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Abstract

We give the distribution functions, the expected values, and the moments of linear combinations of lattice polynomials from
the uniform distribution. Linear combinations of lattice polynomials, which include weighted sums, linear combinations of order
statistics, and lattice polynomials, are actually those continuous functions that reduce to linear functions on each simplex of the
standard triangulation of the unit cube. They are mainly used in aggregation theory, combinatorial optimization, and game theory,
where they are known as discrete Choquet integrals and Lovász extensions.
c© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Let h : [0, 1]
n

→ R be an aggregation function and let X be a random vector uniformly distributed on [0, 1]
n .

An interesting but generally difficult problem is to provide explicit expressions for the distribution function and the
moments of the aggregated random variable Y = h(X).

This problem has been completely solved for certain aggregation functions (see for instance McColl, 2004,
Section 7.2), especially piecewise linear functions such as weighted sums (Barrow and Smith, 1979) (see also Marichal
and Mossinghoff, submitted for publication), linear combinations of order statistics (Agarwal et al., 2002; Matsunawa,
1985; Weisberg, 1971) (see also David and Nagaraja, 2003, Section 6.5, for an overview), and lattice polynomials
(Marichal, 2006), which are max–min combinations of the variables.

In this note we solve the case of linear combinations of lattice polynomials, which include the three above-
mentioned cases. Actually, linear combinations of lattice polynomials are exactly those continuous functions that
reduce to linear functions on each simplex of the standard triangulation of [0, 1]

n . In particular, these functions are
completely determined by their values at the 2n vertices of [0, 1]

n .
The concept of linear combination of lattice polynomials is known in combinatorial optimization and game theory

as the Lovász extension (Algaba et al., 2004; Grabisch et al., 2000; Lovász, 1983; Singer, 1984) of a pseudo-Boolean
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function (recall that a pseudo-Boolean function is a real-valued function of 0–1 variables). When it is nondecreasing
in each variable, it is known in the area of nonlinear aggregation and integration as the discrete Choquet integral
(Denneberg, 1994; Grabisch et al., 2000; Marichal, 2002), which is an extension of the discrete Lebesgue integral
(weighted mean) to nonadditive measures. The equivalence between the Lovász extension and the Choquet integral is
discussed in Marichal (2002).

This note is set out as follows. In Section 2 we elaborate on the definition of linear combinations of lattice
polynomials and we show how to concisely represent them. In Section 3 we provide formulas for the distribution
function and the moments of any linear combination of lattice polynomials from the uniform distribution. Finally, in
Section 4 we provide an application of our results to aggregation theory.

Throughout we will use the notation [n] := {1, . . . , n}. Also, for any subset A ⊆ [n], 1A will denote the
characteristic vector of A in {0, 1}

n . Finally, for any function h : [0, 1]
n

→ R, we define the set function vh : 2[n]
→ R

as vh(A) := h(1A) for all A ⊆ [n].

2. Linear combinations of lattice polynomials

In the present section we recall the definition of lattice polynomials and we show how an arbitrary combination of
lattice polynomials can be represented.

Basically an n-place lattice polynomial p : [0, 1]
n

→ [0, 1] is a function defined from any well-formed expression
involving n real variables x1, . . . , xn linked by the lattice operations ∧ = min and ∨ = max in an arbitrary
combination of parentheses (see e.g. Birkhoff, 1967, Section II.2). For instance,

p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

is a 3-place lattice polynomial.
Consider the standard triangulation of [0, 1]

n into the canonical simplices

Sσ := {x ∈ [0, 1]
n

| xσ(1) > · · · > xσ(n)} (σ ∈ Sn), (1)

where Sn is the set of all permutations on [n]. Clearly, any linear combination of n-place lattice polynomials

h(x) =

m∑
i=1

ci pi (x)

is a continuous function whose restriction to any canonical simplex is a linear function. According to Singer (1984,
Section 2), h is then the Lovász extension of the pseudo-Boolean function h|{0,1}n , that is, the continuous function
defined on each canonical simplex Sσ as the unique linear function that coincides with h|{0,1}n at the n + 1 vertices

εσ
i := 1{σ(1),...,σ (i)} (i = 0, . . . , n)

of Sσ . It can be written as (Singer, 1984, Section 2)

h(x) =

n∑
i=1

(
hσ

i − hσ
i−1

)
xσ(i) (x ∈ Sσ ), (2)

where hσ
i := h

(
εσ

i

)
= vh ({σ(1), . . . , σ (i)}) for all i = 0, . . . , n. In particular, hσ

0 = 0.
Conversely any continuous function h : [0, 1]

n
→ R that reduces to a linear function on each canonical simplex is

a linear combination of lattice polynomials:

h(x) =

∑
A⊆[n]

mh(A)
∧
i∈A

xi (x ∈ [0, 1]
n), (3)

where mh : 2[n]
→ R is the Möbius transform of vh , defined as

mh(A) :=

∑
B⊆A

(−1)|A|−|B|vh(B).

