
Extracting Domain Models from Natural-Language
Requirements: Approach and Industrial Evaluation

Chetan Arora, Mehrdad Sabetzadeh,
Lionel Briand

SnT Centre for Security, Reliability and Trust
University of Luxembourg, Luxembourg

{firstname.lastname}@uni.lu

Frank Zimmer
SES Techcom

9 rue Pierre Werner
Betzdorf, Luxembourg

frank.zimmer@ses.com

ABSTRACT
Domain modeling is an important step in the transition from
natural-language requirements to precise specifications. For
large systems, building a domain model manually is a labo-
rious task. Several approaches exist to assist engineers with
this task, whereby candidate domain model elements are
automatically extracted using Natural Language Processing
(NLP). Despite the existing work on domain model extrac-
tion, important facets remain under-explored: (1) there is
limited empirical evidence about the usefulness of existing
extraction rules (heuristics) when applied in industrial set-
tings; (2) existing extraction rules do not adequately exploit
the natural-language dependencies detected by modern NLP
technologies; and (3) an important class of rules developed
by the information retrieval community for information ex-
traction remains unutilized for building domain models.

Motivated by addressing the above limitations, we develop
a domain model extractor by bringing together existing ex-
traction rules in the software engineering literature, extend-
ing these rules with complementary rules from the infor-
mation retrieval literature, and proposing new rules to bet-
ter exploit results obtained from modern NLP dependency
parsers. We apply our model extractor to four industrial
requirements documents, reporting on the frequency of dif-
ferent extraction rules being applied. We conduct an expert
study over one of these documents, investigating the accu-
racy and overall effectiveness of our domain model extractor.

Keywords
Model Extraction; Natural-Language Requirements; Natu-
ral Language Processing; Case Study Research.

1. INTRODUCTION
Natural language (NL) is used prevalently for expressing

systems and software requirements [25]. Building a domain
model is an important step for transitioning from infor-
mal requirements expressed in NL to precise and analyzable
specifications [31]. By capturing in an explicit manner the
key concepts of an application domain and the relations be-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS ’16, October 02-07, 2016, Saint-Malo, France
c© 2016 ACM. ISBN 978-1-4503-4321-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976767.2976769

tween these concepts, a domain model serves both as an ef-
fective tool for improving communication between the stake-
holders of a proposed application, and further as a basis for
detailed requirements and design elaboration [19, 27].

Depending on the development methodology being fol-
lowed, requirements may be written in different formats,
e.g., declarative “shall” statements, use case scenarios, user
stories, and feature lists [25]. Certain restrictions, e.g., tem-
plates [5, 32], may be enforced over NL requirements to miti-
gate ambiguity and vagueness, and to make the requirements
more amenable to analysis. In a similar vein, and based on
the application context, the engineers may choose among
several alternative notations for domain modeling. These
notations include, among others, ontology languages such
as OWL, entity-relationship (ER) diagrams, UML class di-
agrams, and SysML block definition diagrams [3, 16].

Irrespective of the format in which the requirements are
expressed and the notation used for domain modeling, the
engineers need to make sure that the requirements and the
domain model are properly aligned. To this end, it is benefi-
cial to build the domain model before or in tandem with doc-
umenting the requirements. Doing so, however, may not be
possible due to time and resource constraints. Particularly,
in many industry domains, e.g., aerospace which motivates
our work in this paper, preparing the requirements presents
a more immediate priority for the engineers. This is because
the requirements are a direct prerequisite for the contractual
aspects of development, e.g., tendering and commissioning.
Consequently, the engineers may postpone domain modeling
to later stages when the requirements have sufficiently sta-
bilized and met the early contractual demands of a project.
Another obstacle to building a domain model early on in
a complex project is the large number of stakeholders that
may be contributing to the requirements, and often the in-
volvement of different companies with different practices.

Building a domain model that is aligned with a given set
of requirements necessitates that the engineers examine the
requirements and ensure that all the concepts and relation-
ships relevant to the requirements are included in the domain
model. This is a laborious task for large applications, where
the requirements may constitute tens or hundreds of pages of
text. Automated assistance for domain model construction
based on NL requirements is therefore important.

This paper is concerned with developing an automated
solution for extracting domain models from unrestricted NL
requirements, focusing on the situation where one cannot
make strong assumptions about either the requirements’ syn-
tax and structure, or the process by which the requirements

R1: The simulator shall maintain the
scheduled sessions, the active session
and also the list of sessions that have
been already handled.

Simulator Session
maintain

Scheduled
Session

Active
Session

Archived
Session

(a) (b)
Figure 1: (a) Example requirements statement and
(b) corresponding domain model fragment.

IP Address Networkspecified
for

R2: The simulator shall connect only to
those networks for which the IP addresses
have been specified.

(a) (b)
Figure 2: (a) Example relative clause modifier
(rcmod) dependency and (b) corresponding relation.

were elicited. We use UML class diagrams for representing
the extracted models. To illustrate, consider requirements
statement R1 in Fig. 1(a). This requirement originates from
the requirements document of a real simulator application
in the satellite domain. Upon manually examining R1, a
domain expert sketched the domain model fragment shown
in Fig. 1(b). Using heuristic rules implemented via Natural
Language Processing (NLP) [18], a tool could automatically
identify several of the elements in this model fragment. In-
deed, generalizable rules can be provided to extract all the
elements, except for Archived Session and its relation to Ses-
sion, whose identification would require human input.

Automated extraction of models from NL requirements
has been studied for a long time, with a large body of lit-
erature already existing in the area, e.g., [10, 12, 17, 26,
29, 32], to note some. Nevertheless, important aspects and
opportunities that are crucial for the application of model
extraction in industry remain under-explored. Notably:

• There is limited empirical evidence about how well ex-
isting model extraction approaches perform when applied
over industrial requirements. Existing approaches often as-
sume restrictions on the syntax and structure of NL require-
ments [31]. In many industrial situations, e.g., when there
are time pressures or little control over the requirements
authoring process, these restrictions may not be met [5].
There is therefore a need to empirically study the usefulness
of model extraction over unrestricted NL requirements.

• Modern NLP parsers provide detailed information about
the dependencies between different segments of sentences.
Our examination of existing model extraction rules indi-
cates that there are important dependency types which are
detectable via NLP, but which are not currently being ex-
ploited for model extraction. To illustrate, consider require-
ments statement R2, shown in Fig. 2(a), from the simulator
application mentioned earlier. In R2, there is a dependency,
called a relative clause modifier (rcmod) dependency [9], be-
tween the phrases “network” and “specified”. Based on this
dependency, which is detected by parsers such as the Stan-
ford Parser [23], one can extract the relation in Fig. 2(b).
Existing model extraction approaches do not utilize rcmod
and thus do not find this relation. Similar gaps exist for
some other dependency types.

• An important generic class of information extraction rules
from the information retrieval literature is yet to be explored
for model extraction. This class of rules, referred to as link
paths [2] (or syntactic constraints [13]), enables extracting
relations between concepts that are only indirectly related.
To illustrate, consider requirements statement R3, shown in

Simulator Log Message
*

send
1

Simulator Database1
send log

message to1 Simulator Monitoring
Interface1

send log message
to database via1

R3: The simulator shall send log messages
to the database via the monitoring interface.

(a) (b)

(c) (d)
Figure 3: (a) Example requirements statement, (b)
direct relation, (c-d) link path (indirect) relations.

Fig. 3(a), again from the simulator application mentioned
earlier. Existing model extraction approaches can detect the
relation shown in Fig. 3(b), as “simulator” and “log message”
are directly related to each other by being the subject and
the object of the verb “send”, respectively. Nevertheless, ex-
isting approaches miss the indirect relations of Figs. 3(c),(d),
which are induced by link paths.

Link path relations can have different depths, where the
depth represents the number of additional concepts linked to
the direct relation. For example, in the relation of Fig. 3(c),
one additional concept, namely “database”, has been linked
to the direct relation, i.e., Fig. 3(b). The depth of the link
path relation is therefore one. Using a similar reasoning, the
depth of the link path relation in Fig. 3(d) is two.

