
Models within Models: Taming Model
Complexity using the Sub-Model Lattice

Pierre Kelsen, Qin Ma, and Christian Glodt

Laboratory for Advanced Software Systems
University of Luxembourg

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

{Pierre.Kelsen, Qin.Ma, Christian.Glodt}@uni.lu

Abstract. Model-driven software development aims at easing the pro-
cess of software development by using models as primary artifacts. Al-
though less complex than the real systems they are based on, models tend
to be complex nevertheless, thus making the task of comprehending them
non-trivial in many cases. In this paper we propose a technique for model
comprehension based on decomposing models into sub-models that con-
form to the same metamodel as the original model. The main contri-
butions of this paper are: a mathematical description of the structure
of these sub-models as a lattice, a linear-time algorithm for construct-
ing this decomposition and finally an application of our decomposition
technique to model comprehension.

1 Introduction

In model-driven software development models are the primary artifacts. Typi-
cally several models are used to describe the different concerns of a system. One
of the main motivations for using models is the problem of dealing with the
complexity of real systems: because models represent abstractions of a system,
they are typically less complex than the systems they represent.

Nevertheless models for real systems can be complex themselves and thus
may require aids for facilitating human comprehension. The problem of under-
standing complex models is at the heart of this paper. We propose a method for
decomposing models that is based on subdividing models into smaller sub-models
with the property that these sub-models conform to the same metamodel as the
original model. This property allows to view the sub-models using the same tools
as the original model and to understand the meaning of the sub-models using
the same semantic mapping (if one has been defined).

An example of a concrete application scenario is the following: when trying
to understand a large model, one starts with a subset of concepts that one
is interested in (such as the concept of Class in the UML metamodel). Our
method allows to construct a small sub-model of the initial model that contains
all entities of interest and that conforms to the original metamodel (in the case of
UML this would be MOF). The latter condition ensures that the sub-model can



be viewed in the same way as the original model and that it has a well-defined
semantics. The smaller size (compared to the original model) should facilitate
comprehension.

The main contributions of this paper are the following: (a) we present the
mathematical structure of these sub-models as a lattice, with the original model
at the top and the empty sub-model at the bottom; (b) we present a linear
time algorithm for building a decomposition hierarchy for a model from which
the sub-model lattice can be constructed in a straightforward manner; (c) we
present a method for the user to comprehend models in the context of model
pruning.

One salient feature of our technique is its generic nature: it applies to any
model (even outside the realm of model-driven software development). This is
also one of the main features differentiating it from existing work in model de-
composition. We review here related work from model slicing, metamodel prun-
ing and model abstraction.

The idea behind model slicing is to generalize the work on program slicing
to the domains of models by computing parts of models that contain modeling
elements of interest. An example of this line of work is [4] where model slicing
of UML class diagrams is investigated. Another example is [2] which considers
the problem of slicing the UML metamodel into metamodels corresponding to
the different diagram types in UML. The main differences between our work and
research on model slicing is, first, the restriction of model slicing to a particular
modeling language, e.g. UML class diagrams, and, second, the focus on a single
model rather than the mathematical structure of sub-models of interest.

In a similar line of work some authors have investigated the possibility of
pruning metamodels in order to make them more manageable. The idea is to
remove elements from a metamodel to obtain a minimal set of modeling elements
containing a given subset of elements of interest. Such an approach is described
in [8]. This work differs from our work in several respects: first, just like model
slicing it focuses on a single model rather than considering the collection of
relevant sub-models in its totality; second, it is less generic in the sense that
it restricts its attention to Ecore metamodels (and the pruning algorithm they
present is very dependent on the structure of Ecore), and lastly their goal is not
just to get a conformant sub-model but rather to find a sub-metamodel that is
a supertype of the original model. This added constraint is due to main use of
the sub-metamodel in model transformation testing.

The general idea of simplifying models (which can be seen as a generalization
of model slicing and pruning) has also been investigated in the area of model
abstraction (see [3] for an overview). In the area of simulation model abstraction
is a method for reducing the complexity of a simulation model while maintaining
the validity of the simulation results with respect to the question that the simu-
lation is being used to address. Work in this area differs from ours in two ways:
first, model abstraction techniques generally transform models and do not nec-
essarily result in sub-models; second, conformance of the resulting model with a
metamodel is not the main concern but rather validity of simulation results.