Indeed, expression (3) reduces to a linear function on each canonical simplex and agrees with h(1B) at 1B for each
B ⊆ [n].
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Eq. (2) thus provides a concise expression for linear combinations of lattice polynomials. We will use it in the next
section to calculate their distribution functions and their moments.

Remark 1. As we have already mentioned, the class of linear combinations of lattice polynomials covers three
interesting particular cases, namely: lattice polynomials, linear combinations of order statistics, and weighted sums.
These are characterized as follows. Let h : [0, 1]

n
→ R be a linear combination of lattice polynomials.

(1) The function h reduces to a lattice polynomial if and only if the set function vh is monotone, {0, 1}-valued, and
such that vh([n]) = 1.

(2) As the order statistics are exactly the symmetric lattice polynomials (see Marichal, 2002), the function h reduces
to a linear combination of order statistics if and only if the set function vh is cardinality-based, that is, such that
vh(A) = vh(A′) whenever |A| = |A′

|.
(3) The function h reduces to a weighted sum if and only if the set function vh is additive, that is, vh(A) =∑

i∈A vh({i}).

3. Distribution functions and moments

Before obtaining the main results, let us recall some basic material related to divided differences. See for instance
Davis (1975), DeVore and Lorentz (1993), and Powell (1981) for further details.

Consider the plus (resp. minus) truncated power function xn
+ (resp. xn

−), defined to be xn if x > 0 (resp. x < 0)
and zero otherwise. Let A(n) be the set of n − 1 times differentiable 1-place functions g such that g(n−1) is absolutely
continuous. The nth divided difference of a function g ∈ A(n) is the symmetric function of n + 1 arguments defined
inductively by ∆[g : a0] := g(a0) and

∆[g : a0, . . . , an] :=


∆[g : a1, . . . , an] − ∆[g : a0, . . . , an−1]

an − a0
, if a0 6= an,

∂

∂a0
∆[g : a0, . . . , an−1], if a0 = an .

The Peano representation of the divided differences, which can be obtained by a Taylor expansion of g, is given by

∆[g : a0, . . . , an] =
1
n!

∫
R

g(n)(t)M(t | a0, . . . , an) dt, (4)

where M(t | a0, . . . , an) is the B-spline of order n, with knots {a0, . . . , an}, defined as

M(t | a0, . . . , an) := n∆[(· − t)n−1
+ : a0, . . . , an]. (5)

We also recall the Hermite–Genocchi formula: For any function g ∈ A(n), we have

∆[g : a0, . . . , an] =

∫
Sid

g(n)

[
a0 +

n∑
i=1

(ai − ai−1)xi

]
dx, (6)

where Sid is the simplex defined in (1) when σ is the identity permutation.
For distinct arguments a0, . . . , an , we also have the following formula, which can be verified by induction,

∆[g : a0, . . . , an] =

n∑
i=0

g(ai )∏
j 6=i

(ai − a j )
. (7)

Now, consider a random vector X uniformly distributed on [0, 1]
n and set Yh := h(X), where the function

h : [0, 1]
n

→ R is a linear combination of lattice polynomials as given in formula (2). We then have the following
result.

Theorem 2. For any function g ∈ A(n), we have

E[g(n)(Yh)] =

∑
σ∈Sn

∆[g : hσ
0 , . . . , hσ

n ]. (8)
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Proof. Using (2), we simply have

E[g(n)(Yh)] =

∫
[0,1]n

g(n)
[h(x)] dx

=

∑
σ∈Sn

∫
Sσ

g(n)

[
n∑

i=1

(
hσ

i − hσ
i−1

)
xσ(i)

]
dx.

Finally, after an elementary change of variables, we conclude by the Hermite–Genocchi formula (6). �

Theorem 2 provides the expectation E[g(n)(Yh)] in terms of the divided differences of g with arguments
hσ

0 , . . . , hσ
n (σ ∈ Sn). An explicit formula can be obtained by (7) whenever the arguments are distinct for every

σ ∈ Sn .
Clearly, the special cases

g(x) =
r !

