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Abstract

Comparison meaningful functions acting on some real interval E are completely
described as transformed coordinate projections on minimal invariant subsets. The
case of monotone comparison meaningful functions is further specified. Several al-
ready known results for comparison meaningful functions and invariant functions are
obtained as consequences of our description.
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1 Introduction

Measurement theory (see e.g. [6, 14]) studies, among others, the assignments to each mea-
sured object of a real number so that the ordinal structure of discussed objects is preserved.
When aggregating several observed objects, their aggregation is often also characterized by
a real number, which can be understood as a function of numerical characterizations of
fused objects. A sound approach to such aggregation cannot lead to contradictory results
depending on the actual scale (numerical evaluation of objects) we are dealing with. This
fact was a key motivation for Orlov [11] when introducing comparison meaningful functions.
Their strengthening to invariant functions was proposed by Marichal and Roubens [9]. The
general structure of invariant functions (and of monotone invariant functions) is now com-
pletely known from recent works of Ovchinnikov [12], Ovchinnikov and Dukhovny [13],
Marichal [7], BartÃlomiejczyk and Drewniak [2], and Mesiar and Rückschlossová [10]. More-
over, comparison meaningful functions were already characterized in some special cases,
e.g., when they are continuous; see Yanovskaya [16] and Marichal [7]. However, a com-
plete description of all comparison meaningful functions was still missing. This gap is now
filled by the present paper, which is organized as follows. In the next section, we give
some preliminaries and recall some known results. In Section 3, a complete description
of comparison meaningful functions is given, while in Section 4 we describe all monotone
comparison meaningful functions.
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2 Preliminaries

Let E ⊆ R be a nontrivial convex set and set e0 := inf E, e1 := sup E, and E◦ :=
E \ {e0, e1}. Let n ∈ N be fixed and set [n] := {1, . . . , n}. Denote also by Φ(E) the class
of all automorphisms (nondecreasing bijections) φ : E → E, and for x = (x1, . . . , xn) ∈ En

put φ(x) := (φ(x1), . . . , φ(xn)).
Following the earlier literature, we introduce the next notions and recall a few results.

Definition 2.1 ([9]). A function f : En → E is invariant if, for any φ ∈ Φ(E) and any
x ∈ En, we have f(φ(x)) = φ(f(x)).

Definition 2.2 ([1, 11, 16]). A function f : En → R is comparison meaningful if, for any
φ ∈ Φ(E) and any x, y ∈ En, we have

f(x)
{ <

=

}
f(y) ⇒ f(φ(x))

{ <
=

}
f(φ(y)). (1)

Definition 2.3 ([1, 5]). A function f : En → R is strongly comparison meaningful if, for
any φ1, . . . , φn ∈ Φ(E) and any x, y ∈ En, we have

f(x)
{ <

=

}
f(y) ⇒ f(φ(x))

{ <
=

}
f(φ(y)),

where here the notation φ(x) means (φ1(x1), . . . , φn(xn)).

Definition 2.4 ([2]). A nonempty subset B of En is called invariant if φ(B) ⊆ B for any
φ ∈ Φ(E), where φ(B) = {φ(x) | x ∈ B}. Moreover, an invariant subset B of En is called
minimal invariant if it does not contain any proper invariant subset.

It can be easily proved that B ⊆ En is invariant if and only if its characteristic function
1B : En → R is comparison meaningful (or invariant if E = [0, 1]).

Let B(En) be the class of all minimal invariant subsets of En, and define

Bx(E) := {φ(x) | φ ∈ Φ(E)}

for all x ∈ En. Then, we have

B(En) = {Bx(E) | x ∈ En},

which clearly shows that the elements of B(En) partition En into equivalence classes, where
x, y ∈ En are equivalent if there exists φ ∈ Φ(E) such that y = φ(x). A complete description
of elements of B(En) is given in the following proposition.

Proposition 2.1 ([2, 10]). We have B ∈ B(En) if and only if there exists a permutation π
on [n] and a sequence {Ci}n

i=0 of symbols Ci ∈ {<, =}, containing at least one < if e0 ∈ E
and e1 ∈ E, such that

B = {x ∈ En | e0 C0 xπ(1) C1 · · · Cn−1 xπ(n) Cn e1},

where C0 is < if e0 /∈ E and Cn is < if e1 /∈ E.
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Example 2.1. The unit square [0, 1]2 contains exactly eleven minimal invariant subsets,
namely the open triangles {(x1, x2) | 0 < x1 < x2 < 1} and {(x1, x2) | 0 < x2 < x1 < 1},
the open diagonal {(x1, x2) | 0 < x1 = x2 < 1}, the four square vertices, and the four open
line segments joining neighboring vertices.

We also have the following important result.

Proposition 2.2 ([2, 7, 10]). Consider a function f : En → E.

i) If f is idempotent (i.e., f(x, . . . , x) = x for all x ∈ E) and comparison meaningful, then
it is invariant.

ii) If f is invariant, then it is comparison meaningful.

iii) If E is open, then f is idempotent and comparison meaningful if and only if it is
invariant.

iv) f is invariant if and only if, for any B ∈ B(En), either f |B ≡ c is a constant c ∈
{e0, e1} ∩ E (if this constant exists) or there is i ∈ [n] so that f |B = Pi|B is the
projection on the ith coordinate.

For nondecreasing invariant functions, a crucial role in their characterization is played
by an equivalence relation ∼ acting on B(En), namely B ∼ C if and only if Pi(B) = Pi(C)
for all i ∈ [n]. Note that projections Pi(B) of minimal invariant subsets are necessarily
either {e0} ∩ E or {e1} ∩ E or E◦. Further, for any B ∈ B(En), the set

B∗ =
⋃

C∈B(En)
C∼B

C = P1(B)× · · · × Pn(B)

is an invariant subset of En, and

B∗(En) = {B∗ | B ∈ B(En)}
is a partition of En coarsening B(En). We also have card(B∗(En)) = kn, where k =
1 + card(E ∩ {e0, e1}).

Notice that any subset B∗ can also be regarded as a minimal “strongly” invariant subset
of En in the sense that

{(φ1(x1), . . . , φn(xn)) | x ∈ B∗} ⊆ B∗ (φ1, . . . , φn ∈ Φ(E)).

Equivalently, the characteristic function 1B∗ : En → R is strongly comparison meaningful.
From the natural order

{e0} ≺ E◦ ≺ {e1}
we can straightforwardly derive a partial order ¹ on B(En), namely B ¹ C if and only if
Pi(B) ¹ Pi(C) for all i ∈ [n]. A partial order on B∗(En) can be defined similarly.

Denote by Mn the system of all nondecreasing functions µ : {0, 1}n → {0, 1}, and let

Mn(E) := Mn \ {µj | j ∈ {0, 1}, ej /∈ E},
where µj ∈ Mn is the constant set function µj ≡ j. Clearly Mn(E) is partially ordered
through the order defined as

µ ¹ µ′ ⇔ µ(x) ≤ µ′(x) ∀x ∈ {0, 1}n.
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For µ ∈Mn(E), we define a function Lµ : En → E by

Lµ(x1, . . . , xn) =
∨

t∈{0,1}n

µ(t)=1

∧

ti=1

xi

with obvious conventions ∨

∅
= e0 and

∧

∅
= e1.

Observe that for any µ ∈ Mn(E), Lµ is a continuous invariant function which is also
idempotent whenever µ(0, . . . , 0) < µ(1, . . . , 1), that is, whenever µ(0, . . . , 0) = 0 and
µ(1, . . . , 1) = 1.

Remark. Functions µ ∈ Mn(E) with µ(0, . . . , 0) < µ(1, . . . , 1) are called also {0, 1}-
valued fuzzy measures (when an element t ∈ {0, 1}n is taken as the characteristic vector
of a subset of [n]). For any such µ, the corresponding function Lµ is exactly the Choquet
integral with respect to µ [4, 13], but also the Sugeno integral with respect to µ [15, 13].
These functions are called also lattice polynomials [3] or Boolean max-min functions [8].

We also have the following result.

Proposition 2.3 ([7, 10]). Consider a function f : En → E. Then we have

i) f is continuous and invariant if and only if f = Lµ for some µ ∈Mn(E).

ii) f is nondecreasing and invariant if and only if there exists a nondecreasing mapping
ξ : B∗(En) →Mn(E) so that

f(x) = Lξ(B∗)(x) (x ∈ B∗ ∈ B∗(En)).

3 Comparison meaningful functions

Following Definition 2.1, the invariance of a function f : En → E can be reduced to the
invariance of f |B for all minimal invariant subsets B ∈ B(En). This observation is a key
point in the description of invariant functions as given in Proposition 2.2, iv). However, in
the case of comparison meaningful functions, the situation is more complicated. In fact, we
have to examine property (1) for x ∈ B, y ∈ C, with B,C ∈ B(En), to be able to describe
comparison meaningful functions. We start first with the case when B = C, i.e., when
y = φ(x) for some φ ∈ Φ(E).

Proposition 3.1. Let f : En → R be a comparison meaningful function. Then, for any
B ∈ B(En), there is an index iB ∈ [n] and a strictly monotone or constant function
gB : PiB(B) → R such that

f(x) = gB(xiB) (x = (x1, . . . , xn) ∈ B).

Proof. Observe first that for any B ∈ B(En), the cardinality

card({x1, . . . , xn} ∩ E◦)

is constant for all x = (x1, . . . , xn) ∈ B.
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Denote this cardinality as mB. Evidently, mB = 0 if and only if B is a singleton and
then Proposition 3.1 obviously holds. For mB > 0, i.e., mB ∈ [n], the set B equipped with
standard Cartesian partial order ≤ is isomorphic to the set

ImB
:= {(u1, . . . , umB

) ∈ ]0, 1[mB | u1 < · · · < umB
}

equipped with ≤. Therefore, the comparison meaningfulness of f on B can be isomor-
phically translated to the study of comparison meaningful functions on ImB

. Evidently, if
mB = 1, Proposition 3.1 holds (on I1) for comparison meaningful function f : ]0, 1[→ R
which, if nonconstant, necessarily should be strictly monotone.

Now, suppose that mB = m ≥ 2 and f : Im → R is a comparison meaningful function.
Fix an element u = (u1, . . . , um) ∈ Im and, for i ∈ [m], define

ui(x) := (u1, . . . , ui−1, x, ui+1, . . . , um) (x ∈ ]ui−1, ui+1[),

with the convention that u0 := 0 and um+1 := 1. Then obviously all ui(x) are elements of
Im. We also denote ui := ui(ui+ui+1

2
).

We now have three exclusive cases to consider:

1. Suppose that all f(ui) equal f(u). Then we can show that f ≡ f(u) on whole domain
Im, proving our claim. We proceed in two steps:

(a) We have f(u) = f(ui(x)) for all i ∈ [m] and all x ∈ ]ui−1, ui+1[. Indeed, let
i ∈ [m] and x′, x′′ ∈ ]ui−1, ui+1[ such that x′ < x′′. There is φ ∈ Φ(]0, 1[) such
that φ(ui) = x′, φ(ui

i) = x′′, and φ(uj) = uj for all j 6= i. By comparison
meaningfulness of f , we have f(ui(x′)) = f(ui(x′′)).

(b) Let v ∈ Im. There is φ ∈ Φ(]0, 1[) such that φ(u) = v and φ(ui) = vi for all
i ∈ [m]. By comparison meaningfulness of f , we have f(v) = f(vi) for all i ∈ [m]
and, as in step (a), f(v) = f(vi(x)) for all i ∈ [m] and all x ∈ ]vi−1, vi+1[.

As u and v can always be joined by a polygonal line consisting entirely of line segments
in Im that are parallel to the coordinate axes, we conclude that f(v) = f(u).

2. Suppose that all but one f(ui) equal f(u), say only for k we have f(uk) 6= f(u).
Then, using the same reasoning as in case 1, it is easy to see that f depends only on
kth coordinate and hence f(v) = g(vk) for any v ∈ Im, where g is strictly monotone
(decreasing if f(uk) < f(u), increasing in the opposite case), again proving our claim.
Indeed, as there is φ ∈ Φ(]0, 1[) such that φ(u) = v and φ(uk) = vk, by comparison
meaningfulness of f , we have

f(u)
{ <

>

}
f(uk) ⇒ f(v)

{ <
>

}
f(vk).

3. It remains to show that it is impossible that for two different indices i, j ∈ [m] we
have f(ui) 6= f(u) and f(uj) 6= f(u). Denote by A the set of all elements from Im

with fixed coordinates xk = uk for all k ∈ [m] \ {i, j}. Consider also the following
subsets

A1 = {x ∈ A | xi < ui and xj > uj},
A2 = {x ∈ A | xi > ui and xj < uj},
A3 = {x ∈ A | xi < ui and xj < uj},
A4 = {x ∈ A | xi > ui and xj > uj}.

5



There are four different situations to discuss depending on the type of inequalities
occurring in above mentioned cases:

(a) Suppose f(ui) > f(u) and f(uj) > f(u). Then, by comparison meaningfulness,
f is strictly increasing along the line segment connecting u and ui and along the
line segment connecting u and uj.

i. If f(v) < f(u) for some v ∈ A1 then each z ∈ A1 can be obtained as
φ(v) for some φ ∈ Φ(]0, 1[) such that φ(u) = u and hence, by comparison
meaningfulness of f , we have f(z) < f(u) for all z ∈ A1. Now, for any
sequence (zn) of A1, with lim zn = uj, we have f(zn) < f(u) < f(uj) and
thus uj is a discontinuity of f . It follows that, for any φ ∈ Φ(]0, 1[), we have
lim φ(zn) = φ(uj) and f(φ(zn)) < f(φ(u)) < f(φ(uj)), i.e., φ(uj) is also a
discontinuity of f . This means that any point in Im is a discontinuity of f
(any point in Im is such a φ(uj) for a suitable φ), which is impossible.

ii. If f(v) = f(u) for some v ∈ A1 then we have f(z) = f(u) for all z ∈ A1.
It follows that uj is a discontinuity of f and we conclude as in the previous
subcase.

iii. If f(v) > f(u) for some v ∈ A1 then we have f(z) > f(u) for all z ∈ A1 and,
by comparison meaningfulness, the opposite inequality holds for all elements
from A2. Now, we can easily show that ui is a discontinuity and then we
arrive at a contradiction as previously.

(b) If f(ui) < f(u) and f(uj) < f(u) we use exactly the same reasoning as in the
previous case.

(c) Suppose f(ui) < f(u) and f(uj) > f(u). Then either f(z) = f(u) for all z ∈ A4

(then both ui and uj are discontinuities), or f(z) > f(u) for all z ∈ A4 (then
ui is discontinuity), or f(z) < f(u) for all z ∈ A4 (then uj is discontinuity). In
either case we arrive at a contradiction.

(d) If f(ui) > f(u) and f(uj) < f(u) we use exactly the same reasoning as in the
previous case.

As an easy corollary of Proposition 3.1 we obtain the characterization of invariant func-
tions stated in Proposition 2.2, iv); see also [2]. Indeed, for a fixed B ∈ B(En), we should
have f(x) = g(xi) and hence, for all φ ∈ Φ(E) with fixed point xi, we have

φ(g(xi)) = φ(f(x)) = f(φ(x)) = g(xi),

which implies that g(xi) is a fixed point of all such φ’s, that is,

g(xi) = xi or e0 or e1.

As we have already observed, the structure of invariant functions on a given minimal
invariant subset is completely independent of their structure on any other minimal invariant
subset. This fact is due to the invariance property: φ(x) ∈ B for all x ∈ B, φ ∈ Φ(E) and
B ∈ B(En). However, in the case of comparison meaningful functions we are faced a quite
different situation, in which we should take into account all minimal invariant subsets.
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Observe first that for a given comparison meaningful function f : En → R and a given
B ∈ B(En), the corresponding index iB need not be determined univocally. This happens
for instance when gB is constant or when B is defined with equalities on coordinates (see
Proposition 2.1). On the other hand, given iB, the function gB is necessarily unique.

Now, we are ready to give a complete description of all comparison meaningful functions.

Theorem 3.1. The function f : En → R is comparison meaningful if and only if, for any
B ∈ B(En), there exist an index iB ∈ [n] and a strictly monotone or constant mapping
gB : PiB(B) → R such that

f(x) = gB(xiB) (x ∈ B), (2)

where, for any B, C ∈ B(En), either gB = gC, or Ran(gB) = Ran(gC) is singleton, or
Ran(gB) < Ran(gC), or Ran(gB) > Ran(gC). (Note that Ran(gB) < Ran(gC) means that
for all r ∈ Ran(gB) and all s ∈ Ran(gC), we have r < s.)

Proof. (Sufficiency) Let B,C ∈ B(En), x ∈ B, y ∈ C, and φ ∈ Φ(E). We have three cases
to consider:

1. If B = C then whether gB be strictly monotone or constant, we have

f(x) ≤ f(y) ⇔ gB(xiB) ≤ gB(yiB)

⇔ gB(φ(xiB)) ≤ gB(φ(yiB))

⇔ f(φ(x)) ≤ f(φ(y)).

2. If B 6= C and either gB = gC or Ran(gB) = Ran(gC) is singleton, then we conclude
immediately as in the previous case.

3. The case B 6= C and Ran(gB) < Ran(gC) is immediate.

(Necessity) Due to Proposition 3.1 we have ensured the existence of indexes iB (not
necessarily unique) and the existence of comparison meaningful functions gB : PiB(B) → R
representing f in the form (2).

Now, suppose that B, C ∈ B(En), B 6= C. We have three cases to consider:

1. If Ran(gB) and Ran(gC) are singletons, then the result holds trivially.

2. Assume Ran(gB) is not singleton and Ran(gC) is singleton and choose u ∈ E◦.

(a) If gB(u) = gC then comparison meaningfulness ensures Ran(gB) = Ran(gC) is
singleton, a contradiction.

(b) If, say, gB(u) < gC then comparison meaningfulness ensures Ran(gB) < Ran(gC).

3. Assume Ran(gB) and Ran(gC) are not singletons and choose u ∈ E◦.

(a) If gB(u) = gC(u) then comparison meaningfulness ensures gB = gC .

(b) If, say, gB(u) < gC(u) then this inequality also holds for all v ∈ E◦ and if, for
some v, w ∈ E◦ we have gC(v) ≤ gB(w), then, depending on whether w > v
or oppositely, due to comparison meaningfulness, this inequality holds for all
z > v (or oppositely), i.e., we have gB(v) < gC(v) ≤ gB(v+) (or gB(v−) if it was
w < v), hence in any case, gB is not continuous at v, and due to comparison
meaningfulness, the same is true for all points in E◦. However, because of the
monotonicity of gB, this is impossible, proving Ran(gB) < Ran(gC).
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Example 3.1. Put E = [0, 1] and n = 2. Then there are eleven minimal invariant subsets
in B([0, 1]2), namely B1 = {(0, 0)}, B2 = {(1, 0)}, B3 = {(1, 1)}, B4 = {(0, 1)}, B5 =
]0, 1[×{0}, B6 = {1}×]0, 1[, B7 = ]0, 1[×{1}, B8 = {0}×]0, 1[, B9 = {(x1, x2) | 0 < x1 =
x2 < 1}, B10 = {(x1, x2) | 0 < x1 < x2 < 1}, B11 = {(x1, x2) | 0 < x2 < x1 < 1}. Let
iBj

= 1 and gBj
(x) = 1 − x for j ∈ {1, 2, 3, 5, 6, 9, 11}, and iBj

= 2 and gBj
(x) = 2x − 3

for j ∈ {4, 7, 8, 10}, where always x ∈ PiBj
(Bj). Then the relevant comparison meaningful

function f : [0, 1]2 → [0, 1] is given by

f(x1, x2) =
{

1− x1, if x1 ≥ x2,
2x2 − 3, if x1 < x2.

Theorem 3.1 enables us to characterize strong comparison meaningful functions, too.
Observe that while in the case of comparison meaningful functions, for any point x ∈ En

the set of all φ(x) = (φ(x1), . . . , φ(xn)), with φ ∈ Φ(E), gives some minimal invariant set B,
in the case of strong comparison meaningful functions we are faced to the set of all points
(φ1(x1), . . . , φn(xn)), with φ1, . . . , φn ∈ Φ(E), which is exactly the invariant set B∗ linked
to the previous B, which together with Theorem 3.1 results in the next corollary.

Corollary 3.1. The function f : En → R is strongly comparison meaningful if and only
if, for any B∗ ∈ B∗(En), there exist an index iB∗ ∈ [n] and a strictly monotone or constant
mapping gB∗ : PiB∗ (B

∗) → R such that

f(x) = gB∗(xiB∗ ) (x ∈ B∗),

where, for any B∗, C∗ ∈ B∗(En), either gB∗ = gC∗, or Ran(gB∗) = Ran(gC∗) is singleton,
or Ran(gB∗) < Ran(gC∗), or Ran(gB∗) > Ran(gC∗).

4 Monotone comparison meaningful functions

In this section we will examine monotone comparison meaningful functions. Note that the
monotonicity of a fusion function is a rather natural property.

Now, for any strictly monotone or constant real function h : R → R, and any compar-
ison meaningful function f : En → R, also the composite h ◦ f : En → R is comparison
meaningful. Consequently, to get a complete description of monotone comparison mean-
ingful functions it is enough to examine nondecreasing comparison meaningful functions
only.

Theorem 4.1. Let f : En → R be a nondecreasing function. Then f is comparison
meaningful if and only if it has the representation

{(iB, gB) | B ∈ B(En)},

as stated in Theorem 3.1, such that any gB is either constant or strictly increasing, Ran(gB) =
Ran(gC) if B ∼ C, and Ran(gB) ≯ Ran(gC) if B � C and B ¹ C.

Proof. (Sufficiency) Easy, hence we omit it.
(Necessity) First of all, it is clear that no function gB can be strictly decreasing.
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Now, if B ∼ C and B 6= C, then there are u,w ∈ B and v ∈ C such that u ≤ v ≤ w,
and hence f(u) ≤ f(v) ≤ f(w). If follows immediately that it is not possible to have
Ran(gB) < Ran(gC) or Ran(gB) > Ran(gC). Then, by Theorem 3.1, we necessarily have
gB = gC , or Ran(gB) = Ran(gC) is singleton.

If B � C and B ¹ C then for all u ∈ B and all v ∈ C either u ≤ v or u and v are
incomparable. Therefore we have either gB = gC , or Ran(gB) = Ran(gC) is singleton, or
Ran(gB) < Ran(gC).

Now, several results mentioned in Section 2 are immediate corollaries of Theorems 3.1
and 4.1. Interesting seems to be also the next result, in which G(E) means the system of all
strictly increasing or constant real functions g defined either on E◦ or on singleton {e0}∩E
or on {e1} ∩ E (if these singletons exist) and for g1, g2 ∈ G(E) we put g1 ¹ g2 if either
g1 = g2, or Ran(g1) = Ran(g2) is a singleton, or Ran(g1) < Ran(g2).

Corollary 4.1. A nondecreasing function f : En → R is comparison meaningful if and
only if there are nondecreasing mappings ξ : B∗(En) →Mn(E) and γ : B∗(En) → G(E) so
that

f(x) = γ(B∗)(Lξ(B∗)(x)) (x ∈ B∗ ∈ B∗(En)). (3)

Proof. (Sufficiency) Easy.
(Necessity) Fix B ∈ B(En). If gB is constant then gC = gB is constant for all C ∼ B

and hence (3) holds with a constant function γ(B∗) and Lξ(B∗) arbitrary.
On the other hand, if gB is strictly increasing then gC = gB for all C ∼ B. It follows

that the function g−1
B ◦f : B∗ → E◦ is well defined, nondecreasing, and invariant and hence,

according to Proposition 2.3(ii), there exists µ ∈Mn(E) such that g−1
B ◦f = Lµ. Therefore,

(3) holds with γ(B∗) = gB and ξ(B∗) = µ.

Observe also that whenever B∗ is not singleton then the relevant function γ(B∗) from
the representation (3) can be obtained (for all z ∈ E◦) by

γ(B∗)(z) = f(z1, . . . , zn),

where

zi =





e0, if Pi(B
∗) = {e0},

e1, if Pi(B
∗) = {e1},

z, otherwise.

For example, if E is open, then B∗(En) = {En} and then necessarily each monotone
comparison meaningful f : En → R is given by f = g ◦ Lµ, where µ ∈ Mn(E) and
g(z) = f(z, . . . , z) is strictly monotone or constant (see also [7]).

Based on Corollaries 3.1 and 4.1, we can characterize nondecreasing strong comparison
meaningful functions as follows.

Corollary 4.2. A nondecreasing function f : En → R is strongly comparison meaningful if
and only if there is a mapping δ : B∗(En) → [n] and a nondecreasing mapping γ : B∗(En) →
G(E) such that

f(x) = γ(B∗)(xδ(B∗)) (x ∈ B∗ ∈ B∗(En)),

where, if γ(B∗) = γ(C∗), then also δ(B∗) = δ(C∗) (unless γ(B∗) = γ(C∗) is constant).

Continuity of a comparison meaningful function is even more restrictive and it forces
the monotonicity. From Theorem 3.1 we have the next result (see also [7]).
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Corollary 4.3. A continuous function f : En → R is comparison meaningful if and only
if there is a continuous, strictly monotone or constant mapping g : E → R and a function
µ ∈Mn(E) such that

f = g ◦ Lµ. (4)

Note that in trivial cases when f is constant, f admits also representations different
from (4), however, always in the form f = g ