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Abstract. Complex cryptographic protocols are often designed from simple cryp-
tographic primitives, such as signature schemes, encryption schemes, verifiable
random functions, and zero-knowledge proofs, by bridging between them with
commitments to some of their inputs and outputs. Unfortunately, the known uni-
versally composable (UC) functionalities for commitments and the cryptographic
primitives mentioned above do not allow such constructions of higher-level proto-
cols as hybrid protocols. Therefore, protocol designers typically resort to primitives
with property-based definitions, often resulting in complex monolithic security
proofs that are prone to mistakes and hard to verify.
We address this gap by presenting a UC functionality for non-interactive commit-
ments that enables modular constructions of complex protocols within the UC
framework. We also show how the new functionality can be used to construct
hybrid protocols that combine different UC functionalities and use commitments
to ensure that the same inputs are provided to different functionalities. We further
provide UC functionalities for attribute tokens and revocation that can be used as
building blocks together with our UC commitments. As an example of building a
complex system from these new UC building blocks, we provide a construction (a
hybrid protocol) of anonymous attribute tokens with revocation. Unlike existing
accumulator-based schemes, our scheme allows one to accumulate several revo-
cation lists into a single commitment value and to hide the revocation status of a
user from other users and verifiers.

Keywords: universal composability, commitments, attribute tokens, revocation,
vector commitments

1 Introduction

Complex cryptographic protocols are often designed from simple cryptographic prim-
itives, such as signature schemes, encryption schemes, verifiable random functions,
zero-knowledge proofs, and commitment schemes. Proving the security of such cryp-
tographic protocols as well as verifying their security proofs are far from trivial and
rather error-prone. Composability frameworks such as the Universal Composability (UC)
framework [6] can help here. They guarantee that cryptographic primitives remain secure
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under arbitrary composition and thus enable a modular design and security analysis of
cryptographic protocols constructed from such primitives. That is, they allow one to
describe higher-level protocols as hybrid protocols that use the ideal functionalities of
primitives rather than their realizations. Unfortunately, the known UC functionalities for
cryptographic primitives allow only for very simple hybrid protocols, and thus protocols
found in the literature foremost use basic ideal functionalities, such as the common
reference string functionality FCRS, registration functionality FREG, and secure mes-
sage transmission functionality FSMT, and resort to constructions with property-based
primitives, which typically results in complex monolithic security proofs that are prone
to mistakes and hard to verify.

Consider for instance a two-party protocol where one party needs to compute a
complex function F (that might include commitments, signatures, encryption, and zero-
knowledge proofs) on the input and send the output to the second party. The original input
of the first party might be hidden from the second party. The most common approach
for building such a protocol is to describe the ideal functionality for that function F ,
provide a monolithic realization, and prove that the latter securely implements the former.
Following this approach, however, will result into a complex security proof.

A better approach would be a modular construction that breaks down the complex
function into smaller building blocks each realized by a separate functionality. This
will result in much simpler and structured protocols and proofs. However, this con-
struction approach requires a mechanism to ensure that the input values to different
subfunctionalities are the same. The most natural way to implement such a mechanism
is to use cryptographic commitment functionality (FCOM) and build a realization in the
FCOM-hybrid model.

In a nutshell, the hybrid protocol would work as follows. The ideal functionalities
of the building blocks are modified in such a way that they also accept commitments
to the input values as input. When a party needs to guarantee that the inputs to two or
more functionalities are equal, the party first sends that input value to the commitment
functionality to obtain a commitment and the corresponding opening, and then sends
the input to those functionalities along with the commitment and the opening. When the
second party receives a commitment it can perform the verification without learning the
original input value.

As a concrete example, consider a privacy-preserving attribute-based credential
system [3] that uses a commitment to a revocation handle to bridge a proof of knowledge
of a signature that signs the revocation handle with a proof that the committed revocation
handle is not revoked. The commitment guarantees that the same revocation handle is
used in both proofs even if they are computed separately by different building blocks.
This allows the composition of a protocol for proving possession of a signature with a
protocol for proving non-revocation using commitments. The construction, definitions,
and security proofs of such systems are all property-based and indeed rather complex [3].
Simplifying such a construction and its security proofs by using the UC model seems very
attractive. However, that requires an ideal functionality for commitments that mirrors the
way property-based primitives are combined with commitments. Unfortunately, none of
the existing UC functionalities for commitments [6, 9, 8, 11, 15, 17, 16, 19, 12] fit this bill
because they do not output cryptographic values or implement any other mechanism to
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ensure that a committed message is equal to the input of other functionalities. With the
existing functionalities for commitments, the committer sends the committed message
to the functionality, which informs the verifying party that a commitment has been
sent. When the committer wishes to open the commitment, the functionality sends the
message to the verifying party. Because no cryptographic value is ever output by the
known functionalities, they cannot be used in our revocation example to guarantee the
equality of the revocation handle or in any other similar case where one has to ensure that
the message sent as input to the functionality for commitments equals the message sent
as input to other functionalities. However, as we shall see, outputting just a cryptographic
value for a commitment will not be sufficient.

1.1 UC Non-interactive Commitments for Hybrid Protocols

We provide a new ideal functionality FNIC for commitments. The main differences
between FNIC and the existing commitment functionalities are that ours outputs cryp-
tographic values and is non-interactive. In this respect it is similar to the signature
functionality FSIG [8].

Our functionality behaves as follows. When a party wishes to commit to a message,
FNIC computes a cryptographic commitment and an opening for that commitment (using
algorithms provided by the simulator/environment upon initialization) and sends them
as output to the calling party. When a party wishes to verify a commitment, it sends
the commitment, the message and the opening to the functionality, which verifies the
commitment and sends the verification result to the party. Therefore, our functionality
does not involve interaction between a committer and a verifier. Furthermore, when
a party requests a commitment to a message, the identity of the verifier is not sent to
the functionality. Analogously, when a party verifies a commitment, the identity of the
committer is not sent to the functionality.

FNIC ensures that commitments are hiding and binding. We show that FNIC can be
realized by a standard commitment scheme that is binding and has a trapdoor (which
implies it is hiding), such as the Pedersen commitment scheme [22]. All extra properties,
such as non-malleability, simulation-sound trapdoor [18], etc., that are required to con-
struct the standard UC functionalities are not necessary. We prove that the construction
realizes FNIC in the FCRS-hybrid model, which is also required for UC commitments
in general [8].

There are protocols, however, that require extractable commitments. This is similar to
requiring extractability in zero-knowledge proofs (ZKP). For some protocols, extractabil-
ity is needed and thus a functionality for ZKP of knowledge must be used, whereas for
other protocols sound ZKPs are sufficient and it is possible (and more efficient) to use a
functionality for zero-knowledge that does not require extractability.

Therefore, we also propose an ideal functionality FENIC for extractable commit-
ments and give a construction that realizes FENIC. We compare both functionalities in
Section 3.1 and explain why FNIC suffices for some cases.
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1.2 Modular Protocol Design in FNIC-Hybrid Model

Our ideal functionality for commitments can be used to construct higher-level protocols
in a hybrid model because it allows one to bridge different ideal functionalities. To
this end, the ideal functionalities of the building blocks can be modified so that their
input values are accompanied by commitments and corresponding openings. These
commitment and opening values are generated by the party providing the input using
FNIC. Then, to convince a second party that the same inputs were provided to different
functionalities, the first party sends the commitments to the second party, who will then
also input the commitments to the different functionalities. For this to work, the building-
block functionalities need to validate the commitments received and check whether
the openings provided are correct. As functionalities cannot interact with each other,
a verification algorithm COM.Verify needs to be provided as part of the commitment
for local verification. The main challenge now is to ensure that a local verification
implies a global binding property enforced by FNIC. We show how this challenge can
be overcome.

We remark that our technique for modular protocol design based on FNIC is very
general. Any functionality that needs to be used in a protocol can be amended to receive
committed inputs and to check those inputs by running COM.Verify. Therefore, our
technique allows one to modularly describe a wide variety of hybrid protocols in the UC
model. Moreover, we believe a similar approach could also be applied to functionalities
that output cryptographic values that need to be verified inside other functionalities.

1.3 Example: Flexible Revocation for Attribute-Based Credentials

As a real-life example of building a complex system from our UC building blocks,
we provide a construction for anonymous attribute tokens with revocation. We first
provide the respective ideal functionalities for revocation and attribute tokens (signatures
with the proofs of knowledge of signature possession). Then, we construct a protocol
that uses those functionalities together with FNIC to compose a protocol for proving
possession of a non-revoked credential (signature). In fact, unlike existing accumulator-
based schemes, our new scheme allows one to accumulate several revocation lists into a
single commitment value and to hide the revocation status of a user from other users and
verifiers.

In the literature, different privacy-preserving revocation mechanisms have been
proposed for attribute-based credentials, such as signature lists [20], accumulators [5,
21, 1], and validity refreshing [2]. We provide a detailed overview of the related work on
revocation in the full version of this paper. In some cases, credentials need to be revoked
globally, e.g., when the related secret keys have been exposed, the attribute values have
changed, or the user loses her right to use a credential. Often, credentials may be revoked
only for specific contexts, i.e., when a user is not allowed to use her credential with a
particular verifier, but can still use it elsewhere.

In such scenarios, the revocation authority needs to maintain multiple revocation
lists. Because of their binary value limitation, the existing revocation systems require
a separate application of a revocation mechanism for each list. This imposes an extra
storage and computational overhead, not only to the users, but also to the revocation
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authority. Furthermore, in signature lists and accumulators, the revocation lists are
disclosed to the other users and verifiers.

We propose a mechanism that allows one to commit several revocation lists into a
single commitment value. Each user needs only one witness for all the revocation lists.
Using this witness, a user can prove in a privacy-preserving manner the revocation status
of her revocation handle in a particular revocation list.

We provide two ideal functionalities FREV for revocation and propose two different
constructions built from the vector commitments [10]. The first one hides the revocation
status of a user from other users and from the verifiers, whereas in the second one, as
for accumulators, revocation lists are public. Additionally, our schemes are flexible in
the sense that revocation lists can be added (up to a maximum number) and removed
without any cost, i.e., the cost is the same as for a revocation status update that does not
change the number of lists, whereas accumulators would require one to set up a new
accumulator and to issue witnesses to users, or delete them.

We note that aside from extending the standard revocation scenario with a central
revocation authority and multiple revocation lists, our revocation schemes can be used to
build an efficient dynamic attribute-based access control system in a very elegant way.
Instead of issuing a list of credentials to each user, each certifying a certain attribute or
role, in our revocation scheme a user can be issued just one base credential, which can
be made valid or revoked for any context. The resulting solution saves the users, verifiers
and the revocation authority a lot of storage and computational effort. That is, instead of
having multiple credentials and corresponding revocation witnesses, a single credential
and a single witness suffice to achieve the same goal.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we introduce the
notation and conventions used to describe functionalities and their realizations in the UC
model. In Section 3, we provide the ideal functionalities for non-interactive commitments
and extractable commitments, and show the corresponding constructions that securely
realize those functionalities. We also describe the generic approach of how to build
modular constructions in the FNIC-hybrid model and to prove them secure. In Section 4,
we describe the ideal functionalities for revocation, FREV, and for attribute tokens, FAT.
In Section 5, we describe an ideal functionality for attribute tokens with revocation, FTR,
and provide a hybrid construction, ΠTR, that uses FNIC, FREV and FAT to realize FTR.
We prove that the construction ΠTR realizes FTR in that section.