(n + r)!
xn+r ,

r !

(n + r)!
[x − E(Yh)]n+r , and

et x

tn (9)

give, respectively, the raw moments, the central moments, and the moment-generating function of Yh . As far as the
raw moments are concerned, we have the following result.

Proposition 3. For any integer r > 1, setting A0 := [n], we have,

E[Y r
h ] =

1( n+r
r

) ∑
A1⊆[n]

A2⊆A1
···

Ar ⊆Ar−1

r∏
i=1

1(
|Ai−1|
|Ai |

)vh(Ai ).

Proof. Let r > 1. It can be shown (Ali, 1973) that

∆[(·)n+r
: a0, . . . , an] =

∑
r0,...,rn>0

r0+···+rn=r

ar0
0 · · · arn

n =

∑
06i16···6ir 6n

ai1 · · · air .

Hence, from (8) and (9) it follows that

E[Y r
h ] =

r !

(n + r)!

∑
06i16···6ir 6n

∑
σ∈Sn

hσ
i1

· · · hσ
ir

=
r !

(n + r)!

∑
06i16···6ir 6n

∑
m∈Mn

vh(mi1) · · · vh(mir ),

whereMn is the set of the n! maximal chains of the lattice (2[n], ⊆), and where, for any m ∈Mn , mi is the unique
element of m of cardinality i .

For any B1 ⊆ . . . ⊆ Br ⊆ [n], let MB1,...,Br
n denote the subset of maximal chains of (2[n], ⊆) containing

B1, . . . , Br . It is then easy to see that, for any fixed 0 6 i1 6 · · · 6 ir 6 n, the following identity holds:⋃
B1⊆...⊆Br ⊆[n]

|B1|=i1,...,|Br |=ir

MB1,...,Br
n =Mn

and the union is disjoint. Therefore, we have

E[Y r
h ] =

r !

(n + r)!

∑
06i16···6ir 6n

∑
B1⊆...⊆Br ⊆[n]

|B1|=i1,...,|Br |=ir

∑
m∈MB1,...,Br

n

vh(B1) · · · vh(Br )

=
r !

(n + r)!

∑
B1⊆...⊆Br ⊆[n]

|MB1,...,Br
n |

r∏
i=1

vh(Bi ),
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where

|MB1,...,Br
n | = |B1|!(|B2| − |B1|)!(|B3| − |B2|)! · · · (n − |Br |)!.

Finally, we get the result by setting Ai := Br+1−i for all i = 1, . . . , r . �

Proposition 3 provides an explicit expression for the r th raw moment of Yh as a sum of (r +1)n terms. For instance,
the first two moments are

E[Yh] =
1

n + 1

∑
A⊆[n]

1(
n

|A|

) vh(A),

E[Y 2
h ] =

2
(n + 1)(n + 2)

∑
A1⊆[n]

1(
n

|A1|

)vh(A1)
∑

A2⊆A1

1(
|A1|
|A2|

)vh(A2).

We now yield a formula for the distribution function Fh(y) := Pr[Yh 6 y] of Yh .

Theorem 4. There holds

Fh(y) = 1 −
1
n!

∑
σ∈Sn

∆[(· − y)n
+ : hσ

0 , . . . , hσ
n ]. (10)

Proof. We have

Fh(y) = 1 − Pr[h(X) > y] = 1 − E
[
(Yh − y)0

+

]
.

Then, using (8) with

g(x) =
1
n!

(x − y)n
+

leads to the result. �

It follows from (10) that the distribution function of Yh is absolutely continuous and hence its probability density
function is simply given by

fh(y) =
1

(n − 1)!

∑
σ∈Sn

∆[(· − y)n−1
+ : hσ

0 , . . . , hσ
n ] (11)

or, by using the B-spline notation (5),

fh(y) =
1
n!

∑
σ∈Sn

M(y | hσ
0 , . . . , hσ

n ).

Remark 5. (i) It is easy to see that (10) can be rewritten by means of the minus truncated power function as

Fh(y) =
1
n!

∑
σ∈Sn

∆[(· − y)n
− : hσ

0 , . . . , hσ
n ].

(ii) When the arguments hσ
0 , . . . , hσ

n are distinct for every σ ∈ Sn , then combining (7) with (10) immediately yields
the following explicit expression

Fh(y) = 1 −
1
n!

∑
σ∈Sn

n∑
i=0

(hσ
i − y)n

+∏
j 6=i

(hσ
i − hσ

j )
,

or, by using the minus truncated power function,

Fh(y) =
1
n!