The remainder of this paper is structured as follows: in the next section we
present formal definitions for models, metamodels and model conformance. In
section 3 we describe an algorithm for decomposing a model into sub-models
conformant to the same metamodel as the original model. We also present the
mathematical structure of these models, namely the lattice of sub-models. In
section 4 we outline the application to model comprehension and we present
concluding remarks in the final section.

2 Models and MetaModels

In this section we present formal definitions of models, metamodels, and model
conformance. The following notational conventions will be used:

1. For any tuple p, we use fst(p) to denote its first element, and snd(p) to denote
its second element.

2. For any set s, we use ]s to denote its cardinality.
3. We use ≤ to denote the inheritance based subtyping relation.

2.1 Metamodels

A metamodel defines (the abstract syntax of) a language for expressing models.
It consists of a finite set of metaclasses and a finite set of relations between meta-
classes - either associations or inheritance relations. Moreover, a set of constraints
may be specified in the contexts of metaclasses as additional well-formedness
rules.

Definition 1 (Metamodel). A metamodel M = (N,A,H,C) is a tuple:

– N is the set of metaclasses, and n ∈ N ranges over it.
– A ⊆ (N × µ) × (N × µ × R) represents the (directed) associations between

metaclasses and a ∈ A ranges over it. The two N’s give the types of the
two association ends. The two µ’s, where µ ∈ Int × {Int ∪ {∞}}, give the
corresponding multiplicities. We refer to the first end of the association as
the source, and the second as the target. Associations are navigable from
source to target, and the navigation is represented by referring to the given
role name that is attached to the target end selected from the vocabulary R

of role names.
– H ⊆ N × N denotes the inheritance relation among metaclasses and h ∈ H

ranges over it. For a given h ∈ H, fst(h) inherits from (i.e., is a subtype of)
snd(h).

– C ⊆ N × E gives the set of constraints applied to the metamodel and c ∈ C

ranges over it. E is the set of the expressions and e ∈ E ranges over it. A
constraint c = (n, e) makes the context metaclass n more precise by restrict-
ing it with an assertion, i.e., the boolean typed expression e. For example, a
constraint can further restrict the multiplicities or types of association ends
that are related to the context metaclass.



Let r ∈ R range over the set of role names mentioned above. We require that
role names in a metamodel are distinct. As a consequence, it is always possible to
retrieve the association that corresponds to a given role name, written asso(r).

2.2 Models

A model is expressed in a metamodel. It is built by instantiating the constructs,
i.e., metaclasses and associations, of the metamodel.

Definition 2 (Model). A model is defined by a tuple M = (M,N,A, τ) where:

– M is the metamodel in which the model is expressed.
– N is the set of metaclass instantiations of the metamodel M, and n ∈ N

ranges over it. They are often simply referred to as instances when there is
no possible confusion.

– A ⊆ N× (N×R) is the set of association instantiations of the metamodel M,
and a ∈ A ranges over it. They are often referred to as links.

– τ is the typing function: (N → N) ∪ (A → A). It records the type informa-
tion of the instances and links in the model, i.e., from which metaclasses or
associations of the metamodel M they are instantiated.

2.3 Model conformance

Not all models following the definitions above are valid, or “conform to” the
metamodel: typing, multiplicity, and constraints need all to be respected.

Definition 3 (Model conformance). We say a model M = (M,N,A, τ) con-
forms to its metamodel M or is valid when the following conditions are met:

1. type compatible:

∀a ∈ A, τ(fst(a)) ≤ fst(fst(τ(a))) and τ(fst(snd(a))) ≤ fst(snd(τ(a)))

Namely, the types of the link ends must be compatible with (being subtypes
of) the types as specified in the corresponding association ends.

2. multiplicity compatible: ∀n ∈ N, a ∈ A,
if τ(n) ≤ fst(fst(a)),
then ]{a | a ∈ A and τ(a) = a and fst(a) = n} ∈ snd(snd(a));
if τ(n) ≤ fst(snd(a)),
then ]{a | a ∈ A and τ(a) = a and fst(snd(a)) = n} ∈ snd(fst(a)).
Namely, the number of link ends should conform to the specified multiplicity
in the corresponding association end.

3. constraints hold: ∀c ∈ C, ∀n ∈ N where n is an instance of the context
metaclass, i.e., τ(n) ≤ fst(c), the boolean expression snd(c) should evaluate
to true in model M for the contextual instance n.