2 Universally Composable Security

The universal composability framework [6] is a framework for defining and analyzing
the security of cryptographic protocols so that security is retained under arbitrary com-
position with other protocols. The security of a protocol is defined by means of an ideal
protocol that carries out the desired task. In the ideal protocol, all parties send their
inputs to an ideal functionality F for the task. The ideal functionality locally computes
the outputs of the parties and provides each party with its prescribed output.
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The security of a protocol ϕ is analyzed by comparing the view of an environment
Z in a real execution of ϕ against that of Z in the ideal protocol defined in Fϕ. The
environment Z chooses the inputs of the parties and collects their outputs. In the real
world, Z can communicate freely with an adversary A who controls both the network
and any corrupt parties. In the ideal world, Z interacts with dummy parties, who simply
relay inputs and outputs between Z and Fϕ, and a simulator S. We say that a protocol
ϕ securely realizes Fϕ if Z cannot distinguish the real world from the ideal world, i.e.,
Z cannot distinguish whether it is interacting with A and parties running protocol ϕ or
with S and dummy parties relaying to Fϕ.

2.1 Notation

Let k ∈ N denote the security parameter and a ∈ {0, 1}∗ denote an input. Two binary
distribution ensembles X = {X(k, a)}k∈N,a∈{0,1}∗ and Y = {Y (k, a)}k∈N,a∈{0,1}∗
are indistinguishable (X ≈ Y ) if for any c, d ∈ N there exists k0 ∈ N such that for all
k > k0 and all a ∈ ∪κ≤kd{0, 1}κ, |Pr [X(k, a) = 1] − Pr [Y (k, a) = 1]| < k−c. Let
REALϕ,A,Z(k, a) denote the distribution given by the output of Z when executed on
input a with A and parties running ϕ, and let IDEALFϕ,S,Z(k, a) denote the output
distribution of Z when executed on input a with S and dummy parties relaying to Fϕ.
We say that protocol ϕ securely realizes Fϕ if, for all polynomial-time A, there exists a
polynomial-time S such that, for all polynomial-time Z , REALϕ,A,Z ≈ IDEALFϕ,S,Z .

A protocol ϕG securely realizesF in the G-hybrid model when ϕ is allowed to invoke
the ideal functionality G. Therefore, for any protocol ψ that securely realizes functionality
G, the composed protocol ϕψ, which is obtained by replacing each invocation of an
instance of G with an invocation of an instance of ψ, securely realizes F .

2.2 Conventions

When describing ideal functionalities, we use the following conventions:

Interface Naming Convention. An ideal functionality can be invoked by using one or
more interfaces. The name of a message in an interface consists of three fields separated
by dots, e.g., com.setup.ini in the commitment functionality described in Section 3.1.
The first field indicates the name of the functionality and is the same in all interfaces of
the functionality. This field is useful for distinguishing between invocations of different
functionalities in a hybrid protocol that uses two or more different functionalities. The
second field indicates the kind of action performed by the functionality and is the
same in all messages that the functionality exchanges within the same interface. The
third field distinguishes between the messages that belong to the same interface, and
can take six different values. A message ∗. ∗ .ini is the incoming message received by
the functionality, i.e., the message through which the interface is invoked. A message
∗. ∗ .end is the outgoing message sent by the functionality, i.e., the message that ends
the execution of the interface. The message ∗. ∗ .sim is used by the functionality to
send a message to the simulator, and the message ∗. ∗ .rep is used to receive a message
from the simulator. The message ∗. ∗ .req is used by the functionality to send a message
to the simulator to request the description of algorithms from the simulator, and the

6



message ∗. ∗ .alg is used by the simulator to send the description of those algorithms to
the functionality.

Subsession identifiers. Some interfaces in a functionality can be invoked more than once.
When the functionality sends a message ∗. ∗ .sim to the simulator in such an interface,
a subsession identifier ssid is included in the message. The subsession identifier must
also be included in the response ∗. ∗ .rep sent by the simulator. The subsession identifier
is used to identify the message ∗. ∗ .sim to which the simulator replies with a message
∗. ∗ .rep. We note that, typically, the simulator in the security proof may not be able to
provide an immediate answer to the functionality after receiving a message ∗. ∗ .sim.
The reason is that the simulator typically needs to interact with the copy of the real
adversary it runs in order to produce the message ∗. ∗ .rep, but the real adversary may
not provide the desired answer or may provide a delayed answer. In such cases, when
the functionality sends more than one message ∗. ∗ .sim to the simulator, the simulator
may provide delayed replies, and the order of those replies may not follow the order of
the messages received.

Aborts. When we say that an ideal functionality F aborts after being activated with
a message (∗, . . .), we mean that F stops the execution of the instruction and sends a
special abortion message (∗,⊥) to the party that invoked the functionality.

Network vs. local communication. The identity of an interactive Turing machine (ITM)
instance (ITI) consists of a party identifier pid and a session identifier sid . A set of
parties in an execution of a system of ITMs is a protocol instance if they have the same
session identifier sid . ITIs can pass direct inputs to and outputs from “local” ITIs that
have the same pid . An ideal functionality F has pid = ⊥ and is considered local to all
parties. An instance of F with the session identifier sid only accepts inputs from and
passes outputs to machines with the same session identifier sid . Some functionalities
require the session identifier to have some structure. Those functionalities check whether
the session identifier possesses the required structure in the first message that invokes the
functionality. For the subsequent messages, the functionality implicitly checks that the
session identifier equals the session identifier used in the first message. Communication
between ITIs with different party identifiers must take place over the network. The
network is controlled by the adversary, meaning that he can arbitrarily delay, modify,
drop, or insert messages.

Delayed outputs. We say that an ideal functionality F sends a public delayed output
v to a party P if it engages in the following interaction. F sends to simulator S a note
that it is ready to generate an output to P . The note includes value v, identity P , and
a unique identifier for this output. When S replies to the note by echoing the unique
identifier, F outputs the value v to P . A private delayed output is similar, but value v is
not included in the note.

3 UC Non-Interactive Commitments

In existing commitment functionalities [8], the committer sends the committed message
to the functionality, which informs the verifying party that a commitment has been sent.
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When the committer wishes to open the commitment, the functionality sends the message
to the verifying party.

In contrast, our commitment functionalities do not involve any interaction between
committer and verifier. In our commitment functionality, any party is allowed to request a
commitment, and, when doing so, the identity of the verifier is not specified. Analogously,
any party can verify a commitment, and the identity of the committer is not specified
during verification.

In Section 3.1, we describe two ideal functionalities for non-interactive commitments
FNIC and FENIC. Our commitment functionalities are similar to the functionalities of
public key encryption and signatures [8, 14, 7]. For example, the signature functionality
receives a message from the signer, computes a signature, and sends that signature
to the signer. A verifying party sends a message and a signature to the functionality,
which verifies the signature and sends the verification result. One of the reasons that the
signature functionality has a “signature string” as part of its interface is to support the
modularity of modeling complex protocols such as sending an encrypted signature [7].

Analogously, our ideal functionalities (unlike existing UC ideal functionalities for
commitments) can be used in a hybrid protocol that also uses other functionalities that
receive commitments as inputs. In a nutshell, a party would obtain a tuple (ccom, cm,
copen), which consists of a commitment, a message and an opening, from FNIC or
FENIC, and send (ccom, cm, copen) as input to the other functionalities. The use of
commitments as input to those functionalities is useful when it is necessary to ensure
that the inputs to those functionalities are equal.

For instance, our construction of anonymous attribute tokens with revocation in
Section 5.2 uses an anonymous attribute token functionality, FAT, and a revocation func-
tionality, FREV, that receive commitments output by FNIC as input. The commitments
allow us to prove that the revocation handle used as input to FREV equals the one used
as input to FAT.
FENIC requires commitments to be extractable, whereas FNIC does not. FNIC

suffices for our construction of anonymous attribute tokens with revocation described
in Section 5.2. The reason is that, in that construction, commitments are always sent
along with their openings or along with proofs of knowledge of their openings, which
provides the extraction property. In Section 3.4, we show that FNIC can be realized by
any trapdoor and binding commitment scheme. We describe a construction for FENIC

and prove its security in the full version of this paper.

3.1 Ideal Functionalities FNIC and FENIC for Non-Interactive Commitments

FNIC and FENIC are parameterized with the system parameters sp. This allows the
parameters of the commitment scheme to depend on parameters generated externally,
which could also be used in other schemes. For example, if a commitment scheme is
used together with a non-interactive zero-knowledge proof of knowledge scheme, sp
could include parameters shared by both the parameters of the commitment scheme and
the parameters of the proof of knowledge scheme.
FNIC and FENIC interact with parties Pi that create the parameters of the commit-

ment scheme and compute and verify commitments. The interaction between FNIC
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(or FENIC) and Pi takes place through the interfaces com.setup.∗, com.validate.∗,
com.commit.∗, and com.verify.∗.
1. Any party Pi can call the interface com.setup.∗ to initialize the functionality. Only

the first call will affect the functionality.
2. Any party Pi uses the interface com.validate.∗ to verify that ccom contains the

correct commitment parameters and verification algorithm.
3. Any party Pi uses the interface com.commit.∗ to send a message cm and then obtain

a commitment ccom and an opening copen .
4. Any party Pi uses the interface com.verify.∗ to verify that ccom is a commitment to

the message cm with the opening copen .
FNIC and FENIC use a table Tblcom. Tblcom consists of entries of the form [ccom,

cm, copen, u], where ccom is a commitment, cm is a message, copen is an opening, and
u is a bit whose value is 1 if the tuple (ccom, cm, copen) is valid and 0 otherwise.

In the figure below, we depict FNIC and FENIC and use a box to indicate those
computations that take place only in FENIC.

Functionality FNIC and FENIC

FNIC and FENIC are parameterized by system parameters sp. The following
COM.TrapCom, COM.TrapOpen, COM.Extract, and COM.Verify are ppt algorithms.

1. On input (com.setup.ini, sid) from a party Pi:

(a) If (sid , cparcom,COM.TrapCom,COM.TrapOpen, COM.Extract, COM.Verify,

ctdcom) is already stored, include Pi in the set P, and send a delayed output
(com.setup.end, sid ,OK ) to Pi.

(b) Otherwise proceed to generate a random ssid , store (ssid ,Pi) and send
(com.setup.req, sid , ssid) to S.

