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Resumen
En la mineŕıa de datos y reconocimiento de patrones, un importante campo lo constituye la clasificación. La
clasificación es necesaria en muchos procesos del mundo de hoy. Muchos son los estudios y métodos propuestos
con el fin de hacer que los clasificadores sean cada vez más efectivos. Sin embargo, la mayoŕıa de ellos consideran
la perfección en los conjuntos de entrenamiento, sin tener en cuenta que podŕıa haber, dentro de estos conjuntos
de entrenamiento, objetos con etiquetas de clases erróneas, producto tanto de errores humanos como de previos
procesos de clasificación. Al proceso de eliminar estos objetos mal clasificados, se denomina limpieza de ruido.
Obviamente, la limpieza de ruido influye considerablemente en la correcta clasificación de nuevas muestras. En
esta investigación, se presenta un nuevo algoritmo de limpieza de ruido en flujos de datos para clasificación,
basado en criterios de vecindad. Además, considera cambios en la distribución de los datos que pueden ocurrir
en el transcurso del tiempo. Se evaluó, mediante varios experimentos, el efecto de la aplicación del método en
la construcción automática de conjuntos de entrenamiento usando bases de datos del repositorio UCI y dos
sintéticas. Los resultados obtenidos demuestran la eficacia de la estrategia de limpieza de ruido y su influencia
en la correcta clasificación de nuevas muestras.

Palabras claves: Limpieza de ruido, aprendizaje semi-supervisado, cambios de concepto

Abstract
An important field within data mining and pattern recognition is classification. Classification is necessary in
a number nowadays-world processes. Several works and methods have been proposed with the goal to achieve
classifiers to be more effective each time. However, most of them consider the training sets to be perfectly
clustered, without having into account that incorrectly classified data might be in them. The process of remo-
ving incorrectly classified objects is called noise cleaning. Obviously, noise cleaning influences considerably in
classification of new samples. In this work, we present a neighborhood-based algorithm for noise cleaning on
data stream for classification. In addition, it considers the data distribution changes that may occur on the
time. It was measured, by several experiments, the effect of the method on automatic building of training sets
by using databases from UCI repository and two synthetic ones. The obtained results show prove the efficacy
of the proposed noise cleaning strategy and its influence on the right classification of new samples.

Keywords: Noise cleaning, semi-supervised learning, concept drift
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Introducción

En el mundo actual, varias son las esferas en las que es necesario realizar un proceso de clasificación. Para rea-

lizar el proceso de clasificación se necesita un conjunto de muestras etiquetadas (prototipos) lo suficientemente

representativas, que sean capaces de emitir un juicio correcto acerca de la clase a la cual pertenece un nuevo

objeto. Este conjunto de muestras etiquetadas se conoce en la literatura como conjunto de entrenamiento

(Training Set, TS).

Los algoritmos de clasificación semi-supervisada o de aprendizaje semi-supervisado (Chapelle et al., 2006;

Kalish et al., 2011; Liu et al., 2009; Rohban and Rabiee, 2012; Settles, 2010; Zhou and Goldman, 2004) tienen

como única información a priori pocas muestras de las clases presentes y cuentan con un conjunto numeroso de

objetos no etiquetados que serán utilizados también en el proceso de clasificación. En procesos de aprendizaje

semi-supervisado, se pueden cometer errores que más tarde ocasionarán a su vez fallos en la clasificación de

nuevos objetos, ya que aprender de datos clasificados incorrectamente afecta la funcionalidad de los algoritmos

de clasificación, lo que demuestra la necesidad de aplicar estrategias de eliminación de objetos erróneamente

clasificados en las bases de datos.

Muchos algoritmos de detección de ruido trabajan sobre conjuntos de datos estáticos (algoritmos de edición),

éstos tienden a obtener un conjunto de prototipos eliminando valores at́ıpicos (outliers en la literatura en

inglés), y no tienen en cuenta los cambios que se pueden ocasionar con el transcurso del tiempo (Garćıa et al.,

2012; Segata et al., 2010; Vázquez et al., 2005; Wilson and Martinez, 2000). Sin embargo, se deben tener en

cuenta los cambios en la distribución de los datos que pueden ocurrir en el transcurso del tiempo, dando lugar

a lo que se denomina cambios de concepto (conocido por concept drift en inglés) (ver (Jagadeesh et al., 2011;

Klinkenberg, 2004)).

