execu-
tion are delivered to the guards of a node.

e Credit protocol. A node is considered as crashed by other nodes if it does not
fairly process all its input, thus forcing a node to either process all its inputs fairly
or to ignore all of them.

In the following, we first illustrate the various parts of the replication protocol. Then,
we discuss the role of the Olympus.

Nodes state machine replication protocol. We illustrate in the following the func-
tioning of the three sub-protocols forming the state machine replication protocol.

Replication protocol. This protocol ensures the guards (the replicas) are synchronized
on the state of the node they replicate. To achieve this, the replicated node uses a
reliable ordered broadcast for communication with its guards. This protocol works as
follows. When a node h; wants to send an input message m to its guards, it first sends
an order request message to its guards containing the hash of m. Guards reply with an
order certificate message, which includes a sequence number c that they maintain on
behalf of the replicated node h; . The node h; is able to collect (at least) n; — ¢ order
certificates, n; being the number of guards of h;. A consistent sequence number in
n; — t order certificates constitutes an order proof for the message m to be delivered.
At this point, h; delivers the messages m to its own running replica of its state machine,
and sends the message m with the order proof to all its guards. If a guard assesses
the order proof is valid, it delivers the message m to its running replica of h;’s state
machine, and gossips it with the other guards of h; to ensure that if a non-Byzantine
guard delivers a message, also all other non-Byzantine guards will be able to do so.

The reliable ordered broadcast protocol ensures synchronization among guards (the
replicas) of a node, but it does not preclude to a node the possibility of forging or
ignoring inputs. The attestation and credit protocols described next provide the comple-
mentary pieces to take these two misbehaviors into account.

Attestation protocol. Attestations prevents a host from forging invalid messages that
would be processed by all its replicas. Checking the validity of message events is
slightly different than checking timer events. Suppose node h; wants to send a message

2.4. SUMMARY 39

m to node ;. Each guard of h; implements a RSM and can produce an attestation for
m that it has to send to node h;. When h; has received at least ¢ + 1 such attestations,
it can send them to node ;. Node h; is then able to broadcast m along with the
attestations from the guards of h; to its own guards, who will then trust the reception of
this message. When a timer event occurs, node h; needs to collect ¢ + 1 attestations,
including its own. Doing so, a node cannot produce events at a rate higher than the one
of the fastest correct host. In an asynchronous system, doing so prevents nodes from
denunciating each other for non-responsiveness, for example using a ping protocol,
without waiting for the responses of nodes. Collecting the attestations slows down the
eviction process and avoids false accusations.

Credit protocol. The aim of this protocol is to force nodes to consider all inputs and
produce the expected output, or to ignore all of them. For example, in gossip applica-
tions selfish nodes would typically try to avoid to take into account some messages to
avoid retransmitting them. To avoid this, before sending new messages, a host must
first have obtained credits from its guards for the previous inputs it received. If a host
does not produce any output, it will eventually be considered as a crashed host. Nodes
use certificates that order several inputs at a time.

Epoch protocol. The Olympus is in charge of producing signed epoch certificates
for hosts which can then convince the receivers of a message of their validity. An
epoch certificate contains the host identifier, the set of identifiers of all its guards, the
epoch number (to avoid replay attacks), and a hash of the final state of the node in the
previous epoch. The Olympus does not need to know the underlying protocol that nodes
are executing, and is completely independent of the three previous protocols we pre-
sented. Several triggers can provoke the changing of the guards of a node among which
the failure of a guard (detected by means of ping messages), or the emission of a first
message for a given host because two nodes must have at least 2t + 1 guards in common.

When the changing of a node’s guards occur, each guard of a node h; sends a state
certificate containing the current epoch number and a secure hash of its current state to
h;. When h; has received n; — ¢ such certificates, h; sends the collection of certificates
to the Olympus. In response, the Olympus chooses new guards for h; and begins a new
epoch, sending a new certificate to h;. Upon receiving its new certificate, h; informs its
new guards of their role by sending them its signed state and its certificate. The guards
have also ways to check the validity of the assignment. When h; generates a message
for the first time for another node £, the Olympus has received n; — t certificates from
the guards of h; and then asks h; to change its guards.

SECTION 2.4
Summary

In the previous sections, we presented the existing works that try to limit the impact
of rational deviations on content dissemination, or works closely related to it. In this
section, we analyze the main needs of a gossip-based content dissemination protocol.
We then explain why previous works are not satisfactory in presence of collusions of

40 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

rational nodes.

24.1 Requirements

In this section, we present the main concerns a system designer should have in mind
when building a content-dissemination protocol based on gossip and tolerating rational
collusions.

Efficiency of the dissemination. First, as any content dissemination protocol, infor-
mation should be quickly disseminated among the nodes. Usually, two metrics are used
to determine this efficiency: latency and throughput. The latency is equal to the delay
between the emission of a new update from the source and its average reception time
by the nodes. The throughput is equal to the quantity of data that can be emitted by the
source during a period of one second without perturbing the reception by nodes. The
design choices, e.g., the choice of using an unstructured or a structured overlay, may
impact these metrics. If the protocol is based on random associations, it is necessary to
control the randomness of each node’s associations.

Scalability and churn. The dissemination protocol must be able to propagate data
efficiently among various quantity of nodes, starting from some hundreds nodes to
several thousands. For example, the streaming of live events, like the Olympic Games,
may interest a large quantity of nodes located all over the world. Being able to tolerate
a high number of peers is an important requirement. In addition, the membership may
evolve abruptly. If numerous nodes massively join a gossip session, they should be
served quickly with content, and old nodes should not suffer from this massive arrival.
When massive departure occurs, the nodes that decided to stay should not suffer either.

Incentives to follow the protocol for individual nodes. In the BAR model, rational
nodes are interested in decreasing their contribution to the protocol while maximizing
their benefit. Several mechanisms have been designed to encourage nodes to contribute.
The principle of balanced exchanges, or tit-for-tat, where nodes cannot receive more
updates than they contribute in return, is probably the more immediate one. However,
other mechanisms exist, and have been presented in the related works of this section.
Protecting the protocol from individual rational nodes is an important prerequisite,
because this kind of deviation is easy to implement in practice and highly tempting for
participating nodes.

Incentives to deter rational coalitions. When assuming selfish behaviors, it is im-
mediate to consider them followed by individuals. However, in presence of mechanisms
that aim at limiting them, nodes may also be tempted to make coalitions to protect them-
selves from being detected and still contribute less than the average. It is also possible
for nodes to prefer to interact inside their coalition because of better communications,
e.g., if the nodes are geographically close, or if they are part of a high-bandwidth
low-latency local network. However, the protocol has to be built in such a way that
participating in a coalition does not prevent nodes from also executing their tasks.
This way, coalitions would not affect the quality of service of the whole dissemination
system.

2.4. SUMMARY 41

Forcing the detection of deviations. As rational collusions could still happen it is
important to detect them. To do so, mechanisms can be designed, however one has to
be sure that nodes would denounce coalitions. If it is costly to do it, rational nodes
would avoid to do it. In addition, a coalition has to be observable from the point of
view of nodes outside of it. To reach these goals, the randomness of associations is a
good advantage, but still a node has to be threatened to denounce other nodes. Knowing
if a node has been able to observe a deviation is then important in order to later take
sanctions.

2.4.2 Drawbacks of existing solutions

We summarize here why the existing systems presented so far are not satisfactory
against coalitions of rational nodes. When possible, we detail which strategies the
coalitions could use.

BAR Gossip [6]/FlightPath [27]. As seen previously, BAR Gossip relies on tit-for-
tat exchanges of updates of data, which has scalability limitations. First, the data source
has to ensure that packets are spread evenly across the system by sending data to a fixed
proportion of nodes, which is getting difficult as the number of nodes increases, and by
sending different packets to different nodes. In addition, it requires the source and all
nodes to have full membership knowledge in order to allow random partner selections.
These restrictions affect scalability when the source has bounded upload bandwidth.

In BAR Gossip and FlightPath, colluding groups cannot completely disrupt the protocol,
but they can limit their participation. Indeed, any node has the choice not to initiate
optimistic push exchange requests, and not to answer positively to them. Colluding
nodes, obtaining updates off the record, are free to apply a passive/decline strategy.
Two other aspects of the protocol also suggest that correct nodes may suffer from the
presence of colluding nodes in the system during balanced exchanges. If a node is part
of a colluding group where updates are immediately distributed to everyone, and if for a
given round it already obtained all available updates, then it will not initiate a balanced
exchange. The direct consequence is that colluding nodes will less frequently initiate
balanced exchanges than correct peers. The second point is based on a property, proved
in the paper’s demonstration, that tells that a rational node has no interest in lying about
the updates it owns. Due to the tit-for-tat policy, used in balanced exchanges, a node
receives a new update only if it can provide one in return. Thus, the number of updates
exchanged in a transaction that includes a "rich" node is small. It results that, when
they exchange with colluding nodes, correct nodes see their average benefit decrease.

The scalability of BAR Gossip is limited by three factors. First, the full membership
has to be known from every node. Second, balanced exchanges, known as tit-for-tat or
symmetric, exchanges, are known to limit the efficiency of the content dissemination [7].
Finally, the source of the streaming session has to send updates to a constant fraction of
the audience.

van Renesse et al. 2008 [7] In this article, when the maximum upload rate of the
system is greater than a threshold, then nodes that did not upload enough data , accord-

42 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

ing to a global auditor decision, are expelled from the system.

Local auditors, located on colluding nodes, may not be able to denounce any other
colluding node during the study of their history. The underlying problem is that the
history of a node is not verified, and could perfectly not correspond to the reality of its
exchanges. If a colluding node tamper with its history, saying that it exchanged with
one accomplice, it will fool the auditing protocol, which searches nodes that upload
less than a threshold. Thus, colluding nodes are able to protect themselves from audits,
even if they do not participate actively in the system.

Another point is the utilization of thresholds concerning the minimum upload factor
of each node. The drawback of this solution is its number of false-positive detected.
More specifically, the differences between the upload factors of two correct nodes may
be important, even in systems where all nodes are correct. Thus, correct nodes that
suffered from a bad position in the overlay may be expelled because they were detected
as rationals.

LiFTinG [9]. Similarly to the preceding method, the score based punishment ap-
proach of LiFTinG can potentially punish a correct node that was not allowed to
participate sufficiently, due for example to limited connectivity, message losses and
bandwidth limitation. The experimental results show that after 30 seconds, 12% of
correct nodes were expelled and 14% of rational nodes were not. This rate of false-
positive could be even more important if rational nodes were to incorrectly denounce
other nodes in order to protect themselves. In this case, either correct nodes would be
evicted instead of rational nodes, or the system designer would be force to avoid the
eviction of any node.

Talking about colluding nodes, the research report introduces three ways in which the
direct cross-check can be fooled. To counter them, the randomness of partner choices
is controlled through a statistical study of the associations made during intervals of
h seconds. During this duration, peers can join or leave at any moment, it is then
expectable that associations with old nodes will be more frequent than those with peers
that were not in the system since a long time. No mechanism is employed in Lifting to
consider the utilization of statistical check with churn events. It results that using a pure
statistical check for controlling associations may produce accusations of correct nodes.

Let us now suppose that, in a certain extent, nodes choose partners randomly. A sur-
viving problem is that if colluding nodes, after having selected at random a partner,
recognize a node that belongs to their own colluding group they are still allowed to
deceive the system applying exactly the methods presented in the paper. In a system
where 10% of nodes collude together, in average one in ten exchanges will potentially
deviate from the protocol. The entropic check limits these misbehaviors but do not
prevent them from occurring regularly.

Finally, upon reception of a proposal, a node is free to request or not an update. However,
colluding nodes may obtain updates illegally and thus not wish to participate in their

2.4. SUMMARY 43

propagation. If a node obtained an update off the record, it will refuse it when receiving
a proposition, because it would imply to diffuse it further. The direct consequence of
this behavior is that colluding nodes will not participate in the propagation of updates
they obtained illegally.

Nysiad [34]. Nysiad assumes that selfish nodes are Byzantine and try to use a
Byzantine-tolerant approach to detect them. However, this approach has an important
limitation. Since basic distributed computing primitives such as consensus cannot be
implemented if more than a third of the audience is Byzantine [57], this approach limits
the number of nodes that can be simultaneously faulty. In addition, Nysiad is also
not completely decentralized as a special entity named the Olympus is in charge of
affecting guards to nodes.

2.4.3 Conclusion

The objectives of this chapter were to present the more relevant publications of the
domain that are related to gossip in presence of rational nodes. We first presented
rational-resilient protocols that are either based on establishing Nash-equilibriums
which encourage nodes to behave correctly or use auditing techniques to detect and
punish the deviations of nodes. These approaches have scalability issues, and can
suffer from simple collective rational deviations. It should be noted that we performed
experiments where these protocols are put in presence of collusions. The results are
reported in section 3.4.2.

The second part detailed generic accountability approaches that allow a system to
securely record the behavior of nodes and later compare them with a correct execution.
Accountability approaches are either entirely software-based, or use specialized trusted-
hardware. These interesting methods could be used on top of gossip, but they assume
that nodes will voluntarily verify each others through audits, which is not true when we
assume that all nodes may behave rationally.

We then presented a protocol, Nysiad, which considers all deviations as Byzantine, and
builds a Byzantine-resilient version of a protocol. However, as all protocols that aim at
handling Byzantine faults, this protocol is not completely decentralized and limits the
possible number of faulty nodes to one third. In our assumption, we desire a system
where nodes can all behave rationally, which is closer to the reality.

44

CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

Chapter

AcTinG: accurate freerider detection
In gossip

Contents
3.1. Introductionto AcTinGo eenenenn. 46
3.1.1. Principalideas 46
3.1.2. Systemmodel 47
3.1.3. Protocoloverview 48
32, AcTinG . o v v v v i e e e e e e e e e e e e e e 50
3.2.1. Protocoldetails 51
3.2.2. Membership protocol L. 51
3.2.3. Partnership management 53
3.24. Auditprotocol 54
3.2.5. Updateexchanges 56
33. Proofso i e e e e e e 56
3.3.1. Riskversus gainanalysis 56
3.3.2. Resilience to (colluding) rational nodes 58
34. Evaluation00ttt eneeens 64
3.4.1. Methodology and parameters setting 65
34.2. Impactofcolluders 66
3.4.3. Bandwidth consumption 68
3.44. Resilience to massive node departure 68
34.5. Scalability L oo 69

35. Conclusionttt teneeeneeeeeeees 71

46 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

In this chapter, we present AcT'inG, a novel gossip protocol that includes account-
ability techniques that are directly included in a content dissemination protocol. This
approach allows this protocol to detect coalitions of rational nodes, and allows the
verifying tasks of nodes to be verified.

This chapter is organized as follows. Section 3.1 describes the principal ideas behind
the design of AcTinG. Section 3.2 provides the detailed implementation. Section 3.3
provides theoretical probabilistic results that show that rational nodes are encouraged to
follow the protocol correctly. Finally, Section 3.4 evaluates AcTinG based on several
aspects. Section 3.5 summarizes and concludes this chapter.

SECTION 3.1
Introduction to AcTinG

In this section we describe the principal ideas behind the design of AcT'inG. Then
we detail the system model we consider, and present a protocol overview.

3.1.1 Principal ideas

In order to reach the requirements we presented in Section 2.4, we propose the
mechanisms that follows.

Asymmetric exchanges. Allowing nodes to receive more updates than they can
provide in return during an exchange is an important need of content-dissemination
systems. It has been observed that applications based on symmetric exchanges have
limited scalability. BAR Gossip [6], for example, needs a source that broadcasts to 5%
of the audience to balance this lack of scalability.

Pseudo-randomness. Associations between nodes must be random for several rea-
sons. First, to ensure a good dissemination of updates. Second, because if a node
can predict its future partners it would be able to decide if the moment is adequate
to deviate. However, allowing associations to be completely random allow somehow
nodes to deviate without detecting abnormal behaviors accurately. To obtain the best of
both solutions, we decided to use pseudorandom associations.

Secure logs and associations. To detect coalitions, nodes will maintain a secure log
that will accurately register the behavior of a node during several rounds, and provide
enough context to check its correctness. The bigger the number of rounds included in a
log the smaller the probability that a rational node will only interact with accomplices.
If a correct node observe a log, it should be able to detect coalitions.

Audits: verifiability without predictability. To verify each others, nodes should
have access to the logs of their partners. However, nodes could be tempted to avoid
receiving a log, or to avoid verifying it. Thus, the execution of audits should be verified
as the other steps of the protocol, and should not be predictable (or nodes would deviate
only when it would be safe).

3.1. INTRODUCTION TO ACTING 47

3.1.2 System model

We consider a system with NV nodes. Each node is uniquely identified, e.g., using a
hash value of its IP address. We consider two classes of nodes: correct nodes and
rational nodes. Correct nodes follow the protocol. Rational nodes are defined as
in [6] extended with the notion of collusion: they aim at getting the content (i.e., while
missing the lowest possible number of updates) at the lowest possible overhead in
terms of bandwidth consumption. This means that rational nodes would deviate in
any sort from the protocol, possibly by colluding with each other, as long as the devi-
ation saves their resources while not impacting the quality of the content they are getting.

Specifically, the benefit of colluding rational nodes can be represented along the follow-
ing axes:

1. (Stream Quality) Receiving as much as possible (possibly, all) stream updates,

2. (Communication) Sending as little as possible (possibly, none) stream updates or
protocol messages to nodes not belonging to their coalition,

3. (Computation) Performing as little as possible computations for other nodes.

Colluding rational nodes would typically exchange updates off the record, and, in order
to save bandwidth, would not share the updates they obtained secretly with nodes
outside their group. It is important to note that rational nodes are risk averse, i.e., they
never deviate from the protocol if there is any risk of being evicted from the system.
This assumption is commonly used in BAR systems [18]. Furthermore, this assumption
is particularly relevant in our context as we use accountability techniques to deter faults
and accuse nodes (as described in the following section). In this context, when a fault
is detected, a proof of misbehavior is produced, which can convince any correct node
in the system of the necessity of evicting the misbehaving node. As eviction corre-
sponds to an infinite penalty, no benefit is worth taking such risk. We also suppose that
rational nodes join and remain in the system for a long time and seek a long-term benefit.

We refer to the source node as the node that is disseminating a given content. We
assume that each content is disseminated from a single source node at a time but our
principles can be easily applied to systems where the content is disseminated from
multiple sources at the same time. We assume that all nodes but the source may be
rational, or experience failures, and may organize themselves in colluding groups of
arbitrary sizes.

We assume that the network allows every pair of nodes to exchange messages, and
that they are eventually received if sent by a correct node and retransmitted sufficiently
often. We also assume that hash functions are collision resistant and that cryptographic
primitives cannot be forged. We denote a message m signed by a node ¢ as (m)g(i).

Asin [6] and [27], we assume that nodes maintain clocks synchronized within § seconds,
and we structure time as a sequence of rounds in which nodes exchange updates. We
assume that nodes have a secure log that is used to check their correctness through its
analysis. A secure log is a log that is tamper evident and append only. Many systems

48 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

recently defined variants of secure logs among which [10,31,32,33]. We build on
the secure log presented in [10]. We assume that nodes can join and leave the system
(gently or by crashing) at any time.

3.1.3 Protocol overview

We present AcT'in(G, a gossip-based dissemination protocol that guarantees the
following two properties: (i) a correct node is never expelled, and (ii) a rational node
that deviates from the protocol in a way that impacts the performance of correct nodes is
eventually suspected by all correct nodes. In the remainder of this section, we describe
the principles of AcT'in(that allow us to guarantee the above two properties. Protocol
details are then presented in Section 3.2.1.

p_predecessors a p_partners

/

Secure log

-é—} Disconnection

=P Update exchanges --—p Join request
—» Reporting of

? Audit node departure

Figure 3.1 — Overview of AcTinG.

Figure 3.1 shows an overview of our protocol. In this figure, the source node s,
which is the node from which the dissemination originates, cuts the content into chunks
that we call updates. It then periodically disseminates these updates to a set of nodes
(arrows 1 in the figure). To join this content dissemination session, a new node (p,, in
the figure) needs to know a node that is already part of it, as described in Section 3.2.2
(arrow 2 in the figure). In the middle of the figure, a node p,, which characterizes any
node in the system except the source, has a set of nodes that it has selected as partners
(depicted on its right side in the figure). Further, p, has a set of nodes that selected it as
a partner (depicted on its left side), to which we refer as p,.’s predecessors. Periodically,
Py has to share with its partners (arrow 4 in the figure), and with its predecessors (arrow
3 in the figure) the updates it received. In order to maximize the quality of the content
it receives, p, may be tempted to (1) act rationally by receiving updates and not sharing
them with its partners, or predecessors, and (2) collude with other nodes in the system

3.1. INTRODUCTION TO ACTING 49

(not necessarily its partners or predecessors) to get updates off the record without
sharing them with anyone else. To avoid these temptations, the core idea underlying
AcTinG is to make nodes accountable for their actions. Specifically, each node in
AcTinG logs in a secure log its interactions with other nodes in the system, including
the identifiers of the updates it received. Because any node can verify the information
in the log of a node it is interacting with, the latter will be obliged to send to its partners
the updates it has, and to receive the updates it is missing. Consequently, no node will
have an interest in behaving rationally or forming collusions. Indeed, assume that node
pz colludes with another node to receive an update u off the record. Node p, will not
be able to record update u in its log (because the exchange was unofficial; we explain
later how it is done). The good news for node p,, is that it does not have to forward u
to other nodes because u does not appear in its log. The problem is that the next time
a correct node having u in its log will interact with node p,,, it will send update u to
pz. Consequently, p, will eventually have to forward u, and thus will have wasted its
bandwidth, because it will have received u twice (off the record and from a correct
node).

This core idea raises several questions and challenges that we answer in the remainder
of this section.

“What if p,, chooses only colluders as partners with which it will interact with in
the near future?''. This way, p, could accept updates and arrange with its future part-
ners so as they do not audit its log, or so they do not send it updates it already received
unofficially. Our protocol deals with this issue by forcing nodes to (periodically) estab-
lish random, yet deterministically verifiable partnerships as presented in Section 3.2.3.
Specifically, each time a node p, has to change its partners, it computes their identifier
using a pseudo random generation function seeded with a deterministically computed
seed. As such, nodes that will audit its log will be able to verify the legitimacy of the
partners that it has selected.

“What if a node, p,, maintains many (correct) logs?''. For instance, p, could have
a log in which an update u appears, which it will show to nodes who already have
u (to avoid sending it to them), and another log in which the same update does not
appear, which will be presented to nodes that do not have u (to avoid having to send it
to them). This problem is known as equivocation, i.e., the ability to make conflicting
statements to different participants [33]. We deal with this issue by forcing nodes
to audit their partners’ logs at the beginning of each new partnership (arrow 5 in the
figure). This audit verifies the consistency of the log of a node as a whole as presented
in Section 3.2.4.

“Is not this periodic exchange of logs a performance overkill?". It is not necessary
to audit the logs of nodes each time two nodes exchange updates. Indeed, we build on
the assumption that colluders, and rational nodes in general, are risk averse. Hence, it is
enough to ensure that for each step of the protocol, a deviation has a high probability
to be detected in the near future, in order to make sure that rational nodes will not
deviate. Consequently, instead of performing audits each time nodes communicate,
audits are triggered in a random yet verifiable manner. Indeed, audits (from the point of

50 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

view of audited nodes) must not be predictable, because rational nodes would seize an
opportunity to deviate undetected if they could predict them. Yet they must be verifiable
(from the point of view of nodes performing them), because rational nodes have to
be forced to trigger this procedure. To reach this objective, a node that starts a new
partnership with a node, performs a deterministic computation that results in a boolean
telling it whether it should audit its partner or not.

