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Abstract. Three important properties in aggregation theory are investigated,
namely horizontal min-additivity, horizontal max-additivity, and comonotonic

additivity, which are defined by certain relaxations of the Cauchy functional
equation in several variables. We show that these properties are equivalent
and we completely describe the functions characterized by them. By adding

some regularity conditions, these functions coincide with the Lovász extensions
vanishing at the origin, which subsume the discrete Choquet integrals. We
also propose a simultaneous generalization of horizontal min-additivity and
horizontal max-additivity, called horizontal median-additivity, and we describe

the corresponding function class. Additional conditions then reduce this class
to that of symmetric Lovász extensions, which includes the discrete symmetric
Choquet integrals.

1. Introduction

When we need to merge a set of numerical values into a single one, we usually
make use of a so-called aggregation function, e.g., a mean or an averaging function.
Various aggregation functions have been proposed in the literature, thus giving
rise to the growing theory of aggregation which proposes, analyzes, and character-
izes aggregation function classes. For recent references, see Beliakov et al. [2] and
Grabisch et al. [6].

A noteworthy aggregation function is the so-called discrete Choquet integral,
which has been widely investigated in aggregation theory, due to its many applica-
tions for instance in decision making (see the edited book [7]). A convenient way
to introduce the discrete Choquet integral is via the concept of Lovász extension.
An n-place Lovász extension is a continuous function f ∶Rn → R whose restriction
to each of the n! subdomains

Rn
σ = {x = (x1, . . . , xn) ∈ Rn ∶ xσ(1) ⩽ ⋯ ⩽ xσ(n)} (σ ∈ Sn)

is an affine function, where Sn denotes the set of permutations on [n] = {1, . . . , n}.
An n-place Choquet integral is simply a nondecreasing (in each variable) n-place
Lovász extension which vanishes at the origin. For general background, see [6, §5.4].

The class of n-place Choquet integrals has been axiomatized independently by
means of two noteworthy aggregation properties, namely comonotonic additivity
(see, e.g., [4]) and horizontal min-additivity (originally called “horizontal additiv-
ity”, see [3, §2.5]). Recall that a function f ∶Rn → R is said to be comonotonically
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additive if, for every σ ∈ Sn, we have

f(x + x′) = f(x) + f(x′) (x,x′ ∈ Rn
σ).

To describe the second property, consider the horizontal min-additive decomposi-
tion of the n-tuple x ∈ Rn obtained by “cutting” it with a real number c, namely

x = (x ∧ c) + (x − (x ∧ c)),

where x ∧ c denotes the n-tuple whose ith component is xi ∧ c = min(xi, c). A
function f ∶Rn → R is said to be horizontally min-additive if

f(x) = f(x ∧ c) + f(x − (x ∧ c)) (x ∈ Rn, c ∈ R).

In this paper we completely describe the function classes axiomatized by each
of these properties. More precisely, after recalling the definitions of Lovász ex-
tensions, discrete Choquet integrals, and their symmetric versions (Section 2), we
show that comonotonic additivity and horizontal min-additivity (as well as its dual
counterpart, namely horizontal max-additivity) are actually equivalent properties.
We describe the function class axiomatized by these properties and we show that,
up to certain regularity conditions (based on those we usually add to the Cauchy
functional equation to get linear solutions only), these properties completely char-
acterize those n-place Lovász extensions which vanish at the origin. Nondecreasing
monotonicity is then added to characterize the class of n-place Choquet integrals
(Section 3). We also introduce a weaker variant of the properties above, called hori-
zontal median-additivity, and determine the function class axiomatized by this new
property. Finally, by adding some natural properties, we characterize the class of n-
place symmetric Lovász extensions and the subclass of n-place symmetric Choquet
integrals (Section 4).

We employ the following notation throughout the paper. Let R+ = [0,+∞[ and
R− = ]−∞,0]. We let I denote a nontrivial (i.e., of positive measure) real interval,
possibly unbounded, containing the origin 0. We also introduce the notation I+ =
I ∩ R+, I− = I ∩ R−, and Inσ = In ∩ Rn

σ. For every A ⊆ [n], the symbol 1A denotes
the n-tuple whose ith component is 1, if i ∈ A, and 0, otherwise. Let also 1 = 1[n]
and 0 = 1∅. The symbols ∧ and ∨ denote the minimum and maximum functions,
respectively. For every x ∈ Rn, let x+ = x ∨ 0 and x− = (−x)+. For every function
f ∶ In → R, we define its diagonal section δf ∶ I → R by δf(x) = f(x1). More generally,
for every A ⊆ [n], we define the function δAf ∶ I → R by δAf (x) = f(x1A).