En (Zhu et al., 2008) aparece un método para eliminar ruido en un flujo de datos, utilizando técnicas estad́ısticas

como el margen de varianza máxima, y hace una comparación entre las técnicas de Filtrado Local (FL), Global

(FG) y, Local y Global (FLyG). Este método tiene tres limitaciones fundamentales: 1) necesita introducir un

parámetro α que indica el número de objetos que considera como ruidosos en la base de datos, esto en general,

es un problema ya que es imposible conocer a priori cuán contaminados están los datos, 2) se necesita evaluar

la función que caracteriza el principio del margen de varianza máxima varias veces, lo que hace el proceso

costoso y 3) los mejores resultados de su algoritmo se obtienen con el Filtrado FLyG, por lo que hace es

necesario desarrollar tanto el filtrado local como el global.
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Por ello, el problema a investigar en este trabajo es la insuficiencia en la calidad de la clasificación debido a la

presencia de objetos mal etiquetados (ruido) en los conjuntos de entrenamiento. El objetivo de esta investigación

es la creación de un algoritmo para detección y eliminación de ruido basado en criterios de vecindad y que

tiene en cuenta cambios de concepto en el tiempo. Además, nuestra hipótesis radica en el perfeccionamiento

de los métodos de clasificación basados en aprendizaje semi-supervisado con el uso del método de limpieza de

ruido propuesto.

En el presente trabajo, se muestra una nueva estrategia para la detección de ruido en flujos de datos mediante

criterios de vecindad para eliminar las limitaciones del método propuesto en (Zhu et al., 2008) empleando

un conjunto de dos clasificadores (en la literatura cient́ıfica en inglés suele llamarse ensemble). Además, se

hace una propuesta de un esquema de aprendizaje semi-supervisado que utiliza en la etapa del filtrado de las

muestras, el método de limpieza de ruido propuesto.

Materiales y métodos

Los métodos de limpieza de ruido en general, usan clasificadores entrenados de una porción de los datos de

entrenamiento, para justificar las muestras excluidas (Jeatrakul et al., 2010; Jagadeesh et al., 2011; Segata

et al., 2010; Li et al., 2007). Esto puede ser posible para datos estáticos, pero en flujos de datos, es necesario

tener en cuenta que ellos están sujetos a cambios en las diferentes distribuciones, por lo que es necesario definir

estrategias para lidiar con esta problemática. Se pueden efectuar tres variantes para filtrar el flujo de datos: 1)

El Filtrado Local (FL) realiza la limpieza de los datos localmente dentro de cada bloque, sin necesitar ningún

otro bloque de datos, 2) Filtrado Global (FG) que utiliza clasificadores entrenados desde múltiples bloques

para identificar el ruido y/o 3) Filtrado Local y Global (FLyG) que tiene en cuenta los objetos ruidosos según

cada una de las dos estrategias anteriores.

El flujo de datos se modela a través de los bloques de objetos etiquetados que se denotan Fi(i = 1, 2, . . . ,H).

Para todos los objetos de cada bloque se aplica una regla de clasificación, y se verifica si la etiqueta asignada

al objeto coincide con la etiqueta que tiene originalmente, en caso que esto no ocurra, el objeto se considera

ruidoso y es eliminado. Luego, un problema de clasificación en general puede ser descrito en la siguiente forma:

Definición 1 (Problema de clasificación) Sean (X,Θ) = {(x1, θ1), (x2, θ2), . . . , (xN , θN )} un conjunto

de muestras etiquetadas (conjunto de entrenamiento) y x un nuevo objeto que se quiere asignar a una de las

M clases C1, C2, . . . , CM donde θi ∈ {C1, C2, . . . , CM} ∀i ∈ {1, 2, . . . , N}. Si p(cj |x) son las probabilidades a

posteriori de cada una de las clases, se debe asignar a x la etiqueta c que maximice el valor de la probabilidad
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anteriormente descrita, i.e.:

p(ci|x) ≥ p(cj |x) ∀j ∈ {1, 2, . . . , N}. (1)

Una de las técnicas más empleadas para manejar los cambios de concepto son los conjuntos de clasificadores,

mediante los cuales las salidas de varios clasificadores se combinan para tomar una decisión final. En nuestra

estrategia se utiliza un producto de dos funciones p1 y p2 que representan estrategias de clasificación diferentes

y luego se normaliza como se expresa a continuación:

p(ci|x) =
p1(ci|x) · p2(ci|x)∑M
j=1 p1(cj |x) · p2(cj |x)