“What if rational nodes decide not to answer to correct nodes to avoid trading
updates, or being audited?”. There are many reasons why a rational node may be
tempted not to answer to a request from a correct node. This could, for instance,
preserve it from sending its log and being audited as a result (arrow 6 in the figure).
This type of misbehavior is known as omission failures. We deal with this problem
using a mechanism where unresponsive nodes are eventually suspected by all correct
nodes, which stop interacting with them (as described in Section 3.2.2). As it is not in
the interest of rational nodes to be isolated in the system, a rational node in AcT'inG
will answer all correct node requests. To avoid correct nodes to be expelled from the
system because one of their message has been lost or delayed, we allow suspicions to
be released, e.g., if the missing message eventually arrives. Similarly, rational nodes
may be tempted to wrongly suspect correct nodes of omission failure, by claiming that
they did not send a given message to them, as it is the only reason why a node can
skip mandatory interactions. We avoid this deviation by overcharging the sending of
suspicion messages in such a way that it is more costly to suspect a node of omission
failure than to effectively interact with it. As such, nodes would suspect other nodes
of omission failures only if they are really missing a given message. Instead, if a node
effectively left the system (assume node p. in the figure), its predecessors (among
which, node p,, in the figure) contact p, partners to collect evidence about the effective
unresponsiveness of p, (as described in Section 3.2.2). Then, p, sends this evidence to
the source node (arrow 7 in the figure), which eventually updates the membership list,
and will also inform its partners during future exchanges.

Summarizing, our protocol builds on accountability techniques, and on a set of mecha-
nisms to provide incentives to rational, possibly colluding, nodes to stick to the protocol.
Specifically, to avoid nodes from selecting their partners, our protocol relies on random
vet verifiable partnerships. To be efficient it relies on random yet verifiable audits.
To discourage rational nodes from being falsely unresponsive, our protocol handles
omission failures. Finally, to discourage nodes from wrongly suspecting their partners
our protocol associates an extra cost with suspicion messages.

SECTION 3.2
AcTinG

In this section we present the details of AcTinG which implement the principles
previously presented.

3.2. ACTING 51

3.2.1 Protocol details

We have presented the principles of AcT'inG in the previous section. In this section,
we detail the steps of the protocol.

In a nutshell, AcTinG divides time in rounds. At each round the source disseminates
new updates to a small set of randomly chosen nodes. To get updates, each node initiates,
and maintains partnerships with f other nodes with whom it exchanges updates at each
round. The partners are selected using a pseudo-random number generator function,
i.e., PRNG, seeded deterministically (e.g., with the node public key concatenated with
the round number). At the beginning of a round, each node contacts all of its partners
in order to propose updates to them and to request updates from them. Every Period
rounds, each node updates its set of partners. Each time a node starts a new partnership
with a node, the two nodes audit each others log with a given probability. Specifically,
this audit checks the behavior of the new partner for the last Period rounds. The
membership is managed in a distributed manner by nodes who periodically inform the
source of the arrival and the departure of nodes. Yet, it is the responsibility of the source
to disseminate an updated list of alive nodes every epoch rounds.

The remainder of this section describes the sub protocols constituting AcT'in(G in detail,
as follows. First, we present the membership protocol (Section 3.2.2), which allows
dealing with new nodes joining the system, nodes leaving it and unresponsive nodes.
Then, we present the partnership management (Section 3.2.3), the audit (Section 3.2.4)
and the update exchange protocols (Section 3.2.5), which allow handling the partner-
ships between nodes auditing their logs and exchanging updates between partners,
respectively.

3.2.2 Membership protocol

The membership protocol handles the arrival and the departure of nodes as well as
the management of the membership list. Our membership protocol is fully distributed,
rational resilient, and handles massive nodes arrival and departure. However, due to the
lack of space we describe in this paper only an overview of this protocol.

New epoch
Pn
1) Send join
\)rnessaée (2) Send
Contact nodes list
node Px . & Send new
3) Add Pn to the list .
© of nrz)dzs o nodes list / (5) Confirm
join
Source Node

Figure 3.2 — Arrival of a new node.

52 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

Node arrival The arrival of a new node follows the sequence of messages depicted
in figure 3.2. In this diagram, we assume that node p,, which would like to join a given
content dissemination session has installed the AcTinG software. This means that
pp, has an empty secure log with the related security primitives. We also assume that
pr, knows an entry point in the system, say p,, which we call the contact node of p,,.
To join a content dissemination session, p,, sends a join request to p, (step (1) in the
diagram). The latter replies with the list of active nodes of the current epoch (step (2)
in the diagram). Using this list, p,, computes its list of new partners using the PRNG
function as described in Section 3.2.3 and contacts each of these nodes to start a new
partnership. As such p,, is ready to start receiving the content. At the beginning of
the new epoch, each node, including node p, informs the source of the arrival of new
members that have contacted him (step (4)). Using theses messages, the source confirms
to the new members their integration in the system and updates the membership list

(step (5)).

px (1) Add Py to suspected nodes list (6) Remove Py from suspected nodes

(2) Suspect (Py, m) / / — M
(4) Send(m) —» 1-n
Py 26
\ 3) /(5) Py is alive
Ping(Px,m)

Figure 3.3 — Handling of an omission failure.

Partners(Py)

Node departure and omission failures If a node p, is expecting a message from
one of its partners p, for too long', it suspects py of omission failure as depicted in the
diagram of Figure 3.3. Specifically, p, adds p, in its local list of suspected nodes (step
(1) in the figure) and sends a suspicion message to the other partners of p, (step (2)).
This message includes the type of message that p,. is expecting from p,,. Then, each of
py’s partners pings p,, (step (3)). If p, is alive, it replies to both its partners and p, with
the missing message (step (4)). After a given time slot, each of p, partners replies to
p, with a signed message certifying whether p, responded to the ping message or not
(step (5)). Using this message, p,. either removes p, from its list of suspected nodes if
py replied (step (6)) or sends an eviction message to the source including the messages
sent by p, partners.

In order to make sure that a rational node will never suspect a correct node in order
to avoid initiating or accepting an interaction with it, we make the cost of sending a
suspicion message higher than the cost of a normal interaction. Hence, unless it is a
real suspicion, a node will never suspect another node instead of initiating or accepting
an interaction with it.

"Delays for node suspicion are configured in an implementation dependent manner

3.2. ACTING 53

Figure 3.4 represents how the departure of a node is handled. In this illustration, node
P, tries to interact with node P, which is non responsive, either because it left the
system or because it does not want to answer, or suffer from network issues. Node P,
thus adds P, to its list of suspected nodes (step (1) in the diagram), and signals to the
nodes that P, should interact with that it is not responsive (message (2) in the diagram).
These partners have to ping node P, (message (3) in the diagram), and confirm to
node P, that it is not responsive (message (4) in the diagram). Upon reception of
these messages, node P, can store them, and remove P, from the list of nodes it is
maintaining (step (5) in the diagram).

Px (1) Add Py to suspected nodes list (5) Remove Py from nodes list

—» 11
(2) Missing m from Py

— 1n

Py X
4) Py is not respondin
\ /(3)Ping:mto/ () y1 P ing
Partners(Py) Px

Figure 3.4 — Handling of a node departure.

Membership list update Periodically, nodes that served as contact nodes for others
send their list of new nodes to the source node. Furthermore, nodes that hold the
evidence of the departure of one of their partner send this evidence to the source node.
The latter updates the membership list and sends the updated list at the beginning of
each epoch to its partners along with the content. In order to fasten the removal of dead
nodes from the membership list of nodes, an optimization consists of letting the source
disseminate the list of dead nodes at the beginning of each round instead of waiting the
following epoch. As soon as a node receives these incremental updates from the source,
it removes the corresponding nodes from its list of alive nodes, which avoids selecting
them in the case where new partnerships have to be established before the new epoch.
In order to preserve nodes that are participating to a content dissemination session from
the massive arrival of new nodes, which may consume their bandwidth, we adopt the
optimization defined in [27], which allows splitting the load between old nodes and new
nodes. Specifically, this optimization forces new nodes to establish partnerships with
a limited proportion of old nodes and with other nodes that arrived during the same
epoch as themselves.

3.2.3 Partnership management

Each node p, has to maintain partnerships with f other nodes, which are selected with
the PRNG function seeded with a deterministically computed seed (e.g., the round
number concatenated with p,’s public key) among the non-suspected nodes of the last
membership list. This process is depicted in the diagram of Figure 3.5. If a selected
node is not responding, node p, has to propagate a suspicion, and once the suspicion is
confirmed, p, is allowed by the source to find a new partner. Every Period rounds, a

54 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

node p, breaks the partnerships it initiated with f nodes, without informing its partners,
which know when the partnerships are supposed to come to an end (step (1) in the
diagram). A node having an identifier ¢d will change its partnerships during round r
if (id +) mod Period = 0. To initiate a new partnership with a node p,;, node p,
sends an association request to p, (step (2) in the diagram).

At the beginning of a partnership, a node p,, may trigger an in-depth audit of its new
partner p,, (step (4) in the diagram), by contacting the partners p, had in the Period
previous rounds, and asking them to return their own log of the last Period rounds
including the current round (step (5) in the diagram). To reduce the cost of the protocol,
nodes perform these audits in a random manner, i.e., each time they are in a position to
perform an audit, they flip a coin and decide whether they should audit their partner or
not. Nevertheless, to avoid that rational nodes hide behind this randomness to avoid
auditing their partners, we make this randomness verifiable. Towards this purpose, we
use the secure log authenticators, which are signed messages computed from the node’s
log as detailed in Section 3.2.4. These values are unpredictable as they depend on the
current state of a node’s log. Specifically, each time a node p, is in a position to perform
an audit of a new partner p,;, it computes the hash of its public key concatenated with
the public key of p, and the round number. The value of this hash modulo 100 gives
a number that p, uses to decide whether it should audit or not its new partner. For
instance, if the probability of auditing a node fixed by the protocol is 30%, p, audits
py if the result of the modulo function is between 0 and 29. Node p, further logs the
authenticators it used to compute the value of this boolean, in order to justify, in future
audits, the reason why it performed or did not perform the audit of p,. If the computed
number indicates that the audit must take place, p, contacts p, partners, and ask for
their logs.

(1) After Period rounds, (4) Audit Py with given (7) Check Py's

Px choose f new partners probability. correctness
(2) Association message (5) Audit —» 1-1
—» 1n
Py

(3) Check the association.
Audit Px with given
Last Partners probability.
of Py

(6) Log

Figure 3.5 — Establishment of new associations between nodes, which may imply
audits.

3.2.4 Audit protocol

In our protocol, the secure log is used to keep track of the communication a node had
with other nodes in the system. Specifically, each log entry in the log of a node A
corresponds to a message sent (resp. received) by A to (resp. from) another node B.
A log entry e; is of the form e; = (seqno;, h;, ¢;) where seqno; is a monotonically
increasing sequence number, h; is a hash value linked with the previous entries in

3.2. ACTING 55

the log and c¢; is a type-specific content, which may include the message sent (resp.
received) by A as well as other information such as authenticators (as defined below).
The value of h; is computed as follows: h; = H(h;_1||seqno;||H (c;)), where hg = 0,
H is hash function and || stands for concatenation.

Each time a log entry e; is added to the log of a node A, an authenticator «; is generated.
This authenticator, which is a signed message «; = (seqno;, hi)o(A)» States that A has
a log entry e; with a corresponding hash h;. By sending the authenticator «; to a node
B, A commits to having logged the entry e; and to the content of its log before e;. Any
node that receives «; can use it to inspect e; and all the entries preceding e; in the log of
A. Upon reception of a log, any node is able to recompute the hash values it contains,
according to the content of log entries, and thus to check their validity. In addition, a
log entry for a received message must include a matching authenticator, implying that
a node cannot invent an entry for a message it did not receive. These two properties
make the secure logs tamper-evident and append only.

As described in the partnership management protocol, when node p, must audit node
py’s log, it asks p,’s partners to return their logs. Upon reception of these logs, node p,
verifies:

(i) the consistency of the logs, by recomputing the recursive hash values associated to
log entries,

(ii) the presence of the exchanges p, was supposed to initiate,

(iii) that p, declared the updates it was supposed to receive from the source, if p, was
supposed to interact with the source,

(iv) that the exchanges correspond to a correct execution of the protocol, i.e., that p,
proposed to all its partners all the updates that appear in its log, that p, requested from
its partners all the updates it was missing, that p, served to its partner all the updates
they were requesting and that p, logged all the identifiers of the updates it received,
(v) that p, suspected all its partners that did not follow a given step of the protocol as
prescribed by the omission failure protocol,

(vi) that p, audited all the partners it was supposed to audit, the last time it changed its
partners.

As any other node, the source also maintains partnerships and regularly changes its
partners, i.e., the nodes it serves. The source follows the partnership management and
the updates exchange protocols, except that it does not send any log and it is not audited
by nodes?. This forces the nodes to log the identifiers of the updates they received
from the source, as they are deterministically chosen among the epoch membership list,
which is known by all nodes. Hence, any node can check that the received updates were
correctly declared. As the serving rate of the source is constant, the identifier of the
updates that are released at each round are also known.

2We recall that the source is assumed to be a correct node.

56 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

3.2.5 Update exchanges

At the beginning of each round and for the duration of their partnership, two partners,
pz and p, exchange updates as depicted in Figure 3.6. Specifically, node p,. (resp. p,)
starts the exchange by generating a proposition message containing the identifiers of all
the updates that appear in its log and that did not expire yet. Node p,. (resp. p,) logs
this proposition message in its log and generates the corresponding authenticator. Then,
pz (resp. py) sends the proposition message along with the corresponding authenticator
to p,. Upon reception of the proposition message, which it logs, node p, (resp. p;)
selects those updates it is missing and replies to p, (resp. p,) with an update request.
The update request is logged at the two parties. Finally, p, (resp. p,) serves the
missing updates, and logs the serve message. After receiving the updates, each partner
terminates the exchange by logging the identifiers of the updates it received, in its
log. The nodes will then propagate the received updates during the following rounds,
because we cannot ensure that nodes will immediately share these updates.

Node px Round 1 Node py
Send(Propose_Updates,py) 1) Send(Propose_Updates,px)
Receive(Propose_Updates,px) Receive(Propose_Updates,py)
Send(Request_Updates,px)) Send(Request_Updates,py)
Receive(Request_Updates,py) Receive(Request_Updates,px)
Send(Serve_Updates,py) 3) Send(Serve_Updates,px)
Receive(Serve_Updates,px) Receive(Serve_Updates,py)

Figure 3.6 — Update exchanges between nodes.

SECTION 3.3
Proofs

3.3.1 Risk versus gain analysis

The aim of this section is to demonstrate that rational nodes will not deviate from the
AcTinG protocol, because audits will detect deviations with high probability, and
because the estimated gain of collective deviations is low.

First, we evaluate the risk that two colluding nodes would take by deviating, for example
when interacting as predicted by the protocol, but without logging the updates they
receive, or send. This deviation seems to be the most rewarding one for colluding
nodes. We define the risk as the probability that such a deviation would be detected,
and denounced by an audit.

3.3. PROOFS 57

In the following rounds, this deviation would allow them not to share with correct nodes,
possibly several times, the updates they obtained unofficially, thus to save their upload
bandwidth. However, this strategy will force colluding nodes to receive a second time
the updates they received unofficially. Exchanging the multiple uploads of an update for
one additional download can already be seen as interesting. However, trading upload
bandwidth for download bandwidth, can also be typically considered interesting in
ADSL environments.

We now calculate the probability that a deviation such as we described is discovered
by an audit. If any of the two colluding nodes is audited during the time where the
exchange is contained in their log, they will be discovered. Let us consider a system of
N nodes, where C' nodes are part of a single colluding group. A node’s log contains
the entries of the last RT'E rounds. A participating node initiates fanout partnerships
with other nodes, which are changed after period rounds. Let P,,q;; the probability
that a node audit each of its new partners.

When establishing a new partnership, a rational node is not audited if its new partner is

colluding with it (which happens with probability %), or if the new partner does not

realize the audit. In average, each of the two nodes cumulate W partners

during the time the deviation is visible. Finally, we obtain that the risk that a deviation
is detected is equal to

c c 2.fanout.RTE v 2
period
{1— <N+<1_N> x(l_Paudit)> }

Let us suppose that two colluding nodes exchanged an update, and did not declare it in
their logs. We now want to determine the number of interactions that the rational node
can hope that it will avoid to send it to correct nodes. To do so, we use a program, and
present its code in figure 3.7.

The principle of this program is that during each of the RT'E rounds that follow
the round at which the deviation occurred, 2 * fanout interactions happen. Each of
these interactions, has a probability % to involve another incorrect node. When it
is not the case, this other node owns the missing update with a probability equal to
(2% fanout) %" according to a traditional result of gossip. When the rational node
receives the update from a correct node, it will have to share it with its future partners.

From the output of this program, we can compute the proportion of interactions in
which an update will not be sent by rational nodes. To obtain the long term gain, we
have to multiply this proportion by the probability that a rational node meets another
rational node to be able to execute this deviation, which is % and the proportion of the
bandwidth that is consumed by updates, which is roughly equal to %

. . 3
gain = ~ X proportion_saved_sends X v

Computing the risk, and the gain, with the values of the parameters used in the protocol,

58 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

saved_sends =0
for round_id in 1..RTE do

for association_id in 1..2*fanout do

if random() > % then
if random() < min((2 * fanout) **?-4) N)/N then
received_update = true;
else
saved_sends = saved_sends + 1;
end if
end if
end for
if received_update then
break;
end if
end for
return saved_sends

Figure 3.7 — Pseudocode of the program that is used to estimate the number of
time a colluding node avoids to send an update.

we obtain that the risk two colluding nodes take is equal to 60%, and the long term gain
of the associated deviation is equal to 3%. Thus, rational node are exposed with a high
risk each time they execute the deviation, and can only hope for a very small benefit.
Finally, we can say that according to the BAR model, rational nodes will not deviate
from the protocol.

3.3.2 Resilience to (colluding) rational nodes

In this section, we analyze the major steps of the protocol and show that rational,
possibly colluding nodes do not have any interest in deviating from these steps. For
each step, we consider all the possible deviations, and provide the incentives that make
rational nodes follow the protocol.

We present the rational deviations associated to the integration of a new node in the
system, and the incentives that make nodes stick to the protocol.

o Fig 3.2 Step 2. To join a content dissemination session, a new node p,, sends a
join request to a contact node p,. (Step 1), which then adds p,, to its list of new
nodes.

— Rational deviation. Node p, does not add p,, to its local list of nodes, thus
avoiding to inform other nodes about the arrival of a new node, saving
resources and increasing the probability for its group of colluders to be
served by other nodes.

3.3. PROOFS 59

— Incentive. During the future rounds, any node auditing the node p,, will see
the identity of p,, its contact node, in its log, and ask for the log of p, and
check that it informed its partners about the arrival of a new node in the
system. If it is not the case, the node will be evicted.

o Fig 3.2 Step 3. Node p,, then replies with the list of active nodes of the current
epoch.

— Rational deviation 1. Node p, ignores the request that p,, sent, and does
not reply with the list of active nodes to node p, saving its bandwidth.

— Incentive. If the new node does not receive a reply, it will continue to
send the request periodically, and more and more frequently. As a rational
node wants to preserve its bandwidth, it will always consider join requests
immediately.

— Rational deviation 2. Node p, does not send the correct list of alive nodes in
the system (e.g., it could send a truncated list, to hide the nodes it colludes
with).

— Incentive. If the new node is audited in the RT'E rounds that follow its
arrival, the log of its contact node will be verified, resulting in the eviction
of the latter if the list of active nodes it sent was not correct.

o Fig 3.2 Step 4. At the beginning of the next epoch, node p, sends to the source
of the stream the list of new nodes that contacted it. It then logs the acknowledge-
ment of the source to prove that it realized this step.

— Rational deviation. Node p, does not send the correct list of new nodes to
the source of the stream, or does not send it at all.

— Incentive. The node p,, that is willing to join the session is expecting to
receive a message from the source, confirming its integration in the list
of nodes. If it does not receive this message after some time, it will send
join messages to the contact node more and more frequently, consuming
its resources. Thus a rational contact node will immediately transfer the
source node about the arrival of a node in the system.

We then proceed similarly to prove that the omission failure, and node departure,
handling protocols will be observed.

o Fig 3.4 Step 1. If a node p, is expecting a message from one of its partners p,
for too long, it adds it to its list of suspected nodes.

— Rational deviation. Node p, does not add p, to the list of suspected nodes.

— Incentive. Audits check that a node sent, and received, all the messages an
association implies, and, if it is not the case, that during the following rounds
the node informed the other nodes about the suspected nodes. Otherwise,
the audited node will be declared incorrect. Thus, as p, can not predict
whether it will be audited or not in futures rounds, it will emit the necessary
suspicion messages regarding p,,.

60 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

o Fig 3.4 Step 2. Then, it sends a suspicion message to the other partners of p,.

— Rational deviation 1. Nodes p, does not send a suspicion message, for
example to protect an accomplice.

— Incentive. Audits check that a node sent, and received, all the messages an
association implies, and, if it is not the case, that suspicion messages were
sent. Otherwise, the audited node will be declared incorrect. Thus, as p,
can not predict whether it will be audited or not in futures rounds, it will
emit the necessary suspicion messages regarding p,,.

— Rational deviation 2. Node p., and the partners of node p,, collectively
decide to exclude node p, from the system, even though it is correct.

— Incentive. Suspecting a node is made more costly than a normal interaction,
and the expected benefit of excluding a correct node is low, because correct
nodes are a source of updates for other nodes. In addition, the probability
for such a situation to occur is extremely small (1 out of 10 millions, when
10% of the nodes collude).

o Fig 3.4 Step 3. Then, each of p,’s partners pings p,.

— Rational deviation. The partners of node p, does not ping it, as the node p,,
asked them.

— Incentive. If node p, does not receive a message from a partner p, of
node p,, it will contact the partners of node p. and ask them to obtain the
missing answer from p,. Thus node p, will have to answer, if he wants to
avoid being suspected, and to consume more bandwidth than if it answered
directly to node p,. Thus, a rational node will always immediately execute
the ping procedure.

o Fig 3.4 Step 4. The partners of p, then reply to p, with a signed message
certifying whether p,, replied to the ping message or not.

— Rational deviation. The partners of node p, lie saying that it is responding,
either to save bandwidth or to protect it.

— Incentive. Nodes cannot lie because ping messages, and their answers,
contain log entries which testify the time at which the messages were sent
by nodes. Thus, to say that a node is responding, another node needs
to communicate with it, and rational nodes have no way to protect their
partners.

o Fig 3.4 Step 5. After having received the confirmation that node p, is not
responding, node p,, removes p, from its list of nodes.

— Rational deviation. The node p, does not remove p, from the list of nodes
in the system, thus avoiding it to be evicted from the system.

— Incentive. The partners of node p, sent messages that can not be forged,
and if all of them indicate that the node is not responding, then p,, would be
evicted if an audit detected that it did not removed p, from the list of nodes
in the system.

3.3. PROOFS 61

o Fig 3.3 Step 4. Node p,, is informed that node p, is expecting a given message
m. It then sends this message to node p, and to its partners.

— Rational deviation. The node p, does not send the message m that was not
received to the partners of node p, and to node p;.

— Incentive. If the node p, does not send the expected message, the suspicion
will not be released, and it will eventually be evicted from the system, as
other nodes will refuse to interact with it.

o Fig 3.3 Step 5. The partners of node p, confirm to node p, that they received the
message from node p,, joining to the message the authenticator that node p,, sent
along with message m.

— Rational deviation. The partners of node p, lie to node p,, saying that it is
not responding, to evict it from the system.