As suggested by our example, the direct relation of Fig. 3(b)
is not the only plausible choice to consider for inclusion in
the domain model; the indirect relations of Figs. 3(c),(d)
present meaningful alternative (or complementary) relations.
Indeed, among the three relations in Figs. 3(b)-(d), the do-
main expert found the one in Fig. 3(c), i.e., the link path
of depth one, useful for the domain model and excluded the
other two relations. Using link paths in model extraction is
therefore an important avenue to explore.

Contributions. Motivated by addressing the limitations
outlined above, we make the following contributions:

(1) We develop an automated domain model extractor for
unrestricted NL requirements. We use UML class diagrams
for representing the results of extraction. Our model ex-
tractor combines existing extraction rules from the software
engineering literature with link paths from the information
retrieval literature. We further propose new rules aimed at
better exploiting the dependency information obtained from
NLP dependency parsers.

(2) Using four industrial requirements documents, we ex-
amine the number of times each of the extraction rules im-
plemented by our model extractor is triggered, providing in-
sights about whether and to what extent each rule is capable
of deriving structured information from NL requirements in
realistic settings. The four documents that we consider col-
lectively contain 786 “shall” requirements statements.

(3) We report on an expert review of the output of our
model extractor over 50 randomly-selected requirements
statements from one of the four industrial documents men-
tioned above. The results of this review suggest that ≈90%
of the conceptual relations identified by our model extrac-
tor are either correct or partially correct, i.e., having only
minor inaccuracies. Such level of correctness, noting that
no particular assumptions were made about the syntax and
structure of the requirements statements, is promising. At
the same time, we observe that, from the set of relations
identified, only ≈36% are relevant, i.e., deemed useful for
inclusion in the domain model. Our results imply that low
relevance is not a shortcoming in our model extractor per
se, but rather a broader challenge to which other rule-based
model extractors are also prone. In this sense, our expert

review reveals an important area for future improvement in
automated model extraction.

Structure. Sections 2 and 3 review the state of the art and
provide background. Section 4 presents our domain model
extraction approach. Section 5 reports on an empirical eval-
uation of the approach. Section 6 concludes the paper.

2. STATE OF THE ART
We synthesize the literature on domain model extraction

and compile a set of extraction rules (heuristics) in order to
establish the state of the art. The rules identified through
our synthesis are shown in Table 1. These rules are orga-
nized into four categories, based on the nature of the infor-
mation they extract (concepts, associations and generaliza-
tions, cardinalities, and attributes). We illustrate each rule
in the table with an example. We note that the literature
provides rules for extracting (class) operations as well. How-
ever, and in line with best practice [19], we deem operations
to be outside the scope of domain models. Furthermore,
since operations typically become known only during the
design stages, there is usually little information to be found
about operations in requirements documents.

Our focus being on unrestricted NL requirements, we have
excluded from Table 1 rules that rely on specific sentence
patterns. We do nevertheless include in the table five pattern-
based rules (B3 to B5 and D1 to D2) due to the generic
nature of these rules. The criterion we applied for the inclu-
sion of a pattern-based rule was that the rule must have been
considered in at least two distinct previous publications. We
further exclude from Table 1 rules rooted in programming
conventions, e.g., the convention of separating concepts and
attributes by an underscore, e.g., Bank Id.

Next, we describe the sources from which the rules of Ta-
ble 1 originate: The pioneering studies by Abbott [1] and
Chen [8] laid the foundation for the subsequent work on
model extraction from textual descriptions. Yue et al. [31]
survey 20 approaches aimed at transforming textual require-
ments into early analysis models. Of these, five [4, 15, 20,
21, 24] provide automated support for extracting domain
models, or models closely related to domain models, e.g.,
object models. Yue et al. [31] bring together the rules from
the above approaches, further accounting for the extensions
proposed to Abbott’s original set of rules [1] in other related
studies. Rules A1 to A4, B1, B4, B5, C1 to C4, and D1 to
D3 in Table 1 come from Yue et al. [31].

To identify more recent strands of related research, we
examined all the citations to Yue et al. [31] based on Google
Scholar. Our objective was to identify any new extraction
rules in the recent literature not already covered by Yue et
al. [31]. We found two publications containing new rules:
Vidya Sagar and Abirami [29], and Ben Abdessalem Karaa
et. al. [7]. Our study of Vidya Sagar and Abirami [29]
and a closely-related publication by Elbendak et. al. [12]
upon which Vidya Sagar and Abirami build yielded four new
rules. These are A5, B2, B3, and D4 in Table 1. As for Ben
Abdessalem Karaa et. al. [7], all the new rules proposed
therein are pattern-based. These rules do not match our
inclusion criterion mentioned above, as no other publication
we know of has used these (pattern-based) rules.

A limitation in the rules of Table 1 is that these rules
do not cover link paths, as we already explained in Sec-
tion 1. Link-path rules have been used in the information
retrieval domain for mining structured information from var-

Table 1: Existing domain model extraction rules.

 C
on

ce
pt

s
 A

ss
oc

ia
ti

on
s

an
d

G
en

er
al

iz
at

io
ns

 C

ar
di

na
lit

ie
s

 A
tt

ri
bu

te
s

* NP stands for noun phrase; a definition is provided in Section 3.

"The train arrives in the morning at 10
AM." :: Arrival time is an attribute of Train.D4 An intransitive verb with an

adverb suggests an attribute.

"large library" :: Size is an attribute of
Library.D3

The adjective of an
adjectivally modified NP
suggests an attribute.

"Book's title" :: Title is an attribute of Book.D2 Genitive cases, e.g., NP's
NP, suggest attributes.

D1
"identified by", "recognized
by", "has" [...] suggest
attributes.

"An employee is identified by the employee
id." :: Employee Id is an attribute of

Employee.

An explicit number before a
concept suggests a
cardinality.

Student Exam
pass

“The student passed 3 exams.” ::

31
C4

C3 Student Exam
pass

“The student passed the exam.” ::

11

If the source concept of an
association is singular and
the target concept is singular
as well, then the association
is one-to-one.

C2

If the source concept of an
association is singular and
the target concept is plural /
quantified by a definite
article, then the association
is one-to-many.

Student Exam
pass

“The student passed the exams.” ::

*1

If the source concept of an
association is plural / has a
universal quantifier and the
target concept has a unique
existential quantifier, then the
association is many-to-one.

C1 Arriving
Airplane Control Tower

contact

“All arriving airplanes shall contact the
control tower.” ::

* 1

Premium Service
Service

“Service may be premium service or
normal service.” ::

Normal Service

B5
"is a", "type of", "kind of",
"may be", [...] suggest
generalizations.

"contain", "is made up of",
"include", [...] suggest
aggregations / compositions.

B4 Book Library

“The library contains books.” ::

Customer BLUX
bank

“The bank of the customer is BLUX.” ::<R> in a requirement of the
form "<R> of <A> is " is
likely to be an association.

B3

Cheque Banksent
to

“The cheque is sent to the bank.” ::
B2 A verb with a preposition is

an association.

Simulator Log Message
send

R3 in Fig. 3 ::Transitive verbs are
associations. B1

Description

R3 in Fig. 3 :: Log Message

R3 in Fig. 3 :: Simulator (if it is recurring)

A1

"Borrowing is processed by the staff." ::
Borrowing

A4

Example

Objects in the requirements
are concepts.

A5

R3 in Fig. 3 :: Simulator

Gerunds in the requirements
are concepts.

All NPs* in the requirements
are candidate concepts.

R3 in Fig. 3 :: Simulator, Log Message,
Database, and Monitoring Interface

Rule

A3

Recurring NPs are concepts.
Subjects in the requirements
are concepts.