. (2)

Dado un conjunto de entrenamiento E y x un objeto a clasificar, denotemos por Ukx al conjunto de los k

elementos de E más cercanos de acuerdo a la distancia Euclidiana a x (es también conocido como k-vecindad

de x en E) unido al conjunto de los elementos de E que tienen a x incluido en su k-vecindad, entonces se

define:

p1(ci|x) =

∣∣{u ∈ Ukx | θu = ci}
∣∣

|Ukx |
(3)

donde θu representa la clase de u y |A| es el cardinal del conjunto A. Por otro lado, para definir la probabilidad

p2 se tuvo en cuenta la cercańıa de x a las clases presentes, para ello se utilizó la siguiente fórmula:

p2(ci|x) =
1

ε+ d(x,Ci)
, (4)

donde ε es número real positivo pequeño y d(x,Ci) = mı́n
y∈Ci

d(x, y).

Es precisamente en el filtrado global, donde se consideran los cambios de concepto en el tiempo, que significa

que se decanten o ignoren todos los bloques anteriores a uno dado. La idea de esta propuesta se basa en el

hecho que si hay distribuciones de los datos muy antiguas, es aconsejable no considerarlas, porque podŕıa

provocar criterios falsos acerca de la situación actual. Aśı, en un filtrado global se utiliza un parámetro β para

determinar el número de bloques anteriores a Fi que formarán parte del conjunto de entrenamiento E:

E =
i−1⋃

j=i−β
Aj . (5)

El conjunto de entrenamiento se constituye con los elementos de los β bloques anteriores a Fi que ya han sido

aceptados como no ruidosos (Fórmula 5). En la Figura 1 se resume el método de limpieza de ruido propuesto.
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Algoritmo 1. Limpieza de Ruido (LR)

Entrada: Flujo de datos de las muestras etiquetadas Fi para i = 1, . . . ,H
Número de vecinos k

Salida: Conjuntos de elementos aceptados (uno por cada bloque) Ai
Método: Para i = 1 hasta H hacer:

1.1 Cargar el bloque Fi
1.2 Inicializar los conjuntos de elementos ruidosos y aceptados

en vaćıo, i.e. Ni = Ai = ∅
1.3 Para cada elemento x de Fi hacer:

1.3.1 Definir el conjunto Ukx
1.3.2 Hallar la etiqueta ci que maximice p(ci|x)
1.3.3 Si ci = θx entonces x se considera aceptado

1.3.3.1 Ai = Ai ∪ {x}
1.3.4 En caso contrario se considera ruido

1.3.4.1 Ni = Ni ∪ {x}

Figura 1. Resumen del algoritmo de limpieza de ruido

Aprendizaje semi-supervisado con limpieza de ruido

En aprendizaje semi-supervisado, se tiene un conjunto pequeño E de muestras correctamente etiquetadas y un

conjunto grande de objetos sin clase que necesitan ser etiquetados para luego ser utilizados como conjunto de

entrenamiento, con el objetivo de clasificar nuevas muestras. Se considera que los objetos sin etiqueta llegan

formando una secuencia de bloques G1, G2, . . . , GH y con algún clasificador, se asignan etiquetas a los objetos,

modelando de esta forma un flujo de datos F1, F2, . . . , FH .

Entre los elementos etiquetados de cada bloque existen algunos ruidosos debido a errores en la clasificación, lo

que puede ocasionar la aparición de cambios de concepto. Una manera de detectar estos cambios de concepto

es mediante la aplicación del método de detección de ruido utilizando únicamente los dos resultados más

recientes como se explicó en la sección anterior. El esquema de aprendizaje semi-supervisado se muestra en la

Figura 2. Con esta nueva propuesta, constituye el conjunto de entrenamiento actual el conjunto Ai obtenido,

a diferencia de otros esquemas de aprendizaje semi-supervisado (Vázquez et al., 2008).