— Incentive. Is it not clear if this deviation is rational, however, the probability
that such a deviation occurs is small. For example, if nodes maintain 3
partners, and 10% of the audience colludes, then such a deviation can occur
with probability 1076, If one node replies that node Dy 1s responding, and
proves it with the authenticator, then node p, will not be evicted from the
system.

o Fig 3.3 Step 6. Node p, receives the message m it was expecting, and remove py
from its list of suspected nodes.

— Rational deviation. The node p, does not remove p, from the list of
suspected nodes, aiming at isolating it from other nodes.

— Incentive. Evicting correct nodes does not bring a clear benefit, because
correct nodes are those that propagate updates. In addition, if an audit
occurs, it will appear that the node p, is suspecting a node even though
it received messages that proved that the node sent the message it was
supposed to send. If this node does not appear in the node’s log, for example
because it does not want to log it, then the costly suspicion procedure
has to be executed once again, which clearly will degrade the resources
consumption of node p,.

In the following, we show why nodes execute the partnership protocol.

o Fig 3.5 Step 1. Every Period rounds, node p, stops exchanging with its f
partners and deterministically selects f new partners using a pseudo-random
number generator seeded with a deterministically computed seed (e.g., the round
number concatenated with p;’s public key).

— Rational deviation 1. Node p, tries to establish a new partnership with
nodes whose IDs are other than those computed using the PRNG function,
e.g., to interact with colluders.

— Incentive. A rational node p, will never select such nodes as it risks eviction
during the next audit. Indeed, node p, can be selected by a correct node,

62

CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

say po, in the future, which will verify whether p, effectively selected the
nodes it was supposed to interact with by examining its log. If node pg
detects such a deviation, it will expose p.

— Rational deviation 2. Node p, tries to establish less than f partnerships to
save bandwidth.

— Incentive. The same incentive as above holds.

o Fig 3.5 Step 3. When node p, proposes to start a new partnership to node py, py
checks that p, had to contact it by rerunning the PRNG. If the check succeeds,
p. and p, will exchange during the next round.

— Rational deviation 1. Node p, does not reply to the proposition message
sent by p,.

— Incentive. If p,, does not receive a reply after it sent its proposition, it will
suspect p,. Not doing so would expose it during the next Period rounds,
and prevent it to interact with any correct node. In order not to be evicted,
py Will answer to the partnership request.

— Rational deviation 2. Node p, replies without verifying the legitimacy of
P2 s request, which could happen if nodes p, and p, are colluders, and try
to protect themselves.

— Incentive. We distinguish two cases: (a) p, is correct, and (b) p,. is rational
and the verification p, has to perform should not pass. If p, is correct and
Dy attests that p, has passed the verification without effectively performing
it there is no way to detect that p, is behaving rationally. However, as p,
does not effectively know whether p, is correct or not, p, risks eviction
as well as p,. Hence, p, will prefer to verify whether p, was supposed
to contact it or not. Instead, if p, is rational and p, attests that p, passed
the verification without performing it, p, risks eviction. Indeed, if one of
the following nodes among those that will be contacted by p, or one of
the correct nodes that will contact p, during following rounds, say py, is
correct and finds out that p,. behaved rationally through an audit, p; could
use the attestations sent by p, and which are in p,’s log to prove that p,
behaved rationally. This will result in the eviction of p,. As rational nodes
do not want to be evicted, they do not attest for the correctness of a node
without performing the corresponding verifications, and colluders do not
protect themselves.

o Fig 3.5 Step 3, 4. Node p, deterministically decides whether to audit p,’s log or
not.

— Rational deviation. A node does not audit its partner when it should.

— Incentive. When this node will start new partnerships in future rounds, its
log will possibly be audited. During this audit its future partner recomputes
the boolean that indicates whether the node should have audited its previous
partners or not. If the node did not perform the audits while it was supposed
to do so or did not perform them correctly, it will be exposed by its partner.
As the node cannot predict the occurrence of its future audits, it will audit

3.3. PROOFS 63

its current partners, and will contact all their own partners to get their logs,
following the results of the deterministic computation it has to perform.

o Fig 3.5 Step 5. If the result of the computation implies that p, must audit p,,, the
former contacts all p,’s partners and ask for their log.

— Rational deviation. Node p, does not contact the right set of nodes to obtain
their logs

— Incentive. The same incentive as above holds.
o Fig 3.5 Step 6. The partners of p, reply with their logs.

— Rational deviation. Nodes do not reply with their logs, either to save their
bandwidth, or to protect node p, from being declared faulty.

— Incentive. A node that does not send its log will be suspected of omission
failure, and will have to handle a suspicion procedure, which is costly, and
will eventually have to send the missing log to delete this suspicion. A
rational node has no interest in refusing to send its log.

o Fig 3.5 Step 7. Upon receiving the logs of p; and p;, one of p,’s partners, p,
checks that the two nodes interacted correctly.

— Rational deviation 1. Upon receiving the logs of p; and p;, p, claim that
they are correct without effectively performing the necessary verifications
to save resources.

— Incentive. If p, skips some or all the verifications described in the audit
protocol, its risks to be exposed by p, or p; future partners that will detect
their misbehavior. As p, does not want to take such risk, it will correctly
perform the audit of p, and p;’s logs.

— Rational deviation 2. Node p, does not denounce node p, when it is
discovered faulty to protect it from being evicted from the system.

— Incentive. The same incentive as above holds.

nodes among those that will be contacted by p,. or one of the correct nodes that will
contact p, during following rounds, say py, is correct and finds out that p, behaved
rationally through an audit, p; could use the attestations sent by p, and which are in
p2’s log to prove that p, behaved rationally. This will result in the eviction of p,. As
rational nodes do not want to be evicted, they do not attest for the correctness of a
node without performing the corresponding verifications, and colluders do not protect
themselves.

Finally, we present the deviations and the associated incentives concerning the
exchange of updates between nodes.

o Fig 3.6 Step 1. Consider node p, among the set of partners selected by p,.. Node
P, contacts p, and sends it a proposition message containing the updates it owns.

— Rational deviation 1. Node p,. does not send a proposition message to node
Py

64 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

— Incentive. Each correct partner of p, expects to receive its proposition at
the beginning of each round, and will thus suspect p, if the latter does not
send it. Hence, to avoid being suspected, p, always sends a proposition to
its partners.

— Rational deviation 2. Node p, sends an invalid proposition message to node
Dy (e.g., including less updates than what it holds).

— Incentive. Furthermore, the proposition sent by p, is necessarily correct
(i.e., includes all the updates that appear in p,’s log), otherwise it risks
eviction by its future partners if one of them audits its log.

o Fig 3.6 Step 2. Then, p, replies with a request message containing the updates it
is missing.
— Rational deviation. Node p, formulates an invalid request.

— Incentive. Regarding the formulation of requests by p,, the latter risks
immediate eviction if the request is incorrect. Indeed, p, would hold a
proof of misbehavior of p,, which it would immediately send to the source
of the content dissemination session.

o Fig 3.6 Step 3. Finally, p, serves the updates requested by p,.
— Rational deviation. Node p, serves less updates than what node p, re-
quested to save resources.
— Incentive. A similar ending would happen to p, if it does not serve the
updates expected by p,.
o Fig3.6 Step 1, 2, 3.

— Rational deviation. Node p, colludes with node p, and exchange updates,
but temper with their logs to make other nodes believe they did not, thus
avoiding to exchange updates, and saving their future bandwidth.

— Incentive. If instead, p,, colludes with its partners in order to exchange up-
dates off the record, the group risks to receive most of the updates a second
time from correct nodes in future exchanges wasting their bandwidth.

updates expected by p,.

SECTION 3.4
Evaluation

In this section, we present the performance evaluation of the AcT'inG protocol. We
start by introducing our methodology. Then, we compare the impact of colluders on
AcTinG, BAR Gossip, and LiFTinG. We choose BAR Gossip as it is the most robust
rational resilient content dissemination protocol that has been proposed so far and
LiFTinG as it is the only state-of-the-art content dissemination protocol that handles
colluders. We then assess the bandwidth consumption of AcT'inG, its performance in
the case of massive node departure and its scalability in terms of memory and bandwidth

3.4. EVALUATION 65

consumption using simulations involving up to a million nodes.

Overall, our evaluation draws the following conclusions. In a real deployment involving
400 nodes and in presence of colluders, correct nodes using AcTinG do not experience
any degradation in the quality of the content they receive while those using BAR Gossip
and LiFTinG experience heavy message loss in presence of colluders independently
from their organization (whether in small or larger groups). On the other hand, we
show that nodes that decide to collude in AcT'inG, experience a heavy overhead, which
discourages them from staying in the coalition. Moreover, we show that AcTinG
bandwidth consumption is reasonable and that AcTinG is resilient to massive node
departure. Finally, we show that AcT"inG is scalable as simulations involving up to a
million nodes exhibit that both the bandwidth and memory consumptions of AcT'inG
exhibit a logarithmic growth in the number of nodes. However, we acknowledge that
the source may become a bottleneck as the number of nodes increase, as it periodically
receive notifications when a node joins, or leave, the system. Solving this issue, is
classically done by using a tracker, i.e., a centralized server that handles membership,
as in the FlightPath protocol [27], which could easily be integrated in our system. The
tracker could even be replicated using classical fault-tolerance techniques (e.g., [66]).

3.4.1 Methodology and parameters setting

To assess the performance of AcT'inG, BAR Gossip and LiFTinG, we used them to
implement three video live streaming applications. In these applications, a source node,
selected randomly, diffuses a video stream at a rate of 300 kbps, during 5 minutes, and
proposes each update to 5 random nodes. Updates are then disseminated using either
AcTinG, BAR Gossip or LiFTinG, respectively. In order to provide a fair comparison,
we implemented the three streaming applications in Java using the same code base. We
deployed the three applications in 400 nodes running in one hundred physical machines
of the Grid5000 cluster?, interconnected with a 1Gb/s network that we limited to 1Mb/s.
Each machine is composed of an Intel Xeon L5420 processor clocked at 2.5GHz with
32GB of RAM. In the three applications, to provide further tolerance to message loss
(combined with retransmissions), the source groups packets in windows of 40 packets,
including 4 FEC footnoteFEC stands for Forward Error Correction. coded packets.

The duration of one round is set to one second, and updates are released 10 seconds
before being consumed by the nodes media player. Note that nodes dynamically adapt
the number of their partners according to the size of the membership list: each node
establishes w partnerships that it maintains for a duration of five rounds. For
instance, in the fault free case, with NbNodes = 400, each node has 3 partners. At the
beginning of each partnership, nodes performed audits with a probability of 5%, which,
as we show in Section 3.3.1, allows the system to detect deviations with a probability
of 60% when up to 10% of the audience colludes in a single group. The cryptographic

primitives consisted in a 1024-bit RSA signature and a SHA-1 hash.

3Grid5000: https://www.grid5000.fr/

66 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

3.4.2 Impact of colluders

In this section, we experimentally study the impact of colluders on the BAR Gossip,
LiFTinG, and AcT'inG protocols. We implemented colluders from the code base of
correct nodes in each protocol as follows. Colluders exchange unofficially among each
other all the stream updates they received from correct nodes. Furthermore, colluders
execute all the possible undetectable rational deviations that exist in the underlying
protocol. For instance, in BAR Gossip, colluders never take part of the optimistic push
protocol, which allows nodes to altruistically push updates to other nodes. Similarly, in
LiFTinG, colluders do not audit the log of other nodes and do not reply to messages
sent by other nodes asking them to assess the behavior of their previous partners unless
the considered partner is among the group. As a result, correct nodes will be blamed by
their correct auditors. In this situation the system administrator has two choices: (1)
adjust the detection threshold to avoid false positives (by decreasing its value), which
opens the doors to colluders for freeriding or (2) adjust the detection threshold to detect
colluders (by increasing its value), which results in very high values of false positive
accusations. In this experiment, we considered the first situation. A complementary
experiment showed that in the second situation, adjusting the threshold to exclude 20%
of colluders incurred the exclusion of 43% of correct nodes in the system. Finally, in
AcTinG, colluders do not forward updates they received unofficially to their correct
partners unless they received them officially.

We varied the number of colluders, as well as the size of colluding groups. We measure
the percentage of missed updates observed by correct nodes in presence of a proportion
of colluders. We first studied the case in which all colluders belong to the same group.
Results are depicted in Figure 3.8. The X axis presents the proportion of nodes that
collude, while the Y axis presents the percentage of missed updates experienced by
correct nodes in presence of colluders. We notice that correct nodes miss up to 98% of
updates with BAR Gossip and 72% of updates with LiFTinG, whereas they do not miss
any update with AcTinG.

We then studied the impact of spreading colluders in multiple independent groups.
More specifically, we made several experiments in which we distributed 30% of all the
nodes in colluding groups of identical size. We depict the results in Figure 3.9. The
X axis presents the size of colluding groups, while the Y axis presents the percentage
of missed updates observed by correct nodes. We observe that spreading colluders
in different groups has the same impact on the quality of the content downloaded by
correct nodes.

The reason why correct nodes do not observe missed updates when using AcT'inG, is
that we designed AcT'inG in such a way that colluders will eventually receive all the
updates officially from their correct partners and will thus be obliged to forward them
officially to their correct partners. Hence, engaging in a colluding group only yields
an extra overhead due to the unofficial dissemination of updates among the group. We
have measured this overhead and results are depicted in Table I. From this table we
observe that the overhead due to collusion is of at least 34% of the size of the stream
(case of a group containing only two colluders). In addition, as seen in section 3.3.1,
in a scenario where 10% of nodes collude, and where audits are performed 5% of the

3.4. EVALUATION 67

) ossip —e—]
o
S - o/ R
m
c °
8 - U / ,,,l;;,f,’. -
_8 o ®
-"E' - /.’/' e -
o ®
o L A -l i
9 T .
Proportion de coalises (%)
Figure 3.8 — Proportion of missed updates by correct nodes when a given pro-
portion of the audience collude as a single group.
0SSip —
1tin s

Proportion du contenu manquee (%)

Taille des groupes de coalises

Figure 3.9 — Proportion of missed updates by correct nodes when 30% of the
audience is rational, and collude in independent groups of equal sizes.

68 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

time, each deviation will be detected with a probability of 60%. Moreover, exchanging
updates without declaring them will provide at most a gain equal to 3%. Consequently,
nodes in AcTinG have no interest in colluding as they would not observe any increase
in the quality of the stream they get, take a very high risk of being evicted, experience
very low benefit, while suffering a useless waste of bandwidth.

Group size 2 4 8 10 50
Overhead (%) | 34.35 | 51.53 | 60.12 | 61.84 | 67.33

Table I — Overhead of colluders in AcTinG.

3.4.3 Bandwidth consumption

To assess the overhead of AcTinG, we plot in Figure 3.10 the cumulative distribution of
the average bandwidth consumption of nodes. Recall that AcT'inG is used to broadcast
a 300kbps. Figure 3.10 shows that AcTinG induces a reasonable overhead (that is
mostly due to the transmission of logs). We also measured the memory consumption of
AcT'inG, which is due to the storage of secure logs and authenticators. Our measures
have showed that a node consumes 3MB of memory for each partnership, in the worst
case.

Proportion of nodes (%)

Bandwidth (kbps)

Figure 3.10 — Fault-free case: Cumulative distribution of average bandwidths.

3.4.4 Resilience to massive node departure

In the case of a massive node departure, the remaining nodes need to quickly replace
their left partners with alive nodes in order not to miss updates. In this experiment,

3.4. EVALUATION 69

we measure the bandwidth consumption and the percentage of missed updates when
60% and 70% of nodes suddenly leave the streaming session. Results are depicted in
Figures 3.11 and 3.12 respectively. Specifically, we observe in Figure 3.11 that the
massive node departure, i.e., which happens after 500 seconds of the beginning of the
experiment, immediately causes a decrease in the average bandwidth consumed by
the remaining nodes, as the latter stop exchanging messages with their left partners.
This decrease (62% and 75% in the case of the departure of 60% and 70% of nodes,
respectively) is followed by an increase (of up to 18% and 27% in the former two cases),
which corresponds to the messages exchanged by nodes to establish new partnerships
(including a given proportion of audits). Finally, we observe that 30 seconds later, the
average bandwidth consumption stabilizes around 430 kbs (13% less than the original
value), which is due to the decrease of the necessary number of partners per node.

%

| % e . Massive departure -

Bandwidth (kbps)

Time (s)

Figure 3.11 — Nodes average bandwidth after a massive departure.

We also compute the percentage of nodes that do not receive a viewable stream*. We
observe in Figure 3.12 that only 2,5% nodes do not receive a viewable stream during
the first second when 60% nodes leave the system, and between 5% and 15% nodes do
not receive a viewable during at most five seconds when 70% nodes leave the system.

3.4.5 Scalability

We performed simulations to evaluate the bandwidth, and the memory consumption, of
AcTinG when the number of nodes increases in the system.

*The stream is not viewable when more than 5% of the streaming windows cannot be displayed because
of missed updates [6]

70 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

%
Yo wereeses Massive departure

Proportion of nodes (%)

Time (s)

Figure 3.12 — Percentage of nodes that do not receive a viewable stream after a
massive departure.

Results depicted in Table II show that both the bandwidth consumption, and the memory
consumption, of AcT'inG grow logarithmically with respect to the number of nodes in
the system. Indeed, these values depend linearly on the number of partners a node has,
which grows logarithmically with the system size.

System size | Bandwidth consumption | Memory usage
(Kbps) (Mb)
100 380.0 6.4
500 436.6 9.5
3,000 511.1 12.7
22,000 603.4 15.9
160,000 713.5 19.1
1,200,000 841.4 223

Table II — Average bandwidth and memory usage of AcTinG in function of the
system size.

3.5. CONCLUSION 71

SECTION 3.5
Conclusion

A number of gossip-based content dissemination protocols tolerating rational behaviors
have been proposed. A limitation of these protocols is that they do not handle rational
nodes that collude, i.e. that act as a group in order to improve their benefit. The only
exception is the LiFTinG protocol that performs sporadic checks on insecure logs to try
to detect colluding nodes.

We have shown in this chapter that neither LiFTinG nor BAR Gossip, the most robust
rational resilient content dissemination protocol, are effectively resilient to colluders.
We have then presented AcT'inG, the first content dissemination protocol that tolerates
rational nodes acting both individually and in collusions, and that guarantees zero false
positive accusations. Performance evaluation combining both a real deployment and
simulations has demonstrated that nodes running AcTinG are able to deliver the entire
content despite the presence of colluders. We have also shown that AcTinG is resilient
to churn, and exhibits very desirable scalability properties with a logarithmic growth of
memory and bandwidth consumption, comparable to standard gossip based protocols.
Our future work includes the study of the applicability of the AcTinG principles to
other types of collaborative applications for the accurate detection of rational (possibly
colluding) nodes.

72 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

PART 11

PRIVACY AND RATIONAL
RESILIENCY IN GOSSIP-BASED
DISSEMINATION SYSTEMS

74

Chapter

Privacy in rational-resilient gossip

Contents

4.1. Principles of gossip and selfish behaviours 76
4.1.1. Selfishbehaviours 77
4.1.2. Requirements against selfish behaviours 79
4.1.3. Accountability solutions 79
4.1.4. Privacy requirements 79

4.2. Rational-resilient gossip protocols 80
4.2.1. Rational resiliency by design 80
4.2.2. Audit-based approaches 81
4.2.3. Virtual currency approach. 82

4.3. Anonymous communication protocols 83
4.3.1. Altruisticrelaying, 83
4.3.2. Rational resilient relaying 85

4.4. Accountable and privacy preserving approaches 86
4.4.1. Zero-knowledgeproofs 87
4.4.2. Collaborative verification protocols 87

4.5. Preserving privacy in other contexts 88
4.5.1. Peer-to-peer protocols 88
4.5.1.1. Interest-based social network 88

4.5.1.2. Collaborative filtering 89

4.5.1.3. Micro-blogging dissemination 89

4.6. SUMMATY .« ¢ v v v v v v o v o v v vt oo oo oo s oo s onas 90
4.6.1. Requirements 91
4.6.2. Summary of existing solutions 91

4.63. Conclusion 93

76 CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

In the previous chapters, we identified a kind of rational deviation that had not been stud-
ied in the literature: collective deviations. We then proposed a new protocol, AcT'inG,
which is the first one to deter all kind of rational deviations in gossip-based systems.
However, this protection comes at a cost, as nodes have to register all their actions
in logs and periodically share them with other nodes. Nowadays, users of distributed
systems are more and more aware that private information may be collected during
their participation in a protocol, and later studied, or leaked. Users may be reluctant to
give away information about them in a peer-to-peer context, and thus desire to maintain
their privacy.

Protecting the privacy of users in the context of gossip would imply that a node should
not learn more information about other participants than the bare minimum, which it
learns from its interactions. For example, a node should not be able to discover if any
two other nodes exchanged updates, and what updates they exchanged. In addition, a
desirable property is to ensure that it is not possible to determine which content a node
wants to receive. We formalise later in this chapter the privacy properties that a gossip
protocol should enforce.

This chapter is organised as follows. We first recall in section 4.1 the principles of
the gossip paradigm, and present the formalism and an example that we will use
throughout this chapter. We also give requirements that gossip protocols should enforce
to deter selfish behaviours, and those concerning the protection of the users’ privacy.
Section 4.2 details how the existing rational-resilient gossip protocols may leak private
information. Section 4.3 focuses on anonymous communication protocols which are
both accountable and privacy-preserving but suffer from poor performance. Section 4.4
describes some recent works that combined privacy and accountability in more general
situations. Section 4.5 presents some distributed systems that focused on privacy issues.
Section 4.6 concludes this chapter.

SECTION 4.1
Principles of gossip and selfish behaviours

The objective of a peer-to-peer content dissemination system is to reliably distribute
a given content (e.g., a video stream, membership updates) among a set of interested
nodes. Gossip protocols reach this objective by enforcing random exchanges between
nodes in such a way that all nodes receive the whole content with a high probability [56].
Specifically, content dissemination is organised in rounds (whose duration is called the
gossip period). A special node that holds the content to disseminate (also called the
source), generates and periodically sends chunks of this content (also called updates),
to a set of nodes chosen uniformly at random. Then, periodically, each node taking
part in the dissemination is in charge of sharing the updates it receives with f other
randomly selected nodes (f is also called the dissemination fanout).

Figure 4.1 illustrates the gossip-based dissemination of updates, from the point of
view of a node X depicted in the centre of the figure. Specifically, at any given
point in time, node X has a set of f;, predecessors {P1,..., Py, } and a set of f

4.1. PRINCIPLES OF GOSSIP AND SELFISH BEHAVIOURS 77

X's predecessors X's successors

Round R Round R+1

Figure 4.1 — Forwarding of updates in a gossip-based system

successors {S1,...,.5,} that have been picked uniformly at random from the nodes
participating in the system. This is commonly achieved by relying on a full membership
protocol (e.g., [6,8]), or on a distributed random peer sampling protocol (e.g., [64,67]).
In this example, during round R, node X receives a set of data chunks from its
predecessors (i.e., {u1} from P,....{uy, } from Py in the figure) and has to forward the
received chunks in the following round R + 1 to all its successors (i.e., {u1,...,uy, }
to S1,...,S5y, in the figure). Following the gossip paradigm and if the number of
successors per node is correctly chosen, nodes receive the whole content within a small
delay.

4.1.1 Selfish behaviours

It has been presented in various studies (e.g., [19, 61]) that in practice gossip-based
dissemination suffers from nodes behaving selfishly. Selfish behaviour takes place when
nodes tamper with their software or use tampered software in order to maximise their
benefit (e.g., receiving the disseminated content as fast as possible) while minimising
their contribution to the system (e.g., saving bandwidth or computational resources).
Selfish behaviours can have a tremendous impact on the dissemination of updates. For
instance, a study performed in a live streaming system [9] has shown that 25% nodes
behaving selfishly by decreasing their contribution by 30%, results in up to 60% nodes
receiving an unusable video stream.