S. On input (com.setup.alg, sid , ssid ,m) from S:
(a) Abort if no pair (ssid ,Pi) for some Pi is stored.
(b) Delete record (ssid ,Pi).
(c) If (sid , cparcom,COM.TrapCom,COM.TrapOpen, COM.Extract, COM.Verify,

ctdcom) is already stored, include Pi in the set P and send (com.setup.end, sid ,OK )
to Pi.

(d) Otherwise proceed as follows.
i. Parse m as (cparcom,COM.TrapCom,COM.TrapOpen, COM.Extract,

COM.Verify, ctdcom).
ii. Store (sid , cparcom,COM.TrapCom,COM.TrapOpen, COM.Extract,

COM.Verify, ctdcom) and initialize both an empty table Tblcom and an empty
set P.

iii. Include Pi in the set P and send (com.setup.end, sid ,OK ) to Pi.
2. On input (com.validate.ini, sid , ccom) from a party Pi:

(a) Abort if Pi /∈ P.
(b) Parse ccom as (ccom ′, cparcom ′,COM.Verify′).
(c) Set v ← 1 if cparcom ′ = cparcom and COM.Verify′ = COM.Verify. Otherwise,

set v ← 0.
(d) Send (com.validate.end, sid , v) to Pi.
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3. On input (com.commit.ini, sid , cm) from any honest party Pi:
(a) Abort if Pi /∈ P or if cm /∈M, whereM is defined in cparcom .
(b) Compute (ccom, cinfo)← COM.TrapCom(sid , cparcom, ctdcom).
(c) Abort if there is an entry [ccom, cm ′, copen ′, 1] in Tblcom such that cm 6= cm ′ in

Tblcom.
(d) Run copen ← COM.TrapOpen(sid , cm, cinfo).
(e) Abort if 1 6= COM.Verify(sid , cparcom, ccom, cm, copen).
(f) Append [ccom, cm, copen, 1] to Tblcom.
(g) Set ccom ← (ccom, cparcom,COM.Verify).
(h) Send (com.commit.end, sid , ccom, copen) to Pi.

4. On input (com.verify.ini, sid , ccom, cm, copen) from any honest party Pi:
(a) Abort if Pi /∈ P or if cm /∈ M or if copen /∈ R, whereM and R are defined in

cparcom .
(b) Parse ccom as (ccom ′, cparcom ′,COM.Verify′). Abort if cparcom ′ 6= cparcom or

COM.Verify′ 6= COM.Verify.
(c) If there is an entry [ccom ′, cm, copen, u] in Tblcom, set v ← u.
(d) Else, proceed as follows:

i. If there is an entry [ccom ′, cm ′, copen ′, 1] in Tblcom such that cm 6= cm ′, set
v ← 0.

ii. Else, proceed as follows:

A. If cm 6= COM.Extract(sid , ctdcom, ccom ′), set v ← 0. Else:

B. Set v ← COM.Verify(sid , cparcom, ccom ′, cm, copen).
C. Append [ccom ′, cm, copen, v] to Tblcom.

(e) Send (com.verify.end, sid , v) to Pi.

We now discuss the four interfaces of the ideal functionalities FNIC and FENIC. We
mention FENIC only in those computations that are exclusive to FENIC.
1. The com.setup.ini message is sent by any party Pi. If the functionality has not yet

been initialized, it will trigger a com.setup.req message to ask the simulator S to
send algorithms COM.TrapCom, COM.TrapOpen, COM.Extract, and COM.Verify,
the commitment parameters and the trapdoor. Once the simulator has provided the
algorithms for the first time, FNIC stores the algorithms, the commitment parameters
cparcom and the trapdoor ctdcom , and then notifies Pi that initialization was success-
ful. If the functionality has already been set up, Pi is just told that initialization was
successful.

2. The com.validate.ini message is sent by an honest party Pi. FNIC checks if Pi has
already run the setup. This is needed because otherwise in the real-world protocol
the party would have to retrieve the parameters to validate the commitment, and
this retrieval cannot be simulated because FNIC enforces that the validation of a
commitment must be local. The computation and verification of commitments are also
local. FNIC parses the commitment, and checks if the parameters and the verification
algorithm from the commitment match with those stored by the functionality.

3. The com.commit.ini message is sent by any honest party Pi on input a message cm .
FNIC aborts if Pi did not run the setup. FNIC runs the algorithm COM.TrapCom on
input cparcom and ctdcom to get a simulated commitment ccom and state information
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cinfo. COM.TrapCom does not receive the message cm to compute ccom , and there-
fore a commitment scheme that realizes this functionality must fulfill the hiding prop-
erty.FNIC also aborts if the table Tblcom already stores an entry [ccom, cm ′, copen ′, 1]
such that cm 6= cm ′ because this would violate the binding property. FNIC runs the
algorithm COM.TrapOpen on input cm and cinfo to get an opening copen and checks
the validity of (ccom, cm, copen) by running COM.Verify. If COM.Verify outputs
1, FNIC stores [ccom, cm, copen, 1] in Tblcom, appends (cparcom,COM.Verify) to
ccom , and sends (ccom, copen) to Pi.

4. The com.verify.ini message is sent by any honest party Pi on input a commitment
ccom , a message cm and an opening copen . FNIC aborts if Pi did not run the setup. If
there is an entry [ccom, cm, copen, u] already stored in Tblcom, then the functionality
returns the bit u. Therefore, a commitment scheme that realizes this functionality must
be consistent. If there is an entry [ccom, cm ′, copen ′, 1] such that cm 6= cm ′, the
functionality returns 0. Therefore, a scheme that realizes the functionality must fulfill
the binding property. Else, in FENIC, the functionality checks whether the output of
COM.Extract equals the message sent for verification and rejects the commitment if
that is not the case. Then, the functionality runs the algorithm COM.Verify to verify
(ccom, cm, copen). The functionality records the result in Tblcom and returns that
result.

The functionality FNIC does not allow the computation and verification of com-
mitments using any parameters cparcom that were not generated by the functionality.
As can be seen, the interfaces com.commit.∗ and com.verify.∗ use the commitment
parameters that are stored by the functionality to compute and verify commitments.
Therefore, a construction that realizes this functionality must ensure that the honest
parties use the same commitment parameters. In general, such a “CRS-based” setup is
required to realize UC commitments [8].

We note that we introduce the com.validate.∗ interface so that the parties can ensure
that the commitment contains the right parameters and verification algorithm. This is
needed especially for the parties that only receive a commitment value, without the
opening. Otherwise, the com.verify.∗ interface can be called directly. Another way of
doing this is to introduce an interface in the commitment functionality that returns the
parameters and verification algorithm and require parties to call it first and compare the
received parameters with the ones from the commitment.

3.2 Binding and hiding properties of FNIC and FENIC

Let us analyse the security properties of our two commitment functionalities. While
inspection readily shows that both functionalities satisfy the standard binding and hiding
properties, this merits some discussion.

We first note that both functionalities are perfectly hiding (because the commitment
is computed independently of the message to be committed) and perfectly binding (the
functionalities will accept only one value per commitment as committed value). Both
properties being perfect seems like a contradiction, but it is not because the functionalities
will only be computationally indistinguishable from their realizations. This implies of
course that only computationally binding and hiding are enforced onto realizations.
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Having said this, the binding property of FNIC merits further discussion, because,
although it is guaranteed that adversarially computed commitments (outside FNIC)
can only be opened in one way, it is conceivable that an adversary could produce a
commitment that it could open in two ways, and then, depending on its choice, provide
one or the other opening, which would be allowed by FNIC. This seems like a weaker
property than what a traditional commitment scheme offers. There, after computing a
commitment on input a message, that commitment can only be opened to that message.
In this respect, we first remark that for traditional, perfectly hiding commitments, this
might also be possible (unless one can extract more than one opening from an adversary,
for instance, via rewinding). Second, we can show the following proposition, stating
that for all realizations of FNIC, no adversary is actually able to provide two different
openings for adversarially generated commitments (the proof is provided in the full
version of this paper).

Proposition 1. For any construction ΠNIC that realizes FNIC, there is no algorithm
COM.Verify input by the simulator SNIC to FNIC such that, for any tuples (ccom, cm,
copen) and (ccom, cm ′, copen ′) such that cm 6= cm ′, 1 = COM.Verify(sid , cparcom,
ccom, cm, copen) and 1 = COM.Verify(sid , cparcom, ccom, cm ′, copen ′).

Let us finally note that the behaviour of FENIC is different here, i.e., if the extraction
algorithm is deterministic, it is guaranteed that there exists only one value to which a
commitment can be opened.

3.3 Using FNIC in Conjunction with Other Functionalities

We turn to our main goal, namely how FNIC can be used to ensure that the same value is
used as input to different functionalities or that an output from one functionality is used
as an input to another functionality. We show the first case in detail with a toy example
and then discuss the second case.

Ensuring Consistent Inputs. Let us consider the case where a construction requires that
one party provides the same value to two (or more) different functionalities. To achieve
this, the two functionalities need to get as input that value and also a commitment to
that value and the corresponding opening value. It is further necessary that 1) also the
other parties input the same commitment to the functionalities (or, alternatively, get the
commitment from the functionalities and then check that they get the same commitment
from them); 2) it is verified that the commitment is valid w.r.t. FNIC, and that 3) the
functionalities are able to somehow verify whether the value provided is indeed contained
in the commitment. For the last item, it would seem natural that FNIC would be queried,
but the UC framework does not allow that, and therefore we need to use a different
mechanism: the commitments themselves contain a verification algorithm such that if
the algorithm accepts an opening, then it is implied that FNIC would also accept the
value and the opening for that commitment.

To enable this, let us start with two observations. In Proposition 1, we showed that
COM.Verify will only accept one opening per adversarially computed commitment.
However, this is not sufficient, because COM.Verify could accept different openings for
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commitments computed byFNIC because in that caseFNIC does not invoke COM.Verify
when processing requests to com.verify.ini and it is indeed conceivable that COM.Verify
could behave differently.

However, for any secure realization ΠNIC, calls to the algorithm com.verify.ini of
ΠNIC are indistinguishable from calls on the com.verify.ini interface to FNIC‖SΠNIC

,
and com.verify.ini must be a non-interactive algorithm. Therefore, if SΠNIC

(i.e., the
simulator such thatFNIC‖SΠNIC

is indistinguishable fromΠNIC) provides the real-world
algorithm com.verify.ini of ΠNIC as COM.Verify() algorithm to FNIC, then calling
COM.Verify() in another functionality to verify an opening and committed message
w.r.t. a commitment will necessarily produce the same result as a call to the com.verify.ini
interface to FNIC‖SΠNIC

. We will use the latter in an essential way when composing
different functionalities, as we will illustrate with an example in the following.