Por tanto, en dependencia de la funcionalidad del clasificador empleado en el paso 1.1, y de la aplicación del

algoritmo de detección de ruido en el paso 1.2, aśı será la calidad del conjunto de entrenamiento Ai obtenido

en cada etapa. Para desarrollar el paso 1.2 la primera vez, se selecciona un conjunto inicial A0 de datos

bien etiquetados que constituyen la experiencia existente acerca de la distribución de las clases, que sirve

como conjunto de entrenamiento para etiquetar los objetos de F1 y luego, decidir cuáles de ellos fueron mal
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Algoritmo 2. Aprendizaje semi-supervisado con LR

Entrada: Conjunto de entrenamiento E
Flujo de datos de muestras etiquetadas: Bloques Gi para i = 1, . . . ,H
Número de vecinos k

Salida: Conjuntos de elementos aceptados (uno por cada bloque) Ai
Método: Para i = 1 hasta H hacer:

1.1 Clasificar los elementos del bloque Gi obteniendo
el bloque de objetos etiquetados Fi

1.2 Aplicar la estrategia de limpieza de ruido al conjunto Fi y
se construye el nuevo conjunto Ai de objetos no ruidosos

1.3 El conjunto Ai es el conjunto de entrenamiento construido
en cada etapa

Figura 2. Algoritmo de aprendizaje con limpieza de ruido

etiquetados. La segunda vez, el conjunto de entrenamiento será la unión de A0 y A1, para, desde entonces,

utilizar los dos conjuntos de aceptados anteriores al bloque que se evalúa.

Resultados y discusión

En este eṕıgrafe se muestran los resultados obtenidos de la experimentación realizada para verificar la efectivi-

dad del método propuesto. Para ello se utilizaron 8 bases de datos del repositorio UCI (Newman and Asuncion,

2007) y otras dos sintéticas creadas por los autores que fueron denominadas G4 y G6. G4 está formada por

4 modos gaussianos con poco solapamiento ya que estos concentran la mayor parte de sus puntos cerca de la

media, por tanto, los puntos comunes a los demás modos son pocos en comparación con los que se encuentran

en un radio dado alrededor de la media. G6 está compuesta por 6 modos gaussianos y en este caso śı existe

un alto ı́ndice de solapamiento ya que uno de ellos tiene otros tres modos distribuidos cerca de su media.

Son modos gaussianos con medias muy cercanas y por tanto muy solapados. En la Tabla 1 se exponen las

principales caracteŕısticas de estas colecciones de datos.

Se utilizó como medida de calidad precisión definida por Pr =
|R ∩ R̄|
|R|

, donde R̄ es el conjunto de los objetos

ruidosos detectados por el algoritmo y R es el conjunto de los ruidosos reales. Para simular el flujo de datos,

cada una de las bases de datos fue dividida en 10 bloques de manera aleatoria, manteniendo la distribución de

probabilidades de las clases, y de cada bloque del flujo de datos se seleccionó de manera aleatoria un porcentaje

α ∈ {10, 20, 30, 40, 50} de objetos a los que se les alteró su correcta etiqueta de clase para simular la existencia

de objetos ruidosos en la base de datos. Con cada valor de α se generaron cinco conjuntos diferentes de objetos
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Tabla 1. Caracteŕısticas básicas de las bases de datos usadas

Base de datos # Clases # Instancias # Atributos Tipo

Cancer 2 683 9

Reales

German 2 1000 24
Diabetes 2 768 8

Page 5 5473 10
Phoneme 2 5404 5

Wave 3 5000 21
Pendigit 10 10992 16

Spam 2 4601 57

G4 4 4000 2
SintéticasG6 6 6000 2

mal etiquetados. Los resultados son el promedio de las cinco ejecuciones realizadas del proceso indicado. El

conjunto Ukx para cada x se construyó tomando los valores de k = 1, 3.

En la Tabla 2 se muestran los porcentajes de precisión en la detección del ruido que se obtuvo para cada una

de las bases de datos, es decir, el porcentaje de objetos verdaderamente ruidosos que el algoritmo detectó como

ruidosos.

Nótese que en todos los casos el mayor porcentaje de aciertos se obtuvo con el Filtrado Global (en negrita),

o sea, con el Filtrado FG se detecta el mayor porcentaje de objetos ruidosos, tanto cuando se considera un

vecino como si se utilizan los tres vecinos más cercanos del objeto en análisis. Este es un resultado importante

ya que disminuye el costo de la detección de ruido, pues no seŕıa necesario realizar simultáneamente para cada

bloque del flujo de datos un filtrado local y un filtrado global.