In order not to restrict our framework to functions defined on R, we consider
functions defined on intervals I containing 0, in particular of the forms I+, I−, and
those centered at 0.

It is important to notice that comonotonic additivity as well as horizontal min-
additivity and horizontal max-additivity, when restricted to functions f ∶ In → R,
extend the classical additivity property defined by the Cauchy functional equation
for n-place functions

(1) f(x + x′) = f(x) + f(x′) (x,x′,x + x′ ∈ In).

In this regard, recall that the general solution f ∶ In → R of the Cauchy equation
(1) is given by f(x) = ∑n

k=1 fk(xk), where the fk ∶ I → R (k ∈ [n]) are arbitrary
solutions of the basic Cauchy equation fk(x + x′) = fk(x) + fk(x′) (see [1, §2–
4]). As the following theorem states, under some regularity conditions, each fk is
necessarily a linear function.
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Theorem 1. Let I be a nontrivial real interval, possibly unbounded, containing 0.
If f ∶ I → R solves the basic Cauchy equation

f(x + x′) = f(x) + f(x′) (x,x′, x + x′ ∈ I),
then either f is of the form f(x) = cx for some c ∈ R, or the graph of f is everywhere
dense in I × R. The latter case is excluded as soon as f is continuous at a point
or monotonic or Lebesgue measurable or bounded from one side on a set of positive
measure.

Proof. See Appendix A. �

(We would like to acknowledge Professor Maksa at the Institute of Mathematics of
the University of Debrecen, Hungary, for providing the proof of Theorem 1.)

As we will see in this paper, comonotonic additivity, horizontal min-additivity,
and horizontal median-additivity of a function f ∶ In → R force the 1-place functions
δAf ∣I+ , and δAf ∣I− (A ⊆ [n]) to solve the basic Cauchy equation. Theorem 1 will hence
be useful to describe the corresponding function classes whenever the regularity
conditions stated are assumed.

Recall that a function f ∶ In → R is said to be homogeneous (resp. positively
homogeneous) of degree one if f(cx) = c f(x) for every x ∈ In and every c ∈ R
(resp. every c > 0) such that cx ∈ In.

2. Lovász extensions and symmetric Lovász extensions

We now recall the concept of Lovász extension and introduce that of symmetric
Lovász extension.

Consider a pseudo-Boolean function, that is, a function ϕ∶{0,1}n → R. The
Lovász extension of ϕ is the function fϕ∶Rn → R whose restriction to each subdo-
main Rn

σ (σ ∈ Sn) is the unique affine function which agrees with ϕ at the n + 1
vertices of the n-simplex [0,1]n ∩Rn

σ (see [9, 11]). We then have fϕ∣{0,1}n = ϕ.
We say that a function f ∶Rn → R is a Lovász extension if there is a function

ϕ∶{0,1}n → R such that f = fϕ. For any Lovász extension f ∶Rn → R, the function
f0 = f − f(0) has the representation

(2) f0(x) = xσ(1) δf0(1) +
n

∑
i=2
(xσ(i) − xσ(i−1)) δ

A↑σ(i)
f0

(1) (x ∈ Rn
σ),

where A↑σ(i) = {σ(i), . . . , σ(n)}, with A↑σ(n + 1) = ∅. Indeed, both sides of (2)
agree at x = 0 and x = 1A↑σ(k) for every k ∈ [n]. Thus we see that f0 is positively

homogeneous of degree one.
An n-place Choquet integral is a nondecreasing Lovász extension f ∶Rn → R

such that f(0) = 0. It is easy to see that a Lovász extension f ∶Rn → R is a
Choquet integral if and only if its underlying pseudo-Boolean function ϕ = f ∣{0,1}n
is nondecreasing and vanishes at the origin (see [6, §5.4]).

We now introduce the concept of symmetric Lovász extension. Here “symmetric”
does not refer to invariance under a permutation of variables but rather to the role of
the origin of Rn as a symmetry center with respect to the function values whenever
the function vanishes at the origin.

