Domain Hierarchies:

a Basic Theoretical

Framework for Integrating Software Domains

Pierre Kelsen and Qin Ma
Laboratory for Advanced Software Systems, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
Email: {Pierre.Kelsen, Qin.Ma}@uni.lu

Abstract—We present a new approach to executable modeling
that borrows from executable UML the notion of domains and
bridges and couches them in a formal abstract framework based
on the novel concept of a domain hierarchy. The framework is
independent of the language used for representing structure and
behavior of domains and bridges. By plugging in a declarative
executable modeling language with a formal semantics for repre-
senting both structure and behavior, we instantiate the abstract
framework into a concrete framework that shares with executable
UML the benefits of a high-level separation of the platform-
independent model into domains and bridges while providing a
formal and declarative description of the underlying models.

I. INTRODUCTION

Complex software applications deal with many different
subject matters. For example, a Web Application for electronic
banking tackles: business objects relevant for the banking
application; the graphical web-based user interface; security
policies, to name just a few. Ideally a model-driven approach
for designing software applications would build on high-
level subject matter representations as reusable assets and add
additional plumbing to ensure the overall system conforms to
the user requirements. In the context of software development
(as opposed to ontology development for instance [1]) the
relevant subject matters are often executable, that is, they
have a behavior associated with them. Therefore we need
to integrate both the structure and behavior of the individual
models to realize a working system.

Executable UML (xUML) [6], [7], an approach within
the OMG Model-Driven Architecture initiative, provides an
approach in line with the ideas outlined above: it structures
a platform-independent model of an application into a highly
decoupled system of domains, representing separate subject
matters, and bridges, providing the glue between separate
domains. At a lower level of abstraction structure and behavior
of domains are described using UML and an imperative action
language. While the high-level partitioning of subject matters
into domains offers the potential for large-scale reuse, the
particular choice of languages for representing structure and
behavior entails at least two drawbacks: because UML does
not have a formal semantics, the resulting models are not easily
amenable to formal analysis; furthermore the imperative nature
of the action language clashes with the declarative nature of
the structural models.

In the present paper we strive to use the main advantages

of the xUML method - namely the partition of platform-
independent models according to subject matter using domains
and bridges - while avoiding the disadvantages related to the
concrete languages used to specify structural and behavioral
aspects. We achieve this by defining an abstract framework
built on domains and bridges that is independent of the
particular choice of languages used to represent these concepts.
We introduce the new notion of a domain hierarchy, which is
essentially a collection of domains that are glued together to
form a more complex domain. We formally define bridges to
be the connectors between separate domains; bridges not only
connect structural features of underlying domains but they also
link the behaviors of these domains into a coherent whole. We
show how to instantiate the abstract framework into a concrete
one by choosing a declarative language named EP [3], [5]
that has a formal semantics and is executable. We validate our
approach by applying it to a small case study dealing with a
document management system. For full details, see [4].

II. DOMAIN HIERARCHIES

We generalize the high-level approach of xXUML based on
domains and bridges by redefining these notions formally
within an abstract framework. We assume that all domains and
bridges are expressed within the same language. Abstractly,
this language contains two kinds of elements: those expressing
concepts and those expressing relationships between concepts.
We call instances of the former entities, and instances of the
latter /inks. Each domain or bridge is thus made up of a number
of entities and links. While a domain is self-contained, i.e.
both the source and target entities of its links are included in
the domain itself, a bridge is not. A bridge is specified over
a set of domains with at least one external link such that its
target entity belongs to some participant domain. Following the
definition, the union of a bridge and its participant domains
represents a domain, which can thus participate in another
level of domain integration. In this way, we obtain the concept
of a domain hierarchy.

Definition 1 (Domain Hierarchy). A domain hierarchy is a
directed acyclic graph whose nodes are domains and bridges
such that:

1) all sink nodes are domains;
2) there is a unique source node, which is a domain, called
the root of the domain hierarchy;

3) each bridge node has as successors all the nodes that
represent its domain participants;

4) each domain node has either no successors, or it has as
successor a single bridge representing a domain that is
derived by integrating the bridge with its participants.

Moreover, in order to support executable modeling of soft-
ware systems, the language for representing both domains
and bridges in the domain hierarchy needs to satisfy some
additional requirements: 1) Both structural and behavioral
specification are supported. Note that operations alone do
not imply executability. Dynamic semantics of the operations
needs to be expressed as well in the language; 2) Both the
syntax and the semantics of the language must be expressed
with a precise mathematical notation; 3) A mechanism similar
to inversion of control used in the context of components[2]
is offered, which allows external behavior to be weaved into
an operation of a domain without it being aware of this.