Figure 4.2 presents examples of selfish behaviours in which a node X (in the middle
of the figures) aims at improving its benefit. In these figure, node X is a successor of
nodes P and P», from which it receives updates, and a predecessor of nodes S1 and S5,
to which it must forward updates. In case (a), node X forwards a subset of the updates
it received (i.e., {u } instead of {u1, w2}) in order to save bandwidth. In case (b), node
X forwards the received updates to a subset of its successors (i.e., it sends {u1, uz} to
So instead of sending it to 57 and S5). In case (c), node X does not correctly choose
one of its successor, and prefers to send its updates to an accomplice Y (depicted in
the right of the figure). This deviation modifies the random propagation of updates and
harms their dissemination. Finally, in case (d), X and Y form a selfish coalition, in
which they exchange updates off the record (e.g., update wu; in the figure), for example

78 CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

P1 PZ S1 SZ
\"z.
u
\
\
(T
)
q o
D
(@)
& &
P1 P2 X S1 S2 Y
y —2
N
\
u,y
\2‘
I R,)

(c)

Figure 4.2 — Examples of selfish deviations

4.1. PRINCIPLES OF GOSSIP AND SELFISH BEHAVIOURS 79

because they are connected with a particularly good network. By doing so, node X can
skip receiving u; officially from node P;, which prevents it from forwarding it to .Sy
and S,.

4.1.2 Requirements against selfish behaviours

In order to protect a gossip-based system from selfish deviations of nodes, and based on
the previous examples, we can intuitively infer three properties, R1, Rg and Rg, that
have to be verified. Together, these properties force nodes to receive the updates they
have not yet received (property Rj prevents nodes from exchanging updates outside
the protocol, and avoiding to receive them to avoid to forward them further) and to
correctly forward the content they receive (properties Ro and R3).

R; Obligation to receive: At a given communication round, a node must receive the
updates it did not receive officially in the previous rounds.

R> Obligation to forward: At a given communication round, a node must forward
the updates it received to other randomly selected nodes.

R3; Random partnerships: A node predecessors and successors should be selected
uniformly at random.

4.1.3 Accountability solutions

Accountability mechanisms (e.g., PeerReview [10], FullReview [35], AVMs [31]) are
effective solutions to deter faults in distributed systems. These mechanisms have already
been used as incentives for forcing selfish nodes to participate in gossip-based content
sharing protocols (e.g., in AcT'inG [5]).

Figure 4.3 shows an accountable gossip protocol in which a node X logs its interactions
with its predecessors and successors in a secure log (depicted in the right part of the
figure). For example, the first line of this log precises that node X received {u; } from
node P; during round R. Secure logs can either rely on cryptography techniques (e.g.,
recursive hash functions in PeerReview and AVM [10,31]) or on secure hardware (as
in Trinc [33]) to make them tamper evident and append only. In these systems, each
node X is further assigned a set of monitors (depicted above X in the figure) that
periodically audit its log in order to assess whether the logged entries correspond to
a correct execution of the gossip protocol. For instance, in the figure each monitor
can check that node X has forwarded all the updates it received during round R (i.e.,
{u1,...,usp}) to all its successors (i.e., S1, ..., Sfs) during round R + 1.

4.1.4 Privacy requirements

A major drawback of accountability mechanisms is that nodes must share their inter-
action logs with their monitors. In gossip-based applications such as content sharing
or live video streaming applications, this allows monitors to learn about nodes inter-
ests and thus possibly infer sensitive information about them. Indeed, various studies
(e.g., [36,37]) have shown that the consumed media can disclose information about
individuals (e.g., gender, sexual, religious or political preferences). Further to learning

80 CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

X's monitors

@ @ Rev (R |P, [{u}

Rev R |P [{u}

SND R+1 | S {u],.., ufp}

J SND R+1 | S {u],.., ufp}

Y Y X's log
RoundR Round R+1

Figure 4.3 — Accountable gossip

nodes interests, it is then possible to infer links between nodes sharing similar interests,
thus possibly inferring sensitive information about them. In addition, it is not enough
to encrypt updates in secure logs. Relying on this method, it is necessary that nodes
known the associations between updates and their encryptions in order to register their
actions in their log. They could also learn the associations between updates they do
not even receive. Thus, when observing the logs of other nodes, they would be able to
understand the events they describe.

Hence, in addition to the properties R4, Ra, and R3, we aim at enforcing the following
privacy properties in our protocol:

P; Private Content Consumption: It is not possible to state that a given node has
consumed a given content.

P2 Private Session Membership: It is not possible to identify the set of members
that are interested in a similar content.

P3 Private Exchanges: It is not possible for nodes to observe the precise updates
exchanged between two partners (except for the two partners) or to predict that
two nodes exchange updates.

SECTION 4.2
Rational-resilient gossip protocols

In this section, we examine to which extent the privacy of nodes is endangered by the
design of the mechanisms deployed to deter deviations. In Chapter 2, we presented
several gossip protocols that are resilient to rational behaviours. We do not describe
these protocols in details again, instead we only indicate the elements that concern the
privacy of nodes.

4.2.1 Rational resiliency by design

BAR Gossip [6], and it successor FlightPath [27], are streaming protocols that have
been designed to handle both selfish and Byzantine deviations. We previously explained
(see Section 2.1.1.1) that they do not force peers to initiate exchanges with other nodes,

4.2. RATIONAL-RESILIENT GOSSIP PROTOCOLS 81

which can limit the efficiency of the content dissemination, however we did not studied
their impact on the privacy of nodes.

Association with a content. In these two protocols, all nodes have to know the full
membership of a session, which is uniquely associated to a disseminated content. Then,
each node that is part of a session knows that all the other nodes are interested in the
same content. Thus properties P and P5 are not enforced in these protocols.

Predictability of interactions. Running these protocols, each participant chooses
the nodes it contacts using a deterministic, yet random, procedure that depends on its
identifier (or its public key) and on the round number. Both information being public all
interactions, either coming from the balanced exchange procedure or the optimistic push
procedure, can be predicted by any peer in the system. However, it is worth mentioning
that the updates that are exchanged between two partners cannot be precisely known by
other nodes. Finally, property P3 is not completely enforced by these protocols.

4.2.2 Audit-based approaches

In this section, we describe several gossip-based protocols that use periodical audits to
verify the correct forwarding of updates in a system. LiFTinG and G2G use verifications
based on secure logs to enforce properties R1, Ra, Rg in presence of non collective
rational deviations. However, none of the privacy properties P71, P2, P3 are enforced.
We details the privacy leaks in the following parts of the section.

LiFTinG

LiFTinG [9] (see Section 2.1.2.3 for details) is a protocol that forces nodes to dissem-
inate the updates they receive, using cross-checking procedures and audits to check
how a node forwarded its updates. In chapter 2, we focused on the false-positive and
false-negative detection rates of this protocol, but we study here the mechanisms that
threaten the privacy of interactions. First, all nodes participating in LiFTinG know
that they share the same interest in the content being distributed. Thus, properties
P; and P, are not enforced in LiFTinG. We present two kinds of verifications that
aim at detecting selfish nodes, but leak information about nodes in the following, thus
preventing property Pg to be enforced.

Direct cross-checks. The direct cross-checking procedure has been previously illus-
trated in Figure 2.4. After a node pg sends some updates to a node p1, using the standard
three-phase gossip procedure, it also has to check that p; forwarded these updates to
other nodes, here p2 and ps, selected randomly among the audience. To permit this,
node p; must send to node pg the list of the nodes it contacted. Node pg can then ask
these nodes to confirm that they receive the updates it sent to node p;. Any node in
the system is then able to discover all the nodes located two hops after itself in the
content dissemination path, and associate them with particular updates. This kind of
verification allows a node to learn the interactions of the node it is checking, and to
which is previously sent some updates. Thus property Pg is not enforced.

82 CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

A posteriori verifications. Periodically, each node picks a random node and audits
its history, which is a non cryptographically-secure log. The auditing node verifies the
randomness of the distribution of peers to which the audited node proposed updates. In
addition, the auditing node is able to contact the previous partners listed in the history to
ask for confirmations of the events presented. This could also constitutes an attack, as
anyone can contact any other nodes to ask for information concerning an hypothetical
exchange. Similarly to the previous verification, a node that executes an audit learns in
details all the exchanges of the audited node.

Due to the fact that the session membership is known from all nodes, and to the
verification procedures that detect selfish nodes, LiFTinG does not enforce the properties
Pl, Pz and P3.

Give2Get

Give2Get [68] (G2G) uses ideas that are close to those of LiFTinG. While this protocol
is specifically designed for mobile wireless networks it can be used in more general
systems. G2G uses epidemic forwarding (i.e., gossip) to transmit messages among
nodes. While G2G does not explicitly uses audits, nodes check each other. Properties
P, P are not enforced since all nodes participating in this protocol are known to be
interested in the same content.

Forwarding verification. When a node receives a message from another node it has
to send back a signed proof of relay (POR) which is a message that contains the hash
value of the received message, and the identities of the receiver and the sender nodes.
The sender of the message can then use this POR to prove to its predecessors that it
correctly forwarded the message. More precisely, each node has to collect two PORs
for each message it receives (using a fanout of two will limit the scalability of this
protocol, but it can be generalised). This verification prevents property Pg from being
enforced.

In this protocol, the full membership is known to nodes. In addition, the proofs of relays
divulge information about nodes. The predecessors of a node are able to learn which
messages where transmitted to which nodes, i.e., a node can learn where its messages
go two hops after it in the dissemination path. To conclude, properties Py, P2 and P3
are not enforced in G2G.

4.2.3 Virtual currency approach.

Building on the idea of virtual currency, an interesting approach is developed in [38],
where it is shown to provide accountability without compromising privacy in a peer-to-
peer system. This solution requires two trusted entities: i) a bank, which maintain an
account for each user and knows about all transactions in the system; and ii) the arbiter,
which ensures the fair exchange of e-cash for data. The privacy of exchanges is ensured
at the condition that these entities are available and trusted, which is not something
we are ready to assume in a P2P environment. However, at these conditions, selfish
individual nodes may be forced to participate actively in the dissemination of updates.

4.3. ANONYMOUS COMMUNICATION PROTOCOLS 83

Using this approach, trusted entities would prevent properties Py, P and Pg from
being enforced.

SECTION 4.3
Anonymous communication protocols

In this section we present several existing anonymous communication protocols that
could be used to create a one-to-all dissemination protocol, the source sending updates
and nodes disseminating and receiving them.

Anonymity is stronger than privacy as it provides the following properties, which were
defined in [69]:

o Sender anonymity. It is not possible to determine the sender of any given
message.

o Receiver anonymity. It is not possible to identify the destination of any given
message.

o Unlinkability. An observer is not able to identify a pair of nodes as communi-
cating with each other.

Thus enforcing anonymity would also enforce the privacy property P3. However, to
obtain the privacy properties Py and Po, it would be necessary to serve several contents
simultaneously to nodes to hide the interests of nodes. As we will see in Chapter 5,
where we realise a performance evaluation, using anonymous communication protocols
to build a privacy-preserving and rational-resilient content dissemination protocol is
not possible because of their high overhead.

This section begins with a description of the first developed protocols that are not
accountable, and in which selfish nodes may avoid to participate correctly in all steps.
We then present protocols that have been designed to prevent these deviations.

4.3.1 Altruistic relaying

The first anonymous protocols DC-Net [70], and Onion Routing [71] have focused
on enabling the strongest possible anonymity level for the former, and on providing
practical performance for the latter. However, these two protocols take the participation
of nodes for granted. Some anonymous communication systems, like Dissent [39]
and RAC [40], force nodes to correctly execute their role of relay. However, if we
imagine a gossip protocol that uses anonymous communications a node that would be
the destination of a message would correctly receive it, but would still not be forced to
propagate it to other nodes.

In addition, using anonymous communication systems to provide privacy can also
be seen as a performance overkill. For example, for each message sent anonymously,
Dissent v1 [39] forces each node to send messages to all the other nodes. The second ver-
sion of this protocol [41] uses trusted nodes which receive anonymous communication

84 CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

requests from untrusted nodes, and run a protocol involving all-to-all communications
between trusted nodes.

DC-Net

The DC-Net [70] protocol relies on the principle of secret sharing, and is the most robust
anonymous communication protocol. For an opponent to break anonymity it is necessary
to control all the nodes in the system. Nodes proceed in rounds. During one round, only
one node is allowed to send a message. If two nodes try to send messages during the
same round a collision occurs and none of the messages is correctly delivered (although
some approaches have introduced the possibility to reserve slots [42,72]). Nodes
are organised in a structured network and nodes have to forward to their neighbours
the encrypted messages they receive. Nodes apply a XOR-based mechanism on the
messages they receive from their neighbours to decrypt messages. The highest drawback
of DC-Net is its high overhead in terms of communications and computational costs.
At each round, any pair of two nodes in the system needs to exchange messages. Some
protocols have been devised to reduce these overheads. For example, Herbivore [73]
organise nodes into groups to decrease the total number of messages exchanged. In
practice, this protocol is consider to be unusable as soon as there are more than 50 peers
in a session [74].

Onion Routing

The onion routing protocol [71] is probably the most famous anonymous communication
protocol. This is due to the important number of variants of this protocol that have been
implemented, among which Crowds [75], Cashmere [43], Tarzan [44], and TOR [76].

Sending protocol. In this protocol, a node that wants to send a message to another
destination node follows the following steps:

o Choose a set of nodes, called the relays, which defines the path that the data will
follow until the destination.

o Encrypt the data as a onion, which is a recursively defined layered data structure.
Each onion contains another onion, the identity of the following relay on the path
and may contain cryptographic information (such as the cryptographic algorithm
that is used to cipher data).

Figure 4.4 shows how a node A sends a message anonymously to node B using two
relay nodes R; and Rs. Each relay is able to decrypt the message it receives that
has been previously encrypted using its public key, and finds the identity of the next
destination along with the encrypted data it has to transmit.

Relaying and selfishness. Each node on the path uses its private key to decipher the
onions it receives, and then forward the internal onion to the next relay. For security
concerns, this internal onion is padded to maintain a fixed size. This protocol assumes
that nodes are altruistic, i.e., they follow the protocol even though they have no particular
interest in doing so. A node could drop all the messages it should relay without being
detected.

4.3. ANONYMOUS COMMUNICATION PROTOCOLS 85

{{{m}pky B}kaz ’ Rz}ka {{m}pkB' B}kaz {m}pkB
OO0
{{m}pkB'B}kaz Ry {M}piy B

Figure 4.4 — Sending of an onion using two relays.

4.3.2 Rational resilient relaying

We describe in this part anonymous communication protocols that force nodes to act as
relays. Theoretically, they could be used to disseminate a content within an audience
of nodes. However, the audience would still be associated to a content (properties Py
and P2 would not be satisfied), and the cost of these protocols is way too important for
practical applications.

Dissent

The first anonymous communication protocol designed to tolerate rational nodes is Dis-
sent [39] (Dining-cryptographers Shuffled-Send Network). This protocol uses DC-Net
as a basis and thus suffers from the same scalability issues (it is not intended to be used
with groups larger than 50 nodes), and adds a double encryption system. When a node
detects the deviation of another node, the execution of a round is stopped and at least
one of the misbehaving nodes is anonymously proved to be faulty, and evicted.

Dissent operates in two stages.

o Shuffle phase A set of fixed-length messages, one from each group member,
is permuted and anonymously broadcast to all nodes. This protocol has two
practical limitations: all messages must be of equal length, and the decryption of
messages is serial (i.e., it takes a long time if the number of participants or the
number of messages is important).

o Bulk phase. In each round, all group members emit variable length messages
(possibly void messages) to any destination. To do so, they broadcast bit streams
based on pseudorandom seeds distributed via the shuffle phase in such a way that
XORing all the bit streams together allow nodes to obtain a permutation of all
members’ variable length messages.

Dissent v2. The protocol was later modified in [41] to improve its performance. In
this version, trusted servers that run the first version of Dissent are used by nodes which
still benefit from anonymity guarantees. We do not want to make the assumption that
trusted servers are available in general P2P solutions.

86 CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

RAC

RAC [40] is a rational resilient anonymous communication protocol that is based on
Onion Routing, and that was designed to scale better than Dissent. In RAC a node that
has to relay a message will broadcast it to all the nodes so that the node from which
it received the onion can check the forwarding. Thus, when receiving a message all
the nodes have to try to decrypt it, and the node that will succeed will have to send
it to all other nodes. This protocol is shown to be a Nash equilibrium in the original
publication.

Fireflies infrastructure. To limit the number of messages to send, and to make this
number independent of the system size, the membership is organised on rings, as is
Fireflies [8] !. Nodes have a successor and a predecessor on each on these rings. When
a node receives a message from one of its predecessors it will first forward the onion to
its successors, which will prove its reception. Then, it will try to decipher the onion, and
upon success, will also broadcast the internal onion to its successors. If L is the number
of relays used in the onion path, and R is the number of rings, then the propagation of
one message has a cost of L x R x Bcast(N).

Broadcast groups. To avoid that all the messages reach all the nodes the membership
is divided in groups of size G where nodes are organised as previously presented. If
two nodes that belong to the same group want to communicate they use the previous
protocol inside the group they belong to. The cost of the protocol is then reduced to
L x R x Bcast(G). However, when two nodes that are not part of the same group
have to communicate the procedure is different. The source of the message broadcasts
it inside its group, but the smallest onion is made in such a way that it informs the last
relay that it has to forward the message in the group of the destination node (to allow
the reception of the message) and inside its own group (to prove to the source that it did
forward the message). The cost of the protocol is then lower to the previous cost and is
equalto ((L — 1) x R x Beast(G)) + (R x Bcast(2@G)). Simplifying the expression
leads to L x R x Bcast(2 * G) which is better than without groups.

Dissent and RAC are anonymous communication protocols that, theoretically, could
be used to disseminate a content in an audience of peers in presence of selfish nodes,
and would enforce properties P, Po and Pg if several contents are simultaneously
disseminated. However, Dissent is not able to scale correctly, or would need the
assistance of trusted servers, and the overhead of RAC is too important to disseminate
standard multimedia contents (e.g., musics or videos).

SECTION 4.4
Accountable and privacy preserving approaches

In this section, we introduce existing approaches that would check the correctness of
a node while preserving its privacy. The first possibility is to rely on zero-knowledge
proofs, and the other one, is to use very recent solutions that have been developed by

Isee Section 2.1.2.2 for a description of Fireflies

4.4. ACCOUNTABLE AND PRIVACY PRESERVING APPROACHES 87

Haeberlen et al. in several publications. For each solution, we briefly argue why it can
not be applied to gossip.

4.4.1 Zero-knowledge proofs

Classical zero-knowledge proofs [77] (ZKPs) are methods by which one party can prove
to another party that a given statement is true, without revealing any information apart
from the fact that the statement is true. They are difficult to apply to gossip because they
are designed to verify functions with a fixed number of inputs, but in many distributed
systems, both the size and the number of a node’s "inputs” (the messages it has received
from other nodes) are not known. In particular, in gossip-based systems, the quantity of
messages a node receives during a time interval is not predictable. In addition, the high

overhead of general-purpose ZKPs would be prohibitive for many applications.

Another approach is to make nodes compute the expected output of the node that is
checked using secure multi-party computation (MPC) [45], and then check them to the
actual behaviour of the node. But MPC is practical only for very simple functions.

4.4.2 Collaborative verification protocols

We now present some ideas that have been presented by Haeberlen et al. in several
papers [46,47]. They all focus on the same idea: it is possible in practice using a
particular data structure to control the behaviour of members in distributed applications,
under some assumptions, while preserving their privacy.

Privacy-preserving accountability

In [46], Haeberlen et al. propose an original and clever method that allows nodes to
collaboratively check each other in distributed systems, where the behaviour of nodes
can be checked by other nodes, while preserving their privacy using a data structure
called a Merkle Hash Tree. This proposition works under the assumption that nodes do
not collude.

Merkle Hash Tree. Participating nodes maintain a Merkle Hash Tree, which is a
tree whose leaves represent all the possible states of peers, and the internal nodes are
deterministically computed using a hash function and the value of their sons. Nodes in
the system regularly make public the root hash value of their tree. The interest of this
data structure lies in the fact that it is difficult to find collisions, i.e., create two trees,
or subtrees, whose internal hash values are different but whose root values are equal.
Thus, as nodes

Collaborative verification. Two nodes that interacted have to convince each other
that they are not in a state that is inconsistent with what they already know. To do so,
they send each other the internal values of their hash tree. Basically, all nodes that
interacted with another node will then be able to collectively, but anonymously, check
its Merkle Hash Tree.

88 CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

Application. This approach has been applied to a BGP routing system [48]. However
very elegant, we believe that this approach cannot be applied to gossip protocols,
because it is not possible to represent concisely all the possible states of a node. For
example, if a node has to receive X messages, using states to represent what it did
receive would give 2% states. Using a dissemination protocol, the set of states can then
become completely unpractical. However, if an optimisation can be found to represent
the states of a node this approach could become practical.

SECTION 4.5
Preserving privacy in other contexts

In the previous section, we considered content-dissemination systems and studied how
they would preserve, or harm, the privacy of their users. In this section, we present
several P2P protocols that aim at preserving the privacy of their users in other contexts.

4.5.1 Peer-to-peer protocols

Several domain-specific P2P systems have been developed by Kermarrec et al., we
briefly describe them in the following. These solutions cannot be applied to gossip-
based systems.

4.5.1.1 Interest-based social network

GOSSPLE [49] builds an overlay of anonymous nodes depending on their interests.
Using a gossip protocol, nodes periodically send their interest profiles, compute their
distance in terms of interest to other nodes, and update their connections to other nodes.
Nodes can then use their network of acquaintances for various goals, for example to
obtain personalised search results.

Profile anonymity. Each user has a profile which describes its interests. The associ-
ation between users and profiles is hidden. Each node has a proxy, which is another
node of the protocol, which disseminates its profile on its behalf. To send its pro-
file to its proxy, a node has to use a relay which will forward the encrypted profile.
This mechanism protects the system from single adversary nodes, but can expose it to
collusions.

Neighbourhood maintenance. Each node periodically selects its oldest neighbour
and exchange the descriptors, which include profiles represented as Bloom filters, of ¢
nodes. Each node then recompute the identities of the ¢ nodes that maximise its distance
metric.

The methods used in GOSSPLE could be applied to gossip in the sense that each
node could obtain a set of neighbours sharing similar interests. However, the way a
content would actually be disseminated inside a GOSSPLE overlay is not defined, and
it is not clear if it would preserve the privacy properties Py, P2 and P3. In addition,
selfish behaviours would not be prevented.

4.5. PRESERVING PRIVACY IN OTHER CONTEXTS 89

4.5.1.2 Collaborative filtering

Collaborative Filtering enables users who share the same interests, often revealed by
their profiles, to benefit from a content that one of them considered relevant. Such
recommendation techniques are more efficient if the profiles are public, however pre-
serving the privacy of these profiles is also an important concern. The mechanisms
presented in [50] consist in a decentralised protocol which aim at providing nodes the
information they are interested in while preserving the privacy of their profiles.

Interest-based overlay. Nodes maintain an overlay which is constructed using the
profiles of nodes. Nodes maintain a list of neighbours which share similar interests.
Second, information is disseminated using epidemic forwarding as nodes forward the
information they receive and liked to their neighbours. The protocol protects the privacy
of nodes when they transmit their profile to their neighbours and when they receive
posts that should not reveal their interests.