The symmetric Lovász extension of a pseudo-Boolean function ϕ∶{0,1}n → R is
the function f̌ϕ∶Rn → R defined by

(3) f̌ϕ(x) = fϕ(0) + fϕ(x+) − fϕ(x−) (x ∈ Rn),
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where fϕ is the Lovász extension of ϕ.
We say that a function f ∶Rn → R is a symmetric Lovász extension if there is

a function ϕ∶{0,1}n → R such that f = f̌ϕ. For any symmetric Lovász extension
f ∶Rn → R, by (2) and (3) the function f0 = f − f(0) has the representation

f0(x) = xσ(p+1) δ
A↑σ(p+1)
f0

(1) +
n

∑
i=p+2
(xσ(i) − xσ(i−1)) δ

A↑σ(i)
f0

(1)

+ xσ(p) δ
A↓σ(p)
f0

(1) +
p−1
∑
i=1
(xσ(i) − xσ(i+1)) δ

A↓σ(i)
f0

(1) (x ∈ Rn
σ),(4)

where A↓σ(i) = {σ(1), . . . , σ(i)}, with A↓σ(0) = ∅, and the integer p ∈ {0,1, . . . , n} is
such that xσ(p) < 0 ⩽ xσ(p+1). Thus we see that f0 is homogeneous of degree one.

Nondecreasing symmetric Lovász extensions vanishing at the origin, also called
discrete symmetric Choquet integrals, were introduced by Šipoš [12] (see also [6,
§5.4]). We observe that a symmetric Lovász extension f ∶Rn → R is a symmetric
Choquet integral if and only if its underlying pseudo-Boolean function ϕ = f ∣{0,1}n
is nondecreasing and vanishes at the origin.

3. Axiomatizations of Lovász extensions

In the present section we show that, for a class of intervals I, comonotonic ad-
ditivity is equivalent to horizontal min-additivity (resp. horizontal max-additivity)
and we describe the corresponding function class. By adding certain regularity con-
ditions, we then axiomatize the class of n-place Lovász extensions. We first recall
these properties.

Let I be a nontrivial real interval, possibly unbounded, containing 0. Two n-
tuples x,x′ ∈ In are said to be comonotonic if there exists σ ∈ Sn such that x,x′ ∈ Inσ .
A function f ∶ In → R is said to be comonotonically additive if, for every comonotonic
n-tuples x,x′ ∈ In such that x + x′ ∈ In, we have

(5) f(x + x′) = f(x) + f(x′).
Given x ∈ In and c ∈ I, let JxKc = x − x ∧ c and JxKc = x − x ∨ c. We say that a
function f ∶ In → R is

● horizontally min-additive if, for every x ∈ In and every c ∈ I such thatJxKc ∈ In, we have

(6) f(x) = f(x ∧ c) + f(JxKc).
● horizontally max-additive if, for every x ∈ In and every c ∈ I such thatJxKc ∈ In, we have

(7) f(x) = f(x ∨ c) + f(JxKc).
We immediately observe that, since any x ∈ In decomposes into the sum of

the comonotonic n-tuples x ∧ c and JxKc for every c (i.e., x = (x ∧ c) + JxKc), any
comonotonically additive function is necessarily horizontally min-additive. Dually,
any comonotonically additive function is horizontally max-additive.

We also observe that if f ∶ In → R satisfies any of these properties, then necessarily
f(0) = 0 (just take x = x′ = 0 and c = 0 in (5)–(7)).

Lemma 2. If f ∶ In → R is horizontally min-additive (resp. horizontally max-
additive) then δAf ∣I+ (resp. δAf ∣I−) is additive for every A ⊆ [n]. Moreover, if I
is centered at 0, then δf is additive and odd.
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Proof. We prove the result when f is horizontally min-additive; the other claim can
be dealt with dually. If x,x′ ∈ I+ is such that x + x′ ∈ I+, then x ⩽ x + x′ and, using
horizontal min-additivity with c = x, we get δAf (x + x′) = δAf (x) + δAf (x′), which
shows that δAf ∣I+ is additive.

Assume now that I is centered at 0. If x < 0 and x′ ⩾ 0 are such that x,x′ ∈
I, then x ⩽ x + x′ < x′ and, using horizontal min-additivity with c = x, we get
δf(x + x′) = δf(x) + δf(x′). In particular, taking x′ = −x, we obtain 0 = δf(0) =
δf(x − x) = δf(x) + δf(−x) and hence δf(−x) = −δf(x).

If x < 0 and x′ < 0 are such that x,x′ ∈ I, then, using horizontal min-additivity
with c = x + x′, we get δf(x) = δf(x + x′) + δf(−x′) = δf(x + x′) − δf(x′). Thus δf is
additive and odd. �

Remark 1. For a horizontally min-additive or horizontally max-additive function
f ∶ In → R, the function δAf need not be additive. For instance, consider the hori-

zontally min-additive function f ∶R2 → R defined by f(x1, x2) = x1 ∧ x2. For x > 0
and x′ = −x, we have

δ
{1}
f (x − x) = 0 > −x = δ

{1}
f (x) + δ

{1}
f (−x).