III. AN EXAMPLE LANGUAGE AND A CASE STUDY

We valid our approach by instantiating the abstract domain
hierarchy framework with an example modeling language
named EP, and applying the result to a simple document
management system case study.

EP is a research language developed by our team with a
formal semantics [3], [S]. The essence of EP can be summa-
rized by its two key concepts of properties and events, where
properties express system states and events modify system
states. The dynamics of events are specified in terms of event
edges: an event can modify a property by an impact edge
to compute a new value of the impacted property; an event
can trigger other events via push edges and pull edges, for
which execution then proceeds in a similar way. Moreover,
inversion of control is achieved by the combination of pull and
push edges: a bridge event owns a pull edge with the target
event belonging to some domain. When the target event in the
domain is triggered, because of “pulling”, the bridge event will
also be triggered. Then using another push edge, this bridge
event can then trigger further events in another domain, which
in total realizes the propagation of execution from one domain
to another. Note that neither the pull edges nor the push edges
owned by the bridge event pollute the domains that it hooks
up to since these edges are not part of these domains.

As a case study, we model a document management system
(DMS) using a domain hierarchy instantiated with EP. The
domain hierarchy of DMS is sketched in Fig. 1. We start
from three domain definitions at the bottom: Gui encapsu-
lates: the graphical user interface facilities; Document the
document management services; and Log the logging services.
Domains are self-contained (with no outgoing dependencies)
and designed to be general and reusable. We then define bridge
DocumentGui to customize Gui and bridge DocumentLog
to customize Log for the purpose of this particular application.
The outgoing links from bridges to domains depict the depen-
dency of the bridges on their participant domains. Finally, a
third bridge DMS is specified to glue all the building blocks
together to achieve an executable system.

DMS

DocumentLog

T~

Document Log

DocumentGui

_/

Fig. 1. Document management system: the domain hierarchy.

Note that not only structural bridging such as implementing
an interface from a domain with information from another
domain, but also execution propagation is realized in these
bridges. In Fig. 2, following the control flow from left to right
as indicated by the arrows, where solid arrowheads correspond
to push edges, and white ones to pull edges, the event tree
illustrates how execution of OK action in BookEditWindow
of Gui domain eventually updates the corresponding edited
book with new contents.

Gui DocumentGui DocumentGui DocumentGui
Action: OK ,_ [BookEditWindow: (local) BookEditWindow: _docEditWindow DocListWindow: @
o o
execute lOK close closeDocEditWindow
Document
editedBook y, BOOK: @ Document
setAuthor
i . BOOk: @ Document
" setEditor
o BOOK: @ Document
" setTitle
u BOOK: @
¥ setYear
Fig. 2. Event propagation via pull and push edges anchored at bridges.

IV. CONCLUSION AND FUTURE WORK

We have carried out a theoretical investigation of some
basic concepts - domains, bridges and domain hierarchies -
that allow one to view a complex application as a nested
collection of domains and bridges. By applying these concepts
to a concrete example we have demonstrated that this approach
allows one in principle to build abstract executable models of
applications from domains. Future work includes carrying out
a more realistic case study and defining a methodology for
building domain hierarchies.

REFERENCES
(1

—

Matthias Briuer and Henrik Lochmann. Towards semantic integration of
multiple domain-specic languages using ontological foundations. In the
Proceedings of ATEM 2007, 2007.

Martin Fowler. Inversion of control containers and the dependency
injection pattern, 2004. http://martinfowler.com/articles/injection.html.
Pierre Kelsen and Qin Ma. A formal definition of the EP language.
Technical Report TR-LASSY-08-03, University of Luxembourg, May
2008. http://democles.lassy.uni.lu/documentation/TR_LASSY_08_03.pdf.
Pierre Kelsen and Qin Ma. A language for domain hierarchies with
applications to the domain integration problem. Technical Report TR-
LASSY-08-05, University of Luxembourg, 2008. http://democles.lassy.
uni.lu/documentation/TR_LASSY_08_05.pdf.

Pierre Kelsen and Qin Ma. A lightweight approach for defining the formal
semantics of a modeling language. In the Proceedings of MoDELS 2008,
LNCS 5301, pages 690-704, 2008.

Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley, 2002.

Chris Raistrick, Paul Francis, and John Wright. Model Driven Architec-
ture with Executable UML. Cambridge University Press, 2004.

[2

—

3

—_

[4

=

[5

—_

[6

—_

[7

—