A2

ious natural-language sources, e.g., Wikipedia pages [2, 13]
and the biomedical literature [30]. However, this class of
rules has not been used for model extraction to date. An-
other limitation, again explained in Section 1, is that exist-
ing model extraction rules do not fully exploit the results
from NLP tools. Our approach, described in Section 4, pro-
poses extensions in order to address these limitations. Our
empirical evaluation, described in Section 5, demonstrates
that our extensions are of practical significance.

Further, the large majority of existing work on model ex-
traction is evaluated over exemplars and in artificial settings.
Empirical studies on model extraction in real settings remain
scarce. Our empirical evaluation, which is conducted in an
industrial context, takes a step towards addressing this gap.

The simulator shall continuously monitor its connection to the SNMP manager and any linked devices.

dobj

advmoddet

NP NP NP

NP

poss
det

amod

conj_and

nsubj

prep_to

prep_to

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3

4

13 14 15

aux

nn
det

prep_to
prep_to

w
or

d
de

pe
nd

en
ci

es

de
pe

nd
en

ci
es

de

riv
ed

 b
y

A
lg

. o
f F

ig
. 8

(S
ec

tio
n

4.
2)

 14

amod

153 4

advmod
aux

VB

R4:

ref_to

6

dobj

nsubj

(identified directly by coreference resolution)

Figure 5: Results of dependency parsing for requirement R4 of Fig. 4(a).

(ROOT
 (S
 (NP (DT The) (NN simulator))
 (VP (MD shall)
 (ADVP (RB continuously))
 (VP (VB monitor)
 (NP (PRP$ its) (NN connection))
 (PP (TO to)
 (NP
 (NP (DT the) (NNP SNMP) (NN manager))
 (CC and)
 (NP (DT any) (VBN linked) (NNS devices))))))
 (. .)))

R4: The simulator shall continuously monitor its connection to
the SNMP manager and any linked devices.

(b)

(a)

Figure 4: (a) A requirement and (b) its parse tree.

3. SYNTACTIC PARSING
In this section, we provide background on syntactic pars-

ing, also known as syntactic analysis, which is the key en-
abling NLP technology for our model extraction approach.
Syntactic parsing encompasses two tasks: phrase structure
parsing and dependency parsing. Our model extractor uses
both. We briefly introduce these tasks below.

Phrase structure parsing [18] is aimed at inferring the
structural units of sentences. In our work, the units of in-
terest are noun phrases and verbs. A noun phrase (NP) is
a unit that can be the subject or the object of a verb. A
verb (VB) appears in a verb phrase (VP) alongside any di-
rect or indirect objects, but not the subject. Verbs can have
auxiliaries and modifiers (typically adverbs) associated with
them. To illustrate, consider requirements statement R4 in
Fig. 4(a). The structure of R4 is depicted in Fig. 4(b) us-
ing what is known as a parse tree. To save space, we do
not visualize the tree, and instead show it in a nested-list
representation commonly used for parse trees.

Dependency parsing [28] is aimed at finding grammatical
dependencies between the individual words in a sentence.
In contrast to phrase structure parsing, which identifies the
structural constituents of a sentence, dependency parsing
identifies the functional constituents, e.g., the subject and
the object. The output of dependency parsing is represented
as a directed acyclic graph, with labeled (typed) depen-
dency relations between words. The top part of the graph
of Fig. 5 shows the output of dependency parsing over re-
quirements statement R4. An example typed dependency
here is nsubj(monitor{5},simulator{2}), stating that “simula-
tor” is the subject of the verb “monitor”.

Syntactic parsing is commonly done using the pipeline
of NLP modules shown in Fig. 6. In our work, we use the
pipeline implementation provided by the Stanford Parser [23].
The first module in the pipeline is the Tokenizer, which splits
the input text, in our context a requirements document, into
tokens. A token can be a word, a number, or a symbol.

Tokenizer

Sentence
Splitter

POS Tagger

Parser
(Phrase Structure

+ Dependency)

NL
Requirements

1

2

3

5

Named Entity
Recognizer 4

Structure
Parse Tree
NP NPVP

Typed
Dependencies

nsubjnn dobj

Annotations

Coreference
Resolver 6

Figure 6: Parsing pipeline.

The second module,
the Sentence Split-
ter, breaks the text
into sentences. The
third module, the
POS Tagger, attaches
a part-of-speech (POS)
tag to each token.
POS tags represent
the syntactic cate-
gories of tokens, e.g.,
nouns, adjectives and
verbs. The fourth
module, the Named-
Entity Recognizer, identifies entities belonging to pre-
defined categories, e.g., proper nouns, dates and locations.
The fifth and main module is the Parser, encompassing both
phrase structure parsing and dependency parsing. The final
module is the Coreference Resolver. This (optional) module
finds expressions that refer to the same entity. We concern
ourselves with pronominal coreference resolution only, which
is the task of identifying, for a given pronoun such as “its”
and “their”, the NP that the pronoun refers to. Fig. 5 shows
an example of pronominal coreference resolution, where the
pronoun “its” is linked to the referenced NP, namely “the
simulator”, via a ref to dependency.

4. APPROACH

NPs, VBs Dependencies

Process
Requirements
Statements

NL
Requirements

Lift
Dependencies to
Semantic Units

nsubjnn dobj

Domain
Model

Construct
Domain
Model

0..1 1..*

relation

Extraction
Rules

1

23

Figure 7: Approach Overview.

Fig. 7 presents
an overview of our
domain model ex-
traction approach.
The input to the
approach is an NL
requirements doc-
ument and the out-
put is a UML class
diagram. Below,
we elaborate the
three main steps of our approach, marked 1-3 in Fig. 7.

4.1 Processing the Requirements Statements
The requirements processing step includes the following

activities: (1) detecting the phrasal structure of the require-
ments, (2) identifying the dependencies between the words in
the requirements, (3) resolving pronominal coreferences, and
(4) performing stopword removal and lemmatization; these
are common NLP tasks, respectively for pruning words that
are unlikely to contribute to text analysis, and for trans-
forming words into their base morphological form.

Activities (1), (2), and (3) are carried out by the pipeline
of Fig. 6. From the parse tree generated by this pipeline for
each requirements statement, we extract the atomic NPs
and the VBs. Atomic NPs are those that cannot be further
decomposed. For example, from the parse tree of Fig. 4(b),
we extract: “The simulator” (NP), “monitor” (VB), “its con-
nection” (NP), “the SNMP manager” (NP) and “any linked
devices” (NP). We do not extract “the SNMP manager and
any linked devices” because this NP is not atomic.

We then subject the NPs to stopword removal. Stopwords
are words that appear so frequently in the text that they no
longer serve an analytical purpose [22]. Stopwords include,
among other things, determiners and predeterminers. In our
example, stopword removal strips the extracted NPs of the
determiners “the” and “any”. The VBs and the tail words of
the NPs are further subject to lemmatization. In our exam-
ple, “linked devices” is transformed into“linked device”. Had
the VB been, say, “monitoring”, it would have been trans-
formed into“monitor”. VBs in passive form are an exception
and not lemmatized, e.g., see the example of Fig. 2.

The NPs and VBs obtained by following the process above
provide the initial basis for labeling the concepts, attributes,
and associations of the domain model that will be constructed
in Step 3 of our approach (see Fig. 7). The dependencies
obtained from executing the pipeline of Fig. 6 need to un-
dergo further processing and be combined with the results
of coreference resolution before they can be used for domain
model construction. This additional processing is addressed
by Step 2 of our approach, as we explain next in Section 4.2.

4.2 Deriving Dependencies at a Semantic Level
As seen from Fig. 5, the results of dependency parsing (top

of the figure) are at the level of words. Many of these de-
pendencies are meaningful for model extraction only at the
level of NPs, which, along with verbs, are the main semantic
(meaning-bearing) units of sentences. For example, consider
the dependency prep to(connection{7}, manager{11}), stat-
ing that “manager” is a prepositional complement to “con-
nection”. To derive from this dependency a meaningful rela-
tion for the domain model, we need to raise the dependency
to the level of the involved NPs, i.e., prep to(NP2, NP3) in
Fig. 5. We do so using the algorithm of Fig. 8.