Obsérvese también, que cuando se tienen en cuenta los 3 vecinos de cada objeto (FG-3 o FLyG-3), los porcen-

tajes son superiores, ya que se está utilizando una vecindad más amplia, lo cual garantiza una mayor precisión

en la detección de objetos mal etiquetados.

Es de destacar, que sobre las bases de datos Cancer, Page, Pendigit y G4, con un 10 % de datos mal etiquetados,

considerando tres vecinos, se hace una limpieza de al menos el 90 % de los objetos ruidosos con el filtrado FG.

Para las bases de datos: Diabetes, Wave, Spam y G6, con un 10 % de objetos ruidosos se detecta un 80 % o

más de los mismos. Sólo en el caso de la base de datos German, se obtuvieron porcentajes de detección de

ruido inferiores.

Editorial “Ediciones Futuro”
Universidad de las Ciencias Informáticas. La Habana, Cuba
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Tabla 2. Precisión en la detección de ruido. a) Bases de datos Cancer, German, Diabetes, Page, Phoneme y b) Wave,
Pendigit, Spam, G4, G6

BD Método 10 % 20 % 30 % 40 % 50 % BD Método 10 % 20 % 30 % 40 % 50 %

C
an

ce
r

FG-1 0,900 0,857 0,700 0,549 0,363

W
av

e

FG-1 0,825 0,726 0,634 0,532 0,423
FLyG-1 0,843 0,738 0,536 0,344 0,158 FLyG-1 0,733 0,602 0,461 0,331 0,224
FG-3 0,933 0,849 0,679 0,541 0,357 FG-3 0,850 0,771 0,667 0,547 0,422
FLyG-3 0,903 0,772 0,537 0,344 0,154 FLyG-3 0,800 0,688 0,525 0,353 0,218

G
er

m
an

FG-1 0,722 0,633 0,579 0,505 0,431

P
en

d
ig

it

FG-1 0,771 0,686 0,590 0,492 0,395
FLyG-1 0,554 0,490 0,408 0,320 0,252 FLyG-1 0,794 0,600 0,429 0,272 0,153
FG-3 0,762 0,656 0,598 0,503 0,438 FG-3 0,923 0,808 0,671 0,513 0,352
FLyG-3 0,638 0,521 0,425 0,333 0,268 FLyG-3 0,888 0,721 0,515 0,316 0,154

D
ia

b
et

es

FG-1 0,789 0,707 0,579 0,528 0,428

S
p
am

FG-1 0,771 0,686 0,590 0,492 0,395
FLyG-1 0,631 0,548 0,385 0,327 0,233 FLyG-1 0,628 0,512 0,403 0,294 0,215
FG-3 0,809 0,728 0,609 0,537 0,428 FG-3 0,797 0,713 0,615 0,497 0,396
FLyG-3 0,686 0,595 0,434 0,363 0,245 FLyG-3 0,685 0,560 0,442 0,309 0,219

P
ag

e

FG-1 0,881 0,750 0,623 0,492 0,368

G
4

FG-1 0,857 0,732 0,605 0,468 0,347
FLyG-1 0,807 0,611 0,444 0,289 0,174 FLyG-1 0,758 0,594 0,412 0,252 0,141
FG-3 0,917 0,803 0,671 0,514 0,374 FG-3 0,906 0,785 0,648 0,501 0,357
FLyG-3 0,886 0,708 0,523 0,317 0,177 FLyG-3 0,877 0,699 0,483 0,297 0,151

P
h
on

em
e

FG-1 0,808 0,713 0,585 0,483 0,395

G
6

FG-1 0,863 0,749 0,624 0,493 0,370
FLyG-1 0,691 0,550 0,393 0,278 0,196 FLyG-1 0,780 0,612 0,426 0,284 0,165
FG-3 0,846 0,748 0,629 0,499 0,389 FG-3 0,896 0,795 0,661 0,513 0,373
FLyG-3 0,760 0,623 0,458 0,310 0,197 FLyG-3 0,854 0,709 0,492 0,314 0,170

(a) (b)

Para α = 40, se detectó alrededor del 50 % de los objetos ruidosos, mientras que para α = 50 fueron eliminados

alrededor del 40 % de los objetos mal etiquetados, siempre que se aplica el filtrado global, lo que no ocurre con

el filtrado FLyG con el cual los porcentajes de detección de ruido son mucho menores.