Theorem 3. Assume 0 ∈ I ⊆ R+ or I = R. A function f ∶ In → R is horizontally
min-additive if and only if there exists g∶ In → R, with δg and δAg ∣I+ additive for
every A ⊆ [n], such that, for every σ ∈ Sn,

(8) f(x) = δg(xσ(1)) +
n

∑
i=2

δ
A↑σ(i)
g (xσ(i) − xσ(i−1)) (x ∈ Inσ ).

In this case, we can choose g = f .

Proof. (Necessity) Let σ ∈ Sn and let x ∈ Inσ . By repeatedly applying horizontal
min-additivity with the successive cut levels

xσ(1), xσ(2) − xσ(1), . . . , xσ(n−1) − xσ(n−2),

we obtain

f(x) = δf(xσ(1)) + f(0, xσ(2) − xσ(1), . . . , xσ(n) − xσ(1))

= δf(xσ(1)) + δ
A↑σ(2)
f (xσ(2) − xσ(1)) + f(0,0, xσ(3) − xσ(2), . . . , xσ(n) − xσ(2))

= ⋯

= δf(xσ(1)) +
n

∑
i=2

δ
A↑σ(i)
f (xσ(i) − xσ(i−1)).

Thus (8) holds with g = f . Moreover, by Lemma 2, δf and δAf ∣I+ are additive for

every A ⊆ [n].
(Sufficiency) Let x ∈ In and c ∈ I such that JxKc ∈ In. There is σ ∈ Sn such that

x ∈ Inσ and hence f(x) is given by (8), where δg and δAg ∣I+ are additive for every
A ⊆ [n], which implies g(0) = 0.

Suppose first that c ⩽ xσ(1). Then we have f(x ∧ c) = δg(c) and

f(JxKc) = δg(xσ(1) − c) +
n

∑
i=2

δ
A↑σ(i)
g (xσ(i) − xσ(i−1)).

Since δg is additive, we finally obtain f(x ∧ c) + f(JxKc) = f(x).
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Now, suppose that there is p ∈ [n] such that xσ(p) < c ⩽ xσ(p+1), where xσ(n+1) =
∞. Then

f(x ∧ c) = δg(xσ(1)) +
p

∑
i=2

δ
A↑σ(i)
g (xσ(i) − xσ(i−1)) + δ

A↑σ(p+1)
g (c − xσ(p))

and

f(JxKc) = δA↑σ(p+1)g (xσ(p+1) − c) +
n

∑
i=p+2

δ
A↑σ(i)
g (xσ(i) − xσ(i−1)).

Since δAg ∣I+ is additive for every A ⊆ [n], we finally obtain f(x ∧ c) + f(JxKc) =
f(x). �

Similarly, we obtain the following dual characterization.

Theorem 4. Assume 0 ∈ I ⊆ R− or I = R. A function f ∶ In → R is horizontally
max-additive if and only if there exists h∶ In → R, with δh and δAh ∣I− additive for
every A ⊆ [n], such that, for every σ ∈ Sn,

f(x) = δh(xσ(n)) +
n−1
∑
i=1

δ
A↓σ(i)
h (xσ(i) − xσ(i+1)) (x ∈ Inσ ).

In this case, we can choose h = f .

Theorem 5. Assume 0 ∈ I ⊆ R+ or I = R (resp. 0 ∈ I ⊆ R− or I = R). A function
f ∶ In → R is comonotonically additive if and only if it is horizontally min-additive
(resp. horizontally max-additive). In this case, δf and δAf ∣I+ (resp. δf and δAf ∣I−)
are additive for every A ⊆ [n].

Proof. We already observed that the condition is necessary. Let us now prove that
it is sufficient.

Let x,x′ ∈ In be two comonotonic n-tuples, let σ ∈ Sn be such that x,x′ ∈ Inσ ,
and suppose that f ∶ In → R is horizontally min-additive; the other case can be
established dually. By Lemma 2 and Theorem 3, δf and δAf ∣I+ are additive for

every A ⊆ [n] and we have

f(x + x′)

= δf(xσ(1) + x′σ(1)) +
n

∑
i=2

δ
A↑σ(i)
f ((xσ(i) + x′σ(i)) − (xσ(i−1) + x′σ(i−1)))

= δf(xσ(1)) + δf(x′σ(1)) +
n

∑
i=2

δ
A↑σ(i)
f (xσ(i) − xσ(i−1)) +

n

∑
i=2

δ
A↑σ(i)
f (x′σ(i) − x

′
σ(i−1))