We note that the assumption that SΠNIC
provides the algorithms to FNIC‖SΠNIC

that
are used in the real world is natural and not a serious restriction. After all, the purpose of
defining a functionality using cryptographic algorithms is that the functionality specifies
the behavior of the real algorithms, especially those that are used to verify cryptographic
values. Assuming that the calls com.commit.ini and com.verify.ini to ΠNIC are local
to the calling parties is also natural as this is how traditional commitment schemes are
realized.

Furthermore, we note that FNIC restricts SΠNIC
to send the real-world verifica-

tion algorithm as COM.Verify. The reason is that FNIC outputs COM.Verify inside
ccom through the (com.commit.end, sid , ccom, copen) message. In the real world,
any construction for FNIC outputs the real-world verification algorithm through the
(com.commit.end, sid , ccom, copen) message. Therefore, because the outputs in the
real-word and in the ideal-world must be indistinguishable, any simulator must input
the real-world verification algorithm as COM.Verify to FNIC. Otherwise the message
com.commit.end in the ideal world can be distinguished from that in the real world by
the environment.

We are now ready to show how our goal can be achieved using a toy example. To this
end, let us define three two party functionalities F1, F2, and F(1,2). The first two F1 and
F2 compute the function f1(·) and f2(·), respectively, on P1’s input and send the result
to P2. Analogously, F(1,2) computes (f1(·), f2(·)) on P1’s input and sends the result
to P2. Our goal is now to realize F(1,2) by a hybrid protocol Π(1,2) using F1 and F2

to compute f1(·) and f2(·), respectively, and FNIC to ensure that the inputs to both F1

and F2 are the same. To achieve this, F1 and F2 will take as inputs also commitments
and do some basic checks on them. These functionalities and construction Π(1,2) are as
follows.

Functionality Fi

1. On input (fi.in.ini, sid , a, ccom1, copen) from a party P1, check if sid = (P1, P2, sid
′)

for some P2 and sid ′, and no record is stored. If so, record (a, ccom1, copen) and send
(fi.in.end, sid) to P1, otherwise (fi.in.end, sid ,⊥) to P1.

2. On input (fi.eval.ini, sid , ccom2) from P2, check if sid = (P1, P2, sid
′) for some

P1 and sid ′, if a record (a, ccom1, copen) is stored, and if ccom1 = ccom2 and
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COM.Verify(sid , cparcom, ccom1, a, copen) = 1 holds. If so, send delayed (fi.eval.end,
sid , fi(a)) to P2. Otherwise send delayed (fi.eval.end, sid ,⊥) to P2.

Functionality F(1,2)

1. On input (f12.eval.ini, sid , a) from a party P1, check if sid = (P1, P2, sid
′). If

so, send delayed (f12.eval.end, sid , (f1(a), f2(a))) to P2 and otherwise send delayed
(f12.eval.end, sid ,⊥) to P1.

Construction Π(1,2)

1. On input (f12.eval.ini, sid , a), P1 proceeds as follows.
(a) i. P1 checks if sid = (P1, P2, sid

′).
ii. P1 calls FNIC with (com.setup.ini, sid) and receives (com.setup.end,

sid ,OK ).
iii. P1 calls FNIC with (com.commit.ini, sid , a) to receive (com.commit.end,

sid , ccom, copen).
iv. P1 calls F1 with (f1.in.ini, sid , a, ccom, copen) and receives (f1.in.end, sid).
v. P1 calls F2 with (f2.in.ini, sid , a, ccom, copen) and receives (f2.in.end, sid).

vi. P1 sends (smt.send.ini, sid , ccom) to P2 using FSMT.
(b) Upon receiving (smt.send.end, sid , ccom) from P1 via FSMT, P2 proceeds as fol-

lows.
i. P2 checks if sid = (P1, P2, sid

′).
ii. P2 calls FNIC with (com.setup.ini, sid) and receives (com.setup.end,

sid ,OK ).
iii. P2 calls FNIC with (com.validate.ini, sid , ccom).
iv. P2 calls F1 with (f1.eval.ini, sid , ccom) and receives (f1.eval.end, sid , f1(a)).
v. P2 calls F2 with (f2.eval.ini, sid , ccom) and receives (f2.eval.end, sid , f2(a)).

vi. P2 outputs (f12.eval.end, sid , (f1(a), f2(a))).
If at any step a party receives a wrong message from a functionality or some check fails, it
outputs (f12.eval.end, sid ,⊥).

We next show that Π(1,2) realizes F(1,2) and thereby give an example of a security
proof that uses FNIC and does not need to reduce to property-based security definitions
of a commitment scheme. Note that although formally we consider a FNIC‖SΠNIC

-
hybrid protocol, our example protocol Π(1,2) uses FNIC in the same way as any other
functionality, i.e., without having to consider the simulator SΠNIC for some realization
ΠNIC of FNIC.

Theorem 1. Assume that FNIC‖SΠNIC is indistinguishable from ΠNIC and that SΠNIC

provides ΠNIC’s verification algorithm as COM.Verify() to FNIC. Then Π(1,2) realizes
F(1,2) in the (FSMT,F1,F2,FNIC‖SΠNIC

)-hybrid model. FSMT [6] is described in the
full version.
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Proof. We provide a simulator SΠ(1,2)
and prove that F(1,2)‖SΠ(1,2)

is indistinguishable
from Π(1,2) if there exists a ΠNIC that realizes FNIC.

We consider four cases, depending on which party is corrupt. In case both P1 and P2

are corrupt, there is nothing to simulate. In case both parties are honest, the simulator
will be asked byF(1,2) to send (f12.eval.end, sid , (f1(a), f2(a))) to P2 and then proceed
as follows. First it initializes FNIC. It then picks a random value a′ and executes Π(1,2)

as P1 and P2 using a′ as the input of P1 and running FSMT, F1, F2, and FNIC‖SΠNIC

as they are specified, with exception that when F1 and F2 would output f1(a′) and
f2(a

′), respectively, to P2, the simulator instead make these two functionalities output
f1(a) and f2(a), respectively (which are the values SΠ(1,2)

had obtained earlier from
F(1,2)). If this protocol execution is successful, SΠ(1,2)

will let the delayed output
(f12.eval.end, sid , (f1(a), f2(a))) to P2 pass. Otherwise it will drop it, as it will have
already sent (f12.eval.end, sid ,⊥) to P2 or P1 according to the protocol specification.
It is not hard to see that this simulation will cause the same distribution on the values
sent to the adversary as the real protocol. The only difference is that the simulator uses
a different input value for P1 and the only other value that depends in a′ is copen (by
the specification of FNIC). As the environment/adversary never sees any of these two
values or any value that depends on it (which is seen by inspection of all simulated
functionalities and because f1(a′) and f2(a′) are replaced by f1(a) and f2(a) in the
outputs of F1 and F2), the argument follows.

As next case, assume that P1 is honest and P2 is corrupt. This case is similar
to the one where both are honest. The simulator proceeds the same way only that
it will not execute the steps of P2 and it will allow the delivery of the message
(f12.eval.end, sid , (f1(a), f2(a))) to P2. The argument that the simulation is successful
remains essentially the same. Here, the environment will additionally see ccom which,
as said before, does not depend on a′.

As last case, assume that P2 is honest and P1 is corrupt. Thus, SΠ(1,2)
interacts

with the adversarial P1 and the environment/adversary, simulating Π1,2 towards P1

and the functionalities FSMT, F1, F2, and FNIC‖SΠNIC
towards both the environment

and P1, and finally P1 towards F1,2. Simulation is straightforward: the simulator just
runs everything as specified, learning P1’s input a from P1’s input to FNIC‖SΠNIC

, F1,
and F2. If this simulation reaches Step 1(b)vi, SΠ(1,2)

will input that a to F(1,2) as P1,
causing it to send a delayed output (f12.eval.end, sid , (f1(a), f2(a))) to P2 for SΠ(1,2)

to deliver, which it will do. This simulation will be correct, as long as P1 cannot cause
F1 and F2 to send a result for a different input value. However, this cannot happen
because if both functionalities accept P1’s input, the committed value must be identical
thanks to the properties of COM.Verify (cf. discussion above). ut

Comparison with a Construction that Used a Standard Commitment Scheme. One could
of course also realizeF(1,2) with a construction that uses a standard commitment scheme,
i.e., one defined by property-based security definitions, instead of FNIC. The resulting
construction and the security proof would be less modular, comparable to a construction
that uses a standard signature scheme instead of FSIG. For the security proof, the overall
strategy would be rather similar, the main difference being that one would have to do
reductions to the properties of the commitment scheme, i.e., additional game hops. That
is, one would have to show that the binding property does not hold if an adversarial P1
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manages to send different inputs to F1 and F2. Also, one would have to show that the
hiding property does not hold if an adversarial P2 is able to distinguish between the real
protocols and the simulator that interacts with the functionality F(1,2) and thus has to
send P2 a commitment to a different value.

Ensuring an Output is used as an Input. Let us consider a two-party construction that
requires that an output from one functionality be used as an input to another functionality.
This can be achieved in different ways, the simplest way seems to be that the first party,
upon obtaining its output from the first functionality, calls FNIC to obtain a commitment
on that value and an opening and sends the commitment and the opening to the first
functionality. The first functionality will then check whether the commitment indeed
contains the output and, if so, will send the commitment to the second party who can
then use that commitment as input to the second functionality. We leave the details of
this to the reader.

3.4 Construction of UC Non-Interactive Commitments

We now provide our construction for UC non-interactive commitments. It uses a commit-
ment scheme (CSetup, Com, VfCom) that fulfils the binding and trapdoor properties [13].

Our construction works in the FCSetup
CRS -hybrid model, where parties use the ideal

functionality FCSetup
CRS that is parameterized by the algorithm CSetup, which takes as

input the system parameters sp.

Construction Πsp
NIC

ConstructionΠNIC is parameterized by system parameters sp, and uses the ideal functionality
FCSetup,sp

CRS and a commitment scheme (CSetup, Com, VfCom).
1. On input (com.setup.ini, sid), a party P executes the following program:

(a) Send (crs.setup.ini, sid) to FCSetup,sp
CRS to receive (crs.setup.end, sid , parc).

(b) Store (parc ,VfCom) and output (com.setup.end, sid ,OK ).
2. On input (com.validate.ini, sid , ccom), a party P executes the following program:

(a) If (parc ,VfCom) is not stored, abort.
(b) Parse ccom as (ccom ′, parc

′,VfCom′).
(c) Set v ← 1 if parc ′ = parc and VfCom′ = VfCom. Otherwise, set v ← 0.
(d) Output (com.validate.end, sid , v).

3. On input (com.commit.ini, sid , cm), a party P executes the following program:
(a) If (parc ,VfCom) is not stored, abort.
(b) Abort if cm /∈M, whereM is defined in parc .
(c) Run (com, open)← Com(parc , cm).
(d) Output (com.commit.end, sid , ccom ← (com, parc ,VfCom), open).