Es válido aclarar, que si cerca de la mitad de los ejemplos de la base de datos son ruidosos, hay una gran confu-

sión entre los objetos ruidosos y los objetos con una etiquetada de clase correcta, lo que hace extremadamente

dif́ıcil determinar cuáles son los objetos realmente ruidosos.

Influencia de la limpieza de ruido en aprendizaje semi-supervisado

Se evaluó la influencia de la estrategia de limpieza de ruido en un esquema de aprendizaje semi-supervisado

utilizando los conjuntos de objetos aceptados como conjuntos de entrenamiento. Se tomó como conjunto de

prueba (test) el 10 % de cada base de datos. El criterio de selección de este sub-conjunto fue mediante la

selección aleatoria de una muestra del 10 % de cada una de las clases existentes. Este conjunto fue utilizado

para determinar el porcentaje de clasificación correcta que los objetos aceptados como no ruidosos (de entre
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el restante 90 % dividido en flujos) proporcionan al etiquetar los ejemplos del conjunto de prueba. En este

experimento, se emplearon los conjuntos de objetos aceptados del filtrado con las estrategias: FG y FLyG

como conjunto de entrenamiento para clasificar el conjunto de prueba y comparamos los resultados obtenidos.

En la Tabla 3 se muestran los resultados de este experimento, con k = 3 siendo el valor de mejores resultados

en la detección de ruido. Se agregaron, además, dos experimentos cuyos resultados aparecen en las columnas

nombradas SF (Sin Filtrado) y FP (Filtrado Perfecto), que significan: todos los bloques antes de ser filtrados,

y, todos los bloques luego de haber eliminado el total de los objetos ruidosos, respectivamente. En negrita,

marcamos los valores más significativos (mayores) del porcentaje de clasificación correcta. La columna BD

significa base de datos, el śımbolo α representa el porcentaje de ruido presente. Los resultados indican que

en un esquema de aprendizaje, en el que se etiquetan objetos desconocidos, hasta un 20 % de error en el

etiquetado puede ser corregido o eliminando un porcentaje alto de los objetos ruidosos, y aśı, los conjuntos de

entrenamiento tendŕıan mayor calidad.

Puede verse, además, que cuando hay un 10 % de objetos ruidosos, sobre las bases de datos: Cancer, German,

Diabetes, G4, G6, Page, Wave, Pendigit y Spam, se obtiene un porcentaje de clasificación correcta superior o

similar al que se obtiene cuando se realiza un filtrado perfecto. Esto significa, que es útil emplear la estrategia

de detección de ruido para construir conjuntos de entrenamiento. Sólo con las bases de datos Page y Phoneme

quedaron los porcentajes por debajo de los del filtrado perfecto, aunque sin una marcada diferencia en el caso

del filtrado FG.

Cuando existe un 20 % de objetos ruidosos en las bases de datos, también los resultados alcanzados con el

método propuesto para la detección de ruido son buenos. Por ejemplo, sobre las bases de datos: German,

Diabetes, G6 y Wave, los porcentajes de clasificación correcta son superiores o similares a los obtenidos con

un filtrado perfecto. Para el resto de las bases de datos, los porcentajes se pueden considerar adecuados por su

significado, ya que al realizar un filtrado se logra eliminar objetos ruidosos y disminuir el tamaño del conjunto

de entrenamiento. Se pueden destacar los resultados que se han obtenido con las bases de datos: Cancer, G4,

G6, Page, Pendigit, para las cuales, el porcentaje de clasificación correcta que proporcionan es igual o superior

al 90 % cuando hay un 20 % o menos de error en las etiquetas de los objetos que forman los bloques. Esto

garantiza que la estrategia de detección de ruido, es capaz de filtrar los bloques del flujo de datos de manera

que los objetos aceptados como no ruidosos puedan ser empleados para clasificar objetos nuevos.