= f(x) + f(x′),

which shows that f is comonotonically additive. �

Remark 2. (a) Theorems 3 and 4 provide two equivalent representations of
comonotonically additive functions f ∶Rn → R (see Theorem 5). For in-
stance, for a binary comonotonically additive function f ∶R2 → R, we have
the representations

f(x1, x2) =
⎧⎪⎪⎨⎪⎪⎩

g(x1, x1) + g(0, x2 − x1), if x1 ⩽ x2,

g(x2, x2) + g(x1 − x2,0), if x1 ⩾ x2,



AXIOMATIZATIONS OF LOVÁSZ EXTENSIONS 7

and

f(x1, x2) =
⎧⎪⎪⎨⎪⎪⎩

h(x2, x2) + h(x1 − x2,0), if x1 ⩽ x2,

h(x1, x1) + h(0, x2 − x1), if x1 ⩾ x2,

where δg, δ
A
g ∣R+ , δh, and δAh ∣R− are additive for every A ⊆ [2]. Figure 1

illustrates both representations in the region x1 ⩽ x2, which recalls the
standard “parallelogram rule” for vector addition. Thus, f is completely
determined by its values on the x1-axis, the x2-axis, and the line x2 = x1.

6
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Figure 1. Representations in the region x1 ⩽ x2

(b) More generally, every comonotonically additive function f ∶Rn → R is com-
pletely determined by its values on the lines {x1A ∶ x ∈ R} (A ⊆ [n]).

We now axiomatize the class of n-place Lovász extensions. A function f ∶ In → R
is a Lovász extension if it is the restriction to In of a Lovász extension on Rn.

Theorem 6. Assume [0,1] ⊆ I ⊆ R+ or I = R. Let f ∶ In → R be a function and let
f0 = f − f(0). Then f is a Lovász extension if and only if the following conditions
hold:

(i) f0 is comonotonically additive or horizontally min-additive (or horizontally
max-additive if I = R).

(ii) Each of the maps δf0 and δAf0 ∣I+ (A ⊆ [n]) is continuous at a point or
monotonic or Lebesgue measurable or bounded from one side on a set of
positive measure.

If I = R, then the set I+ can be replaced by I− in (ii). Finally, Condition (ii) holds
whenever Condition (i) holds and δAf0 is positively homogeneous of degree one for

every A ⊆ [n].
Proof. (Necessity) Follows from (2) and Theorems 3 and 5.

(Sufficiency) By Theorems 3 and 5, if (i) holds, then δf0 and δAf0 ∣I+ are additive

for every A ⊆ [n] and, for every σ ∈ Sn and every x ∈ Inσ , we have

f0(x) = δf0(xσ(1)) +
n

∑
i=2

δ
A↑σ(i)
f0

(xσ(i) − xσ(i−1)).

By Theorem 1, if (ii) holds, then δf0(x) = xδf0(1) for every x ∈ I and δAf0(x) =
xδAf0(1) for every x ∈ I+. By (2) it follows that f0 is a Lovász extension such that

f0(0) = 0.
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Now suppose that I = R and that I+ is replaced by I− in (ii). Then by Theorems 4
and 5, δf0 and δAf0 ∣I− are additive for every A ⊆ [n] and, for every σ ∈ Sn and every
x ∈ Inσ , we have

(9) f0(x) = δf0(xσ(n)) +
n−1
∑
i=1

δ
A↓σ(i)
f0

(xσ(i) − xσ(i+1)).

By Theorem 1, if (ii) holds, then δf0(x) = xδf0(1) for every x ∈ I and δAf0(x) =
−xδAf0(−1) for every x ∈ I−. Thus (9) becomes

f0(x) = xσ(n) δf0(1) +
n−1
∑
i=1
(xσ(i+1) − xσ(i)) δ

A↓σ(i)
f0

(−1)

from which we derive δ
A↑σ(i+1)
f0

(1) = δf0(1) + δ
A↓σ(i)
f0

(−1) and hence

f0(x) = xσ(n) δf0(1) +
n

∑
i=2
(xσ(i) − xσ(i−1)) (δ

A↑σ(i)
f0

(1) − δf0(1)).

Again, we retrieve (2), thus showing that f0 is a Lovász extension such that f0(0) =
0.