3 Model Decomposition

3.1 Criteria

Model decomposition starts from a model that conforms to a metamodel, and
decomposes it into smaller parts. Our model decomposition technique is de-
signed using the following as main criterion: the derived parts should be valid
models conforming to the original metamodel. Achieving this goal has two main
advantages:

1. the derived parts, being themselves valid models, can be comprehended on
their own according to the familiar abstract syntax and semantics (if defined)
of the modeling language;

2. the derived parts can be wrapped up into modules and reused in the con-
struction of other system models, following our modular model composition
paradigm [6].

The decomposed smaller parts of a model are called its sub-models, formally
defined below.

Definition 4 (Sub-model). We say a model M′ = (M,N′,A′, τ ′) is a sub-model
of another model M = (M,N,A, τ) if and only if:

1. N′ ⊆ N;
2. A′ ⊆ A;
3. τ ′ is a restriction of τ to N′ and A′.

In order to make the sub-model M′ also conform to M, we will propose three
conditions - one for the metamodel (Condition 3 below, regarding the nature
of the constraints) and two conditions for the sub-model (Conditions 1 and 2).
Altogether these three conditions will be sufficient to ensure conformance of the
sub-model.

The starting point of our investigation is the definition of conformance (Def-
inition 3). Three conditions must be met in order for sub-model M′ to conform
to metamodel M.

The first condition for conformance, type compatibility, follows directly from
the fact that M′ is a sub-model of M and M conforms to M. The second con-
dition for conformance, which we call the multiplicity condition, concerns the
multiplicities on the association ends in the metamodel M. First the number of
links ending at an instance of M′ must agree with the source cardinality of the
corresponding association in the metamodel and second the number of links leav-
ing an instance of M′ must agree with the target cardinality of the corresponding
association.

To ensure the multiplicity condition for links ending at an instance of the
sub-model, we will introduce the notion of fragmentable links, whose type (i.e.,
the corresponding association) has an un-constrained (i.e., being 0) lower bound
for the source cardinality.



Definition 5 (Fragmentable link). Given a model M = (M,N,A, τ), a link
a ∈ A is fragmentable if snd(fst(τ(a))) = (0, ), where represents any integer
whose value is irrelevant for this definition.

Fragmentable incoming links of M to instances in M′ are safe to exclude but this
is not the case for non-fragmentable links, which should all be included. We thus
obtain the first condition on sub-model M′:

Condition 1 ∀a ∈ A where a is non-fragmentable, fst(snd(a)) ∈ N′ implies
fst(a) ∈ N′ and a ∈ A′.

Let us now consider the multiplicity condition for links leaving an instance
of M′. To ensure this condition we shall require that M′ includes all the links of
M that leave an instance of M′. In other words, there are in fact no links leaving
M′. This is formally expressed in the following condition on the sub-model:

Condition 2 ∀a ∈ A, fst(a) ∈ N′ implies fst(snd(a)) ∈ N′ and a ∈ A′.

Conditions 1 and 2 together imply the multiplicity condition in the confor-
mance definition.

The third condition in the conformance definition, which we call the con-
straint condition, requires that all metamodel constraints are satisfied in sub-
model M′. To ensure this condition, we impose a restriction on the nature of the
constraints. To this end, we introduce the notion of forward constraint.

Definition 6 (Forward constraint). A constraint c is forward if for any
model M and any instance n of M, the instances and links referenced by con-
straint c with contextual instance n are reachable from n in M (viewed as a
directed graph).

We will only consider forward constraints in this paper. This is expressed in
the following condition over the metamodel M:

Condition 3 All constraints in metamodel M are forward constraints.

Note that we have formalized a core part of the EssentialOCL [7] in the
companion technical report [5], which in principal excludes AllInstances, called
CoreOCL and we prove in [5] that all CoreOCL constraints are forward.

It is not difficult to see that both Conditions 2 and 3 imply the constraint
condition in the conformance definition. Indeed Condition 2 implies that all
instances and links reachable from an instance n in model M are also reachable
in M′ if M′ does indeed contain n. Condition 3 then implies that a constraint
that is satisfied on contextual instance n in M is also satisfied in the sub-model
M′ since it references the same instances and links in both models.