The algorithm takes as input a set P composed of the
atomic NPs and the VBs, and the results of dependency
parsing and coreference resolution, all from Step 1 of our
approach (Section 4.1). The algorithm initializes the output
(i.e., the semantic-unit dependencies) with the ref to depen-
dencies (L.1), noting that the targets of ref to dependencies
are already at the level of NPs. Next, the algorithm identi-
fies, for each word dependency, the element(s) in P to which
the source and the target of the dependency belong (L.3–12).
If either the source or target words fall outside the bound-
aries of the elements in P , the words themselves are treated
as being members of P (L.6,11). This behavior serves two
purposes: (1) to link the VBs to their adverbial modifiers,
illustrated in the example of Fig. 5, and (2) to partially
compensate for mistakes made by phrase structure parsers,
which are typically only ≈90% accurate in phrase detec-
tion [6, 33]. Dependencies between the constituent words
of the same NP are ignored (L.13), except for the adjectival
modifier (amod) dependency (L.16–18) which is used by rule
D3 of Table 1. When the algorithm of Fig. 8 is executed over
our example requirements statement R4, it yields the depen-

Input: A set P of all (atomic) NPs and VBs in a sentence S;
Input: A set DWord of word dependencies in S;
Input: A set R of ref to dependencies for the pronouns in S;
Output: A set DSem of semantic-unit dependencies for S;

1: DSem R; /*Initialize DSem with the results of coref resolution.*/

2: for all dep 2 DWord do
3: if (there exists some p 2 P to which dep.source belongs) then
4: psource p;
5: else
6: psource dep.source;
7: end if
8: if (there exists some p 2 P to which dep.target belongs) then
9: ptarget p;

10: else
11: ptarget dep.target;

12: end if
13: if (psource 6= ptarget) then

14: Add to DSem a new dependency with source psource,
target ptarget and type dep.type;

15: else
16: if (dep.type is amod) then
17: Add dep to DSem;
18: end if
19: end if
20: end for
21: return DSem

Figure 1: Algorithm for lifting word dependencies to semantic-unit dependen-
cies.
0.1 Introduction

Figure 8: Algorithm for lifting word dependencies
to semantic-unit dependencies.

Table 2: New extraction rules in our approach.

“The simulator shall provide a function to
edit the existing system configuration.”

Simulator Existing System
Configuration

provide function
to edit

N3
Non-finite verbal modifiers
(vmod dependencies)
suggest associations.

System
Operator

System
Configuration

initialize

“The system operator shall be able to initialize
the system configuration, and to edit the
existing system configuration.”

System
Operator

Existing System
Configuration

edit

Verbal clausal complements
(ccomp/xcomp dependencies)
suggest associations.

N2

Latest Warning
Message

System
Configuration

belong
to

“The system operator shall display the system
configuration, to which the latest warning
message belongs.”

(Another example for rcmod was given in Fig. 2)

Rule

Relative clause modifiers of
nouns (rcmod dependency)
suggest associations.

N1

ExampleDescription

dencies shown on the bottom of Fig. 5. These dependencies
are used in Step 3 of our approach, described next, for ex-
tracting associations, aggregations, generalizations and also
for linking attributes to concepts.

4.3 Domain Model Construction
The third and final step of our approach is constructing a

domain model. This step uses the NPs and VBs identified
in Step 1 (after stopword removal and lemmatization), along
with the semantic-unit dependencies derived in Step 2. The
extraction rules we apply for model construction are: (1) the
rules of Table 1 gleaned from the state of the art, (2) three
new rules, described and exemplified in Table 2, which we
propose in order to exploit dependency types that have not
been used for model extraction before, and (3) link paths [2],
which we elaborate further later in this section. In Table 3,
we show all the model elements that our approach extracts
from our example requirements statement R4. In the rest
of this section, we outline the main technical factors in our
domain model construction process. We organize our dis-
cussion under five headings: domain concepts, associations,
generalizations, cardinalities, and attributes.

Domain concepts. All the extracted NPs (from Step 1)
are initially considered as candidate concepts. If a candidate
concept appears as either the source or the target of some

Table 3: Extraction results for R4 of Fig. 4(a).

6 Linked
Device DeviceGeneralization D3

5 D2† (+ coreference
resolution)

Aggregation Connection SImulator

Simulator Linked
Device*

continuously monitor
connection to1

Link Path Depth 1,
C2 (for cardinalities)4 Association

Link Path Depth 1,
C3 (for cardinalities)3 Association Simulator SNMP

Manager1
continuously monitor

connection to1

Association2 B1,
C3 (for cardinalities)Simulator Connection

1
continuously

monitor1

1 A1Simulator, Connection, SNMP Manager, Linked
Device, Device

Candidate
Concept

Extraction rule(s)
triggered

Extracted element(s)
Type of

element(s)
extracted

#

As we explain in Section 4.3, in contrast to some existing approaches, we use
D2 and D3 (from Table 1) for extracting aggregations and generalizations,
respectively, rather than attributes.

*

A1 in this table is an enhanced version of A1 in Table 1, as discussed in Section 4.3.

†

†
*

Table 4: Different subject types.

“The operator of the ground station shall initialize the
system configuration.” operatorGenetive

Subject

Passive
Subject

"The system configuration shall be initialized by the
operator." operator

Simple
Subject operator"The operator shall initialize the system configuration."

SubjectExampleSubject Type

dependency (from Step 2), the candidate concept will be
marked as a domain concept. If either the source or the tar-
get end of a dependency is a pronoun, that end is treated as
being the concept to which the pronoun refers. Table 1 lists
a total of five rules, A1–A5, for identifying domain concepts.
Our approach implements A1, which subsumes A2–A5. We
enhance A1 with the following procedure for NPs that have
an adjectival modifier (amod dependency), as long as the
adjective appears at the beginning of an NP after stopword
removal: we remove the adjective from the NP and add the
remaining segment of the NP as a domain concept. For ex-
ample, consider row 1 of Table 3. The concept of Device here
was derived from Linked Device by removing the adjectival
modifier. The relation between Device and Linked Device is
established via rule D3 discussed later (see Generalizations).

Associations. The VBs (from Step 1) that have subjects or
objects or both give rise to associations. The manifestation
of the subject part may vary in different sentences. Table 4
lists and exemplifies the subject types that we handle in our
approach. Our treatment unifies and generalizes rules B1
and B2 of Table 1. We further implement rule B3, but as
we observe in our evaluation (Section 5), this rule is not
useful for the requirements in our case studies.

For extracting associations, we further propose three new
rules, N1–N3, shown in Table 2. Rule N1 utilizes relative
clause modifier (rcmod) dependencies. In the example pro-
vided for this rule in Table 2, “system configuration” is mod-
ified by a relative clause, “to which the latest warning mes-
sage belongs”. From this, N1 extracts an association be-
tween System Configuration and Latest Warning Message.

Rule N2 utilizes verbal clausal complement (ccomp and
xcomp) dependencies. In the example given in Table 2, “ini-
tialize” and “edit” are clausal complements to “able”. Here,
the subject, “system operator”, is linked to “able”, and the
two objects, “system configuration” and “existing system
configuration”, are linked to “initialize” and “edit”, respec-
tively. What N2 does here is to infer that “system operator”
(conceptually) serves as a subject to “initialize” and “edit”,
extracting the two associations shown in Table 2.

As for Rule N3, the purpose is to utilize non-finite verbal
modifier (vmod) dependencies. In the example we show in
Table 2, “edit” is a verbal modifier of “function”. We use this
information for enhancing the direct subject-object relation
between “simulator” and “function”. Specifically, we link the
object of the verbal modifier, “existing system configura-
tion”, to the subject, “simulator”, extracting an association
between Simulator and Existing System Configuration.