Finally, if (i) holds and δAf0 is positively homogeneous of degree one for every

A ⊆ [n], then we have δf0(x) = xδf0(1) for every x ∈ I+ and even for every x ∈ I if
I = R since then δf0 is odd by Lemma 2. Also, we have δAf0(x) = xδ

A
f0
(1) for every

x ∈ I+ and, if I = R, δAf0(x) = −xδ
A
f0
(−1) for every x ∈ I−. �

Remark 3. (a) Since any Lovász extension vanishing at the origin is positively
homogeneous of degree one, Condition (ii) of Theorem 6 can be replaced
by the stronger condition: f0 is positively homogeneous of degree one.

(b) Axiomatizations of the class of n-place Choquet integrals can be imme-
diately derived from Theorem 6 by adding nondecreasing monotonicity.
Similar axiomatizations using comonotonic additivity (resp. horizontal min-
additivity) were obtained by de Campos and Bolaños [4] (resp. by Benvenuti
et al. [3, §2.5]).

(c) The concept of comonotonic additivity appeared first in Dellacherie [5] and
then in Schmeidler [10]. The concept of horizontal min-additivity was pre-
viously considered by Šipoš [12] and then by Benvenuti et al. [3, §2.3] where
it was called “horizontal additivity”.

4. Axiomatizations of symmetric Lovász extensions

In this final section we introduce a simultaneous generalization of horizontal
min-additivity and horizontal max-additivity, called horizontal median-additivity,
and we describe the corresponding function class. By adding further conditions, we
then axiomatize the class of n-place symmetric Lovász extensions.

Horizontal median-additivity in a sense combines horizontal min-additivity and
horizontal max-additivity by using two cut levels that are symmetric with respect
to the origin. Formally, assuming that I is centered at 0, we say that a function
f ∶ In → R is horizontally median-additive if, for every x ∈ In and every c ∈ I+, we
have

(10) f(x) = f(med(−c,x, c)) + f(JxKc) + f(JxK−c),
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where med(−c,x, c) is the n-tuple whose ith component is the middle value of
{−c, xi, c}.

Since any x ∈ In decomposes into the sum of the comonotonic n-tuples med(−c,x, c)+JxK−c = x ∧ c and JxKc for every c ∈ I+ (i.e., x = med(−c,x, c) + JxKc + JxK−c), any
comonotonically additive function is necessarily horizontally median-additive. How-
ever, we will see (see Proposition 12 below) that the converse claim is not true.

We also observe that if f ∶ In → R is horizontally median-additive, then necessarily
f(0) = 0 (take x = 0 and c = 0 in (10)). We then see that

(11) f(x) = f(x+) + f(−x−) (x ∈ In)
(take c = 0 in (10)). This observation motivates the following definitions.

Assume that I is centered at 0. We say that a function f ∶ In → R is

● positively comonotonically additive if (5) holds for every comonotonic n-
tuples x,x′ ∈ In+ such that x + x′ ∈ In+ .
● negatively comonotonically additive if (5) holds for every comonotonic n-
tuples x,x′ ∈ In− such that x + x′ ∈ In− .
● positively horizontally min-additive if (6) holds for every x ∈ In+ and every
c ∈ I+.
● negatively horizontally max-additive if (7) holds for every x ∈ In− and every
c ∈ I−.

We observe immediately that if f ∶ In → R satisfies any of the four properties
above, then f(0) = 0.

Lemma 7. Assume that I is centered at 0. For any function f ∶ In → R, the
following assertions are equivalent.

(i) f is horizontally median-additive.
(ii) f is positively horizontally min-additive, negatively horizontally max-additive,

and satisfies (11).
(iii) There exists a positively horizontally min-additive function g∶ In → R and

a negatively horizontally max-additive function h∶ In → R such that f(x) =
g(x+) + h(−x−) for every x ∈ In.

Proof. (i) ⇒ (ii) If f is horizontally median-additive, then f satisfies (11) and
f(0) = 0. Also, f is positively horizontally min-additive. Indeed, for every x ∈ In+
and every c ∈ I+, we have f(x) = f(x∧c)+f(JxKc)+f(0). Dually, we can also show
that f is negatively horizontally max-additive.
(ii)⇒ (iii) It suffices to take g = h = f .
(iii) ⇒ (i) Assume that (iii) holds. Then, for every x ∈ In, we have f(x+) =

g(x+) and f(−x−) = h(−x−) and hence f satisfies (11). Let x ∈ In and c ∈ I+.
Applying (11) to med(−c,x, c), we obtain

(12) f(med(−c,x, c)) = f(x+ ∧ c) + f((−x−) ∨ (−c)).