Privacy and obfuscation. Each disseminated item is associated with a profile that
aggregates information from the profiles of users along its dissemination path. This first
allows nodes to decide if any item they receive has chances to be appreciated. Second,
nodes are able to compute the portion of their profile that is the least sensitive one, i.e.,
the one that is shared by a large portion of other users in the system. The amount of
users’ profile that is revealed is a parameter that the system designer can tune.

Random dissemination. Nodes that liked an item may not forward it to their neigh-
bours, and may forward items they are not interested by. An attacker observing the
propagation of items would not be able to establish with certainty if nodes like or dislike
them. However, when a user creates a new item the solution does not provide privacy
to the node that forwarded it to its neighbours.

Similarly to GOSSPLE, it is not clear if disseminating a high-bandwidth content
using collaborative filtering would be efficient in terms of bandwidth. In addition,
it would not preserve the properties Rj, Ro and Rg that aim at preventing selfish
behaviours.

4.5.1.3 Micro-blogging dissemination

Micro-blogging is another kind of P2P systems which has emerged as a way to dissemi-
nate information quickly and efficiently. Posts on Twitter and Facebook can be seen as
micro-blogging examples, and are made visible thanks to forwarding procedures (e.g.,
sharing in Facebook, and retweeting in Twitter). Such procedures propagate a post that
a user appreciated to its neighbours. The goals of RIPOSTE [51] is to help interesting
posts to be disseminated in the system and eliminate other posts, while preserving the
privacy of the users’ opinion.

Algorithm’s principles. RIPOSTE is an algorithm that takes as input the opinion
of users about a post (e.g., like/dislike) and as output decides to repost or not. If a
user likes a post, the algorithm will decide to repost with a given probability, and if he

90 CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

does not, the post has another slightly smaller probability to be reposted. For each user
and for each post, these two probabilities are computed as a function of the number
of connections of the user, and the extent to which the post has already reached the
connections. An observer thus cannot say if a user really reposted a post, or if the
algorithm made it.

Algorithm details. RIPOSTE uses two real numbers parameters that are used to take
decisions: the spreading factor A > 1 and the blocking factor 0 < § < 1. If u is a user
that receives a new post, and s > 0 is the number of its followers that have not yet
received the post. This last number is classically easy to obtain as a user has access
to the post that each of its followers have received. The reposting decision is taken as
follows:

o If u likes the post, it is reposted with probability ;.. (s) which is equal to % if

- 6(s—3)
s> A+ 4, elseitis equal to 1 — =52

o If u does not like the post, it is reposted with probability r4;s(s) := %.

Privacy and dissemination guarantees. The values of § and A determine the level
of privacy that is obtained, and how well appreciated posts will be disseminated. If
q is the probability for a given user to like a post, and ¢ is the same probability after
observing that the post was reposted from u then

q
g+ (L—q)d/X\

The closer 9 is to A the better is the privacy, however, ensuring a good dissemination
of interesting posts adds other constraints. Building on the theory of branching pro-
cesses [3] and under some assumptions, there is a popularity threshold p* = }\;_‘; such
that posts with popularity lower than p* spreads to at most a constant factor larger than
the number of followers of the original poster, and posts with larger popularity spreads
to a least some fraction of the network.

Similarly to the previous P2P protocols of this section, RIPOSTE does not prevent
selfish behaviours: nodes could avoid to forward a content they received. In addition,
to enforce properties P and P it would be necessary to simultaneously disseminate
many contents that nodes would receive, which would not be optimal in terms of
performance.

qg=

SECTION 4.6
Summary

In this section, we summarise what has been said in this chapter. First, we develop the
requirements for a gossip-based system that would aim at preserving the privacy of its
users while ensuring that nodes participate in the dissemination of updates. Second, we
explain why existing approaches are not fully satisfactory. Finally, we conclude the
chapter.

4.6. SUMMARY 91

4.6.1 Requirements

In this part, we present the main concerns a system designer should have in mind when
building a content-dissemination protocol based on gossip tolerating individual rational
collusions and preserving the privacy of interactions.

Decentralised solution. We desire to design a gossip based system that does not rely
on any trusted entity, or on a central server. This assumption is standard in P2P systems.

Defence against selfish nodes. Properties R;, R2 and Rg should be enforced against
individual selfish nodes.

Compatibility with gossip. Gossip is particular, interactions between nodes are
random, and the content of exchanges cannot be predicted. Thus, a privacy-preserving
accountable gossip protocol has to take this characteristics into account.

Privacy requirements. Properties P, P2 and P3 have to be enforced. In particular,
these properties should hold against a global and active attacker, which can control a
collusion of nodes trying to break the privacy.

4.6.2 Summary of existing solutions

We present in table I a summary of the related works. For each work, we indicate if it
satisfies the requirements we identified. We also present the characteristics of the PAG
protocol, which will be presented in the next chapter.

CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

92

‘soyoroidde Sunsrxa jo Arewrwuns paqrela — [dqeL

/S /S /S /S /S /S ovd

[8¢€] Aouaz

s e Ve s s X -y [enIA

[9%] 9211

/S / /S X /S / yseH SPLIPIN

[zel TV

‘Tee] oupIL

‘Trel WAV

e X X /S /S Ve ‘[01] maray1e3d

s X X s s Ve [S] DUV

/ X X / X s [6] OULLAYT

/ X / / X / [L2 9] dissoD yved

[LL S¥] sjoold

- - - X , L, 93Po[MOU[-0197

(1L

‘6e] swaIsAs uon

-BOIUNUWIWIOD SNOW

X) 2 , 2 2 -Auoue 9[qrIUNOIIY
uewiojad poor) | €J | g pue T g | dissor) 03 d[qednddy | 9[qeIUN0IIY | PISIBIIUII(

4.6. SUMMARY 93

4.6.3 Conclusion

In this chapter, we have identified the requirements one should respect when building a
privacy-preserving and accountable gossip protocol. Based on these requirements we
have seen that there is currently no solution that could provide both accountability and
privacy in gossip in a practical way. In the next chapter, we will detail P AG, which is
the first protocol to reach this goal.

94

CHAPTER 4. PRIVACY IN RATIONAL-RESILIENT GOSSIP

Chapter

P AG: Private and accountable gossip

Contents

51. Systemmodel.ttt 97
5.1.1. Communications and cryptographic assumptions 97
5.1.2. GOSSIpSessions 97
5.1.3. Nodesbehaviors 98
5.14. Adversarymodel 98
52, PAGOVEIVIEW . « v v v v vttt ittt ettt e i ne e 98
5.2.1. Global membership and monitoring 98
5.2.2. Exchanges of updates using gossip 99
5.2.3. Enforcing accountability using monitoring 100
5.2.4. Enforcing privacy using homomorphic encryptions 101
53. Designof PAG . . v v v v v i i i ittt i i e 103
5.3.1. Forwardingupdates 103
5.3.2. Encryptingasetofupdates 104
5.3.3. Combining all encryptions 106
5.3.4. Practical implementation details. 106
5.4. Security, privacy and accountability 108
54.1. k— PAG: clustering sessions 108
5.4.2. Enforcing P3 under global and active attacks 109
5.4.3. Accountability against selfish deviations 110
5.5. Performanceevaluation 113
5.5.1. Methodology and Parameter Setting 113
5.5.2. Probabilistic study of the impact of coalitions 114

5.5.3. Comparison with an accountable gossip protocol and im-
pact of the number of contents 115
5.5.4. Comparison with anonymous communication systems . . 116
5.5.5. Impactofupdatessize 119

5.5.6. Cryptographiccosts 119

96

CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

5.5.7. Scalabilityo 120
5.6. UpdateSept.2016ot ittt 120
57. Conclusionttt tieenneenns 122

5.1. SYSTEM MODEL 97

As we have seen, there is currently no solution that would protect content-dissemination
systems against selfish nodes and at the same time provide privacy to its users. In this
chapter, we present P AG, the first protocol that possesses these two properties.

In Section 5.1, we present the assumptions we make about the users and the system, and
the architecture of our solution at the level of a session, and at the level of the whole
system. Then, in Section 5.2 we introduce the intuition behind P AG which relies on
the homomorphic properties of an encryption mechanism close to the one used in RSA.
Section 5.3 details the exchanges of messages between nodes in P AG that implement
these mechanisms, explain the modifications needed to use this protocol in practice, and
give more details on the witnessing protocol. Section 5.4 proves the security guarantees
of this protocol using both ProVerif and probabilistic guarantees. Finally, Section 5.5
provides a performance evaluation, and Section 5.7 concludes this chapter.

In September 2016, I was signaled a vulnerability that is discussed in Section 5.6.
This vulnerability allows an attacker to exchange a message v with another legitimate
message v’ in particular circumstances, and explains how to extend the protocol to
prevent it from happening.

SECTION 5.1
System model

In this section, we present the assumptions we make for the rest of this chapter.

5.1.1 Communications and cryptographic assumptions

As classically made in gossip-based protocols (e.g., in [6] and [27]) we structure time
using rounds whose duration, also called the gossip period, is assumed to be long
enough for nodes to complete their interactions. Nodes are roughly synchronized,
which allows them to check each others’ periodical exchanges based on the specifica-
tion of the protocol.

Nodes are uniquely identified with an integer identifier, for example deterministically
computed using their IP addresses. Further, we assume that nodes can generate prime
numbers, and have access to cryptographic primitives (RSA encryptions and signatures),
which are supposed to be unbreakable. In addition, nodes have a couple of public/private
keys used to generate signatures and encrypt their communications. Classically, we will
denote py(X) the public key of a node X, {a}, the encryption of a message a using
the key p, and < a >, the signature of a using p.

5.1.2 Gossip sessions

We assume that several gossip sessions disseminating different contents can hold si-
multaneously in the system. Each content is generated by its source, and is signed
with its private key. Updates are propagated along with their signature so that they
can be verified by the nodes upon reception, which prevents data tampering. Nodes in-
terested by a content have to obtain the public key of its source using an external service.

98 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

In the illustrations of this document, we represent the interest of nodes, which are kept
private, as a color, e.g., in Figure 5.1, nodes A and C are colored in black and are
assumed to be interested in the same content.

5.1.3 Nodes behaviors

We consider that nodes can be of several types.

Correct nodes strictly follow the protocol and participate actively in the dissemination
of updates. In particular, the source of each session is assumed to be correct.

Selfish nodes are interested in increasing their benefit and minimizing the cost they
pay for their participation in the protocol, and deviate from the protocol in any way
that would improve their benefit (e.g., reduced bandwidth consumption, reduced CPU
overhead). These nodes would deviate from properties Rj, Ro, and Ry if allowed to.
We assume that selfish nodes do not collude.

5.1.4 Adversary model

We consider a global and active opponent, which is the strongest possible model of
attacker. Global means that the opponent can monitor and record the traffic on all the
network links. Active means that it can control some nodes in the system and make
them share information or deviate from the protocol (if possible) in order to reduce the
privacy of other nodes. The goal of the opponent is to endanger properties P, P2 and
P3. The higher the number of nodes that the opponent must control to break a protocol,
the stronger the privacy guaranteed by this protocol. The only limitation of the global
and active opponent is that it is not able to invert encryptions.

SECTION 5.2
PAG Overview

In this section, we present an overview of PAG. We start by presenting how the mem-
bership of the whole accountable and privacy-preserving gossip protocol is maintained
in part 5.2.1. Then, we detail how nodes select their successors in part 5.2.2. We further
present how nodes monitor each other to enforce accountability in part 5.2.3. Finally,
we introduce the cryptographic procedures that preserve privacy against a global and
active opponent in part 5.2.4.

5.2.1 Global membership and monitoring

The role of a membership protocol is to handle the arrival and the departure of nodes, as
well as the distribution of the membership list to nodes. To provide nodes a reasonably
up-to-date view of the membership we rely on FireFlies [8, 63] which is a scalable
Byzantine-resistant membership protocol. Fireflies ensures that the membership is
known by every node in the system with probabilistic guarantees on the delay, and that
unresponsive nodes are detected and evicted by their neighbors. We also use FireFlies
to assign random and live monitors to nodes in order to enforce accountability in gossip.
A new node can be inserted in the system using an access point that is either a tracker,

5.2. PAG OVERVIEW 99

Figure 5.1 — Membership using FireFlies [8]

or an already inserted node whose identity is made public.

Figure 5.1 shows an example of how FireFlies handles nodes membership. In this
figure, nodes are organized on several rings using random permutations. The positions
of a node on the rings, which depend on its identifier, defines the nodes it monitors and
those it is monitored by. For example, node A is monitored by nodes I, ¥ and IJ (on
the outer, middle and inner rings, respectively), and monitors the nodes B, D, and F’
(on the outer, middle and inner rings, respectively).

5.2.2 Exchanges of updates using gossip

Figure 5.2 — Exchanges of updates between nodes that have different interests

To exchange updates and obtain the content they are interested in, nodes apply the
gossip paradigm, and interact with randomly chosen nodes in the membership list.
Nodes use a pseudo-random number generator deterministically seeded to choose their
successors and forward them their most recently received updates. More precisely,
during round R + 1 nodes will forward the updates they received during round R to the
nodes they have randomly chosen. In Figure 5.2, we give an example of the associations

100 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

that could occur between the nodes of Figure 5.1 during one round. Each of them
selected two random nodes to which they would forward the updates they previously
received. For example, node A forwards all the updates it received, independently of
its interests, to nodes B and E. The content exchanged in these interactions could be
either white, gray or black.

5.2.3 Enforcing accountability using monitoring

To ensure the accountability properties R;, R2 and Rg, we rely on a monitoring
infrastructure. Each node is assigned a set of monitors, which are its successors on the
membership rings of FireFlies. The monitoring relations between nodes are thus known
from every node in the system. To detect the deviations of a node, at least one of its
monitors need to be correct. In some cases, nodes can exhibit some of the messages
they have sent or received to prove their correctness, or that another node deviated from
the specification of the protocol (avoiding it is future work).

To ensure a good dissemination of updates nodes need to have random successors
(property R3), however the randomness of associations must be verifiable. To com-
bine both goals, we rely on random yet deterministic associations. To do that, nodes
use a pseudo-random number generator to determine their successors among the full
membership using a deterministic seed (e.g., obtained from the encryption of the most
recently received updates) that only its monitors can verify. The monitors of a node are
the only nodes in the system that are able to predict, and later verify, its interactions
with other nodes. During the dissemination of updates, a node will typically receive
an update at round R and forward it during round R + 1. Its monitors are in charge of
checking this forwarding during round R + 1, which provides property Ro. As it will
be presented in Section 5.3, property Rq comes from the fact that nodes cannot avoid
to receive updates they cannot prove to have received in the past.

Figure 5.3 presents a simplified example, in the sense that no signature or encryption
are represented, of how the monitoring infrastructure checks that a node correctly
forwards the updates it receives. Details of the protocol will be presented in section 5.3,
we only give here the intuition of the monitoring process. In this example, node A
receives an update u, and has to forward it to node B during round R. Upon reception
of this update u, node B acknowledges to its monitors A, D and G, the reception
of this update from node A, using the Ack(u, A) message. The monitors of node B
transmit this information to the monitors of node A, namely nodes F, D and F, using
the Confirm(u, A, B) message. Thus, after these messages, the monitors of node A
are able to check that it (i) forwarded the right message, and (ii) correctly chose its
successor. Meanwhile, the monitors of node B have learned that it received the update
u. During the following round, it is their task to check that node B correctly forwards
this update. Finally, the monitoring infrastructure controls the dissemination of updates
at each hop, and finally along the whole dissemination path. A special case occurs
when the source of a content sends its updates to some nodes. In this case, the source
has to inform the monitors of those nodes that they received some updates to forward.

We now briefly explain why nodes have interest in transmitting each kind of message

5.2. PAG OVERVIEW 101

represented in Figure 5.3. Let us assume that node A received an update u, and that
its monitors are aware of this reception. In this case, A’s monitors expect to receive
a message Con firm(u, A, B) where node B is the successor that node A has to
choose. If they do not receive this message, they would accuse node A of a selfish
deviation (i.e., avoiding to forward an update). If this message is not received, it is
either because node A did not send the update u to node B, or because node B3 did
not send the Ack(u, A) message to its monitors (remember that at least one monitor
of node B is assumed to be correct). In reality, when node A sends an update to
node B, it expects a signed acknowledgement that it can use to prove that it correctly
forwarded u to node B. If not, it will not be able to prove its correctness and finally
will be evicted from the system. If node B received the update v and acknowledged
it to node A, it will send the Ack(u, A) message because node A has a proof that it
received the update, and expect its monitors to receive the Con firm(u, A, B) message.

Finally, using this monitoring infrastructure nodes are forced to interact with correctly
chosen successors, receive updates and forward them.

Confirm(u, A, B) Confirm(u, B, D)

Round R Round R+1

Figure 5.3 — Monitoring of nodes to ensure the forwarding of updates

5.2.4 Enforcing privacy using homomorphic encryptions

The monitoring infrastructure we presented ensures that nodes forward the updates they
receive. We now present the homomorphic procedures that allow the encryption of
updates, preventing monitors to learn which updates nodes exchange. This encryption
ensures that a monitor is not able to understand which updates a node receives or
forwards, but that is still able to check that the forwarding is done correctly. Simply
relying on updates encryption is not sufficient, because nodes which participate in the
protocol would know the correspondence between a content and its encryption, and the
monitors of a node would know which encrypted updates were received. Combining

102 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

the two information, an attacker would be able to break the privacy of all exchanges.

Homomorphic encryption. Monitors verify that nodes correctly forward the updates
they receive. To allow these verifications, we use an encryption process that is close to
an unpadded RSA encryption, and exploit two interesting properties. Suppose that the
public key consists of a modulus m and an exponent e, then the encryption of an update
u is given by {u} (. m) = u® mod m. Let u; and uz be two updates. The following
homomorphic property can easily be established:

(5.1) {ul}(e,m) : {u2}(e,m) = {ul : u?}(e,m)

Let e; and e be two exponents. In addition to the previous property, this encryption
also verifies:

(5.2) {{u}(ehm)}(emm) = {u}(61~ez,m)

It is not possible to inverse the encryption of updates as the value of the modulus m is
smaller than the size of the encrypted content. Any hash function presenting these two
homomorphic properties could be used to check the dissemination of updates, however,
we are not aware of such functions. Instead, we use this hash mechanism, which is
close to the one used in the RSA encryption, but cannot be inversed, and is not costly
when the modulus size is not too high (256 or 512 bits is probably enough in most cases).

Intuition. Figure 5.4 illustrates the intuition of PAG. Nodes A and F are the two
predecessors of node B, and node D is a successor of node B. We consider only 2
predecessors for node B for the sake of simplicity, even though 3 is a minimum to
ensure privacy (for this reason, we use at least 3 successors per node). We only focus
on the reception and forwarding of the updates that node B receives. The same steps
would also apply to the nodes A, F' and D to provide a kind of forwarding chain but
are not described for the sake of simplicity.

NOTE | » La figure doit étre mise a jour!«

The set of monitors of node B is made of nodes A, D and GG. Let us suppose that
nodes A and F have to respectively send updates w1 and us to node B. First, they
would ask node B to send them a prime number. Node B chooses two prime numbers
p1 and py and respectively sends (pi, H#l p;) and (pa,]_[j;,,é2 p;) (messages 1.) to
nodes A and F'. Nodes A and F' can then send their two updates to node B (messages
2.), which would be encrypted. Nodes A and F' also have to declare (messages 3.)
to the monitors of node B, that they sent some updates to node B whose encryptions
are respectively equal to {u1}(,,) and {u2}(p, m)- Later, when node B will have to
forward its updates u; and ug to node D, it will join the product [| ; pj (message 4.).
Node D will be able to acknowledge the reception of u; and uo using the encrypted
value {u - UQ}(H]_ p;,m)- The monitors of node B can verify that the following equation
is verified, which proves that B did forward exactly what it received:

(5.3) ({1}) 2277+ ({12} (g) 107277 = {n “ U2} (T, pjm)

5.3. DESIGN OF PAG 103

3-{u1}p111_[pi

i#1

Figure 5.4 — Privacy preserving verification of a forwarding of a node B

Privacy of exchanges. Although incomplete this short example shows the main idea
of the dissemination protocol: the monitors of a node are able to check that what a node
receives is forwarded without learning the actual content, thus preserving the privacy of
the node being monitored. To obtain the content of exchanges it would be necessary
to learn the prime numbers a node chose. With this information the monitors would
decrypt the exchanges a node had with its predecessors, or successors. Predecessors and
monitors of a node receive the product of prime numbers, and are not able to factorize it
efficiently, as it is a notoriously known hard problem. There is currently no polynomial
time algorithm to factorize integers [4], even though no proof of difficulty has been
published.

SECTION 5.3
Design of PAG

We have presented the principles of PAG in the previous sections. In this section, we
detail the steps of the protocol, which has been designed in such a way that selfish
nodes can not deviate from the protocol without providing at least another node with a
proof of misbehavior it can use to evict this node from the system.

5.3.1 Forwarding updates

Two important requirements guided the design of P AG. First, the encryption of updates
must change from one forwarding to the other. Otherwise, a global attacker could follow
the transmission of updates in a system. Second, for performance reasons, it must be
possible to combine the encryption of several updates to reduce the overhead of the
protocol. The use of a classical hash function does not provide these points. To the best
of our knowledge, our protocol is the first to provide both these properties.

104 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

Figure 5.5 presents the exchange of messages that occur when a node A has to forward
a set S4 of updates to a node B, which already possess the set of updates Sp, during
round number R. First, node A asks to node B for a prime number that it will later
use to encrypt the product of the updates in S 4 (message 1.). For this step, node B has
to wait for all its predecessors to ask for a prime number before answering them. We
note K (R, B) the product of the prime numbers that node B chose during round R to
receive updates from its predecessors.

In message 2., node B replies with the primary key p; that B must use in a signed and
then encrypted message. It also joins the homomorphic encryption of the updates in
Sp using p; (for optimization reasons, it may be possible to encrypt only a subset of
Sp). Upon reception of this message, node A can check if the updates in S 4 are not in
S, and thus avoid to send them.

In message 3., node A serves in an encrypted, and then signed, message using node
B’s public key the updates in S4 \ Sp and K (R — 1, A). The value of K (R — 1, A) is
the product of the prime numbers node A used to receive the updates in S4 from its
predecessors during round R — 1. Node B has to use it to acknowledge the reception
of the updates in a message encrypted using its public key K (B).

In message 4., node A sends to node B a signed attestation that declares the value of
the encryption of the updates in S4 using p;. This message will later be transmitted to
the monitors of node B, which will then check the forwarding of node B based on its
value.

In message 5., which is signed, node B acknowledges the reception of the updates in
S 4 using the encryption of their product with K (R — 1, A). If necessary, node A can
use this message as a proof that it did forward the right set of updates to node B during
round R.

5.3.2 Encrypting a set of updates

The role of monitors is to check that the node they monitor (i) contact all its successors,
(ii) forward all the updates it received at round R during round R + 1. For this last
verification, monitors have to compute the homomorphic encryption of the product of
all the updates that the node receives during a given round, and check that its successors
during the following round acknowledge this encryption.

Figure 5.6 illustrates the mechanisms that allow the monitors to perform these tasks. At
each round, the monitors of a node expect to receive messages from it, and from the
monitors of its successors. In this figure, the monitors of node B are nodes A, D and
G, while the monitors of its predecessor, node A, are nodes D, E and F.