The associations resulting from our generalization of B1
and B2, explained earlier, and from our new rules, N1 to N3,
are all subject to a secondary process, aimed at identifying
link paths [2]. Intuitively, a link path is a combination of
two or more direct links. To illustrate, consider rows 3 and
4 in Table 3. The basis for both of the associations shown in
these rows is the direct association in row 2 of the table. The
direct association comes from the subject-object relation be-
tween NP1 and NP2 in the dependency graph of Fig. 5. The
association in row 3 of Table 3 is induced by combining this
direct association with the dependency prep to(NP2, NP3)
from the dependency graph. The association of row 4 is
the result of combining the direct association with another
dependency, prep to(NP2, NP4). In our approach, we con-
sider all possible ways in which a direct association can be
combined with paths of prepositional dependencies (prep ∗
dependencies in the dependency graph).

For extracting aggregations, which are special associations
denoting containment relationships, we use rules B4 and D2
from Table 1. With regard to D2, we point out that a num-
ber of previous approaches, e.g., [12, 31, 29], have used this
rule for identifying attributes. Larman [19] notes the diffi-
culty in choosing between aggregations and attributes, rec-
ommending that any entity that represents in the real world
something other than a number or a string of text should
be treated as a domain concept, rather than an attribute.
Following this recommendation, we elect to use D2 for ex-
tracting aggregations. Ultimately, the user will need to de-
cide which representation, an aggregation or an attribute, is
most suitable on a case-by-case basis.

An important remark about D2 is that this rule can be
combined with coreference resolution, which to our knowl-
edge, has not been done before for model extraction. An
example of this combination is given in row 5 of Table 3.
Specifically, the aggregation in this row is induced by the
possessive pronoun “its”, which is linked to “simulator” via
coreference resolution (see the ref to dependency in Fig. 5).

Generalization. From our experience, we surmise that gen-
eralizations are typically left tacit in NL requirements and
are thus hard to identify automatically. The main rule tar-
geted at generalizations is B5 in Table 1. This rule, as evi-
denced by our evaluation (Section 5), has limited usefulness
when no conscious attempt has been made by the require-
ments authors to use the patterns in the rule.

We nevertheless observe that certain generalizations man-
ifest through adjectival modifiers. These generalizations can
be detected by rule D3 in Table 1. For example, row 6 of
Table 3 is extracted by D3. Like rule D2 discussed ear-
lier, D3 has been used previously for attributes. However,
without user intervention, identifying attributes using D3
poses a challenge. To illustrate, consider the example we
gave in Table 1 for D3. There, the user would need to pro-
vide the attribute name, size. For simple cases, e.g., sizes,
colors, shapes and quantities, one can come up with a taxon-
omy of adjective types and use the type names as attribute

names [29]. We observed though that generic adjective types
are unlikely to be helpful for real and complex requirements.
We therefore elect to use D3 for extracting generalizations.
Similar to the argument we gave for D2, we leave it to the
user to decide when an attribute is more suitable and to
provide an attribute name when this is the case.

Cardinalities. We use rules C1 to C4 of Table 1 for de-
termining the cardinalities of associations. These rules are
based on the quantifiers appearing alongside the terms that
represent domain concepts, and the singular versus plural
usage of these terms. For example, the cardinalities shown
in rows 2 to 4 of Table 3 were determined using these rules.

Attributes. We use rules D1 and D4 of Table 1 for extract-
ing attributes. As we discussed above, we have chosen to
use rules D2 and D3 of Table 1 for extracting aggregations
and generalizations, respectively. With regard to rule D4,
we note that one cannot exactly pinpoint the name of the
attribute using this rule. Nevertheless, unlike rule D3 which
is not applicable without user intervention or an adjective
taxonomy, D4 can reasonably guess the attribute name. For
instance, if we apply our implementation of D4 to the re-
quirement exemplifying this rule in Table 1, we obtain arrive
(instead of arrival time) as the attribute name.

5. EMPIRICAL EVALUATION
In this section, we evaluate our approach by addressing

the following Research Questions (RQs):
RQ1. How frequently are different extraction rules
triggered? One cannot expect large gains from rules that
are triggered only rarely. A rule being triggered frequently
is thus an important prerequisite for the rule being useful.
RQ1 aims to measure the number of times different extrac-
tion rules are triggered over industrial requirements.
RQ2. How useful is our approach? The usefulness of
our approach ultimately depends on whether practitioners
find the approach helpful in real settings. RQ2 aims to assess
through a user study the correctness and relevance of the
results produced by our approach.
RQ3. Does our approach run in practical time? Re-
quirements documents may be large. One should thus be
able to perform model extraction quickly. RQ3 aims to study
whether our approach has a practical running time.

5.1 Implementation
For syntactic parsing and coreference resolution, we use

Stanford Parser [23]. For lemmatization and stopword re-
moval, we use existing modules in the GATE NLP Work-
bench [14]. We implemented the model extraction rules
using GATE’s scripting language, JAPE, and GATE’s em-
bedded Java environment. The extracted class diagrams are
represented using logical predicates (Prolog-style facts). Our
implementation is approximately 3,500 lines of code, exclud-
ing comments and third-party libraries. Our implementa-
tion is available at: https://bitbucket.org/carora03/redomex.

5.2 Results and Discussion
Our evaluation is based on four industrial requirements

documents, all of which are collections of “shall” require-
ments written in English. Table 5 briefly describes these
documents, denoted Case A–D, and summarizes their main
characteristics. We use all four documents for RQ1 and
RQ3. For RQ2, we use selected requirements from Case A.

Table 5: Description of case study documents.

Simulator application for satellite systems N.A.

N.A.

Satellite ground station control system

Description

Safety evidence information management
system for safety certification

No

Yes
(Rupp's)Case B

Template
used?

% of reqs. complying
with template

158

Case

Yes
(Rupp's)

380

Case C
89%110Case D

of
reqs.

Case A

138Satellite data dissemination network

64%

No

Cases A–C concern software systems in the satellite do-
main. These three documents were written by different
teams in different projects. In Cases B and D, the require-
ments authors had made an effort to comply with Rupp’s
template [25], which organizes the structure of requirements
sentences into certain pre-defined slots. The number of
template-compliant requirements in these two documents is
presented in Table 5 as a percentage of the total number of
requirements. These percentages were computed in our pre-
vious work [5], where Cases B and D were also used as case
studies. Our motivation to use template requirements in
our evaluation of model extraction is to investigate whether
restricting the structure of requirements would impact the
applicability of generic extraction rules, which assume no
particular structure for the requirements.

RQ1. Table 6 presents the results of executing our model
extractor on Cases A–D. Specifically, the table shows the
number of times each of the rules employed in our approach
has been triggered over our case study documents. The rule
IDs correspond to those in Tables 1 and 2; LP denotes link
paths. The table further shows the number of extracted
elements for each case study, organized by element types.

As indicated by Table 6, rules B1, C1 to C4, D2, D3,
and LP are the most frequently triggered. B1 is a generic
rule that applies to all transitive verbs. D2 and D3 address
genitive cases and the use of adjectives in noun phrases.
These constructs are common in English, thus explaining
the frequent application of D2 and D3. We note that, as we
explained in Section 4.3, we use D2 and D3 for identifying
aggregations and generalizations, respectively.

Link paths, as stated earlier, identify indirect associations.
Specifically, link paths build upon the direct associations
identified by B1, B2, and N1 to N3. To illustrate, consider
the example in Fig. 3. Here, B1 retrieves the direct associ-
ation in Fig. 3(b), and link paths retrieve the indirect ones
in Figs. 3(c),(d). In this example, we count B1 as being
triggered once and link paths as being triggered twice.

Rules C1 to C4 apply to all associations, except aggrega-
tions. More precisely, C1 to C4 are considered only alongside
B1 to B3, N1 to N3, and link paths. For instance, C2 is trig-
gered once and C3 twice for the associations of Figs. 3(b-d).

Our results in Table 6 indicate that B3, B5, and D1 were
triggered either rarely or not at all in our case study doc-
uments. These rules are based on fixed textual patterns.
While the patterns underlying these rules seem intuitive,
our results suggest that, unless the requirements authors
have been trained a priori to use the patterns (not the case
for the documents in our evaluation), such patterns are un-
likely to contribute significantly to model extraction.