By (11) and positive horizontal min-additivity and negative horizontal max-additivity,
we finally have

f(x) = f(x+) + f(−x−)
= f(x+ ∧ c) + f(Jx+Kc) + f((−x−) ∨ (−c)) + f(J−x−K−c)
= f(med(−c,x, c)) + f(JxKc) + f(JxK−c) (by (12)),

which shows that f is horizontally median-additive. �
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By Lemma 7, to describe the class of horizontally median-additive functions, it
suffices to describe the class of positively horizontally min-additive functions and
that of negatively horizontally max-additive functions. These descriptions are given
in the following two theorems. The proofs are similar to those of Theorems 3, 4,
and 5 and hence are omitted.

Theorem 8. Assume that I is centered at 0. For any function f ∶ In → R, the
following assertions are equivalent.

(i) f is positively horizontally min-additive.
(ii) f is positively comonotonically additive.
(iii) There exists g∶ In → R, with δAg ∣I+ additive for every A ⊆ [n], such that, for

every σ ∈ Sn,

f(x) = δg(xσ(1)) +
n

∑
i=2

δ
A↑σ(i)
g (xσ(i) − xσ(i−1)) (x ∈ Inσ ∩ In+ ).

In this case, we can choose g = f .

Theorem 9. Assume that I is centered at 0. For any function f ∶Rn → R, the
following assertions are equivalent.

(i) f is negatively horizontally max-additive.
(ii) f is negatively comonotonically additive.
(iii) There exists h∶ In → R, with δAh ∣I− additive for every A ⊆ [n], such that, for

every σ ∈ Sn,

f(x) = δh(xσ(n)) +
n−1
∑
i=1

δ
A↓σ(i)
h (xσ(i) − xσ(i+1)) (x ∈ Inσ ∩ In− ).

In this case, we can choose h = f .

The following theorem gives a description of the class of horizontally median-
additive functions.

Theorem 10. Assume that I is centered at 0. For any function f ∶ In → R, the
following assertions are equivalent.

(i) f is horizontally median-additive.
(ii) f is positively horizontally min-additive (or positively comonotonically ad-

ditive), negatively horizontally max additive (or negatively comonotonically
additive), and satisfies (11).

(iii) There exist g∶ In → R and h∶ In → R, with δAg ∣I+ and δAh ∣I− additive for every
A ⊆ [n], such that, for every σ ∈ Sn,

f(x) = δ
A↑σ(p+1)
g (xσ(p+1)) +

n

∑
i=p+2

δ
A↑σ(i)
g (xσ(i) − xσ(i−1))

+ δA
↓
σ(p)

h (xσ(p)) +
p−1
∑
i=1

δ
A↓σ(i)
h (xσ(i) − xσ(i+1)) (x ∈ Inσ ),(13)

where p ∈ {0, . . . , n} is such that xσ(p) < 0 ⩽ xσ(p+1). In this case, we can
choose g = h = f .

Proof. (i)⇔ (ii)⇒ (iii) Follows from Lemma 7 and Theorems 8 and 9.
(iii)⇒ (ii) Considering (13) with g = h = f , we see immediately that f satisfies

(11). We then conclude by Theorems 8 and 9. �
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We now axiomatize the class of n-place symmetric Lovász extensions. A function
f ∶ In → R is a symmetric Lovász extension if it is the restriction to In of a symmetric
Lovász extension on Rn.

Theorem 11. Assume that I is centered at 0 with [−1,1] ⊆ I. Let f ∶ In → R be a
function and let f0 = f −f(0). Then f is a symmetric Lovász extension if and only
if the following conditions hold:

(i) f0 is horizontally median-additive.
(ii) Each of the maps δAf0 ∣I+ and δAf0 ∣I− (A ⊆ [n]) is continuous at a point or

monotonic or Lebesgue measurable or bounded from one side on a set of
positive measure.

(iii) δAf0(−1) = −δ
A
f0
(1) for every A ⊆ [n].

Conditions (ii) and (iii) hold together if and only if δAf0 is homogeneous of degree

one for every A ⊆ [n].

Proof. (Necessity) Follows from (4) and Theorem 10.
(Sufficiency) By Theorem 10, if (i) holds, then δAf0 ∣I+ and δAf0 ∣I− are additive for

every A ⊆ [n] and, for every σ ∈ Sn and every x ∈ Inσ , we have

f0(x) = δ
A↑σ(p+1)
f0

(xσ(p+1)) +
n

∑
i=p+2

δ
A↑σ(i)
f0

(xσ(i) − xσ(i−1))

+ δA
↓
σ(p)

f0
(xσ(p)) +

p−1
∑
i=1

δ
A↓σ(i)
f0

(xσ(i) − xσ(i+1)),

where p ∈ {0, . . . , n} is such that xσ(p) < 0 ⩽ xσ(p+1).