We thus obtain the following result:

Theorem 1. Given a metamodel M, a model M, and a sub-model M′ of M,
suppose that:



1. model M conforms to M;
2. model M′ satisfies Condition 1 and 2;
3. metamodel M satisfies Condition 3;

then model M′ also conforms to the metamodel M.

Proof. The result follows from the discussion above.

3.2 Algorithm

From hereon we shall assume that the metamodel under consideration satisfies
Condition 3. In this subsection we describe an algorithm that finds, for a given
model M, a decomposition of M such that any sub-model of M that satisfies
both Condition 1 and 2 can be derived from the decomposition by uniting some
components of the decomposition.

We reach the goal in two steps: (1) ensure Condition 1 and 2 with respect
to only non-fragmentable links; (2) ensure again Condition 2 with respect to
fragmentable links. (Condition 1 does not need to be re-assured because it only
involves non-fragmentable links.) Details of each step are discussed below.

Treating instances as vertices and links as edges, models are just graphs. For
illustration purpose, consider an example model as presented in Figure 1 where
all fragmentable links are indicated by two short parallel lines crossing the links.

11

10

7
8

9

1 4

32

6 5

12

13

Fig. 1. An example model

Let G be the graph derived by removing the fragmentable links from M. Be-
cause all the links in G are non-fragmentable, for a sub-graph of G to satisfy
both Condition 1 and 2, an instance is included in the sub-graph if and only
if all its ancestor and descendant instances are also included, and so are the
links among these instances in G. These instances, from the point of view of
graph theory, constitute a weakly connected component (wcc) of graph G (i.e.,
a connected component if we ignore edge directions). The first step of the model
decomposition computes all such wcc’s of G, which disjointly cover all the in-
stances in model M, then puts back the fragmentable links. We collapse all the
nodes that belong to one wcc into one node, (referred to as a wcc-node in con-
trast to the original nodes), and refer to the result as graph W . After the first



step, the corresponding graph W of the example model contains six wcc-nodes
inter-connected by fragmentable links, as shown in Figure 2.

Fig. 2. The corresponding W graph of the example model after step 1

The instances and links that are collapsed into one wcc-node in W constitute
a sub-model of M satisfying both Condition 1 and 2, but only with respect to
non-fragmentable links, because wcc’s are computed in the context of G where
fragmentable links are removed. The second step of the model decomposition
starts from graph W and tries to satisfy Condition 2 with respect to fragmentable
links, i.e., following outgoing fragmentable links. More specifically, we compute
all the strongly connected components (scc’s) in W (see [10] for a definition of
strongly connected components) and collapse all the nodes that belong to one
scc into one node, (referred to as an scc-node), and refer to the result as graph D.
After the second step, the corresponding graph D of the example model looks
like in Figure 3. The three wcc-nodes wcc4, wcc5 and wcc6 of graph W are

11

10

7
8

9

1 4

32

6 5

12

13

scc1

scc3

scc2 scc4

Fig. 3. The corresponding D graph of the example model after step 2

collapsed into one scc-node scc4 because they lie on a (directed) cycle.

Note that we only collapse nodes of a strongly connected component in the
second step instead of any reachable nodes following outgoing fragmentable links



in W , because we do not want to loose any potential sub-model of M satisfying
both Condition 1 and 2 on the way. More precisely, a set of nodes is collapsed
only if for every sub-model M′ of M satisfying both Condition 1 and 2, it is
either completely contained in M′ or disjoint with M′, i.e., no such M′ can tell
the nodes in the set apart.

The computational complexity of the above algorithm is dominated by the
complexity of computing weakly and strongly connected components in the
model graph. Computing weakly connected components amounts to computing
connected components if we ignore the direction of the edges. We can compute
connected components and strongly connected components in linear time using
depth-first search [10]. Thus the overall complexity is linear in the size of the
model graph.

3.3 Correctness

GraphD obtained at the end of the algorithm is a DAG (Directed Acyclic Graph)
with all the edges being fragmentable links. Graph D represents a decomposition
of the original model M where all the instances and links that are collapsed into
an scc-node in D constitute a component in the decomposition. We call graph D
the decomposition hierarchy of model M.