Monitoring details. When node B receives the set S4 of updates from node A, it has
to send two messages to one of its own monitors. The first message (message 6.) is a
copy of the acknowledgement that node B already sent to node A in (message 5. of

5.3. DESIGN OF PAG

105

1.(KeyRequest,R, A, B)4

O,

2. {<KeyResponse, R,B, A, pj, [{uiESB}p]> }
Jil'p p
<

k(4)

>

3.{(Serve,R, A,B,K(R — 1,4), [wjes \s)- 54 1 S5) |

Pr(B)

4. |Attestation, R, A, B, {1_[ui}
-

IESy
]
A

>

[T

IESy

5.|Ack,R,B, A, ,{ }
K(R—1,4)

B

Figure 5.5 — Propagation of messages inside a session

106 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

Figure 5.5). Message 7., which is signed, contains the attestation that node A sent in
message 4. of Figure 5.5, and the product of the prime numbers that node B used to
receive updates from its other predecessors during round R.

The monitor, here node D, that receives these two messages from node B has to compute
(Hk;&j Pk,M)

the value {H u} = {H u} :{H u}

z.eSA g (p;.m) . 1€S54 (TTi pm) i€S U (K(R,B),m)
and broadcast it to the other monitors of node B, which are nodes A and G, along with
message 6. To be sure that a monitor correctly computes and forward the encryptions
of updates, a node can inform her other monitors before sending a message to one of
them.

5.3.3 Combining all encryptions

During a round, and after each broadcast, each monitor of node B computes the product
of all the encryption values forwarded by the other monitors of node B. Finally, at the
end of the round, the monitors of node B knows the encryption of the set of updates
that node B received using the product of the prime numbers that node B chose. This
encryption must be acknowledged by the successors of node B during the following
round, allowing its monitor to validate its forwarding.

Suppose that node B received the set of updates S 4 from node A, and the set of updates
Sr from node F' during a given round. Let [| ; Pj the product of the prime numbers that
node B used to receive these updates. The monitors of node B obtain the encryption of
the union of S4 and Sg applying the formula

{SA U SF}(ijj’m) = {SA}(H]_pj7m) X {SF}(ijjam)

To allow this verification, the monitor that has been contacted by node B also has to
forward the acknowledgement (message 9.) to the monitors of node A, which are node
D, E and F. The monitors of node A can then verify that node B received the correct
set of updates from node A.

5.3.4 Practical implementation details.

While the main ideas of the protocol have been presented, important details have to be
ruled out before having a practical implementation of a gossip protocol. In this section
we present the important details or optimizations that allow the protocol to become
practical.

Number of monitors per node. To maximize the privacy of exchanges while minimiz-
ing the bandwidth overhead of the protocol, we advise to select the same number of
monitors and successors per node.

Updates encryptions. A node is able to communicate to its predecessors the encryp-
tions of a fraction of the updates it owns, in order to avoid to receive them again.
Determining how many encryptions to send is dependent on the applications, and
more particularly on the updates’ and on the size of their encryptions. In our scenario,

5.3. DESIGN OF PAG 107

Hk;r:jpk

. 1ESY .
A’s monitors J X

9. Ack,R,B,A,,{l_[U;

i€Sa }K(R—l,A)

© O\, (-
\1

} B’s monitors
p

7. Attestation,R,A,B,{l_[U;

B” p(D)

6.|Ack,R,B, A, {n u;

i€Sa }K(R—LA)

O,

Figure 5.6 — Monitoring part of an interaction between two nodes

updates were bigger than their encryptions, and the best results in terms of bandwidth
consumptions were obtained when the updates of the last 4 rounds were encrypted and
transmitted.

Simultaneous multiple receptions of an update from several predecessors. While
our protocol limits the possibilities for a node to receive several times a given update, it
can still occur. More particularly, it is possible when a node simultaneously receives
updates from different predecessors. However, to limit bandwidth consumption it is
necessary to forward these updates only once. To do so, when a node sends an update it
also joins to it an integer which describes the number of times it was received by the
sending node during the previous round. This enables the receiving node to accurately
compute the encryption of the set of received updates, and the monitors to match the
encryptions of received messages with the one of forwarded messages.

Allowing updates to disappear. Generally, updates have a date of expiration after
which nodes should not continue to forward them. Determining this expiration delay
is up to the system designer. To allow updates to stop being propagated, when a node
sends updates to another node, it separates the updates in two lists: the first one contains
updates that will expire in the next round, and that should not be forwarded, while
the other one contains updates that have to be forwarded. A small modification of the
messages and monitoring exchanges allow updates to expire. The monitors of a node
would check the propagation of the second list, and still acknowledge the reception of

108 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

the first list.

Increasing the size of updates. It is possible to reduce the bandwidth overhead of
our protocol if the size of updates is increased. Indeed, the propagation of updates is
checked through their encryption. Transferring more data using a single encryption is
more efficient. For example, using 5 updates instead of 40 to disseminate a 300Kbps
stream allows the total bandwidth consumption to go from 1100Kbps to 600Kbps in a
system with 1000 nodes. Such optimization is up to the system designer, and in our
experiments to have fair comparisons with other systems we consider updates of 938
Bytes.

SECTION 5.4
Security, privacy and accountability

When nodes participate in PAG, they have to receive and forward all the contents
that are being disseminated in the system. However, as nodes have a finite amount of
bandwidth, P AG may be too costly depending on the contents being shared. In this
section, we present an optimization of PAG that we named k — P AG, which reduces
its bandwidth overhead by grouping sessions into clusters of k sessions. We show that
properties Py and P2 are enforced with k-anonymity (part 5.4.1). We then present
the results of the proof of security we made using ProVerif, which is an automatic
cryptographic protocol verifier, that proves that property P3 holds against a global and
active attacker if it controls less than f nodes (part 5.4.2). Finally, we provide details
about the incentives that enforce properties Ry, Ra and Rg (part 5.4.3).

5.4.1 k — PAG: clustering sessions

\ k-Cluster 1 j \ k-Cluster x /

Figure 5.7 — k — PAG illustration with k=3

As depicted in Figure 5.7, sessions in k — P AG are grouped into clusters of a predefined
minimal size, i.e., k. As such, a node inserted into a cluster receives k contents, instead
of receiving the S contents that are disseminated in the whole system. Similarly to

5.4. SECURITY, PRIVACY AND ACCOUNTABILITY 109

PAG, the membership of nodes as well as the assignment of monitors is performed
using one FireFlies ring structure per cluster.

According to [78], a system ensures k-anonymity if the information released about
a user cannot be distinguished from those of k£ — 1 individuals whose information
also appear in the release. In k — PAG, as k contents are distributed in each clus-
ter, it is not possible for an observer to determine which one of the k£ contents a node
is interested in. Thus, the property privacy Py is ensured with k-anonymity in k— PAG.

Not being able to determine the list of nodes that are interested in a content is a con-
sequence of the previous privacy property. If the system contains k different contents
and N nodes, it is not possible to determine which repartition of nodes among the C']’3,
possible subsets of k£ nodes among the N is the right one. Thus property P2 is also
enforced.

It is interesting to study the extreme values of k. If k is equal to S then k-PAG is
identical to PAG. On the contrary, if k£ equals 1, then property P; and P2 do not hold,
as the cluster a node is inserted in directly refers to the content it is interested in.

To receive a content, a node must be inserted into the membership list of the cluster that
disseminates the content it is interested in. To do that, it can contact any node of this
cluster in order to be inserted in the cluster’s membership list.

To enforce k-anonymity, the creation of a new k-cluster is done only when an existing
cluster reaches a size equal to 2 x k sessions. At that time, the cluster of size 2 * k is split
into two clusters of size k. As such, at any point in time, the interest of any node in the
system is hidden among at least £ — 1 other contents. To meet this objective even at the
beginning of the system, or if at any point in time there are less than & parallel sessions
in the system (i.e., S < k), nodes have to wait for the starting of enough sessions to
enforce k-anonymity. An alternative, which we will investigate in future work, would
be to generate fake gossiping sessions. Finally, if sessions inside a cluster do not have
the same duration, the source nodes of the shortest sessions send garbage data while
waiting for the others to end.

5.4.2 Enforcing P; under global and active attacks

ProVerif [52] is a well-known automatic cryptographic protocol verifier that uses Horn
clauses to detect possible attacks. Using ProVerif, we modeled the cryptographic mech-
anisms of PAG" (that were illustrated in Figures 5.5 and 5.6). The aim of using this
experiment is to show that there is no attack on the privacy property P3 that involves
less than f nodes, where f is the number of predecessors, successors and monitors per
node.

!The code is available in appendix and at
https://gist.github.com/anonymous/5d9d542ffa47e1f64a7a

110 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

We considered the representative situation where a node B receives updates from three
predecessors Aj, Ao and As, and have to forward them to one of its successors C.
Checking that node B correctly forwards the updates it receives also implied to instanti-
ate the monitors of nodes A;, Ay, A3, B and C. We modeled the case where f = 3,
because 3 is the smallest value where the protocol can be proved secure. Increasing
the value of f would reinforce the security of the protocol, as the necessary number
of colluding nodes sharing information in order to break the privacy would also increase.

We assume that node B is correct, otherwise, its exchanges may not be kept private,
even without exterior attacks. In addition, we consider that the aim of an opponent is to
obtain the value of a prime number that node B chose for one of its predecessor in order
to obtain the detail of the exchange between node B and this node. We also assume
that the attacker has access to the list of updates that node B may have received from
its predecessor. In order to find the updates that B received, once the prime number
used is known, the attacker would have to encrypt any possible combination of updates
using the prime number and see if it is equal to the observation. This attack is not really
practical because the number of subset of a set of size [NV is equal to 2V, but we choose
not to ignore it. We thus make the assumption that the attacker has an accomplice
that communicates all the updates of the session, or that the attacker receives the content.

We modeled several attack scenarios to assess the privacy property P3. The model of
the protocol can be found in Appendix .1. These scenarios can be grouped under two
cases:

o Case (1). The attacker listens to all communications on the network, and actively
tries to break the privacy of exchanges between nodes A; and B. The attacker
can replay, or inject messages in the network.

o Case (2). In addition to the assumptions of case 1., we consider that at most
(f —1) nodes among the monitors or predecessors of a node are part of a coalition.
This case can be instantiated with several configurations (e.g., (f — 2) monitors
and 1 predecessor, (f — 3) monitors and 2 predecessors, etc.) that were all tested
in our configuration.

In case (1), ProVerif proved that no attack exists on the cryptographic procedures of
PAG. Our experiments in case (2) allowed us to confirm that no attacks exist if the
opponent controls less than f nodes. An attack is possible if f nodes collude among the
monitors or predecessors of a node, and ProVerif found it. If the colluding monitors of a
node receive the right messages, and are controlled by the attacker, then the opponent is
able to obtain the private numbers that B generated and thus gain access to the identities
of the updates a node received. As we said, this attack is very costly, but we can not
underestimate it.

5.4.3 Accountability against selfish deviations

If nodes execute correctly their exchanges, as specified by Figure 5.5, then properties
R, Rs and Ry are enforced. In the following, we briefly explain the incentives that
force a selfish node, say node A, to follow the protocol. Remember that nodes register

5.4. SECURITY, PRIVACY AND ACCOUNTABILITY 111

the messages they send or receive, and can use these messages to prove their correctness
or that another node deviated.

Random successors. At the beginning of a new round, node A contacts its successors
asking them to answer with a prime number to encrypt the updates it must forward
(message 1). A selfish node will execute this step correctly because the identities of its
successors are known by its monitors, and they will check that the exchanges take place
(through message 9 of Figure 5.6). Thus, property R3 is enforced by the monitoring
infrastructure. The successors of node A answer with a prime number, and use it
to encrypt some updates they wish to avoid to receive again (message 2). Correctly
following this step is in the interest of selfish nodes as it will minimize the number of
updates they will receive. In addition, a node can not avoid to receive updates it does
not have, which enforces Ry.

Serving updates. Node A computes the set of updates that its successor does not have
and send them, along with the identifiers of the updates it should have sent but that its
successor already had (message 3). If a node does not send the right set of updates
to its successors then the verification its monitors will run will fail. Eventually, as its
successors received signed messages that they can exhibit, it will be proved guilty. The
attestation (message 4) that node A sends can be verified by node B, thus a selfish
node will correctly compute its value. In return, the acknowledgement (message 5) that
node B sends can also be verified by node A. This acknowledgement forces node B to
inform its monitors about the updates it received from node A (messages 6 and 7 of
figure 5.6). Finally, if the verifications of node A pass then it means that it forwarded
the right set of updates to the right nodes. After having received these updates, node
B is engaged towards its own monitors to continue the forwarding of updates, which
enforces property Ra.

We now detail for each step of the protocol the incentives that encourage selfish nodes
to follow the protocol. For each step of the protocol, we identify the various deviations
that selfish nodes could follow and provide the associated incentive.

o Fig 5.5 Step 1. At the beginning of a new round node A sends a KeyRequest
message to each of its successor. Suppose that node A contacts node B during
this step.

— Selfish deviation 1. Node A sends an incorrect message to node B, or does
not choose the right successor.

— Incentive. An incorrect message, or a message sent to the wrong destination
would constitute a proof of misbehavior that node B could held against
node A.

— Selfish deviation 2. Node A does not send any message.

— Incentive. If node A does not send any message to one of its successor
during a round, say node B, its witnesses will not receive any message from
node B, and will want to find out who is guilty.

o Fig5.5 Step 2. Node B replies with a prime number to node A, and the encryption
of some of the updates it already has using the prime number it chose for node A.

112

CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

Selfish deviation 1. Node B sends an incorrect number (e.g., not a prime
number) or the encryptions of updates are incorrect.

Incentive. Node B can verify that the number it received is a prime number,
and denounce node A if the number is not prime. If updates are not correctly
encrypted, node A will send all the updates it has to propagate. It is not in
the interest of node B to receive updates it already owns.

o Fig 5.5 Step 3. Node A computes the set of updates that node B does not have
and thus that it should send, it also computes the indexes of the updates that node
B has. It can then send these information along with the key that node B will
use to acknowledge the reception of updates from node A.

Rational deviation 1. The key is not correct.

Incentive. If the key is not correct, the verification that node A will eventu-
ally execute will fail, and node B has a signed message that will prove that
node A is faulty. It is possible to obtain the key that node A used by asking
its predecessors what it is.

Rational deviation 2. The set of updates and the set of indexes are not
correct.

Incentive. Once again the verifications will fail and it will be possible for
any node in the session to see that node A did not sent the right set of
updates.

Rational deviation 3. The updates are modified by node A.

Incentive. If the updates are modified by node A then the source’s signature
that is propagated with them will not match the content.

o Fig 5.5 Step 4. Node A sends an attestation to node B. This message contains the
encryption of the product of all updates that node A sent using the prime number
that node B chose. This encryption is then used by node B’s witnesses to check
the forwarding of these updates.

Rational deviation The encryption is incorrect.

Incentive. If the encryption is incorrect node B must denounce it, if it does
not the acknowledgements from node B’s successors will not match with
the attestation, and node B will be denounced.

o Fig 5.5 Step 5. Node B sends an acknowledgement to node A using the key that
node A used to forward the updates it received during the previous round.

Rational deviation 1. 1t is not the correct set of updates that is encrypted.

Incentive. If the encryption is incorrect, node A should not accept it. The
combination of the serve message (step 3.) that node B received and the
acknowledgement that node A received would prove that node A is correct
while node B is not.

Rational deviation 2. 1t is not the correct key that is used.

Incentive. The same incentive as above holds.

5.5. PERFORMANCE EVALUATION 113

SECTION 5.5
Performance evaluation

In this section, we present the performance evaluation of P AG. We start by introducing
our methodology and the values of the protocol’s parameters (part 5.5.1). We then
evaluate the proportion of exchanges that an active and global attacker could discover
if it controls more than f nodes in the system (part 5.5.2). We further evaluate the
overhead of our protocol in terms of bandwidth consumption using both simulations and
real code deployments compared to state-of-the art competitors (parts 5.5.3 and 5.5.4)
while varying the values of k in k — PAG, as well as the size of the content being dis-
seminated (part 5.5.5). Finally, we evaluate the cryptographic costs of PAG (part 5.5.6)
as well as the scalability of P AG with respect to the number of users (part 5.5.7).

Overall, our evaluation shows that P AG improves the resilience to active and global
opponents compared to state of the art protocols. Furthermore, it is more costly than
the existing accountable gossip protocols which do not preserve privacy. Yet, contrary
to accountable anonymous communication protocols, its performance is compatible
with streaming live content on commodity Internet connections. Furthermore, its
cryptographic overhead can be handled by modern architectures. Finally, thanks to its
inherited gossip properties, the bandwidth overhead of PAG scales logarithmically
with the number of nodes in the system.

5.5.1 Methodology and Parameter Setting

P AG and its competitors. To assess the performance of PAG compared with other
solutions, we implemented it in Java and used it as a video live streaming application.
In this context, a source node broadcasts a video stream at a fixed rate, during 5 minutes,
and sends each generated update to 3 random nodes. When it is not precized, PAG is
configured with 3 monitors per node. Updates are then disseminated using P AG or one
of the protocols we compare ourselves with. Among these protocols are an accountable
gossip protocol, and two anonymous communications protocols. AcT'inG [5] is an
accountable gossip protocol that is not designed to preserve the privacy of nodes as
they maintain a secure log, and audit each others. To give a fair comparison, we also
choose to compare PAG to two anonymous communication protocols. RAC [40] is an
anonymous communication system that forces nodes to relay the messages that other
nodes send. Using it, a source could send a content to all nodes anonymously and
with accountability. We do not study Dissent [39] at it was shown to be even more
costly than RAC in [40]. OR+PR is a combination of the Onion Routing [71] protocol
with PeerReview [10]. This protocol forces nodes to relay the messages they receive.
This second anonymous communication protocol is less costly, and its advantage is
that its throughput does not depend on the size of the membership. Using PeerReview
allows the relaying of messages to be checked. However, it cannot be considered
privacy-preserving as nodes running PeerReview maintain a secure log. Studying
this protocol gives an insight on the cost of an hypothetical ideal protocol that would
combine anonymity with accountability.

Real deployment settings. We deployed P AG on 48 machines of the Grid5000 cluster,

114 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

using 9 instances per machine, thus totaling 432 nodes. The machines were intercon-
nected using a 1Gb/s network. Each machine is composed of an Intel Xeon L5420
processor clocked at 2.5Ghz with 32GB of RAM. To provide further tolerance to
message loss (combined with retransmissions), a source groups packets in windows
of 40 packets, including 4 FEC ? coded packets. The duration of one round is set
to one second, and updates of 938B are released 10 seconds before being consumed
by the nodes’ media player. The cryptographic primitives consisted in 1024-bit RSA
signatures. The size of the generated prime numbers and of the modulus used in the
homomorphic encryptions are set to 512 bits.

Simulations settings. Our simulations consisted in an implementation of the protocol
in the OMNeT++ [86] simulator, using the same parameters value we used in our
deployment. The simulation code is a C++ version of the one we deployed in the
previous experiments. We also used computations to obtain the scalability of the
protocol and its memory consumption when the number of nodes was too high to be
observable in practice.

5.5.2 Probabilistic study of the impact of coalitions

A coalition of at least f nodes can break the privacy of some interactions of nodes in
the system. We now evaluate the privacy guarantees of PAG in presence of a global
and active attacker. We also compare these guarantees to those of an existing state of
the art protocol, i.e., AcT'inG [5].

In AcTinG audits check the secure logs of nodes, which contain the detail of up to
30 interactions, with a probability of 10% whenever a new interaction occurs. The
aim of the global and active attacker we consider is to break the privacy of exchanges
by controlling several nodes. Corrupted monitors reveal the identity of nodes that ex-
change updates. Merging the knowledge of several nodes, it is possible to obtain more
information about users in the system. Apart from learning the identities of partners,
it is possible to discover the details of the interactions of a node if all its predecessors
except at most two and at least one of the monitors of this node collude. This essentially
means that collecting the prime numbers a node used, and observing all its encrypted
interactions is enough to decrypt them. The probability of this situation to happen is
however low enough for the protocol to be practical.

To evaluate this risk, we consider the probability for an exchange between two nodes,
which can be controlled by the attacker, to be discovered by the attacker. Depending
on the size of the coalition, we want to evaluate the probability that the privacy of an
exchange is broken and observed by the attacker. Attacks have to be evaluated in terms
of probabilities because nodes are randomly affected predecessors and successors in
their session, and monitors among the entire membership.

In Figure 5.8, we evaluate the proportion of all exchanges in a session that an attacker,
which controls a variable proportion of the membership, can discover. The ideal privacy

2FEC stands for Forward Error Correction.

5.5. PERFORMANCE EVALUATION 115

in this case is represented in black, and express the probability that at least one of the
two nodes that interact is corrupted, and divulge the content of the exchange. In case of
a collective attack, increasing the number of monitors, and the fanout of nodes, makes
the privacy guarantees close to ideal. The code that was used to create this figure can
be found in Appendix .2.

i ARNRARKRARARADISR

s

gy
PR

_ . C N eeeeeeeeeees]
: : : itnesses

A e , ithesses --==-- - a
: : : ~eoretical minimum ——

Proportion of interactions discovered (%)

Proportion of attackers (%)

Figure 5.8 — Privacy presence of a global and active attacker controlling a varying
proportion of the membership.

5.5.3 Comparison with an accountable gossip protocol and impact of the
number of contents

We first compare the bandwidth consumption of our protocol to the one of AcT'inG [5].
We present in Figure 5.9 the cumulative distribution functions of the bandwidth con-
sumptions of nodes during a 300 Kbps streaming session. In average nodes running
AcT'inG consume 460 Kbps, while using PAG they need 1050 Kbps.

The privacy of nodes increases with the number of 300Kbps contents per cluster being
disseminated. This number ranges from 1 to 3, and the associated bandwidths are
respectively equal to 1050, 2075 and 3092 Kbps. This cost is not exactly linear with the
number of session, as some messages (e.g., the encryption of updates) can be factorized
when a node receives several contents.

The biggest part of the cost is due to the forwarding policy: what is received by a node
at round R must be forwarded at round R+ 1. The same update may be received several
time by a node and then forwarded, and we cannot avoid it currently. AcTinG is less
costly because nodes can refuse updates, and it is controlled using their log during
audits. Increasing the number of monitors does not significantly increase the bandwidth

116 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

CDF (%)

Bandwidth (kbps)

Figure 5.9 — Bandwidth consumption of k£ — P AG with several 300kbps contents
per cluster and 3 monitors per node [sim]

cost of the protocol, and allows a better resilience to collective deviations between
nodes. However, having more monitors than successors/predecessors does not increase
the privacy guarantees.

In Figure 5.10, we measure the average bandwidth consumption of our protocol using 3
monitors, and successors per node. After the initialization of the session, the average
bandwidth consumption of node is established around 1000Kbps.

5.5.4 Comparison with anonymous communication systems

Relying on anonymous communication systems to run a gossip protocol would provide
privacy to nodes, however it would not force nodes to participate actively in the dis-
semination of updates. These protocols are costly and cannot be applied in the exact
same settings we used with PAG and AcTinG. Thus, we designed a second set of
experiments that consisted in determining the maximum video quality that protocols
could provide in function of the network capacity. We present in the first two lines of
Table II the video qualities we considered and the associated payload size.

Table I summarizes the results of our experiments with 1000 nodes. For each network
capacity, ranging from 1.5Mbps to 10Gbps, we study the maximum video quality that
each protocol can provide, and the amount of bandwidth that is used. For example, with
a network of 1.5Mbps AcT'inG can provide a 480p video using 1.4Mbps.

As we have seen previously, PAG is more costly than AcT'inG which is also account-
able but not privacy preserving. Using 10Mbps network links, PAG can provide at
most a 480p video, consuming 6.9Mbps of bandwidth. In comparison, AcTinG would

5.5. PERFORMANCE EVALUATION 117

Bandwidth (kbps)

Time (s)

Figure 5.10 — Average bandwidth consumption of nodes running PAG with a
300Kbps payload.

be able to send a 1080p video using 6Mbps of bandwidth. Decreasing the video quality
in exchange for privacy is a tradeoff that users may be willing to take.