By Theorem 1, if (ii) holds, then δAf0(x) = xδ
A
f0
(1) for every x ∈ I+ and δAf0(x) =

−xδAf0(−1) for every x ∈ I−. Thus we have

f0(x) = xσ(p+1) δ
A↑σ(p+1)
f0

(1) +
n

∑
i=p+2
(xσ(i) − xσ(i−1)) δ

A↑σ(i)
f0

(1)

− xσ(p) δ
A↓σ(p)
f0

(−1) −
p−1
∑
i=1
(xσ(i) − xσ(i+1)) δ

A↓σ(i)
f0

(−1).

Using (iii) and (4), it follows that f0 is a symmetric Lovász extension such that
f0(0) = 0.

Finally, (ii) and (iii) imply that δAf0(x) = xδAf0(1) and δAf0(−x) = xδAf0(−1) =
−xδAf0(1) for every x ∈ I+, which means that δAf0 is homogeneous of degree one.

Conversely, if δAf0 is homogeneous of degree one for every A ⊆ [n], then (ii) and
(iii) hold trivially. �

Remark 4. (a) Since any symmetric Lovász extension vanishing at the origin
is homogeneous of degree one, Conditions (ii) and (iii) of Theorem 11 can
be replaced by the stronger condition: f0 is homogeneous of degree one.

(b) Axiomatizations of the class of n-place symmetric Choquet integrals can be
immediately derived by adding nondecreasing monotonicity.

The following proposition gives a condition for a symmetric Lovász extension to
be a Lovász extension. This clearly shows that horizontal median-additivity does
not imply comonotonic additivity.
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Proposition 12. Let f ∶Rn → R be a Lovász extension and let g∶Rn → R be a
symmetric Lovász extension such that f ∣{0,1}n = g∣{0,1}n . Let also f0 = f − f(0).
Then we have f = g if and only if f0(−x) = −f0(x) for every x ∈ Rn

+ (or equivalently,
for every x ∈ Rn

−).

Proof. Since f0 is comonotonically additive, for every x ∈ Rn we have

f(x) = f(x+) + f(−x−) − f(0).

Combining this with (3), that is

g(x) = f(x+) − f(x−) + f(0),

we see that f = g if and only if f0(−x−) = −f0(x−), which completes the proof. �
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Appendix A. Proof of Theorem 1

We first observe that Theorem 1 holds when I = R; see [1, §2]. To see that the
result still holds for any nontrivial interval I containing 0, we consider the following
two lemmas.

Lemma 13. Let J be a nontrivial real interval containing 0, and let I = J + J =
{x+y ∶ x, y ∈ J}. If a function f ∶ I → R satisfies f(x+x′) = f(x)+f(x′) for x,x′ ∈ J ,
then f can be uniquely extended onto R to an additive function.

Proof. See [8, Theorem 13.5.3]. �

Lemma 14. Let J be a nontrivial real interval containing 0, and let I = J + J =
{x+y ∶ x, y ∈ J}. If a function f ∶ I → R satisfies f(x+x′) = f(x)+f(x′) for x,x′ ∈ J
and there is no c ∈ R such that f(x) = cx for all x ∈ J , then the graph of f is
everywhere dense in I ×R.

Proof. By Lemma 13, there is an additive function g∶R→ R such that g(x) = f(x)
for x ∈ I. If there existed c ∈ R such that g(x) = cx for all x ∈ R then f(x) = cx
would follow for all x ∈ I. Since 0 ∈ J , we would have J ⊆ I and hence f(x) = cx
for all x ∈ J , a contradiction. Therefore, since Theorem 1 holds when I = R, the
graph Gg of g must be dense in R2. Hence, for any (x, y) ∈ I ×R there is a sequence
(xn, g(xn)) ∈ Gg such that (xn, g(xn))→ (x, y) as n→∞. since I is an interval we
may (and do) assume that xn ∈ I for all n. Thus (xn, f(xn)) = (xn, g(xn))→ (x, y)
as n→∞, which proves that the graph of f is dense in I ×R. �

Proof of Theorem 1. Let J = {x/2 ∶ x ∈ I}. By definition, f satisfies f(x + x′) =
f(x)+f(x′) for x,x′ ∈ J . By Lemma 14, if there is no c ∈ R such that f(x) = cx for
all x ∈ J , then the graph of f is everywhere dense in I ×R. Since Theorem 1 holds
when I = R, the second claim follows trivially. �
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