With regard to link paths and our proposed rules, N1
to N3, in Table 2, we make the following observations: Link
paths extracted 47% of the (non-aggregation) associations in
Case A, 45% in Case B, 50% in Case C, and 46% in Case D.
And, rules N1 to N3 extracted 23% of the associations in
Case A, 24% in Case B, 29% in Case C, and 37% in Case D.
These percentages indicate that link paths and our new rules

Table 6: Number of times extraction rules were triggered and number of extracted elements (per document).

Case C
Case D

Case A
Case B

of
generalizations

90

35
132

77
90

of
aggregations

43
90

71
730
405

of (regular)
associations

274

526
of attributes

15
21
26
4

541

of concepts

620
370

85

370

85

620
541

2 2341274 1250 150 680 35 1140 7
6 2011304050 5 7717 0 852 3668 21

251 58 32781 471 8990 730 69210 19
20 4824 47 246526 760 310139 1 424

LPN3N2N1B2 D4B4 C1-4B5B1 D3B3 D1 D2A1*

*
 A1 in this table is an enhanced version of A1 in Table 1, as discussed in Section 4.3. A1 subsumes A2 to A5 (of Table 1), as noted in the same section.

†

The small number of attributes is explained by our decision to use D2 and D3 (resp.) for extracting aggregations and generalizations instead of attributes, as noted in Section 4.3.†

contribute significantly to model extraction. Assessing the
quality of the extracted results is the subject of RQ2.

With regard to whether the use of templates has an impact
on the applicability of the generic rules considered in this pa-
per, the results in Table 6 do not suggest an advantage or
a disadvantage for templates, as far as the frequency of the
application of the extraction rules is concerned. We there-
fore anticipate that the generic rules considered in this paper
should remain useful for restricted requirements too. Plac-
ing restrictions on requirements may nevertheless provide
opportunities for developing additional extraction rules [32].
Such rules would naturally be tied to the specific restrictions
enforced and are thus outside the scope of this paper.

RQ2. RQ2 aims at assessing practitioners’ perceptions about
the correctness and relevance of the results produced by our
approach. Our basis for answering RQ2 is an interview sur-
vey conducted with the lead requirements analyst in Case A.
Specifically, we selected at random 50 requirements state-
ments (out of a total of 158) in Case A and solicited the
expert’s feedback about the model elements that were auto-
matically extracted from the selected requirements. Choos-
ing Case A was dictated by the criteria we had to meet: To
conduct the interview, we needed expert(s) who had UML
domain modeling experience and who were further fully fa-
miliar with the requirements. This restricted our choice to
Cases A and B. Our interview would further require a sig-
nificant time commitment from the expert(s). Making such
a commitment was justified by the expert for Case A only,
due to the project still being ongoing.

We collected the expert’s feedback using the questionnaire
shown in Fig. 9. This questionnaire has three questions, Q1
to Q3, all oriented around the notion of “relation”. We de-
fine relations to include (regular) associations, aggregations,
generalizations, and attributes. The rationale for treating
attributes as relations is the conceptual link that exists be-
tween an attribute and the concept to which the attribute
belongs. The notion of relation was clearly conveyed to the
expert using a series of examples prior to the interview. Our
questionnaire does not include questions dedicated to do-
main concepts, since, as we explain below, the correctness
and relevance of the domain concepts at either end of a given
relation are considered while that relation is being exam-
ined. During the interview, the expert was asked to evaluate,
through Q1 and Q2 in the questionnaire, the individual re-
lations extracted from a given requirements statement. The
expert was further asked to verbalize his rationale for the
responses he gave to these questions. Once all the relations
extracted from a requirements statement had been exam-
ined, the expert was asked, through Q3, whether there were
any other relations implied by that requirements statement
which were missing from the extracted results.

The relations extracted from each requirements statement
were presented to the expert in the same visual format as de-
picted by the third column of Table 3. The extraction rules
involved were not shown to the expert. To avoid decontex-

❑ Yes ❑ Partially No❑

❑ Yes ❑ Maybe No❑

Q3 (asked per requirements statement). Are there any other relations
that this requirements statement implies? If yes, please elaborate.

Q2 (asked per relation). Should this relation be in the domain model?

Q1 (asked per relation). Is this relation correct?

Figure 9: Interview survey questionnaire.

tualizing the relations, we did not present to the expert the
extracted relations in isolation. Instead, a given require-
ments statement and all the relations extracted from it were
visible to the expert on a single sheet as we traversed the
relations one by one and asking Q1 and Q2 for each of them.

Q1 addresses correctness. A relation is deemed correct
if the expert can infer the relation by reading the under-
lying requirements statement. We instructed the expert to
respond to Q1 by “Yes” for a given relation, if all the fol-
lowing criteria were met: (1) the concept (or attribute) at
each end of the relation is correct, (2) the type assigned to
the extracted relation (e.g., association or generalization)
is correct, and (3) if the relation represents an association,
the label and the cardinalities of the association are correct.
The expert was instructed to answer by “Partially” when he
saw some inaccuracy with respect to the correctness crite-
ria above, but he found the inaccuracy to be minor and not
compromising the meaningfulness of the relation; otherwise,
the expert was asked to respond by “No”.

The correctness of a relation per se does not automatically
warrant its inclusion in the domain model. Among other
reasons, the relation might be too obvious or too detailed for
the domain model. Q2 addresses relevance, i.e., whether a
relation is appropriate for inclusion in the domain model.
The expert was asked Q2 for a given relation only upon a
“Yes” or “Partially” response to Q1. If the expert’s answer
to Q1 was “No”, the answer to Q2 was an automatic “No”.
If the expert had answered Q1 by “Partially”, we asked him
to answer Q2 assuming that the inaccuracy in the relation
had been already resolved.

Finally, Q3 addresses missing relations. A relation is miss-
ing if it is identifiable by a domain expert upon manually
examining a given requirements statement R, but which is
absent from the relations that have been automatically ex-
tracted from R. A missing relation indicates one or a combi-
nation of the following situations: (1) information that is not
extracted due to technical limitations in automation, (2) in-
formation that is tacit in a requirements statement and thus
inferable only by a human expert, (3) information that is
implied by the extracted relations, but which the expert de-
cides to represent differently, i.e., using modeling constructs
different than the extracted relations. The expert answered
Q3 after having reviewed all the relations extracted from a
given requirements statement.

Our interview was split into three sessions, with a period
of at least one week in between the sessions. The duration
of each session was limited to a maximum of two hours to

Table 7: Correctness and relevance results obtained from our expert interview, organized by extraction rules.

Y
18

P
11 100%

C%N
0

B1

Y
12

M
0 41%

R%N
17

Y
3

P
1 100%

C%N
0

B2

Y
1

M
0 25%

R%N
3

Y
13

P
0 77%

C%N
4

B4

Y
0

M
0 0%

R%N
17

Y
16

P
4 91%

C%N
2

D2

Y
8

M
0 36%

R%N
14

Y
17

P
0 74%

C%N
6

D3

Y
7

M
4 48%

R%N
12

Y
0

P
0 0%

C%N
2

D4

Y
0

M
0 0%

R%N
2

Y
2

P
4 86%

C%N
1

N1

Y
3

M
0 43%

R%N
4

Y
10

P
10 100%

C%N
0

N2

Y
7

M
0 35%

R%N
13

Y
5

P
9 93%

C%N
1

N3

Y
7

M
1 53%

R%N
7

Y
42

P
26 92%

C%N
6

Link Paths

Y
26

M
0 35%

R%N
48

Q2 (Relevance)

Q1 (Correctness)

YesY PartiallyP NoN Correctness (%)C%Q1 (Correctness):

(Relation) Extraction Rule

YesY MaybeM NoN Relevance (%)R%Q2 (Relevance):Legend

Correctness(%) Relevance(%)

(126)
59.2%

(65)
30.5%

0%

(71)
33.3%
(5)
2.4%

(137)
64.3%

Q1 Q2
Yes NoPartially Yes NoMaybe

25%

50%

75%

100%

(22)
10.3%

40%

60%

80%

100%

30%

50%

70%

90%

20%

(a) (b)

Figure 10: (a) Raw and (b) bootstrapping results
for Q1 and Q2.

avoid fatigue effects. At the beginning of each session, we
explained and exemplified to the expert the interview pro-
cedure, including the questionnaire.