However, anonymous communication systems would not provide accountability, and
would be much more costly. The maximum payload that RAC is able to provide using
10Gbps network links is equal to 63kpbs, which is far from the minimum of 300Kbps
that a basic streaming session would require. In comparison, OR+PR is a better solution
which would need at least a 1Gbps network to provide a 1080p video, consuming
103Mbps. In comparison, PAG would send a 1080p video consuming only 31Mbps.

CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

118

sopou ()00 Y WaIsAs
e ur ‘uondwnsuod YIprsmpueq pajerdosse oy pue ‘Airoeded syuI] Y1omiau ay) Jo UOIOUNJ UI d[qeureIsns Ajenb 0spIA wnuirxey — I I[qeL

0 0 0 0 0 X / ovd
(sdqiuco1) dogor | (sdqincor) dosor | (sdaint-ss) dozL | (sdqial 8°7) di1 0 / X ud +¥0
(sdqA 9) d0s01 (sdqiN 9) dogo1 | (sdqi 9) doso1 | (sdqiN 9) dogoT | (sdqIA #1) dosy , X DULIIY
(sdaiN 1€) dogo1 (sdaN 1€) dogoT | (sdqy 1€) dogo1 | (SdqIN 6°9) dosy | (sdq3] 099) dit1 / / ovVd
PURYH NqESE) (] | WYY JqeSt) | JOWIdYY Jsey ELRELIG | AMTISAV | ANIqeIunoddy | AoeAlld
sdqoo1 sdqD | sdqN00T sdqNOT sdqINS T

5.5. PERFORMANCE EVALUATION 119

5.5.5 Impact of updates size

Although we considered 938B updates in the previous experiments, to be fair with the
other solutions, Figure 5.11 shows that using bigger updates can further decrease the
bandwidth consumption of our protocol. This is due to the fact that more content can
be represented under each encryption. For example, nodes propagating 10Kb updates
needed to perform 370 homomorphic encryptions per second, while propagating 100Kb
updates decreased this number to 52 encryptions per second.

Bandwidth (kbps)

Update size (kb)

Figure 5.11 — Bandwidth consumption with 1000 nodes and a 300Kbps stream
in function of the size of updates [sim]

5.5.6 Cryptographic costs

Our protocol relies on cryptographic mechanisms, which dominate the CPU cost of
our protocol. To evaluate this cost, we measured the number of RSA encryptions and
the number of homomorphic encryptions per second that each node performs rather
than the CPU load, which depends on the hardware used. We measured the number of
RSA signatures and homomorphic encryptions per second and per node (generated both
from the monitoring and the participation in a session) depending on the video quality.
The results are depicted in Table II. The number of RSA signatures is constant and
equals 33, as it depends on the number of messages generated by the protocol, while
the number of homomorphic encryptions performed depends on the video quality, and
more precisely on the number of 938B updates in which the video is divided. Using
a simple benchmarking tool®, we determined that each core of the machines we used
in our deployment is able to perform 900 RSA-1024 and 4800 RSA-512 encryptions
per second. Thus using a single core for homomorphic encryptions is enough to obtain
a video quality up to 720p using a 512 bits modulus, which would generate 3924

*We used the command openssl speed rsa.

120 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

encryptions per second. If the system size or the video quality desired were bigger it
would be necessary to use more cores to have enough cryptographic power. In addition,
using a 256 bits modulus can also be considered secure enough in many situations, and
it would significantly reduce the cryptographic and bandwidth overhead of the protocol.
As modern machines use several cores, we believe that our protocol can be used by a
wide range of users.

Video quality 144p | 240p | 360p | 480p | 720p | 1080p

Payload size (Kbps) | 80 300 | 750 | 1000 | 2500 | 4500

RSA signatures 33 33 33 33 33 33

Homomorphic en-| 133 | 475 | 1170 | 1560 | 3934 | 7200
cryptions

Table IT — Number of RSA-1024 signatures and homomorphic encryptions per
second in a system of 1000 nodes [sim]

5.5.7 Scalability

In this experiment we increase the number of nodes in the system and measure the
associated bandwidth consumption. Typically, in a gossip-based system if N is the
number of nodes that are interested in a similar content, then each node has log(NV)
successors, and the same number of monitors. The bandwidth scalability of PAG
comes from its gossip nature.

Adapting the number of monitors/successors per node allows the protocol to scale.
It is possible to limit the number of monitors per node, which would decrease the
bandwidth overhead. Making this choice depends on the security guarantees that the
system designer aims, as increasing the number of monitors would increase the privacy
of a node.

Figure 5.12 presents the bandwidth consumption of AcT'inG and PAG depending on
the system size when a 300Kbps video stream is disseminated. We do not represent
anonymous communication protocols as RAC is not able to scale correctly (it cannot
provide more than 63Kbps when there are more than a thousand nodes), and OR+PR
would consume a fixed amount of bandwidth independently of the system size (28Mbps
for a 300Kbps video). In these conditions, PAG is able to provide nodes with the full
300Kbps stream, while consuming less bandwidth than anonymous communication
systems. With a million nodes it consumes 2.5Mbps, where AcTinG needs 840Kbps.

SECTION 5.6
Update Sept. 2016

In September 2016, Cédric Laraudoux, researcher at Inria, France, contacted me,
and signaled me several imprecisions in the 2016 ICDCS paper, which presented PAG

5.6. UPDATE SEPT. 2016 121

""""
-
-
’’’’’
-
-

-
-
-
-
Pt
-
-
-
-

Bandwidth (kbps)

Number of nodes [Log scale]

Figure 5.12 — Scalability of P AG compared to AcT'inG with a 300kbps content
[sim]

to the scientific community, and the fact that he believed an attack to be possible
on PAG. I would like to warmly thank him for contacting me, and for the useful
information I obtained from our discussion.

As I am not a PhD student anymore, I chose to give additional details on PAG in
this new section.

The attack would be built around the fact that the encryption function that it is
not difficult to find a collision for the function that nodes use to represent a set of
updates they have to transmit, or receive, and that the monitors use to check the correct
forwarding of updates. Thanks to M. Laraudoux, I now know that the role of this
function is to provide verifiable homomorphic commitment, and the properties we
aimed at providing are called binding and hiding. There are schemes that allow such
properties to be enforced, but I won’t go into further details here, as it is out of the
scope of this thesis.

As I said, a collision can be found for the encryption message we used. Indeed, for
a message u, it is easy to find a message v’ = u + k.m, where k is an integer and m
the modulus of the encryption, for which this encryption function have the same image
(namely a collision).

From this observation, doubts arise concerning the integrity of the updates in
presence of a malicious node, or a global attacker, that would modify messages during
their transmission.

However, in PAG, as said in Section 5.1.2, updates propagated by nodes are
generated by a special node, named the source, which signs them, and updates are
propagated along with their signature (which is not represented in diagrams from clarity
reasons). Therefore, a message u’ cannot be replaced by a message w if u and u’ have
different signatures, and if we assume the source’s signature to be unforgeable.

122 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

Then, if updates v and v’ are legitimate, what prevents a node from transmitting v’
instead of u? Let us assume that updates u and u’ have been generated by the source.
Section 5.3.4 explains that to be allowed to disappear from a gossip session updates are
forwarded in two lists from node to node. The first list contains the updates which are
about to expire and that are not going to be included in the forwarding verifications. The
second list contains the updates which will later expire and that a node has to forward.

What this implies, and that I failed to explain correctly in the previous sections, is
that nodes are able to determine the release date of updates, and therefore their expiration
date. A first possibility is for the source to publicly release couples containing the
signature of updates and their release date that each node can obtain. Otherwise,
the source can join the release dates of updates when it is sending them. To do so,
each update would be propagated along with its release date and a signature. This
signature would include both update » and its release date R, to prevent nodes from
dropping messages prematurely. An update u would send be sent under the form
(u, R, sign(u||R)). Using this scheme, the release dates of updates cannot be tampered
with during the dissemination of updates, and the integrity of updates is enforced.

Now that updates are associated with their release date, the integrity attack is
possible only if update u released at round R and update u’ released at round R’ are
such that (i) &' = u + k.m, and (ii)) R’ = R.

This attack can however easily be prevented if the source makes sure that it never
releases two such updates during a given round. If this situation cannot be avoided,
adding trailing data to updates can solve this issue.

My intuition is that this scheme would provide both binding and hiding when time
in structured in rounds. However, when it is not the case other mechanisms would have
to be used. An additional remark, is that in the context of rational behaviors, replacing
an update u/ with another update « is not a rational deviation, in the sense that it does
not provide any benefit to a deviating node.

SECTION 5.7
Conclusion

A number of gossip-based content dissemination protocols tolerating selfish behaviors
have been proposed in the past. A limitation of these protocols is that they do not
preserve the privacy of users. On the other side of the spectrum, accountable anonymous
communication protocols are too costly to be used in practice to disseminate multimedia
content. In this chapter, we have presented PAG, the first content dissemination
protocol that uses accountability through a monitoring infrastructure and still preserves
the privacy of users thanks to homomorphic cryptographic procedures. Performance
evaluation combining both a real deployment and simulations has demonstrated that it
has good bandwidth properties and that the privacy of nodes is close to optimal, even
in presence of a global and active attacker. We have also shown that the reasonable
cryptographic overhead of P AG makes it accessible to modern architectures, and that
it exhibits very desirable scalability properties with a logarithmic growth of bandwidth
consumption, comparable to standard gossip based protocols. Future work includes
designing a privacy-preserving mechanism that would decrease the bandwidth overhead
of PAG, reduce the participation of nodes in contents in which they are not interested,

5.7. CONCLUSION 123

and an accountable eviction procedure that that would avoid correct nodes to exhibit
messages they sent or received.

124 CHAPTER 5. PAG: PRIVATE AND ACCOUNTABLE GOSSIP

Conclusion

Peer-to-peer (P2P) content dissemination systems aim at distributing a given content
(e.g., a video) to a set of interested users. In these systems users may be tempted to
behave selfishly. Indeed, these systems need users that receive a content to share it with
others. In practice, selfish users may try to save their resource (e.g., upload bandwidth),
and may deviate from the protocol. Such deviations endanger the good dissemination
of the content being distributed. These selfish users aim at increasing their benefit
(e.g., they receive the content earlier) while decreasing their participation to the system
(e.g., they contribute less bandwidth to distributing the content). Among the existing
P2P paradigms that can be applied to the dissemination of a content, we focused on
gossip, which is currently the most robust approach. Gossip-based protocols do not
rely on an infrastructure, and consists in organizing random exchanges between nodes.
This randomness helps gossip to tolerate the joins or departures of nodes during the
dissemination of a content. In addition, this paradigm enforces probabilistic guarantees
concerning the efficient dissemination of updates inside a set of nodes. One drawback
of gossip however, is that the size of the system (i.e., the number of users) has to be
known by each user in order to calibrate correctly the exchanges of nodes. This thesis
focused on designing novel mechanisms to prevent selfish behaviors in gossip under
different assumptions.

While the existing gossip protocols correctly prevent individual selfish deviations, we
showed that selfish nodes may collude to lure the mechanisms that aim at detecting
them, or to further increase their benefit. We measured the impact of such collusions in
state-of-the-art protocols, and proved that selfish nodes applying an adequate strategy
are able to increase their benefit and reduce their participation to the dissemination of
a content, while not being detected. We then designed a new gossip protocol, named
AcTinG, specially designed to prevent both individual and collective selfish behaviors.
We showed that AcTinG is able to serve the entire content being disseminated even in
presence of selfish nodes, deviating either individually or collectively. A theoretical
study shows that nodes colluding in AcTinG do not improve their benefit, and do not
perturb the dissemination of contents. Relying on secure logs, AcTinG also guaran-
tees zero false positive detections, and eventually detects selfish nodes. Performance
evaluation combining both a real deployment and simulations has demonstrated that
AcTinG is resilient to churn, and exhibits very desirable scalability properties with a
logarithmic growth of memory and bandwidth consumption, comparable to standard

126 CONCLUSION

gossip based protocols.

However, nodes running AcTinG have to be ready to share their secure logs, which
detail all their exchanges and the content they received or sent. In practice, depending
on the context, users may not be ready to pay such a price, and may avoid to use an ap-
plication that may allow other users to collect information about them. This observation
was the basis of the reflexion that led to P AG, which is the second contribution of this
thesis. We explained that current methods that aim at preventing selfish behaviors leak
information about users of content dissemination systems. We were able to quantify
these leaks in AcT'inG, and detail them in the existing protocols. PAG is a gossip
protocol based on novel cryptographic procedures that forces nodes to forward the
content they receive (i.e., forbid selfish behaviors) while preserving the privacy of their
interactions, even in presence of a global and active opponent.

In the second part of this document, we have presented PAG, the first content dis-
semination protocol that uses accountability through a monitoring infrastructure and
still preserves the privacy of users thanks to homomorphic cryptographic procedures.
Performance evaluation combining both a real deployment and simulations has demon-
strated that it possesses good bandwidth properties and that the privacy of nodes is
close to optimal, even in presence of a global and active attacker. We have also shown
that the reasonable cryptographic overhead of PAG makes it accessible to modern
architectures, and that it exhibits very desirable scalability properties with a logarithmic
growth of bandwidth consumption, comparable to standard gossip based protocols.
However, PAG contrary to AcTinG does not tolerate collusions of selfish nodes,
which is currently the price of enforcing privacy.

In the following, we describe some possible improvements of PAG and AcT'inG
aiming at obtaining the best from both protocols, and future research directions that, we
believe, could be interesting to follow.

Possible improvements

Efficient dissemination and privacy

We presented P AG, which is a novel gossip protocol that allows nodes to preserve
their privacy using homomorphic cryptographic procedures, and is able to detect if a
node behaves selfishly. The existing gossip protocols allow nodes to collect information
about each others, which may dissuade users to run them. In particular, users that are
interested by the same content may be able to obtain the identities of each other. A
solution we proposed in PAG is to merge several sessions, which would provide a
node with the content it expects but also with some contents it does not desire. Doing
S0, it is not possible to identify which particular content interests a user. We believe
that it is possible to maintain the privacy properties of PAG while avoiding to pay
this cost. An approach we are studying at the time of writing is based on probabilities
to preferentially serve nodes with their content of interest, and less with the other
contents. However, work is needed to be fully convinced of its effectiveness. Namely, it

127

is necessary to prove that all nodes correctly receive the content they desire, and do not
receive all the other contents, but only a portion of them. We aim at using simulations
first to be convinced of this approach, which will require little effort thanks to the codes
of AcT'inG and PAG. Then, we plan to theoretically evaluate the guarantees of this
approach concerning privacy and performance.

Collusions in PAG

We presented AcTinG, which is a gossip protocol that is resistant to collusions of
selfish nodes. Selfish nodes may collude in order to increase their benefit, or to protect
themselves from detection mechanisms. Differently, nodes in PAG are assumed to
be honest-but-curious and not to try to disrupt the system, or to collude. In PAG, we
found that collective attacks may harm the dissemination of updates. For example,
in PAG, when a node A forwards updates to a node B, it has to send to its partner
an attestation that consists in a declaration of the updates that node A forwarded and
that node B will have to forward. In this attestation, it would be possible for node
A to declare less updates than what is really forwarded. Such a deviation would
allow node B to participate less in the dissemination of updates, thus to increase
its benefit. As successors are randomly affected to nodes, our protocol does not
allow nodes to choose their successors, which limit the probability of this deviation to
happen. However, currently it cannot be completely avoided. Combining a resilience to
collective deviations and a protection of users’ privacy would be an interesting result in
the sense that it could be applied to other situations.

Future research directions

Privacy-preserving proofs of misbehavior.

When a node is detected guilty proving its deviation to other nodes may reveal in-
formation about the interactions it had with others. Such procedure is then a leak
of privacy. Often, publications refer to zero-knowledge proofs (ZKPs) to protect the
privacy of interactions while proving that the node is faulty. We are not aware of a
practical method that could be used in gossip, as ZKPs are known to be costly in term
of bandwidth consumption and cryptographic costs. We plan to study more in depth
these mechanisms, and see if it is possible to adapt one of them to gossip.

128 CONCLUSION

References

[1] B. Bollobas, Random graphs. Springer, 1998.

[2] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory.
Cambridge University Press Cambridge, 2007, vol. 1.

[3] K. B. Athreya and P. E. Ney, Branching processes. Springer Science & Business
Media, 2012, vol. 196.

[4] H. C. Van Tilborg and S. Jajodia, Encyclopedia of cryptography and security.
Springer Science & Business Media, 2011.

[5] S. B. Mokhtar, J. Decouchant, and V. Quéma, “Acting: Accurate freerider tracking
in gossip,” in Proc. of the 33rd IEEE International Symposium on Reliable
Distributed Systems, SRDS 2014, Nara, Japan, October 6-9, 2014, 2014, pp.
291-300.

[6] H. C. Li, A. Clement, E. L. Wong, J. Napper, 1. Roy, L. Alvisi, and M. Dahlin,
“Bar gossip,” in Proc. of the 7th symposium on Operating Systems Design and
Implementation. USENIX Association, 2006, pp. 191-204.

[7] M. Haridasan, 1. Jansch-Porto, K. Birman, and R. van Renesse, “Enforcing fair-
ness in a live-streaming system,” in Proc. of 15th symposium on Multimedia
Computing and Networking (MMCN’08), January 2008.

[8] H. Johansen, A. Allavena, and R. Van Renesse, “Fireflies: scalable support for
intrusion-tolerant network overlays,” in ACM SIGOPS Operating Systems
Review, vol. 40, no. 4. ACM, 2006, pp. 3-13.

[9] R. Guerraoui, K. Huguenin, A.-M. Kermarrec, M. Monod, and S. Prusty, “Lifting:
lightweight freerider-tracking in gossip,” in Proc. of the ACM/IFIP/USENIX
11th International Conference on Middleware. Springer-Verlag, 2010, pp.
313-333.

[10] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: Practical account-
ability for distributed systems,” in ACM SIGOPS Operating Systems Review,
vol. 41, no. 6. ACM, 2007, pp. 175-188.

[11] H.Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li, “Design and
deployment of a hybrid cdn-p2p system for live video streaming: experiences

with livesky,” in Proceedings of the 17th ACM international conference on
Multimedia. ACM, 2009, pp. 25-34.

130 REFERENCES

[12] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs,
B. Wishon, and M. Ponec, “Peer-assisted content distribution in Akamai
NetSession,” in Proceedings of the 13th ACM SIGCOMM Conference on
Internet Measurement (IMC’13).

[13] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz,
“Bayeux: An architecture for scalable and fault-tolerant wide-area data dis-
semination,” in Proc. of the 11th international workshop on Network and
operating systems support for digital audio and video, 2001, pp. 11-20.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,
“Splitstream: high-bandwidth multicast in cooperative environments,” in ACM
SIGOPS Operating Systems Review, vol. 37,n0.5. ACM, 2003, pp. 298-313.

[15] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer
multicast,” vol. 32, no. 4. Proc. of the ACM SIGCOMM, 2002.

[16] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek et al., “Overcast:
reliable multicasting with on overlay network,” in Proc. of the 4th Symposium
on Operating System Design & Implementation. USENIX Association, 2000.

[17] D. Kosti¢, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High bandwidth data
dissemination using an overlay mesh,” in ACM SIGOPS Operating Systems
Review, vol. 37, no0. 5. ACM, 2003, pp. 282-297.

[18] A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth, “Bar
fault tolerance for cooperative services,” in ACM SIGOPS Operating Systems
Review, vol. 39, no. 5. ACM, 2005, pp. 45-58.

[19] R. Krishnan, M. D. Smith, Z. Tang, and R. Telang, “The impact of free-riding on
peer-to-peer networks,” in Proc. of the 37th Hawaii International Conference
on System Sciences. 1EEE, 2004, pp. 10—pp.

[20] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Ste-
mann, ‘“Practical loss-resilient codes,” in Proc. of the 29th ACM Symposium
on Theory of Computing, 1997, pp. 150-159.

[21] M. Luby, “Lt codes,” in Proc. of the 43rd IEEE Symposium on Foundations of
Computer Science. 1EEE, 2002, pp. 271-282.

[22] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain ap-
proach to reliable distribution of bulk data,” in ACM SIGCOMM Computer
Communication Review, vol. 28, no. 4, 1998, pp. 56-67.

[23] S. B. Mokhtar, A. Pace, and V. Quema, “Firespam: Spam resilient gossiping in
the bar model,” in Proc. of the 29th IEEE Symposium on Reliable Distributed
Systems. 1EEE, 2010, pp. 225-234.

[24] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li, “An empirical study of
collusion behavior in the maze p2p file-sharing system,” in Proc. of the 27th
International Conference on Distributed Computing Systems. 1EEE, 2007,
pp- 56-56.

[25] E. L. Wong and L. Alvisi, “What’s a little collusion between friends?” in Proc.
of the 2013 ACM symposium on Principles of distributed computing. ACM,
2013, pp. 240-249.

REFERENCES 131

[26] R. Eidenbenz, T. Locher, and R. Wattenhofer, “Hidden communication in p2p
networks steganographic handshake and broadcast,” in Proc. of the INFOCOM
IEEE. 1EEE, 2011, pp. 954-962.

[27] H. C. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robison, L. Alvisi, and
M. Dahlin, “Flightpath: Obedience vs. choice in cooperative services.” in
Proc. of the 8th symposium on Operating Systems Design and Implementation,

vol. 8, 2008, pp. 355-368.

[28] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. Van Steen, “The peer sam-
pling service: Experimental evaluation of unstructured gossip-based imple-
mentations,” in Proc. of the 5th ACM/IFIP/USENIX international conference
on Middleware. Springer-Verlag New York, Inc., 2004, pp. 79-98.

[29] A.-M. Kermarrec, A. Pace, V. Quema, and V. Schiavoni, “Nat-resilient gossip peer
sampling,” in Proc. of the 29th IEEE International Conference on Distributed
Computing Systems, ICDCS’09. 1EEE, 2009, pp. 360-367.

[30] M. Backes, P. Druschel, A. Haeberlen, and D. Unruh, “Csar: A practical and
provable technique to make randomized systems accountable.” in Proc. of the
16th symposium on Network and Distributed System Security, vol. 9, 2009, pp.
341-353.

[31] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel, “Accountable virtual
machines.” in Proc. of the 9th symposium on Operating Systems Design and
Implementation, 2010, pp. 119-134.

[32] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested append-only
memory: Making adversaries stick to their word,” in ACM SIGOPS Operating
Systems Review, vol. 41, no. 6. ACM, 2007, pp. 189-204.

[33] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “Trinc: Small trusted
hardware for large distributed systems.” in Proc. of the 6th Symposium on
Networked Systems Design and Implementation, vol. 9, 2009, pp. 1-14.

[34] C. Ho, R. Van Renesse, M. Bickford, and D. Dolev, “Nysiad: Practical protocol
transformation to tolerate byzantine failures.” in Proc. of the 5th Symposium
on Networked Systems Design and Implementation, vol. 8, 2008, pp. 175-188.

[35] A.Diarra, S. B. Mokhtar, P. Aublin, and V. Quéma, “Fullreview: Practical account-
ability in presence of selfish nodes,” in Proc. of the 33rd IEEE Symposium on
Reliable Distributed Systems, 2014.

[36] E. Zheleva and L. Getoor, “To join or not to join: the illusion of privacy in social
networks with mixed public and private user profiles,” in Proc. of the 18th
international conference on World wide web, 2009.

[37] H. Hu, G.-J. Ahn, and J. Jorgensen, “Detecting and resolving privacy conflicts
for collaborative data sharing in online social networks,” in Proc. of the 27th
Computer Security Applications Conference, 2011.