To relate the decomposition hierarchy to the sub-models, we introduce the
concept of an antichain-node. An antichain-node is derived by collapsing a (pos-
sibly empty) antichain of scc-nodes (i.e., a set of scc-nodes that are neither de-
scendants nor ancestors of one another, the concept of antichain being borrowed
from order theory) plus their descendants (briefly an antichain plus descendants)
in the decomposition hierarchy. To demonstrate the correctness of the algorithm,
we prove the following theorem:

Theorem 2. Given a model M = (M,N,A, τ) and a sub-model M′ = (M,N′,A′, τ)
of M, M′ satisfies both Condition 1 and 2 if and only if there exists a correspond-
ing antichain-node of the decomposition hierarchy of M where M′ consists of the
instances and links collapsed in this antichain-node.

Proof. We first demonstrate that if M′ consists of the set of instances and links
that are collapsed in an antichain-node of the decomposition hierarchy of M,
then M′ satisfies both Condition 1 and 2.

– Check M′ against Condition 1: given a non-fragmentable link a ∈ A, if
fst(snd(a)) ∈ N′, we have fst(a) ∈ N′ because of the wcc computation in
the first step of the model decomposition algorithm.

– Check M′ against Condition 2: given a non-fragmentable link a ∈ A, if fst(a) ∈
N′, we have fst(snd(a)) ∈ N′ because of the wcc computation in the first step
of the model decomposition algorithm. Given a fragmentable link a ∈ A, if
fst(a) ∈ N′, we have fst(snd(a)) ∈ N′ because of the scc computation in the
second step of the model decomposition algorithm and because we take all
the descendants into account.



We now demonstrate the other direction of the theorem, namely, if M′ satisfies
both Condition 1 and 2, then there exists an antichain-node of the decomposition
hierarchy of M, such that M′ consists of the set of instances and links that are
collapsed in this antichain-node.

We refer to the set of scc-nodes in the decomposition hierarchy where each
includes at least one instance of M′ by S.

1. All the instances that are collapsed in an scc-node in S belong to M′. Given
an scc-node s ∈ S, there must exist an instance n collapsed in s and n ∈ N′

in order for s to be included in S. Let n′ be another instance collapsed
in s. Following the algorithm in Section 3.2 to compute the decomposition
hierarchy, n and n′ are aggregated into one scc-node either in the first or the
second step.

(a) If they are aggregated in the first step, that means the two instances are
weakly connected by non-fragmentable links, and because M′ satisfies
Condition 1 and 2, n′ should also be in M′.

(b) If they are aggregated in the second step but not in the first step, that
means n and n′ are aggregated in two separate wcc-nodes in the first step,
called w and w′, which are strongly connected by a path of fragmentable
links. Referring to the other wcc-nodes on the path by w1, . . . , wk, there
exists a set of instances n0 ∈ w, n′0 ∈ w′, and ni, n

′
i ∈ wi for 1 ≤ i ≤ k,

such that there are fragmentable links from n0 to n1, from n′i to ni+1

(∀i.1 ≤ i < k) and from n′k to n′0. Since M′ satisfies Condition 2 if
the source vertex of these fragmentable links belongs to M′, so does the
target vertex. Because the following pairs of instances: n and n0, ni and
n′i (∀i.1 ≤ i ≤ k), and n′0 and n′, are respectively collapsed in a wcc-node,
if one vertex in a pair belongs to M′ then the other vertex in the pair
must belong to M′ as well following Condition 1 and 2. From the above
discussion and by applying mathematical induction, n belonging to M′

implies that n′ belongs to M′ as well.

2. S constitutes an antichain plus descendant. We partition S into two subsets:
S1 contains all the scc-nodes in S that do not have another scc-node also in
S as ancestor; S2 contains the rest, i.e., S2 = S \ S1. Clearly S1 constitutes
an antichain, and any scc-node in S2 is a descendant of an scc-node in S1

because otherwise the former scc-node should belong to S1 instead of S2.
Moreover, S2 contains all the descendants of scc-nodes in S1. Given a child
s2 of an scc-node s1 ∈ S1, the fragmentable link from s1 to s2 connects an
instance n1 collapsed in s1 to an instance n2 collapsed in s2. Because s1 ∈ S1,
following the demonstrated item 1 above, we have n1 ∈ N′. Because of the
out-going fragmentable link from n1 to n2 and since M′ satisfies Condition 2,
we also have n2 ∈ N′. Therefore we have s2 ∈ S. Furthermore, s2 6∈ S1

because it has s1 ∈ S as its ancestor. Hence we have s2 ∈ S2. Inductively we
conclude that any descendant of s1 belongs to S2 and hence S constitutes
an antichain plus descendant.