4. On input (com.verify.ini, sid , ccom, cm, copen), P executes the following program:
(a) If (parc ,VfCom) is not stored, abort.
(b) Abort if cm /∈M or if copen /∈ R, whereM andR are defined in parc .
(c) Parse ccom as (ccom ′, parc

′,VfCom′).
(d) If parc ′ = parc and VfCom′ = VfCom then run v ← VfCom(parc , ccom

′, cm,
copen). Otherwise, set v ← 0.

(e) Output (com.verify.end, sid , v).
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Theorem 2. The construction ΠNIC realizes FNIC in the FCSetup
CRS -hybrid model if the

underlying commitment scheme (CSetup, Com, VfCom) is binding and trapdoor.

We provide the proof in the full version of this paper.

4 The Ideal Functionalities FREV and FAT

We describe our ideal functionality for non-hiding and hiding revocation, FREV, in
Section 4.1. Our constructions for non-hiding and hiding revocation and their security
analysis can be found in the full version of this paper. The construction for non-hiding
revocation uses a non-hiding vector commitment scheme, whereas the hiding construc-
tion employs a trapdoor vector commitment scheme. In the full version of this paper we
also define the trapdoor property for vector commitments and propose a construction for
non-hiding and trapdoor vector commitments.

We describe our ideal functionality for attribute tokens, FAT, in Section 4.2. We
provide the construction and prove it secure in the full version of this paper.

4.1 Ideal Functionality for Revocation FREV

Here we describe our ideal functionality FREV for revocation. FREV interacts with a
revocation authorityRA, users U and any verifying parties P . The revocation authority
RA associates a revocation status x[rh] with every revocation handle rh . A revocation
status consists of m bits, such that each bit x[rh, j] denotes the revocation status of the
revocation handle rh with respect to the revocation list j ∈ [1,m]. The time is divided
into epochs ep, and the revocation authority RA can change the revocation status of
every revocation handle at the beginning of each epoch.

A user U can obtain a proof pr that the revocation status of the revocation handle
rh committed in a commitment ccom is x[rh, j] for the list j at the epoch ep. Given pr ,
ccom , x[rh, j], j, and ep, any party P can verify the proof pr .
FREV describes two ideal functionalities: a hiding revocation functionality where, if

the revocation authority is honest, the revocation status of a revocation handle is only
revealed to the user associated with that revocation handle, and a non-hiding revocation
functionality where the revocation statuses of all revocation handles are public. We
provide a unified description of both ideal functionalities. The box H: . . . is used to
describe something that occurs only in the hiding revocation functionality, whereas the
box NH: . . . is used in the same way for the non-hiding revocation functionality.
FREV interacts with the revocation authority RA, the users U and any verifying

parties P through the interfaces rev.setup.∗, rev.get.∗, rev.epoch.∗, rev.getepoch.∗,
rev.getstatus.∗, rev.prove.∗, and rev.verify.∗.
1. The revocation authorityRA uses the rev.setup.∗ interface to receive the revocation

parameters parr .
2. Any party P invokes the rev.get.∗ interface to receive parr .
3. The revocation authority RA uses the rev.epoch.∗ interface to send a list 〈 H: Ui,
rhi,x[rhi]〉n

′

i=1 of revocation handles and revocation statuses for the epoch ep and
receive the epoch information info for the epoch ep.
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4. Any party P uses the rev.getepoch.∗ interface to get the epoch information info for
the epoch ep. In the non-hiding functionality, P also obtains the full list of revocation
handles and revocation statuses 〈rhi,x[rhi]〉n

′

i=1 for the epoch ep.
5. In the hiding revocation functionality, a user U with a revocation handle rh uses the
rev.getstatus.∗ interface to receive the revocation status x[rh] at a given epoch ep.

6. An honest user U uses the rev.prove.∗ interface to obtain a proof pr that the revocation
status of the revocation handle rh committed in a commitment ccom is x[rh, j] for the
list j at the epoch ep.

7. Any honest party P uses the rev.verify.∗ interface to verify a proof pr on input ccom ,
x[rh, j], j and ep.

Functionality FREV

REV.SimProve and REV.Extract are ppt algorithms. FREV is parameterized by system
parameters sp, by a maximum number of revocation lists m , and a maximum number of
revocation handles n .
1. On input (rev.setup.ini, sid) fromRA:

(a) Abort if sid 6= (RA, sid ′) or if (sid) is already stored.
(b) Store (sid).
(c) Send (rev.setup.req, sid) to S.

S. On input (rev.setup.alg, sid , parr , tdr ,REV.SimProve,REV.Extract) from S:
(a) Abort if (sid) is not stored or if (sid , parr , tdr ,REV.SimProve,REV.Extract) is

already stored.
(b) Store (sid , parr , tdr ,REV.SimProve,REV.Extract).
(c) Initialize an empty table Tblpr and an empty set P.
(d) Send (rev.setup.end, sid , parr ) toRA.

2. On input (rev.get.ini, sid) from a party P:
(a) If (sid , parr , tdr ,REV.SimProve,REV.Extract) is stored, set parr ′ ← parr ; else

parr
′ ← ⊥.

(b) Create a fresh ssid and store (ssid ,P, parr ′).
(c) Send (rev.get.sim, sid , ssid , parr

′) to S.
S. On input (rev.get.rep, sid , ssid) from S:

(a) Abort if (ssid ,P, parr ′) is not stored.
(b) If parr ′ 6= ⊥, include P in the set P.
(c) Replace (ssid ,P, parr ′) with(P, parr ′).
(d) Send (rev.get.end, sid , parr

′) to P .
3. On input (rev.epoch.ini, sid , ep, 〈 H: Ui, rhi,x[rhi]〉n

′
i=1) fromRA:

(a) Abort if record (sid , parr , tdr ,REV.SimProve,REV.Extract) is not stored, or if

(sid , ep, 〈 H: U ′
i , rh ′

i,x[rhi]
′〉n
′

i=1) is already stored, or if n ′ > n , or if, for i = 1 to

n ′, rhi /∈ [1,n] or x[rhi] /∈ [0, 2m) H: or Ui is not a valid user identifier .

(b) Store (sid , ep, 〈 H: Ui, rhi,x[rhi]〉n
′

i=1).

(c) Send (rev.epoch.sim, sid , ep NH:, 〈rhi,x[rhi]〉n
′

i=1 ) to S.

S. On input (rev.epoch.rep, sid , ep, info) from S:
(a) Abort if record (sid , ep, 〈 H: Ui, rhi,x[rhi]〉n

′
i=1) is not stored or if (sid , ep, info′,

Tblep) is already stored.
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(b) Set Tblep ← 〈 H: Ui, rhi,x[rhi]〉n
′

i=1 and initialize a set Eep .

(c) H: Initialize a set Sep . IfRA is corrupt, initialize an empty table Tblep .
(d) Store (sid , ep, info,Tblep).
(e) Send (rev.epoch.end, sid , ep, info) toRA.

4. On input (rev.getepoch.ini, sid , ep) from any party P:
(a) Abort if P * P.

(b) If (sid , ep, info,Tblep) is stored, set info′ ← info NH: and Tbl′ep ← Tblep ; else

set info′ ← ⊥ NH: and Tbl′ep ← ⊥ .

(c) Create a fresh ssid and store (ssid ,P, ep, info′ NH:, Tbl′ep ).

(d) Send (rev.getepoch.sim, sid , ssid , ep, info′ NH:, Tbl′ep ) to S.
S. On input (rev.getepoch.rep, sid , ssid) from S:

(a) Abort if record (ssid ,P, ep, info′ NH:, Tbl′ep ) is not stored.

(b) If info′ 6= ⊥ NH: and Tbl′ep 6= ⊥ , include P in Eep .

(c) Delete record (ssid ,P, ep, info′ NH:, Tbl′ep ).

(d) Send (rev.getepoch.end, sid , info′ NH:, Tbl′ep ) to P .

5. H: On input (rev.getstatus.ini, sid , rhi, ep) from a user Ui:
(a) Abort if Ui * Eep .
(b) If RA is honest, abort if there is no entry [U ′

i , rh
′
i,x

′[rhi]] in Tblep such that
rh ′

i = rhi and U ′
i = Ui.

(c) Create a fresh ssid and store (ssid ,Ui, rhi, ep).
(d) IfRA is corrupt, send (rev.getstatus.sim, sid , ssid ,Ui, rhi, ep) to S; else send

(rev.getstatus.sim, sid , ssid ,Ui, ep) to S.
S. H: On input (rev.getstatus.rep, sid , ssid ,x[rhi]), if RA is corrupt, or
(rev.getstatus.rep, sid , ssid), ifRA is honest, from S:
(a) Abort if record (ssid ,Ui, rhi, ep) is not stored.
(b) Delete record (ssid ,Ui, rhi, ep).
(c) If RA is corrupt, x[rhi] ∈ [0, 2m) and there is no entry [⊥, rh ′

i,x
′[rhi]] in

Tblep such that rh ′
i = rhi, store [⊥, rhi,x[rhi]] in Tblep .

(d) If RA is corrupt and x[rhi] 6= x′[rhi], where x′[rhi] is in the entry [⊥, rhi,
x′[rhi]] in Tblep , send (rev.getstatus.end, sid ,⊥) to Ui; else include Ui in the
set Sep and send (rev.getstatus.end, sid ,x′[rhi]) to Ui.

6. On input (rev.prove.ini, sid , ccom, rh, copen, ep, j) from an honest user Ui:
(a) Parse ccom as (ccom ′, cparcom,COM.Verify).
(b) Abort if Ui * Eep , or if 1 6= COM.Verify(cparcom, ccom ′, rh, copen), or if there is

no entry [ H: U ′
i , rh ′

i,x[rhi]] in Tblep such that rh ′
i = rhi.

(c) H: Abort if Ui * Sep , or ifRA is honest and there is no entry [U ′
i , rh

′
i,x[rhi]]

in Tblep such that Ui = U ′
i and rh ′

i = rhi.
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(d) Run pr ← REV.SimProve(sid , parr , cparcom, ccom
′, ep, info, j,x[rh, j], tdr ).

(e) Append [〈ccom, ep, j,x[rh, j]〉, pr , 1] to Table Tblpr .
(f) Send (rev.prove.end, sid , pr) to Ui.

7. On input (rev.verify.ini, sid , ccom, ep, j, b, pr) from an honest party P:
(a) Abort if P * Eep .
(b) Parse ccom as (ccom ′, cparcom,COM.Verify).
(c) If there is an entry [〈ccom, ep, j, b〉, pr , u] in Tblpr , set v ← u.
(d) Else, do the following:

i. Extract (rh, open,x[rh])← REV.Extract(sid , parr , cparcom, ccom
′, ep, info, j,

b, tdr , pr).
ii. If (rh, copen,x[rh]) = ⊥ or 1 6= COM.Verify(cparcom, ccom ′, copen, rh), set

v ← 0.
iii. Else, do the following:

A. H: If RA is corrupt and there is no entry [⊥, rh ′,x[rh]] in Tblep such that
rh ′ = rh , store [⊥, rh,x[rh]].

A. If b = x[rh, j], where x[rh, j] is in the entry [ H: Ui, rh,x[rh]] ∈ Tblep

H:, where, ifRA is honest, Ui must be corrupt , set v ← 1; else set v ← 0.

iv. Append [〈ccom, ep, j,x[rh, j]〉, pr , v] to Table Tblpr .
(e) Send (rev.verify.end, sid , v) to P .