[38] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Kiipcii, A. Lysyanskaya,
and E. Rachlin, “Making p2p accountable without losing privacy,” in Proc. of
the 2007 ACM workshop on Privacy in electronic society. ACM, 2007, pp.
31-40.

132 REFERENCES

[39] H. Corrigan-Gibbs and B. Ford, “Dissent: accountable anonymous group messag-
ing,” in Proc. of the 17th ACM conference on Computer and Communications
Security. ACM, 2010, pp. 340-350.

[40] S. Ben Mokhtar, G. Berthou, A. Diarra, V. Quéma, and A. Shoker, “Rac: a
freerider-resilient, scalable, anonymous communication protocol,” in Proc. of

the 33rd International Conference on Distributed Computing Systems. 1EEE,
2013, pp. 520-529.

[41] D.I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dissent in numbers:
Making strong anonymity scale.” in Proc. of the 10th Symposium on Operating
Systems Design and Implementation, 2012, pp. 179-182.

[42] P. Golle and A. Juels, “Dining cryptographers revisited,” in Proc. of the Advances
in Cryptology-Eurocrypt 2004. Springer, 2004, pp. 456-473.

[43] L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron, “Cashmere: Resilient anony-
mous routing,” in Proc. of the 2nd conference on Symposium on Networked
Systems Design and Implementation. USENIX Association, 2005, pp. 301-
314.

[44] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer anonymizing network
layer,” in Proc. of the 9th ACM conference on Computer and Communications
Security. ACM, 2002, pp. 193-206.

[45] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” in
Proc. of the 19th ACM symposium on Theory of Computing. ACM, 1987, pp.
218-229.

[46] A. Papadimitriou, M. Zhao, and A. Haeberlen, “Towards privacy-preserving fault
detection,” in Proc. of the 9th Workshop on Hot Topics in Dependable Systems.
ACM, 2013, p. 6.

[47] A. Narayan, A. Feldman, A. Papadimitriou, and A. Haeberlen, “Verifiable differ-
ential privacy,” in Proc. of the EuroSys conference, 2015.

[48] M. Zhao, W. Zhou, A. J. Gurney, A. Haeberlen, M. Sherr, and B. T. Loo, “Private
and verifiable interdomain routing decisions,” in Proc. of the ACM SIGCOMM
2012 conference on Applications, technologies, architectures, and protocols
for computer communication. ACM, 2012, pp. 383-394.

[49] M. Bertier, D. Frey, R. Guerraoui, A.-M. Kermarrec, and V. Leroy, “The gossple
anonymous social network,” in Proc. of the ACM/IFIP/USENIX 11th Interna-
tional Conference on Middleware. Springer-Verlag, 2010, pp. 191-211.

[50] A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A.-M. Kermarrec, ‘“Privacy-
preserving distributed collaborative filtering,” in Proc. of the International
Conference on Networked Systems. Springer, 2014, pp. 169-184.

[51] M. Jovic, A. Adamoli, and M. Hauswirth, “Catch me if you can: performance
bug detection in the wild,” in ACM SIGPLAN Notices, vol. 46, no. 10. ACM,
2011, pp. 155-170.

[52] B. Blanchet, “An efficient cryptographic protocol verifier based on prolog rules,”
in Proc. 14th IEEE Computer Security Foundations Workshop (CSFW). 1EEE,
2001, pp. 82-96.

REFERENCES 133

[53] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron, “Scribe: A large-
scale and decentralized application-level multicast infrastructure,” IEEE Jour-

nal on Selected Areas in Communications, vol. 20, no. 8, pp. 1489-1499,
2002.

[54] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr, “Chain-
saw: Eliminating trees from overlay multicast,” in Peer-to-peer systems IV.
Springer, 2005, pp. 127-140.

[55] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié, “Epidemic
information dissemination in distributed systems,” Computer, vol. 37, no. 5,
pp. 60-67, 2004.

[56] A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh, “Probabilistic reliable dissemi-
nation in large-scale systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 3, pp. 248-258, 2003.

[57] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 4,
no. 3, pp. 382-401, 1982.

[58] D. Hughes, G. Coulson, and J. Walkerdine, “Free riding on gnutella revisited: the
bell tolls?”” Distributed Systems Online, IEEE, vol. 6, no. 6, 2005.

[59] V. K. Goyal, “Multiple description coding: Compression meets the network,”
Signal Processing Magazine, IEEE, vol. 18, no. 5, pp. 74-93, 2001.

[60] J. Nash, “Non-Cooperative Games,” The Annals of Mathematics, vol. 54, no. 2,
1951.

[61] E. Adar and B. A. Huberman, “Free riding on gnutella,” First Monday, vol. 5,
no. 10, 2000.

[62] X. Vilaga, J. Leitao, M. Correia, and L. Rodrigues, “N-party bar transfer,” in
Principles of Distributed Systems. Springer, 2011, pp. 392-408.

[63] H. D. Johansen, R. V. Renesse, Y. Vigfusson, and D. Johansen, “Fireflies:
A secure and scalable membership and gossip service,” ACM Trans.
Comput. Syst., vol. 33, no. 2, pp. 5:1-5:32, May 2015. [Online]. Available:
http://doi.acm.org/10.1145/2701418

[64] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. Van Steen,
“Gossip-based peer sampling,” ACM Transactions on Computer Systems
(TOCS), 2007.

[65] F. B. Schneider, “Implementing fault-tolerant services using the state machine
approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22, no. 4, pp.
299-319, 1990.

[66] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault tolerance,” ACM
Transactions on Computer Systems (TOCS), vol. 14, no. 1, pp. 80-107, 1996.

[67] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Scamp: Peer-to-peer
lightweight membership service for large-scale group communication,” in
Networked Group Communication, 2001.

134 REFERENCES

[68] A.Mei and J. Stefa, “Give2get: Forwarding in social mobile wireless networks of
selfish individuals,” Dependable and Secure Computing, IEEE Transactions
on, vol. 9, no. 4, pp. 569-582, 2012.

[69] A. Pfitzmann and M. Hansen, “Anonymity, unlinkability, undetectability, unob-
servability, pseudonymity, and identity management-a consolidated proposal
for terminology,” Version v0, vol. 31, p. 15, 2008.

[70] D. Chaum, “The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability,” Journal of cryptology, vol. 1, no. 1, pp. 65-75, 1988.

[71] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing,” Communications of
the ACM, vol. 42, no. 2, pp. 3941, 1999.

[72] M. Waidner, B. Pfitzmann et al., “The dining cryptographers in the disco: Un-
conditional sender and recipient untraceability with computationally secure
serviceability,” J.-J. Quisquater and J. Vandewalle, editors, Advances in Cryp-
tology—EUROCRYPT, vol. 89, p. 690, 1989.

[73] S. Goel, M. Robson, M. Polte, and E. Sirer, “Herbivore: A scalable and effi-
cient protocol for anonymous communication,” Cornell University, Technical
Report, 2003.

[74] M. Edman and B. Yener, “On anonymity in an electronic society: A survey
of anonymous communication systems,” ACM Computing Surveys (CSUR),
vol. 42, no. 1, p. 5, 2009.

[75] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,” ACM
Transactions on Information and System Security (TISSEC), vol. 1, no. 1, pp.
66-92, 1998.

[76] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation
onion router,” DTIC Document, Tech. Rep., 2004.

[77] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but their
validity or all languages in np have zero-knowledge proof systems,” Journal
of the ACM (JACM), vol. 38, no. 3, pp. 690-728, 1991.

[78] L. Sweeney, “k-anonymity: A model for protecting privacy,” International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002.

[79] “Skype,” http://www.skype.com, accessed: 2015-08-31.

[80] “Jabber,” http://www.jabber.org, accessed: 2015-08-31.

[81] “Icq,” http://www.icq.com/en, accessed: 2015-08-31.

[82] “Sopcast,” http://www.sopcast.org, accessed: 2015-08-31.

[83] “Veetle,” http://www.veetle.com, accessed: 2015-08-31.

[84] “Diaspora,” https://diasporafoundation.org, accessed: 2015-08-31.
[85] F. Khatibloo, ‘“Personal identity management,” 2011.

[86] O. D. E. Simulator, https://omnetpp.org/, accessed: 2015-08-31.

Appendix

In this appendix, we present the model of PAG that has been used with ProVerif
to prove that it preserves the privacy of users in presence of individual selfish nodes,
and is resilient to limited-size coalitions. Indeed, if nodes have f successors then an
attacker needs to control at least f very precise nodes to discover the content of an
exchange between two nodes. We then present the code that has been used to evaluate
the theoretical resiliencies of PAG and AcTinG to coalitions. Using probabilities, we
were able to show that P AG ensures a close to ideal security to nodes.

SECTION .1
ProVerif code of PAG

(*

Phases that include the reception of updates from Al, A2, A3
by B,

and the forwarding to C

Send prime numbers
Message 1: B —> Al: {
Message 2: B —> A2: {
Message 3: B —> A3: {

pl }skB }pkAl
pr2 }skB }pkA2
p3 }skB }pkA3

~— s s

Send updates X
Message 4: Al —> B: { { ul, NA1l }skAl }pkB
Message 5: A2 -> B: { { u2, NA2 }skA2 }pkB
Message 6: A3 —-> B: { { u3, NA3 }skA3 }pkB

Attestations X
Message 7: Al —> B: { { ul }pl }skAl
Message 8: A2 -> B: { { u2 }p2 }skA2
Message 9: A3 —-> B: { { u3 }p3 }skA3

Forward to C, and obtain an ack X
Message 10: C -> B: { { p4 }skC }pkB
Message 11: B —> C: { { ul, u2, u3, pl.p2.p3 }skB }pkC
Message 12: C -> B: { { ul.u2.u3}pl.p2.p3 }skC

Acks from B to Al, A2, A3 X
Message 13: B —> Al: { {ul}NAl }skB
Message 14: B -> A2: { {u2}NA2 }skB

136 CHAPTER . APPENDIX

Message 15: B —-> A3: { {u3}NA3 }skB

Acks from B to its witness
Message 16: B —> WB: { {ul}NAl }skB
Message 17: B —> WB: { {u2}NA2 }skB
Message 18: B —-> WB: { {u3}NA3 }skB

Attestation from B to its witness
Message 19: B —> WB: { { { ul }pl }skAl, p2.p3 }skB
Message 20: B —> WB: { { { u2 }p2 }skA2, pl.p3 }skB
Message 21: B —> WB: { { { u3 }p3 }skA3, pl.p2 }skB

Transfer of ack from WB to WAl, WA2, WA3
Message 22: WB —-> WAl: { {ul}NAl }skB
Message 23: WB —-> WAZ2: { {u2}NA2 }skB
Message 24: WB —-> WA3: { {u3}NA3 }skB

Ack from C to its witness X
Message 25: C —=> WC: { {ul.u2.u3}pl.p2.p3 }skC

Transfer of ack from WC to WB
Message 26: WC —-> WB: { {ul.u2.u3}pl.p2.p3 }skC

*)
free c: channel.

type host.
(xtype nonce. %)
type pkey.
type skey.
type int.
type msg.

(» Public key encryption =)

fun pk (skey): pkey.

fun encrypt (bitstring, pkey): bitstring.

reduc forall x: bitstring, y: skey;
decrypt (encrypt (x,pk (v)),y) = x.

fun encryptPrime (bitstring, int): bitstring.

fun product (int, int): int.

(# reduc forall x: int, y: int; divide (product(x,vy),y) = X.
*)

fun productUp (bitstring, bitstring): bitstring.

(x» reduc forall x: bitstring, y: bitstring;
divideUp (productUp (x,Vy),y) = x.

*)

fun int_to_bitstring(int): bitstring [data,typeConverter].
fun bitstring to_int (bitstring): int[data, typeConverter].

.1. PROVERIF CODE OF PAG 137

(» Signatures x)

fun spk (skey): pkey.

fun sign(bitstring, skey): bitstring.

reduc forall x: bitstring, y: skey; verif(sign(x,y), pk(y),
x) = true.

reduc forall x: bitstring, y: skey; getmess(sign(x,y)) = x.

(» Secrecy assumptions x)

not attacker (new skAl).
not attacker (new skA2).
not attacker (new skA3).
not attacker (new skB).
not attacker (new skC).

(» host names x)

free A1, A2, A3, B, C, WAl, WA2, WA3, WB, WC: host.
free attestation: msg.

(* Queries «)

free ul, u2, u3, NAl, NA2, NA3: bitstring [private].
query attacker (ul).

(» Role of Al, A2, A3 *)

let processInitiatorA(hostA: host, skA: skey, pkB: pkey, u:
bitstring, NA: bitstring) =
in(c, (=hostA, m : bitstring));

let ml = decrypt(m, skA) in
let p = getmess(ml) in
if verif(ml, pkB, p) = true then
out (¢, (B, encrypt(sign((u, NA), skA), pkB))); (* serve
*)
out (¢, (B, sign((attestation, encryptPrime (u,
bitstring_to_int (p))), skA))); (x attestation «*)
in(c, (=hostA, m2 : bitstring))
else
0.

(» Role of B %)

let processInitiatorB(skB: skey, pkAl: pkey, pkA2: pkey,
pkA3: pkey, pkC: pkey) =

new pl: int;
new p2: int;
new p3: int;

138 CHAPTER . APPENDIX

out (¢, (Al, encrypt(sign(int_to_bitstring(pl), skB),
pkAl)));

out (¢, (A2, encrypt(sign(int_to_bitstring(p2), skB),
pkAZ)));

out (¢, (A3, encrypt(sign(int_to_bitstring(p3), skB),
PkA3)));

(x serve messages x*)

in(c, (=B, m4: bitstring)); (* what if the messages arrive
in a different order? or are replayed? =x*)

in(c, (=B, mb: bitstring));

in(c, (=B, m6: bitstring));

let n4 = decrypt(m4, skB) in
let (ulO: bitstring, NA1lO: int)
let n5 = decrypt (m5, skB) in

getmess (n4) in

let (u20: bitstring, NA20: int) = getmess(n5) in

let n6 = decrypt (m6, skB) in

let (u30: bitstring, NA30: int) = getmess(n6) in

if verif(n4, pkAl, (ul0O, NAlO)) = true && verif (n5, pkA2,

(u20, NA20)) = true && verif (n6, pkA3, (u30, NA30)) =
true then

in(c, (=B, m7: bitstring));

in(c, (=B, m8: bitstring));

in(c, (=B, m9: bitstring));

let (=attestation, n7: bitstring) = getmess(m7) in

let (=attestation, n8: bitstring) = getmess(m8) in

let (=attestation, n9: bitstring) = getmess(m9) in

if verif (m7, pkAl, n7) = true && verif (m8, pkA2, n8) =

true && verif (m9,
out (¢, (Al, sign(encryptPrime (ulO, NA10) , skB)));
out (c, (A2, sign(encryptPrime (u20, NA20) , skB)));
out (¢, (A3, sign(encryptPrime (u30, NA30) , skB)));

pkA3, n9) = true then

out (¢, (WB, sign(encryptPrime (ul0, NA10) , skB)));
out (¢, (WB, sign(encryptPrime (u20, NA20) , skB)));
out (c, (WB, sign(encryptPrime (u30, NA30) , skB)));

out (¢, (WB, sign((m7, product (p2,p3)), skB)));
out (¢, (WB, sign((m8, product (pl,p3)), skB)));
out (¢, (WB, sign((m9, product (pl,p2)), skB)));

in(c, (=B, ml0: bitstring));
let nl0 = decrypt (ml0, skB) in
let p4 = getmess(nl0) in

if verif(nl0, pkC, p4) = true then
out (¢, (C, encrypt(sign((ul, u2, u3,
product (product (pl, p2), p3)), skB) ,pkC)));
in(c, (=B, ml2: bitstring))
else

0

.1. PROVERIF CODE OF PAG 139

else
0
else
0.

let processInitiatorC(skC: skey, pkB: pkey) =
new p4: int;
out (¢, (B, encrypt(sign(int_to_bitstring(p4), skC), pkB)));

in(c, (=C, mll: bitstring));
let nll = decrypt(mll, skC) in
let (ulO: bitstring, u20: bitstring, u30: bitstring, p:
int) = getmess(nll) in
if verif(nll, pkB, (ul0O, u20, u30, p)) = true then
out (¢, (B,
sign (encryptPrime (productUp (ul0, productUp (uz20,
u30)), p), skC)));
out (¢, (WC,
sign (encryptPrime (productUp (ul0, productUp (u20,
u30)), p), skC)))
else
0.

let processInitiatorWB (pkB: pkey, pkC: pkey) =
in(c, (=WB, ml6: bitstring));
in(c, (=WB, ml7: bitstring));
in(c, (=WB, ml8: bitstring));
out (¢, (WAl, mlo6));
out (¢, (WA2, ml7));
out (¢, (WA3, ml8));

in(c, (=WB, ml9: bitstring));

in(c, (=WB, m20: bitstring));

in(c, (=WB, m2l: bitstring));

let (nl9: bitstring, p23: bitstring) = getmess(ml9) in

let (n20: bitstring, pl3: bitstring) = getmess (m20) in

let (n2l: bitstring, pl2: bitstring) = getmess (m2l) in

if verif (ml9, pkB, (nl9, p23)) = true && verif (m20, pkB,
(n20, pl3)) = true && verif (m21l, pkB, (n21, pl2)) =

true then
in(c, (=WB, m26: bitstring));
let n26 = getmess (m26) in

if verif (m26, pkC, n26) = true then
(TODO: Verification homomorphique =)
0
else
0
else
0.

let processInitiatorWC () =

140

CHAPTER . APPENDIX

in(c,
out (c,

(=wC,
(WB,

m25: bitstring));
m25)) .

let processInitiatorWA (hostWA: host,
bitstring));

in(c, (=hostWA, m22:
let n22 getmess (m22)
if verif (m22, pkB, n22)
0
else
0.

in

true

(Start process x*)

process
new skAl: skey;
let pkAl pk (skAl)
out (c, pkAl);
new skA2: skey;
let pkA2 pk (skA2)
out (c, pkA2);
new skA3: skey;
let pkA3 pk (skA3)
out (c, pkA3);
new skB: skey;
let pkB pk (skB)
out (c, pkB);
new skC: skey;
let pkC pk (skC)
out (c, pkC);

= in

= in

in

= in

= in

(» Launch an unbounded number
initiator =*)
'processInitiatorA (Al, skAl,
!processInitiatorA (A2, skAZ2,
!'processInitiatorA (A3, skA3,
'processInitiatorB (skB, pkAl,
!processInitiatorC(skC, pkB))
'processInitiatorWB (pkB, pkC)
'processInitiatorWC()) |
!processInitiatorWA (WA1l, pkB)
‘ (PkB)
(PkB)

!processInitiatorWA (WA2,

(
(
(
(
(
(
(
(
(
('processInitiatorWA (WA3,

SECTION .2

pkB: pkey) =

then

of sessions of the

pkB,

pkB, uz,

pkB, u3,
pkA2, pkA3,
|

)

ul, NAl))
NA2))
NA3))

|

|

|
pkC)) |

) |
) |
)

Probabilistic evaluation of P AG resiliency to collusions

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

.2. PROBABILISTIC EVALUATION OF PAG RESILIENCY TO COLLUSION$41

#define 1d long double

/* Factorial utility function =/
1d fact (1d x) {
1d res = 1.0;
for (1d i = 1.0; i <= x; i++)
res *x= 1i;
return res;

/+ Binomial coefficient utility function =/
1d coefBin(1ld k, 1d n) {
return fact (n) / (fact (k) = fact(n-k));

int main(void) {

FILE xfile = fopen("../probaPrivacy.data", "w");

ld n = 1000.0; // Number of nodes in the system

1d paudit = 0.1; // Audit probability in AcTinG

1d RTE = 10.0; // Delay between an update release and

its expiration

1d fActing = 3.0; // Fanout of nodes in AcTinG

1d period = 5.0; // Period with which nodes change their
successors in AcTinG

for (1d p = 0.0; p <= n; pt+t+) {

/x Probability that one of the two partners is an
opponent and makes an audit, which would allow him
to discover the interaction =/

1d probaComplexe = 0.0;

1d X = (2.0 » 2.0 « fActing * RTE) / period; /x Total
number of partners of the two nodes x/

X = 2xX + pow (X, 2);

for (1d j = 0.0; j <= X; j++) { /» Binomial law on the
number of opponents, with probability that at least
one realizes an audit */
1d tmp = coefBin(j, X) * pow(p/n, J)* pow((n-p)/n,

X=3);

tmp *= (1.0 — (1d) pow (1.0 - paudit, j)); /=
Probability that none of the j nodes makes an
audit */

probaComplexe += tmp;

1d probaActing = (1d) (l-pow((n-p)/n, 2.0)) + (1d)
pow ((n-p)/n, 2.0) * probaComplexe;

142 CHAPTER . APPENDIX

/+ Probability for PAG with 3 successors/witnesses per
node */

1d £ = 3.0;

1d pf2 = 0.0; /+ £-2 of the predecessors are colluders,
and at least one of the two critical message goes to
a colluding attacker =/

1d k = £-2;

pf2 += (coefBin(k, f) * ((1d) pow(p/n, k)) = ((1d)
pow (1-p/n, f-k))) * (l-pow(l-p/n, 2));

k = f-1; /% or f-1 predecessors are attackers =/

pf2 += (coefBin(k, f) * ((1d) pow(p/n, k)) = ((1d)
pow (1-p/n, £-k)));

1d privacy3 = (1.0 - (1d) pow(l.0-p/n, 2.0)) + ((1d)
pow(l.0-p/n, 2.0)) * pf2 * (1.0 - (1d) pow(l.0-p/n,
£))s

f = 5.0;

pf2 = 0.0; /+ f-2 of the predecessors are colluders,

and at least one of the two critical message goes to
a colluding attacker =/

k = £-2;
pf2 += (coefBin(k, f) * ((1d) pow(p/n, k)) = ((1d)
pow(l-p/n, £-k))) = (l-pow(l-p/n, 2)); /» £-2

predecessors collude and both critical messages go
to and attacker witness =/

k = £f-1; /% or f-1 predecessors are attackers =/

pf2 += (coefBin(k, f) * ((1d) pow(p/n, k)) = ((1d)
pow (1-p/n, £-k)));

1d privacy5 = (1.0 - (1d) pow((n-p)/n, 2.0)) + ((1d)
pow ((n-p)/n, 2.0)) * pf2 * (1.0 - (1d) pow((n-p)/n,
£));

/* one of the two nodes is incorrect, or all the other
predecessors except one are incorrect and there is
at least one incorrect witness (l-all are correct) =/

f =7.0;

pf2 = 0.0; /» £-2 of the predecessors are colluders,
and at least one of the two critical message goes to
a colluding attacker =/

k = £-2;

pf2 += (coefBin(k, f) = ((1d) pow(p/n, k)) * ((1d)
pow (1-p/n, f-k))) * (l-pow(l-p/n, 2));

k = £f-1; /* or f-1 predecessors are attackers =/

pf2 += (coefBin(k, f) * ((1d) pow(p/n, k)) = ((1d)
pow (1-p/n, f-k)));

1d privacyl0 = (1.0 - (1d) pow(l.0-p/n, 2.0)) + ((1d)
pow(1.0-p/n, 2.0)) * pf2 * (1.0 - (1d) pow(l.0-p/n,
£));

fprintf (file, "SLENtSLENLSLENLSLENLSLENLSLE\n", (1d)
(p/n)*100.0, (1d) (l-pow(l.0-p/n, 2.0))x100.0,
probaActingx100.0, privacy3+x100.0, privacy5%100.0,
privacyl0x100.0);

.2. PROBABILISTIC EVALUATION OF PAG RESILIENCY TO COLLUSION$43

}
fclose (file);

return 0O;