Our approach extracted a total of 213 relations from the
50 randomly-selected requirements of Case A. All these 213
relations were examined by the expert. Fig. 10(a) shows the
interview results for Q1 and Q2. As shown by the figure:
First, ≈90% of the relations were deemed correct or partially
correct, and the remaining 10% incorrect; and second, ≈36%
of the relations were deemed relevant or maybe relevant for
inclusion in the domain model. The remaining 64% of the
relations were deemed not relevant (inclusive of the 10% of
the relations that were deemed incorrect).

Due to the expert’s limited availability, we covered only
≈32% (50/158) of the requirements statements in Case A.
The 213 relations extracted from these requirements consti-
tute ≈31% (213/678) of the total number of relations ob-
tained from Case A by our model extractor. To provide a
measure of correctness and relevance which further accounts
for the uncertainty that results from our random sampling of
the requirements statements, we provide confidence intervals
for correctness and relevance using a statistical technique,
known as bootstrapping [11]. Specifically, we built 1000 re-
samples with replacement of the 50 requirements that were
examined in our interview. We then computed as a percent-
age the correctness and relevance of the relations extracted
from each resample. For a given resample, the correctness
percentage is the ratio of correct and partially correct re-
lations over the total number of relations. The relevance
percentage is the ratio of relevant and maybe relevant rela-
tions over the total number of relations. Fig. 10(b) shows,
using box plots, the distributions of the correctness and rel-
evance percentages for the 1000 resamples. These results
yield a 95% confidence interval of 83%–96% for correctness
and a 95% confidence interval of 29%–43% for relevance.

The practical implication of the above findings is that,
when reviewing the extracted relations, analysts will have to
filter 57%–71% of the relations, despite the large majority of
them being correct or partially correct. While we anticipate
that filtering the unwanted relations would be more cost-
effective than forgoing automation and manually extracting

the desired relations from scratch, the required level of filter-
ing needs to be reduced. As we discuss in Section 6, improv-
ing relevance and minimizing such filtering is an important
direction for future work.

In Table 7, we provide a breakdown of our interview sur-
vey results, organized according to the rules that were trig-
gered over our requirements sample and showing the cor-
rectness and relevance percentages for each rule. As seen
from these percentages, all triggered rules except B4 and
D4 proved useful in our study. In particular, the results of
Table 7 indicate that our proposed extensions, i.e., rules N1
to N3 and link paths, are useful in practice.

An observation emerging from the relevance percentages
in Table 7 (green-shaded cells) is that relevance is low across
all the extraction rules and not only for our proposed exten-
sions (N1 to N3 and link paths). This implies that other ex-
isting rule-based approaches for domain model extraction are
also susceptible to the relevance challenge. This observation
further underscores the need for addressing the relevance
challenge in future work.

As noted earlier, we asked the expert to verbalize his ra-
tionale for his responses to Q1 and Q2. This rationale con-
tained a wealth of information as to what made a relation
incorrect or only partially correct, and what made a relation
not relevant. In Table 8, we provide a classification of the
reasons the expert gave for partial correctness and for incor-
rectness (Q1) and for non-relevance (Q2). The number of
relations falling under each category in the classification is
provided in the column labeled “Count”. For each category,
we provide an example of a problematic relation and, where
applicable, the relation desired by the expert. The table
is self-explanatory. The only remark to be made is that the
reasons given by the expert for partial correctness and for in-
correctness have one area of overlap, namely wrong relation
type, as seen from rows 3 and 5 of Table 8. For instance, in
the example of row 3, an aggregation was extracted, but the
desired relation was an attribute. The expert viewed this in-
accuracy as minor. In contrast, in the example of row 5, the
expert found the extracted aggregation conceptually wrong,
since the desired relation was a generalization.

In response to Q3 (from the questionnaire of Fig. 9), the
expert identified 13 missing relations. In six out of these 13
cases, we could automatically extract the missing relation
from other requirements statements in our random sample.
From the column chart provided for relevance in Fig. 10(a),
we see that we have a total of 76 (71+5) relevant and maybe
relevant relations that are automatically extracted. This
means that our approach automatically retrieved 76/(76 +
7) ≈ 92% of the relevant relations.

80% 90% 100%
Figure 11: % of relevant
relations retrieved.

Using bootstrapping, sim-
ilar to that done for Q1
and Q2 in Fig. 10(b), we
obtain the percentage dis-
tribution of Fig. 11 for the retrieved relevant relations. From

Table 8: Reasons for inaccuracies and non-relevance.

4 Simulator Storagesupport
 generation of

Simulator Error Messagesupport
 generation of

“The simulator shall support the generation of
error messages and their storage to the database.”Non-

existent
relation
detected

18

“The simulator shall support the simulation
of ground stations including Ground-Station
A and Ground-Station B.”

Ground-Station A Ground
StationGround-Station B

Ground-Station A Ground
StationGround-Station B

4
Wrong
relation

type
5

CountReason# Example

3

1

2

“The system operator shall update the status
of the network connection in the database.”

Status Network Connection

- status
Network Connection

“The simulator shall support the generation of
error messages and their storage to the database.”

Simulator Messagesupport
 generation of

Simulator Error
Message

support
 generation of

“The simulator shall connect only to those networks
for which IP addresses have been specified.”

IP Address Networkspecified
for1 1

IP Address Networkspecified
for* 1

Wrong
relation

type

Imprecise
label for

relation or
concept

Wrong
cardinality

32

29

4

6 5Future
contingency Internal Repository Repository

Expert Feedback: All repositories are currently internal. This
may change, in which case this relation will be relevant.

“The simulator shall maintain an internal
repository with system variables and their values.”

8

9

7

Obvious /
Common

knowledge Value System Variable

“The simulator shall maintain an internal
repository with system variables and their values.”6

Incomplete
constraint

“The simulator shall send log messages to
the database via the monitoring interface.”

Simulator Log Messagesend

Simulator Databasesend
log message to

21

88Relation too
detailed

“The simulator shall send log messages to
the database via the monitoring interface.”

Simulator Databasesend
log message to

Simulator Monitoring
Interface

send
log message to

database via

 P
ar

tia
lly

 C
or

re
ct

 In

co
rr

ec
t

 M
ay

be

Re
le

va
nt

 N
ot

 R
el

ev
an

t

DesiredExtracted Legend

Q1

Q2
✪

✪

The “desired” relation is indeed also extracted by our model extractor via a different
rule. The goal here is to illustrate what the expert considered to be not relevant.

✪

this distribution, we obtain a 95% confidence interval of
82%–100% for the percentage of relevant relations that are
automatically extracted by our approach.

RQ3. The execution times for our model extraction ap-
proach are in the order of minutes over our case study doc-
uments (maximum of ≈4 min for Case B). Given the small
execution times observed, we expect our approach to scale to
larger requirements documents. Execution times were mea-
sured on a laptop with a 2.3 GHz CPU and 8GB of memory.

5.3 Limitations and Validity Considerations
Internal, construct, and external validity are the validity

factors most pertinent to our empirical evaluation. With
regard to internal validity, we note that our interview con-
sidered the correctness and relevance of extracted relations
only in the context of individual requirements statements.
We did not present to the expert the entire extracted model
during the interview. This raises the possibility that the

expert might have made different decisions, e.g., regarding
the level of abstraction of the domain model, had he been
presented with the entire extracted model. We chose to
base our evaluation on individual requirements statements,
because using the entire extracted model would have intro-
duced confounding factors, primarily due to layout and in-
formation overload issues. Addressing these issues, while
important, is outside the scope of our current evaluation,
whose primary goal was to develop insights about the effec-
tiveness of NLP for domain model extraction. To ascertain
the quality of the feedback obtained from the expert, we
covered a reasonably large number of requirements (50 re-
quirements, representing nearly a third of Case A) in our
interview, and cross-checked the expert’s responses for con-
sistency based on the similarities and analogies that existed
between the different relations examined.