FREV uses the following tables:
Tblep . For the epoch ep, Tblep stores entries of the form [ H: U , rh,x[rh]] that as-

sociate the revocation handle rh with the revocation status x[rh]. In the hiding
functionality, ifRA is honest, a user U is also associated with rh .

Tblpr . Tblpr stores entries of the form [〈ccom, ep, j,x[rh, j]〉, pr , u], where 〈ccom,
ep, j,x[rh, j]〉 is part of the instance of a proof, pr is the proof, and u is a bit that
indicates the validity of the proof.
FREV also uses a set P. P contains the identifiers of the parties that retrieved the

revocation parameters parr . Additionally, FREV uses a set Eep that, for an epoch ep,
stores the identifiers of the parties that retrieved the epoch information info and, in
the non-hiding functionality, the revocation statuses in Tblep . The hiding functionality
FREV also uses a set Sep , which for an epoch ep stores the identifiers of the parties that
retrieved the revocation statuses x[rh] of their revocation handles.

We now discuss the seven interfaces of the ideal functionality FREV.
1. The rev.setup.ini message is sent by the revocation authority. FREV aborts if the
rev.setup.ini message has already been sent. Otherwise FREV asks the simulator S
to provide the parameters parr , the trapdoor tdr , and the algorithms REV.SimProve
and REV.Extract. When S provides them, FREV aborts if they have already been sent.
Otherwise, FREV initializes an empty set P and a table Tblpr to store proofs, and sends
the revocation parameters to the revocation authority.

2. The rev.get.ini message is sent by any party P to get the parameters parr .
3. The rev.epoch.ini message is sent by the revocation authority on input an epoch identi-

fier ep and a list of revocation handles and revocation statuses 〈 H: Ui, rhi,x[rhi]〉n
′

i=1.
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In the hiding revocation functionality, the list also includes user identifiers Ui. FREV

asks S to provide the epoch information info for the epoch ep. In the hiding function-
ality, info is computed without knowledge of 〈 H: Ui, rhi,x[rhi]〉n

′

i=1, whereas in the

non-hiding functionality S receives 〈rhi,x[rhi]〉n
′

i=1. The epoch information info is
later given as input to the algorithms REV.SimProve and REV.Extract. When S sends
info, FREV aborts if the list 〈 H: Ui, rhi,x[rhi]〉n

′

i=1 for ep was not received before or
if info for the epoch ep has already been received. Otherwise FREV creates a table
Tblep to store the list for the epoch ep and stores (sid , ep, info,Tblep). In the hiding
functionality, if the revocation authority is corrupt, Tblep is left empty and therefore the
information 〈 H: Ui, rhi,x[rhi]〉n

′

i=1 is not required. The reason is that, if the hiding
functionality requires this information whenRA is corrupt, a construction that realizes
this functionality would need to allow the extraction of 〈 H: Ui, rhi,x[rhi]〉n

′

i=1 in
the security proof. In the construction, this would imply the use of extractable vector
commitments, which, for the sake of efficiency, we chose to avoid. Therefore, the
hiding FREV, ifRA is corrupt, learns the revocation statuses when they are disclosed
through the rev.getstatus.∗ interface or the rev.verify.∗ interface. Finally, FREV sends
the epoch ep and the epoch information info to the revocation authority.

4. The rev.getepoch.ini message is sent by any party P on input an epoch ep. After
the simulator prompts the response with a message (rev.getepoch.rep, sid , ssid), the
functionality sends the epoch information info to P . In the non-hiding case, the
functionality also sends the revocation statuses of all revocation handles to P .

5. In the hiding functionality, the rev.getstatus.ini message is sent by a user Ui on
input a revocation handle rhi and an epoch ep. FREV works differently, depending on
whether the revocation authority is corrupt or not:

(a) If RA is honest, FREV aborts if there is no entry in Tblep for Ui and rhi. After
the simulator prompts the response with a message (rev.getstatus.rep, sid , ssid),
FREV sends the revocation status of rhi to Ui.

(b) IfRA is corrupt, FREV asks the simulator to provide the revocation status of rhi.
Then, if it was not stored in Tblep , FREV stores the revocation status of rhi in
Tblep and sends it to Ui. If it is already stored, FREV only sends the revocation
status to the user if the status sent by the functionality equals the one stored.
Therefore, even if RA is corrupt, FREV ensures that RA associates a unique
revocation status with a revocation handle during a given epoch.

6. The rev.prove.ini message is sent by an honest user Ui on input a commitment
ccom to a revocation handle rh with the opening copen . Ui also inputs the epoch
ep and the revocation list j. The commitment ccom consists of a commitment value
ccom , commitment parameters cparcom, and a commitment verification algorithm
COM.Verify. FREV aborts if rh and copen are not a valid opening of ccom . It also
aborts if the revocation handle rhi is not in Tblep . (In the hiding functionality, it
also aborts if the revocation authority is honest and rhi is not associated with Ui.)
FREV runs REV.SimProve(sid , parr , cparcom, ccom, ep, infoep , j,x[rh, j], tdr ) to
compute a proof pr that x[rh, j] is the revocation status of revocation handle rh with
respect to the revocation list j at epoch ep. We note that pr does not reveal any
information on the revocation handle rh , the opening copen , or the revocation status
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x[rh] with respect to revocation lists other than j. FREV stores the proof as valid in
Tblpr .

7. The rev.verify.ini message is sent by any honest party P on input a proof pr that
b is the revocation status with respect to the revocation list j at epoch ep and to
the revocation handle committed to in ccom. ccom consists of a commitment value
ccom , commitment parameters cparcom, and a commitment verification algorithm
COM.Verify. If the proof and the instance are stored in Tblpr , FREV outputs the
verification result stored in Tblpr to ensure consistence. Otherwise FREV runs the
algorithm REV.Extract to extract the revocation handle rh , the opening copen , and
the revocation status x[rh] from the proof pr . Any construction that realizes FREV

must allow extractable proofs. If extraction fails or if ccom is not a commitment to rh
and copen , FREV marks the proof as invalid. Otherwise, if the revocation authority is
corrupt and the revocation status of rh is not stored in Tblep , FREV stores it in Tblep .
After that, FREV also marks the proof as invalid if rh is not in Tblep or if b 6= x[rh, j],
where x[rh, j] is the revocation status stored in Tblep for the revocation handle rh .
In the hiding functionality, the proof is also marked as invalid when b = x[rh, j] but
the revocation authority is honest and the user U associated with rh is honest. The
reason is that the hiding functionality must prevent corrupt users from computing
proofs about revocation handles associated with honest users because this constitutes a
violation of the privacy of the revocation statuses. A construction that realizes FREV

must use non-malleable proofs, i.e., it should not be possible to obtain a new proof from
a valid proof without knowing the witness. We note that proofs for honest users are
computed by FREV in the rev.prove.∗ interface and registered in Tblpr as valid, and
are thus accepted by FREV in the verification interface without running the algorithm
REV.Extract.

We note that FREV does not allow parties to send their own revocation parameters
parr through the rev.prove.∗ and rev.verify.∗ interfaces. This means that a construction
that realizes this functionality must use some form of trusted registration that allows the
revocation authority to register parr and the other parties to retrieve parr in order to
ensure that all honest parties use the same parameters.
FREV asks the simulator S to provide prove and extract algorithms at setup. Alterna-

tively, it would be possible that the functionality asks the simulator to compute proofs
and extract from proofs when the rev.prove.∗ and rev.verify.∗ interfaces are invoked. We
chose the first alternative because it hides the computation and verification of proofs by
the parties from the simulator.

4.2 Ideal Functionality for Anonymous Attribute Tokens FAT

Next, we describe the ideal functionality of anonymous attribute tokens, FAT. FAT

interacts with an issuer I , users Ui and any verifying parties P . The issuer I issues some
attributes 〈al〉Ll=1 to a user Ui . A user Ui can obtain a proof that some commitments
〈ccom l〉Ll=1 commit to attributes that were issued by I. Any party P can verify a proof.

The interaction between the functionality FAT and the issuer I, the users Ui and
the verifying parties P takes place through the interfaces at.setup.∗, at.get.∗, at.issue.∗,
at.prove.∗, and at.verify.∗.
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1. The issuer I uses the at.setup.∗ interface to initialize the functionality and obtain the
parameters parat of the anonymous attribute token scheme.

2. Any party P invokes the at.get.∗ interface to obtain the parameters parat .
3. The issuer I uses the at.issue.∗ interface to issue some attributes 〈al〉Ll=1 to a user Ui .
4. An honest user Ui uses the at.prove.∗ interface to get a proof pr that some commit-

ments 〈ccom l〉Ll=1 commit to attributes that were issued by the issuer I to the user
Ui .

5. Any honest party P uses the at.verify.∗ interface to verify a proof pr .
As we described before, the commitment parameters and the verification algorithm

are attached to the commitment itself, and the functionality parses the commitment value
to obtain them to run a commitment verification. FAT uses the following tables.
Tbla . Tbla stores entries of the form [Ui , 〈al〉Ll=1], which map a user Ui to a list of

attributes 〈al〉Ll=1 issued by I.
Tblpr . Tblpr stores entries of the form [〈ccom l〉Ll=1, pr , u], which consist of a proof

instance 〈ccom l〉Ll=1, a proof pr , and a bit u that indicates whether the proof is valid.
FAT also uses a set P. P contains the identifiers of the parties P that retrieved the

attribute tokens parameters parat .

Functionality FAT

AT.SimProve and AT.Extract are ppt algorithms. FAT is parameterized by the system
parameters sp, a maximum number of attributes Lmax and a universe of attributes Ψ .
1. On input (at.setup.ini, sid) from I:

(a) Abort if sid 6= (I, sid ′) or if the tuple (sid) is already stored. Store (sid).
(b) Send (at.setup.req, sid) to S.

S. On input (at.setup.alg, sid , parat , tdat ,AT.SimProve,AT.Extract) from S:
(a) Abort if (sid) is not stored or if (sid , parat , tdat ,AT.SimProve,AT.Extract) is al-

ready stored. Store (sid , parat , tdat ,AT.SimProve,AT.Extract).
(b) Initialize an empty table Tbla , an empty table Tblpr and an empty set P, and parse sid

as (I, sid ′).
(c) Send (at.setup.end, sid , parat) to I.