3. Collapse all the scc-nodes in S into an antichain-node called A. We demon-
strate that M′ consists of the instances and links collapsed in A.



(a) Any instance of M′ is collapsed in A because of the selection criteria of
S, and any instance collapsed in A is an instance of M′ following the
demonstrated item 1 above. In other words, M′ and A contain the same
set of instances from M.

(b) Because both M′ and A span all the links in M that connect instances
in them, M′ and A also have the same set of links from M.

3.4 The lattice of sub-models

{scc1, scc2, scc3, scc4}

{scc2, scc3, scc4}

{scc2, scc4} {scc3, scc4}

{scc4}

{}
sub-modeling

Fig. 4. The sub-model lattice of the example model in Figure 1 whose decomposition
hierarchy is given in Figure 2

Recall that a lattice is a partially-ordered set in which every pair of elements
has a least upper bound and a greatest lower bound. Thanks to Theorem 2, we
can now refer to a sub-model M′ of model M that satisfies both Condition 1
and 2 by the corresponding antichain-node A in the decomposition hierarchy of
M. Given a model M, all the sub-models that satisfy both Condition 1 and 2
constitute a lattice ordered by the relation “is a sub-model of”, referred to as the
sub-model lattice of M. Let A1 and A2 denote two such sub-models. The least
upper bound (A1 ∨ A2) and the greatest lower bound (A1 ∧ A2) of A1 and A2

are computed in the following way:

– A1∨A2 is the antichain-node obtained by collapsing the scc-nodes of A1 and
A2;

– A1 ∧A2 is the antichain-node obtained by collapsing the common scc-nodes
of A1 and A2.

The top of the sub-model lattice is M itself, and the bottom is the empty sub-
model.

For the example model discussed in Section 3.2 whose decomposition hier-
archy is given in Figure 3, six possible antichain-nodes can be derived from the



decomposition hierarchy, denoted by the set of scc-nodes that are collapsed.
They are ordered in a lattice as shown in Figure 4.

3.5 Implementation

We have implemented the model decomposition technique [1]. The implemen-
tation takes a model of any metamodel that follows Definition 1 as input, and
computes the decomposition hierarchy of it from which the sub-model lattice
can be constructed by enumerating all the antichain-nodes of the decomposition
hierarchy. Note that in the worst case where the decomposition hierarchy con-
tains no edges, the size of the sub-model lattice equals the size of the power-set
of the decomposition hierarchy, which is exponential.

4 Application: Pruning based Model Comprehension

In this section, we demonstrate the power of our generic model decomposition
technique by reporting one of its applications in a pruning-based model com-
prehension method. A typical comprehension question one would like to have
answered for a large model is:

Given a set of instances of interest in the model, how does one
construct a substantially smaller sub-model that is relevant for
the comprehension of these instances?

Model readers, when confronted with such a problem, would typically start
from the interesting instances and browse through the whole model attempting
to manually identify the relevant parts. Even with the best model documentation
and the support of model browsing tools, such a task may still be too complicated
to solve by hand, especially when the complexity of the original model is high.
Moreover, guaranteeing by construction that the identified parts (together with
the interesting instances) indeed constitute a valid model further complicates
the problem.

Our model decomposition technique can be exploited to provide a linear time
automated solution to the problem above. The idea is to simply take the union
of all the scc-nodes, each of which contains at least one interesting instance, and
their descendant scc-nodes in the decomposition hierarchy of the original model.
We have implemented the idea in a Ecore [9] model comprehension tool [1] based
on the implementation of the model decomposition technique.

To assess the applicability of the tool, a case study has been carried out.
We have chosen the Ecore model of BPMN (Business Process Modeling No-
tation) [11] bpmn.ecore as an example, and one of BPMN’s main concepts –
Gateway – for comprehension. Gateways are modeling elements in BPMN used
to control how sequence flows interact as they converge and diverge within a busi-
ness process. Five types of gateways are identified in order to cater to different
types of sequence flow control semantics: exclusive, inclusive, parallel, complex,
and event-based.



Fig. 5. Bird’s Eye View of the Class diagram of the BPMN Ecore model

Inputs to the comprehension tool for the case study are the following:

– The BPMN Ecore model containing 134 classes (EClass instances), 252 prop-
erties (EReference instances), and 220 attributes (EAttribute instances). Al-
together, it results in a very large class diagram that does not fit on a single
page if one wants to be able to read the contents properly. Figure 5 shows
the bird’s eye view of this huge diagram.