With regard to construct validity, we note that our eval-
uation did not include metrics for measuring the amount of
tacit expert knowledge which is necessary for building a do-
main model, but which is absent from the textual content
of the requirements. This limitation does not pose a threat
to construct validity, but is important to point out in order
to clarify the scope of our current evaluation. Building in-
sights about the amount of tacit information that needs to
be manually added to the domain model and is inherently
impossible to obtain automatically requires further studies.

Finally, with regard to external validity, while our evalu-
ation was performed in a representative industrial setting,
additional case studies will be essential in the future.

6. CONCLUSION
We presented an automated approach based on Natural

Language Processing for extracting domain models from un-
restricted requirements. The main technical contribution of
our approach is in extending the existing set of model ex-
traction rules. We provided an evaluation of our approach,
contributing insights to the as yet limited knowledge about
the effectiveness of model extraction in industrial settings.

A key finding from our evaluation is that a sizable fraction
of automatically-extracted relations are not relevant to the
domain model, although most of these relations are mean-
ingful. Improving relevance is a challenge that needs to be
tackled in future work. In particular, additional studies are
necessary to examine whether our observations about rele-
vance are replicable. If so, technical improvements need to
be made for increasing relevance. To this end, a key factor
to consider is that what is relevant and what is not ulti-
mately depends on the context, e.g., what is the intended
level of abstraction, and on the working assumptions, e.g.,
what is considered to be in the scope of a system and what
is not. This information is often tacit and not automatically
inferable. Increasing relevance therefore requires a human-
in-the-loop strategy, enabling experts to explicate their tacit
knowledge. We believe that such a strategy would work best
if it is incremental, meaning that the experts can provide
their input in a series of steps and in tandem with review-
ing the automatically-extracted results. In this way, once
a piece of tacit knowledge has been made explicit, it can
be used not only for resolving incompleteness in the domain
model but also for guiding, e.g., through machine learning,
the future actions of the model extractor.

Acknowledgment. We gratefully acknowledge funding from
SES and FNR under grants FNR/P10/03 and FNR-6911386.

7. REFERENCES
[1] R. J. Abbott. Program design by informal English

descriptions. Communications of the ACM, 26(11),
1983.

[2] A. Akbik and J. Broß. Wanderlust: Extracting
semantic relations from natural language text using
dependency grammar patterns. In Workshop on
Semantic Search at the 18th International World Wide
Web Conference (WWW’09), 2009.

[3] S. Ambler. The Object Primer: Agile Model-Driven
Development with UML 2.0. Cambridge University
Press, 2004.

[4] V. Ambriola and V. Gervasi. On the systematic
analysis of natural language requirements with
CIRCE. Automated Software Engineering, 13(1), 2006.

[5] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer.
Automated checking of conformance to requirements
templates using natural language processing. IEEE
Transactions on Software Engineering, 41(10), 2015.

[6] G. Attardi and F. Dell‘Orletta. Chunking and
dependency parsing. In Workshop on Partial Parsing:
Between Chunking and Deep Parsing at 6th
International Conference on Language Resources and
Evaluation (LREC’08), 2008.

[7] W. Ben Abdessalem Karaa, Z. Ben Azzouz, A. Singh,
N. Dey, A. S Ashour, and H. Ben Ghazala. Automatic
builder of class diagram (ABCD): an application of
UML generation from functional requirements.
Software: Practice and Experience, 2015.

[8] P. P. Chen. English sentence structure and
entity-relationship diagrams. Information Sciences,
29(2), 1983.

[9] M. C. De Marneffe and C. D. Manning. Stanford
typed dependencies manual. Technical report,
Stanford University, 2008.

[10] D. K. Deeptimahanti and R. Sanyal. Semi-automatic
generation of UML models from natural language
requirements. In 4th India Software Engineering
Conference (ISEC’11), 2011.

[11] B. Efron and R. J. Tibshirani. An introduction to the
bootstrap. CRC press, 1994.

[12] M. Elbendak, P. Vickers, and N. Rossiter. Parsed use
case descriptions as a basis for object-oriented class
model generation. Journal of Systems and Software,
84(7), 2011.

[13] A. Fader, S. Soderland, and O. Etzioni. Identifying
relations for open information extraction. In
Conference on Empirical Methods in Natural Language
Processing, 2011.

[14] GATE NLP Workbench. http://gate.ac.uk/.

[15] H. Harmain and R. Gaizauskas. CM-Builder: A
natural language-based CASE tool for object-oriented
analysis. Automated Software Engineering, 10(2), 2003.

[16] J. Holt, S. Perry, and M. Brownsword. Model-Based
Requirements Engineering. IET, 2011.

[17] M. Ibrahim and R. Ahmad. Class diagram extraction
from textual requirements using natural language
processing (NLP) techniques. In 2nd International

Conference on Computer Research and Development
(ICCRD’10), 2010.

[18] N. Indurkhya and F. J. Damerau. Handbook of natural
language processing. CRC Press, 2010.

[19] C. Larman. Applying UML and Patterns. Prentice
Hall, 2004.

[20] D. Liu, K. Subramaniam, A. Eberlein, and B. H. Far.
Natural language requirements analysis and class
model generation using UCDA. In Innovations in
Applied Artificial Intelligence. Springer, 2004.

[21] D. Liu, K. Subramaniam, B. H. Far, and A. Eberlein.
Automating transition from use-cases to class model.
In Canadian Conference on Electrical and Computer
Engineering (CCECE’03), 2003.

[22] C. D. Manning and H. Schütze. Foundations of
statistical natural language processing. MIT press,
1999.

[23] M. Marneffe, B. Maccartney, and C. Manning.
Generating typed dependency parses from phrase
structure parses. In 5th International Conference on
Language Resources and Evaluation (LREC’06), 2006.

[24] L. Mich. NL-OOPS: from natural language to object
oriented requirements using the natural language
processing system LOLITA. Natural language
engineering, 2(02), 1996.

[25] K. Pohl and C. Rupp. Requirements Engineering
Fundamentals. Rocky Nook, 2011.

[26] D. Popescu, S. Rugaber, N. Medvidovic, and D. M.
Berry. Innovations for Requirement Analysis. From
Stakeholders’ Needs to Formal Designs, chapter
Reducing Ambiguities in Requirements Specifications
Via Automatically Created Object-Oriented Models.
Springer, 2008.

[27] K. Schneider. Experience and Knowledge Management
in Software Engineering, chapter Structuring
Knowledge for Reuse. Springer, 2009.

[28] N. A. Smith. Linguistic Structure Prediction.
Synthesis Lectures on Human Language Technologies.
Morgan and Claypool, 2011.

[29] V. B. Vidya Sagar and S. Abirami. Conceptual
modeling of natural language functional requirements.
Journal of System and Software, 88, 2014.

[30] Z. Yang, H. Lin, and Y. Li. BioPPISVMExtractor: A
protein–protein interaction extractor for biomedical
literature using SVM and rich feature sets. Journal of
biomedical informatics, 43(1), 2010.

[31] T. Yue, L. Briand, and Y. Labiche. A systematic
review of transformation approaches between user
requirements and analysis models. Requirements
Engineering, 16(2), 2011.

[32] T. Yue, L. C. Briand, and Y. Labiche. aToucan: An
automated framework to derive UML analysis models
from use case models. ACM Transactions on Software
Engineering and Methodology, 24(3), 2015.

[33] M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J. Zhu.
Fast and accurate shift-reduce constituent parsing. In
51st Annual Meeting of the Association for
Computational Linguistics (ACL’13), 2013.