2. On input (at.get.ini, sid) from any party P:
(a) If there is a tuple (sid , parat , tdat ,AT.SimProve,AT.Extract) stored, set parat ′ ←

parat ; else set parat ′ ← ⊥.
(b) Create a fresh ssid and store (ssid ,P, parat ′).
(c) Send (at.get.sim, sid , ssid , parat

′) to S.
S. On input (at.get.rep, sid , ssid) from S:

(a) Abort if (ssid ,P, parat ′) is not stored.
(b) If parat ′ 6= ⊥, include P in the set P.
(c) Delete record (ssid ,P, parat ′).
(d) Send (at.get.end, sid , parat

′) to P .
3. On input (at.issue.ini, sid ,Ui , 〈al〉Ll=1) from I:

(a) Abort if there is no tuple (sid , parat , tdat ,AT.SimProve,AT.Extract) stored, or if
Ui is not a valid user identifier, or if 〈al〉Ll=1 * Ψ , or if L > Lmax.

(b) Create a fresh ssid and store (ssid ,Ui , 〈al〉Ll=1).
(c) Send (at.issue.sim, sid , ssid ,Ui) to S.
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S. On input (at.issue.rep, sid , ssid) from S:
(a) Abort if (ssid ,Ui , 〈al〉Ll=1) is not stored or if Ui * P.
(b) If Ui is honest, then append [Ui , 〈al〉Ll=1] to Tbla ; else append [S, 〈al〉Ll=1] to Tbla .
(c) Delete record (ssid ,Ui , 〈al〉Ll=1).
(d) Send (at.issue.end, sid , 〈al〉Ll=1) to Ui .

4. On input (at.prove.ini, sid , 〈ccom l , al , copen l〉Ll=1) from an honest user Ui :
(a) Parse ccom l as (ccom ′

l , cparcom l ,COM.Verifyl) and abort if 1 6=
COM.Verifyl(cparcom l , ccom

′
l , al , copen l) for any l ∈ [1,L], or if there is

no entry [Ui , 〈al〉Ll=1] in Tbla .
(b) Run pr ← AT.SimProve(sid , parat , 〈cparcom l , ccom

′
l〉Ll=1, tdat).

(c) Append [〈ccom l〉Ll=1, pr , 1] to Table Tblpr .
(d) Send (at.prove.end, sid , pr) to Ui .

5. On input (at.verify.ini, sid , 〈ccom l〉Ll=1, pr) from an honest party P:
(a) Abort if P * P.
(b) Parse ccom l as (ccom ′

l , cparcom l ,COM.Verifyl) for any l ∈ [1,L].
(c) If there is an entry [〈ccom l〉Ll=1, pr , u] in Tblpr , set v ← u.
(d) Else, do the following:

i. Run 〈al , copen l〉Ll=1 ← AT.Extract(sid , parat , 〈cparcom l , ccom
′
l〉Ll=1, tdat , pr).

ii. If I is corrupt, proceed as follows. If 〈al , copen l〉Ll=1 = 1, set v ← 1; else set v ← 0.
iii. Else, if 〈al , copen l〉Ll=1 = ⊥ or 1 6= COM.Verifyl(cparcom l , ccom

′
l , al , copen l)

for any l ∈ [1,L], set v ← 0.
iv. Else, if there exists an entry [S, 〈al〉Ll=1] ∈ Tbla , set v ← 1; else set v ← 0.
v. Append [〈ccom l〉Ll=1, pr , v] to Table Tblpr .

(e) Send (at.verify.end, sid , v) to P .

We now discuss the five interfaces of the ideal functionality FAT.
1. The at.setup.ini message is sent by the issuer I. The restriction that the issuer’s

identity must be included in the session identifier sid = (I, sid ′) guarantees that each
issuer can initialize its own instance of the functionality. FAT requests the simulator
S for the parameters and algorithms. S sends the parameters parat , the trapdoor
tdat , and the algorithms (AT.SimProve,AT.Extract) for proof computation and proof
extraction. Finally, FAT initializes two empty tables, Tbla and Tblpr , and sends the
received parameters parat to I.

2. The at.get.ini message allows any party to request parat .
3. The at.issue.ini message is sent by the issuer on input a user identity and a list of

attributes. FAT creates a subsession identifier ssid and sends the user identity to the
simulator. The simulator indicates when the issuance is to be finalized by sending a
(at.issue.rep, sid , ssid) message. At this point, the issuance is recorded in Tbla . If the
user is honest, the issuance is recorded under the correct user’s identity, which in the
real world requires any instantiating protocol to set up an authenticated channel to the
user to ensure this. If the user is corrupt, the attributes are recorded as belonging to the
simulator, modeling that corrupt users may pool their attribute tokens. Note that the
simulator is not given the attribute values issued, so the real-world protocol must hide
these from the adversary.

4. The at.prove.ini message lets an honest user Ui request a proof that the attributes
〈al〉Ll=1 issued to her by I are committed in the commitments 〈com l〉Ll=1. The commit-
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ment parameters and the commitment verification algorithm attached to each commit-
ment value allow FAT to compute and verify proofs about commitments to attributes,
such that the commitments are generated externally, e.g., by the functionality FNIC.
FAT computes a proof by running AT.SimProve, which does not receive the witness as
input. Therefore, any construction that realizes FAT must use zero-knowledge proofs.
FAT stores the proof in Tblpr and sends the proof to Ui .

5. The at.verify.ini message allows any honest party to request the verification of a
proof pr with respect to the instance 〈ccom l〉Ll=1. If the instance-proof pair is stored
in the table Tblpr , then the functionality replies with the stored verification result
to ensure consistency. If not, the functionality runs the algorithm AT.Extract. If the
issuer is corrupt, the functionality interprets the output of AT.Extract as a bit b that
indicates whether the proof is valid or not. If the issuer is honest, the functionality
interprets the output as the witness 〈al , copen l〉Ll=1. The functionality only marks the
proof as correct if extraction did not fail, if 〈al , copen l〉Ll=1 are correct openings of the
commitments in the instance, and if any corrupt user was issued the attributes 〈al〉Ll=1.
A construction that realizes FAT must use non-malleable proofs, i.e., FAT enforces that
it is not possible to obtain a new proof from a valid proof without knowing the witness.
We note that proofs for honest users are computed by FAT in the at.prove.∗ interface
and registered in Tblpr as valid, and are thus accepted by FAT in the verification
interface without running the algorithm AT.Extract. Finally, the functionality stores
the proof-instance pair and the verification result in Tblpr and sends the verification
result to the party.

We note that FAT does not allow parties to send their own revocation parameters
parat through the at.prove.∗ and at.verify.∗ interfaces. This means that a construction
that realizes this functionality must use some form of trusted registration that allows the
issuer to register parat and the other parties to retrieve parat to ensure that all honest
parties use the same parameters.
FAT asks the simulator S to provide prove and extract algorithms at setup. Alterna-

tively, it would be possible that the functionality asks the simulator to compute proofs
and extract from proofs when the at.prove.∗ and at.verify.∗ interfaces are invoked. We
chose the first alternative because it hides the computation and verification of proofs by
the parties from the simulator.

We refer to the full version of the paper for a construction that realizes FAT and its
security analysis.

5 Anonymous Attribute Tokens with Revocation

In this section we a high-level description of the ideal functionality FTR of anonymous
attribute tokens with revocation. For its formal description we defer to the full version of
this paper. Similarly, we here consider only the version of functionality FTR where the
revocation statuses of every revocation handle are public. We then describe a construction
for this version ofFTR that uses the functionalitiesFNIC,FREV, andFAT and illustrates
how to modularly design hybrid protocols in the UC framework.
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5.1 Ideal Functionality FTR of Anonymous Attribute Tokens with Revocation

FTR interacts with an issuer I, a revocation authorityRA, users Ui , and any verifying
party P . The issuer I issues some attributes 〈al〉Ll=1 and a revocation handle rh to a
user Ui . The revocation authority RA associates a revocation status x[rh] with each
revocation handle rh . x[rh] is a vector of m bits, such that each bit x[rh, j] denotes the
revocation status of the revocation handle rh with respect to the revocation list j ∈ [1,m].
A user Ui can prove to any party that a set of attributes 〈al〉Ll=1 and a revocation handle
were issued by I. Ui also proves that b is the revocation status that the revocation
authorityRA associated with rh for the revocation list j and the epoch ep.

The interaction between the functionality FTR and the issuer I, the revocation
authority RA, the users Ui , and any verifying party P takes place through the inter-
faces tr.setupi.∗, tr.setupra.∗, tr.setupp.∗, tr.issue.∗, tr.epoch.∗, tr.getepoch.∗, and
tr.prove.∗.
1. The issuer I invokes the tr.setupi.∗ interface for initialization.
2. The revocation authorityRA invokes the tr.setupra.∗ interface for initialization.
3. Any user or verifying party P invokes the tr.setupp.∗ interface for initialization.
4. The issuer I uses the tr.issue.∗ interface to issue the attributes 〈al〉Ll=1 and the

revocation handle rh to a user Ui .
5. The revocation authorityRA uses the tr.epoch.∗ interface to send a list of revocation

handles rh along with their respective revocation statuses x[rh] for the epoch ep.
6. Any party P uses the rev.getepoch.∗ interface to get the full list of revocation handles

and revocation statuses 〈rhi,x[rhi]〉n
′

i=1 for the epoch ep.
7. A user Ui uses the tr.prove.∗ interface to prove that some attributes 〈al〉Ll=1 and a

revocation handle rh were issued by I. Ui also proves that x[rh, j] is the revocation
status associated with rh for the revocation list j and the epoch ep.

5.2 Construction of Anonymous Attribute Tokens with Revocation

We now describe the construction of anonymous attribute tokens with revocation ΠTR.
The construction ΠTR works in the (FSMT, FASMT, FNIC, FREV, FAT)-hybrid model,
where the parties make use of the ideal functionalities for secure message transmission
FSMT and anonymous secure message transmission FASMT in [4]. The parties also
use the ideal functionality for commitments FNIC described in Section 3.1, the ideal
functionality for revocation FREV described in Section 4.1, and the ideal functionality
for anonymous attribute tokens FAT described in Section 4.2.

This construction illustrates our mechanism for a modular design of hybrid protocols
in the UC framework. In the issuing phase, the users receive attributes and a revocation
handle from the issuer through FAT. To compute an attribute token and show that it has
not been revoked, a user first obtains a commitment to the revocation handle and an
opening from FNIC. Then the revocation handle, the commitment and the opening are
sent to FREV to get a non-interactive proof of non-revocation. Similarly, the revocation
handle, the commitment and the opening, along with commitments and openings to
some attributes issued along with the revocation handle, are sent to FAT to obtain an
attribute token. Thanks to the fact that FAT and FREV run the commitment verification
algorithm, it is ensured that FAT and FREV receive the same revocation handle.
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The construction ΠTR is executed by an issuer I, a revocation authorityRA, users
Ui , and any verifying party P . Those parties are activated through the tr.setupi.∗,
tr.setupra.∗, tr.setupp.∗, tr.issue.∗, tr.epoch.∗, tr.getepoch.∗, and tr.prove.∗ interfaces.
Briefly, the construction ΠTR works as follows.