Obsérvese además, la diferencia de los porcentajes obtenidos después de la limpieza con relación a los obtenidos

si no se aplica nuestra estrategia. Para la mayoŕıa de las bases de datos, el porcentaje de clasificación correcta

que se obtiene del conjunto de entrenamiento con ruido (sin aplicar el método de filtrado que aqúı se propone)

es por lo menos un 10 % menor que cuando se utilizan los bloques filtrados.
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Tabla 3. Porcentaje de clasificación correcta de los conjuntos de entrenamiento (k = 3), a) Bases de datos Cancer,
German, Diabetes, G4, G6 y b) Page, Phoneme, Wave, Pendigit, Spam

BD α SF FG FLyG FP BD α SF FG FLyG FP

C
an

ce
r

10 0,871 0,964 0,966 0,956

P
a
g
e

10 0,853 0,935 0,935 0,938
20 0,761 0,924 0,940 0,939 20 0,754 0,895 0,915 0,936
30 0,680 0,867 0,918 0,944 30 0,667 0,806 0,855 0,935
40 0,571 0,710 0,765 0,951 40 0,565 0,664 0,700 0,929
50 0,503 0,528 0,524 0,946 50 0,480 0,484 0,479 0,935

G
er

m
an

10 0,597 0,662 0,672 0,637

P
h

on
em

e

10 0,744 0,808 0,801 0,813
20 0,533 0,636 0,637 0,627 20 0,666 0,774 0,781 0,802
30 0,500 0,595 0,603 0,638 30 0,604 0,712 0,734 0,804
40 0,463 0,536 0,532 0,638 40 0,525 0,595 0,620 0,799
50 0,418 0,432 0,428 0,616 50 0,454 0,467 0,470 0,792

D
ia

b
et

es

10 0,616 0,701 0,694 0,665
W

av
e

10 0,705 0,798 0,804 0,773
20 0,564 0,651 0,660 0,649 20 0,629 0,764 0,786 0,762
30 0,520 0,609 0,620 0,679 30 0,557 0,699 0,746 0,759
40 0,461 0,540 0,544 0,668 40 0,493 0,592 0,637 0,759
50 0,408 0,421 0,433 0,644 50 0,419 0,453 0,459 0,763

G
4

10 0,887 0,977 0,987 0,987

P
en

d
ig

it

10 0,876 0,966 0,966 0,976
20 0,791 0,931 0,965 0,986 20 0,783 0,928 0,948 0,974
30 0,694 0,838 0,896 0,987 30 0,687 0,837 0,882 0,971
40 0,600 0,693 0,746 0,984 40 0,588 0,684 0,728 0,968
50 0,494 0,503 0,498 0,989 50 0,489 0,485 0,476 0,965

G
6

10 0,829 0,930 0,938 0,919

S
p

am

10 0,665 0,725 0,714 0,717
20 0,742 0,890 0,924 0,918 20 0,606 0,699 0,697 0,714
30 0,650 0,805 0,860 0,919 30 0,544 0,626 0,642 0,701
40 0,560 0,657 0,706 0,920 40 0,488 0,544 0,559 0,695
50 0,474 0,480 0,481 0,928 50 0,429 0,448 0,452 0,687

(a) (b)

Por ejemplo, sobre la base de datos cáncer, con un 10 % de objetos ruidosos, sin aplicar limpieza de ruido, el

porcentaje de clasificación correcta que proporciona el conjunto de entrenamiento es de un 87 %. Sin embargo,

después de haber detectado objetos ruidosos, el porcentaje de clasificación correcta aumenta hasta más de un

96 %.

Los resultados, demuestran, además, que la estrategia de tener en cuenta los cambios de concepto proporciona

la construcción de conjuntos de entrenamiento adecuados sin necesidad de utilizar todos los objetos del flujo
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de datos. El hecho de obtener buenos resultados cuando se tienen en cuenta los cambios de concepto, además

de la utilidad en śı que tiene este problema en la actualidad, es importante ya que se puede ir eliminando

información no relevante en el contexto actual. Desde el punto de vista computacional es conveniente, ya que

para realizar una clasificación, no es necesario utilizar todos los objetos que ya han sido procesados, sino los

de la última generación.

También se puede mencionar el hecho de que cuando hay un porcentaje de error de 40 % o 50 % se detecta menor

cantidad de objetos ruidosos, causado por la incertidumbre en la veracidad de las etiquetas de clase existe en

este caso, pues habŕıa casi el mismo número de objetos bien etiquetados que mal etiquetados. Obviamente,

esto influye en los porcentajes de clasificación correcta.