∑
σ∈Sn

n∑
i=0

(hσ
i − y)n

−∏
j 6=i

(hσ
i − hσ

j )
.
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(iii) The knowledge of fh(y) immediately gives an alternative proof of (8). Indeed, using Peano’s representation (4),
we simply have

E[g(n)(Yh)] =

∫
R

g(n)(y) fh(y) dy

=
1
n!

∑
σ∈Sn

∫
R

g(n)(y)M(y | hσ
0 , . . . , hσ

n ) dy

=

∑
σ∈Sn

∆[g : hσ
0 , . . . , hσ

n ].

(iv) The case of linear combinations of order statistics is of particular interest. In this case, each hσ
i is independent of

σ (see Remark 1), so that we can write hi := hσ
i . The main formulas then reduce to (see for instance Adell and

Sangüesa, 2006, and Agarwal et al., 2002)

E[g(n)(Yh)] = n!∆[g : h0, . . . , hn],

Fh(y) = ∆[(· − y)n
− : h0, . . . , hn],

fh(y) = M(y | h0, . . . , hn).

We also note that the Hermite–Genocchi formula (6) provides nice geometric interpretations of Fh(y) and fh(y)

in terms of volumes of slices and sections of canonical simplices (see also Ali, 1973, and Gerber, 1981).

Both functions Fh(y) and fh(y) require the computation of divided differences of truncated power functions. With
regard to this issue, we recall a recurrence equation, due to de Boor (1972) and rediscovered independently by Varsi
(1973) (see also Ali, 1973), which allows us to compute ∆[(· − y)n−1

+ : a0, . . . , an] in O(n2) time.
Rename as b1, . . . , br the elements ai such that ai < y and as c1, . . . , cs the elements ai such that ai > y so that

r + s = n + 1. Then, the unique solution of the recurrence equation

αk,l =
(cl − y)αk−1,l + (y − bk)αk,l−1

cl − bk
(k 6 r, l 6 s), (12)

with initial values α1,1 = (c1 − b1)
−1 and α0,l = αk,0 = 0 for all l, k > 2, is given by

αk,l := ∆[(· − y)k+l−2
+ : b1, . . . , bk, c1, . . . , cl ] (k + l > 2).

In order to compute ∆[(·− y)n−1
+ : a0, . . . , an] = αr,s , it suffices therefore to compute the sequence αk,l for k + l > 2,

k 6 r , l 6 s, by means of two nested loops, one on k, the other on l.
We can compute ∆[(· − y)n

− : a0, . . . , an] similarly. Indeed, the same recurrence equation applied to the initial
values α0,l = 0 for all l > 1 and αk,0 = 1 for all k > 1, produces the solution

αk,l := ∆[(· − y)k+l−1
− : b1, . . . , bk, c1, . . . , cl ] (k + l > 1).

See for instance Ali (1973) and Varsi (1973) for further details.

4. Application to aggregation theory

As we have already mentioned, the concept of linear combination of lattice polynomials, when it is nondecreasing
in each variable, is known in aggregation theory as the discrete Choquet integral, which is extensively used
in nonadditive expected utility theory, cooperative game theory, complexity analysis, measure theory, etc. (see
Grabisch et al., 2000, for an overview.) For instance, when a discrete Choquet integral is used as an aggregation
tool in a given decision making problem, it is then very informative for the decision maker to know its distribution. In
that context, the most natural a priori density on [0, 1]

n is the uniform one, which makes the results derived here to
be of particular interest.

Example 6. Let h : [0, 1]
3

→ R be a discrete Choquet integral defined by vh({1}) = 0.1, vh({2}) = 0.6,
vh({3}) = vh({1, 2}) = vh({1, 3}) = vh({2, 3}) = 0.9, and vh({1, 2, 3}) = 1. According to (3), it can be written
as

h(x) = 0.1x1 + 0.6x2 + 0.9x3 + 0.2(x1 ∧ x2) − 0.1(x1 ∧ x3) − 0.6(x2 ∧ x3) − 0.1(x1 ∧ x2 ∧ x3).
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Fig. 1. Density of a discrete Choquet integral (solid line).

Its density, which can be computed through (11) and the recurrence equation (12), is represented in Fig. 1 by the
solid line. The dotted line represents the density estimated by the kernel method from 10 000 randomly generated
realizations. The typical value and standard deviation can also be calculated through the raw moments: we have

E[Yh] ≈ 0.608 and
√

E[Y 2
h ] − E[Yh]2 ≈ 0.204.
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