– a set of interesting instances capturing the key notions of the design of gate-
ways in BPMN: Gateway, ExclusiveGateway, InclusiveGateway, ParallelGate-
way, ComplexGateway, and EventBasedGateway.

After applying the tool, the result BPMN sub-model that contains all the
selected interesting instances has only 17 classes, 7 properties, and 21 attributes.
We observe that all the other independent concepts of BPMN such as Activity,
Event, Connector, and Artifact, are pruned out. The class diagram view of the
pruned BPMN model is shown in Figure 6. Note that it corresponds well to
the class diagram that is sketched in the chapter for describing gateways in the
BPMN 2.0 specification [11]. We have also verified that the pruned BPMN model
is indeed an Ecore instance by validating it against ecore.ecore in EMF [9].

5 Conclusion and Future Work

The lattice of sub-models described in this paper should have applications be-
yond the application for model comprehension described in this paper. We foresee
potential applications in the areas of model testing, debugging, and model reuse.

Given a software that takes models of a metamodel as input (e.g., a model
transformation), an important part in testing the software is test case generation.
Our model decomposition technique could help with the generation of new test
cases by using one existing test case as the seed. New test cases of various
complexity degree could be automatically generated following the sub-model
lattice of the seed test case.

Moreover, our model decomposition can also help with the debugging activity
when a failure of the software is observed on a test case. The idea is that we will
find a sub-model of the original test case which is responsible for triggering the



Fig. 6. Pruned class diagram for understanding the Gateway concept in BPMN.

bug. Although both the reduced test case and the original one are relevant, the
smaller test case is easier to understand and investigate.

A major obstacle to the massive model reuse in model-based software engi-
neering is the cost of building a repository of reusable model components. A more
effective alternative to creating those reusable model components from scratch is
to discover them from existing system models. Sub-models of a system extracted
by following our model decomposition technique are all guaranteed to be valid
models hence can be wrapped up into modules and reused in the construction
of other systems following our modular model composition paradigm [6].

Our model decomposition technique, described in this paper can be further
improved: indeed it is currently based on three sufficient conditions that are
not necessary. A consequence of this is that not all conformant sub-models are
captured in the lattice of sub-models. A finer analysis of the constraints in the
metamodel could result in weakening the three conditions and thus provide a
more complete collection of conformant sub-models.

Acknowledgment. We would like to thank the anonymous referees for mak-
ing numerous comments that helped us in improving the presentation of this
paper.



References

1. Democles tool. http://democles.lassy.uni.lu/.
2. Jung Ho Bae, KwangMin Lee, and Heung Seok Chae. Modularization of the UML

metamodel using model slicing. Fifth International Conference on Information
Technology: New Generations, 0:1253–1254, 2008.

3. F.K. Frantz. A taxonomy of model abstraction techniques. Winter Simulation
Conference, 0:1413–1420, 1995.

4. Huzefa Kagdi, Jonathan I. Maletic, and Andrew Sutton. Context-free slicing of
UML class models. In ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance, pages 635–638, Washington, DC, USA, 2005.
IEEE Computer Society.

5. Pierre Kelsen and Qin Ma. A generic model decomposition technique. Technical
Report TR-LASSY-10-06, Laboratory for Advanced Software Systems, Univer-
sity of Luxembourg, 2010. http://democles.lassy.uni.lu/documentation/TR_

LASSY_10_06.pdf.
6. Pierre Kelsen and Qin Ma. A modular model composition technique. In the Pro-

ceedings of13th International Conference on Fundamental Approaches to Software
Engineering, (FASE 2010), volume LNCS 56013, pages 173–187, 2010.

7. OMG. Object Constraint Language version 2.2, February 2010.
8. Sagar Sen, Naouel Moha, Benoit Baudry, and Jean-Marc Jézéquel. Meta-model

pruning. In MoDELS, pages 32–46, 2009.
9. Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:

Eclipse Modeling Framework, 2nd Edition. Addison-Wesley Professional, 2008.
10. Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.

Comput., 1(2):146–160, 1972.
11. Stephen A. White and Derek Miers. BPMN Modeling and Reference Guide. Future

Strategies Inc., 2008.