1. The issuer I receives (tr.setupi.ini, sid) as input. If the functionality FAT was not
set up, I invokes the at.setup.∗ interface of FAT; else I aborts.
2. The revocation authority receives (tr.setupra.ini, sid) as input.RA aborts if setup
has already been run. Otherwise,RA invokes the at.get.∗ interface of FAT and aborts
if FAT does not return the attribute token parameters. In addition, RA invokes the
com.setup.∗ interface of FNIC to setup the commitment functionality. Finally, RA
invokes the rev.setup.∗ interface of FREV.
3. A user or a verifying party P receives (tr.setupp.ini, sid) as input. P aborts if
the setup has already been run. Otherwise P invokes the at.get.∗ interface of FAT

and aborts if FAT does not return the attribute token parameters. Then P invokes the
(rev.get.ini, sid) interface of FREV and aborts if FREV does not return the revocation
parameters. Finally P invokes the com.setup.∗ interface of FNIC.
4. The issuer I receives (tr.issue.ini, sid ,Ui , 〈al〉Ll=1, rh) as input. If the issuer setup
has not been run, I aborts. Otherwise I invokes the at.issue.∗ interface of FAT to issue
the attributes 〈al〉Ll=1 and the revocation handle rh to the user Ui . Ui aborts if the user
setup has not been run by Ui .
5. The revocation authorityRA receives (tr.epoch.ini, sid , 〈rhi,x[rhi]〉n

′

i=1) as input.
RA aborts if theRA setup has not been run or if the input values are invalid. Otherwise
RA uses the rev.epoch.∗ interface of FREV to send the revocation information and
obtain the epoch information info for the current epoch ep.
6. A party P receives (tr.getepoch.ini, sid , ep) as input. P aborts if it did not run the
setup. Otherwise P invokes the interface rev.getepoch.∗ of FREV to get the revocation
information Tblep for ep.
7. The user Ui receives (tr.prove.ini, sid ,P, 〈al〉Ll=1, rh, ep, j, b) as input. Ui aborts if
the revocation handle and the attributes were not issued to her, if Ui did not get the
epoch ep or if the revocation status given by RA is not b for list j and rh at epoch
ep. Otherwise Ui invokes the com.commit.∗ interface of functionality FNIC to obtain
commitments and openings for the attributes and for the revocation handle that were
issued by I. Note that, for simplicity, we reveal all attributes of the token, except the
revocation handle. Then Ui invokes the at.prove.∗ interface of FAT to get a proof that
the committed attributes were issued by I. Ui also invokes the rev.prove.∗ interface of
FREV to get a proof that the revocation status of the committed revocation handle for list
j at epoch ep is b. The user Ui sends the commitments, the proofs, and the openings of
the commitments to the attributes through an instance of FASMT to the verifying party P .
P aborts if it did not get the epoch ep. Otherwise P validates the commitment parameters
for the commitment to the revocation handle by calling the com.validate.∗ interface
of FNIC, because it cannot verify the full commitment itself without the opening, and
invokes the com.verify.∗ interface of FNIC to verify the openings of the commitments
to the attributes revealed. The at.verify.∗ interface of FAT and the rev.verify.∗ interface
of FREV are used to verify the respective proofs.
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Construction ΠTR

ΠTR is parameterized by the system parameters sp and uses the ideal functionalities FSMT,
FASMT, FNIC, FREV, and FAT. The constants used are the maximum number of attributes
Lmax, the universe of attributes Ψ , the maximum number of revocation lists m , and the
maximum number of revocation handles n .
1. On input (tr.setupi.ini, sid), I does the following:

(a) I aborts if sid 6= (I,RA, sid ′), or if (sid , tr.setupi) is already stored.
(b) I sends the message (at.setup.ini, sid) to FAT and receives the message

(at.setup.end, sid , parat) from FAT.
(c) Store (sid , tr.setupi).
(d) Output (tr.setupi.end, sid).

2. On input (tr.setupra.ini, sid),RA does the following:
(a) RA aborts if (sid , tr.setupra) is already stored.
(b) RA sends (at.get.ini, sid) to FAT and receives (at.get.end, sid , parat) from FAT.

If parat = ⊥,RA aborts.
(c) RA sends (com.setup.ini, sid) to FNIC and receives (com.setup.end, sid ,OK )

from FNIC.
(d) RA parses sid as (I,RA, sid ′), sets sidREV ← (RA, sid ′), sends

(rev.setup.ini, sid) to FREV and receives (rev.setup.end, sid , parr ) from FREV.
(e) Store (sid , tr.setupra).
(f) Output (tr.setupra.end, sid).

3. On input (tr.setupp.ini, sid), a user or verifying party P does the following:
(a) P aborts if (sid , tr.setupp) is already stored.
(b) P sends (at.get.ini, sid) to FAT and receives (at.get.end, sid , parat) from FAT. If

parat = ⊥, P aborts.
(c) P parses sid as (I,RA, sid ′), sets sidREV ← (RA, sid ′), sends (rev.get.ini, sid)

to FREV and receives (rev.get.end, sid , parr ) from FREV. If parr = ⊥, P aborts.
(d) P sends (com.setup.ini, sid) to FNIC and receives (com.setup.end, sid ,OK ) from
FNIC.

(e) Store (sid , tr.setupp).
(f) Output (tr.setupp.end, sid).

4. On input (tr.issue.ini, sid ,Ui , 〈al〉Ll=1, rh), I and Ui do the following:
(a) I aborts if (sid , tr.setupi) is not stored, or if 〈al〉Ll=1 * Ψ , or if rh /∈ [1,n], or if

L > Lmax.
(b) I sets aL+1 ← rh and sends (at.issue.ini, sid ,Ui , 〈al〉L+1

l=1 ) to FAT.
(c) Ui receives (at.issue.end, sid , 〈al〉L+1

l=1 ) from FAT.
(d) Ui aborts if (sid , tr.setupp) is not stored.
(e) Ui sets rh ← aL+1, stores [〈al〉Ll=1, rh], and outputs (tr.issue.end, sid , 〈al〉Ll=1, rh).

5. On input (tr.epoch.ini, sid , ep, 〈rhi,x[rhi]〉n
′

i=1),RA does the following:
(a) RA aborts if (sid , tr.setupra) is not stored, or if n ′ > n , or if, for i = 1 to n ′,

rhi /∈ [1,n] or x[rhi] /∈ [0, 2m), or if (ep, info) is already stored.
(b) RA parses sid as (I,RA, sid ′), sets sidREV ← (RA, sid ′), sends

(rev.epoch.ini, sidREV, ep, 〈rhi,x[rhi]〉n
′

i=1) to FREV, receives (rev.epoch.end,
sidREV, ep, info) from FREV, and stores (ep, info).

(c) RA outputs (tr.epoch.end, sid , ep).
6. On input (tr.getepoch.ini, sid , ep), a party P does the following:
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(a) P aborts if (sid , tr.setupp) is not stored.
(b) P parses sid as (I,RA, sid ′), sets sidREV ← (RA, sid ′), sends the

message (rev.getepoch.ini, sidREV, ep) to FREV, and receives the message
(rev.getepoch.end, sidREV, info,Tblep) from FREV.

(c) If info 6= ⊥, P sets b← 1 and stores [ep, info,Tblep ]; else b← 0.
(d) P outputs (tr.getepoch.end, sid , b,Tblep).

7. On input (tr.prove.ini, sid ,P, 〈al〉Ll=1, rh, ep, j, b), a user Ui and a verifying party P do
the following:
(a) Ui aborts if an entry [〈a ′

l 〉Ll=1, rh
′] such that rh = rh ′ and 〈al〉Ll=1 = 〈a ′

l 〉Ll=1 is not
stored.

(b) If [ep, info,Tblep ] is not stored, Ui aborts.
(c) Ui aborts if b 6= x[rh, j], where x[rh, j] is the stored revocation status of rh for list j

at epoch ep.
(d) Ui sets aL+1 ← rh , and, for l = 1 to L + 1, Ui sends (com.commit.ini, sid , al) to
FNIC, and receives (com.commit.end, sid , ccom l , copen l) from FNIC.

(e) Ui parses sid as (I,RA, sid ′), sets sidREV ← (RA, sid ′), sends (rev.prove.ini,
sidREV, ccomL+1, rh, copenL+1, ep, j) to FREV, and receives (rev.prove.end,
sidREV, pr) from FREV.

(f) Ui sends (at.prove.ini, sid , 〈ccom l , al , copen l〉
L+1
l=1 ) to FAT and receives

(at.prove.end, sid , pr ′) from FAT.
(g) Ui picks a fresh sidASMT and sends (asmt.send.ini, sidASMT, 〈sid , j, ep,x[rh, j],

(al , copen l)
L
l=1, (ccom l)

L+1
l=1 , pr , pr

′〉,P) to FASMT.
(h) P receives the message (asmt.send.end, sidASMT, 〈sid , j, ep,x[rh, j], (al ,

copen l)
L
l=1, (ccom l)

L+1
l=1 , pr , pr

′〉) from FASMT.
(i) P aborts if [ep, info,Tblep ] is not stored.
(j) For l = 1 to L,P sends (com.verify.ini, sid , ccom l , al , copen l) toFNIC and receives

(com.verify.end, sid , vl) from FNIC.
(k) P sends (com.validate.ini, sid , ccomL+1) to FNIC, receives (com.validate.end,

sid , v′′) from FNIC.
(l) P parses sid as (I,RA, sid ′), sets sidREV ← (RA, sid ′), sends (rev.verify.ini,

sidREV, ccomL+1, ep, j,x[rh, j], pr) to FREV, and receives (rev.verify.end,
sidREV, v) from FREV.

(m) P sends (at.verify.ini, sid , 〈ccom l〉L+1
l=1 , pr

′) to FAT and receives (at.verify.end,
sid , v′) from FAT.

(n) If v = v′ = v′′ = 1 and vl = 1 for l = 1 to L, then P outputs (tr.prove.end, sid ,
〈al〉Ll=1,x[rh, j], ep, j); else P aborts.

6 Conclusion and Future Work

We have proposed a method for the modular design of cryptographic protocols in the UC
framework. Our method allows one to compose two or more functionalities and to ensure
that some inputs to those functionalities are equal or an output of one functionality is
used as input to another functionality. For this purpose, the functionalities are amended
to receive commitments as inputs and to verify them. In addition, we propose new
ideal functionalities for commitments that, unlike existing ones, output cryptographic
commitments. To illustrate our framework, we have shown a protocol for attribute tokens
with revocation that uses our commitment functionality and ideal functionalities for
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attribute tokens and for revocation that receive committed inputs. As future work, we
consider the modular design of other cryptographic protocols with our method as well as
investigating the relations between our UC-based definitions and game-based definitions
for attribute-based tokens and revocation.
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