Conclusiones

En este trabajo se ha mostrado una nueva estrategia para la detección y limpieza de ruido en flujos de datos,

empleando criterios de vecindad. En la nueva estrategia se utiliza un conjunto de dos clasificadores, para

combinar los resultados que cada uno aporta en la etapa de clasificación. Este método se enfoca en el problema

de la presencia de cambios de concepto en el tiempo. El método propuesto detecta automáticamente todos

los objetos que considera ruidosos, no se limita a un porcentaje α (este valor sólo se utiliza para simular

la existencia de objetos ruidosos en el flujo de datos). Se emplea una estrategia muy simple (vecinos más

cercanos). Se realizaron los experimentos siguiendo los esquemas de los filtrados: FG y FLyG debido a que con

el filtrado local (FL) no se tiene en cuenta los cambios de concepto en el tiempo.

Como medida para establecer la calidad del proceso de limpieza de ruido se utilizó la precisión, analizándose

el porcentaje de objetos ruidosos que el algoritmo detecta y la calidad de los bloques luego del proceso de

limpieza, para ser utilizados como conjuntos de entrenamiento en la clasificación de nuevas muestras. De las

dos estrategias de filtrado, los resultados en el procesamiento de los patrones demuestran que el filtrado FG es

suficiente para detectar los objetos ruidosos. Esto es importante ya que aśı el proceso es menos costoso debido

a que no hay que realizar el filtrado local.

Entre los valores del parámetro k, para detección de ruido el más efectivo resultó k = 3, lo cual demuestra

que para detectar los objetos ruidosos es más conveniente verificar las etiquetas de otros objetos que rodean

al que se está analizando, no sólo su vecino más cercano. Este hecho se observa en la Tabla 2 ya que FG-3 y

FLyG-3 tienen siempre porcentajes de detección de ruido más altos que FG-1 y FLyG-1 respectivamente.

Otra cuestión a destacar es que para tener en cuenta los cambios de concepto, sólo se emplearon dos bloques

anteriores al analizado en cada etapa, esto contribuye con un ahorro computacional importante, además del
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hecho en śı que es tener en cuenta nada más los resultados más actuales para detectar nuevos objetos ruidosos

o para clasificar objetos correctamente, desechando información fuera del contexto actual. Los porcentajes

alcanzados en cuanto al filtrado de objetos ruidosos, demuestran la validez del método aplicado, ya que se

detecta un 80 % o más de individuos mal etiquetados cuando hay hasta un 20 % de error de clasificación.

La importancia de este hecho está en la posibilidad de emplear el método en esquemas de aprendizaje semi-

supervisado.

En cuanto a la calidad como conjuntos de entrenamiento de los bloques filtrados, los resultados en los casos

de menos de un 30 % de ruido son positivos. Los mejores resultados se obtienen cuando hay un 10 % de ruido,

ya que los porcentajes son superiores a los que se obtienen con el filtrado perfecto y se demuestra que con un

menor número de objetos se obtienen porcentajes de clasificación satisfactorios.

Como una aplicación de los resultados obtenidos en el esquema de detección de ruido en flujos de datos, se

propuso un algoritmo de aprendizaje semi-supervisado para desechar los objetos ruidosos producto de la etapa

de clasificación.
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Vol. 10, No. 2, Mes abril-mayo, 2016
ISSN: 2227-1899 | RNPS: 2301
http://rcci.uci.cu
Pág. 1-13

Yunlei Li, Lodewyk F. A. Wessels, Dick de Ridder, and Marcel J. T. Reinders. Classification in the presence

of class noise using a probabilistic kernel fisher method. Pattern Recognition, 40(12):3349–3357, 2007.

Qiuhua Liu, Xuejun Liao, Hui Li, Jason R. Stack, and Lawrence Carin. Semisupervised multitask learning.

IEEE Trans. Pattern Anal. Mach. Intell., 31(6):1074–1086, 2009.

David Newman and Arthur Asuncion. University of California Irvine UCI- Machine Learning repository, 2007.

Mohammad H. Rohban and Hamid R. Rabiee. Supervised neighborhood graph construction for semi-supervised

classification. Pattern Recognition, 45(4):1363–1372, 2012.

Nicola Segata, Enrico Blanzieri, Sarah Jane Delany, and Padraig Cunningham. Noise reduction for instance-

based learning with a local maximal margin approach. Journal of Intelligent Information Systems, 35(2):

301–331, 2010.

Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52(55-66):11, 2010.

Fernando Vázquez, J. Salvador Sánchez, and Filiberto Pla. A stochastic approach to wilson’s editing algorithm.

In Pattern Recognition and Image Analysis, pages 35–42. Springer, 2005.
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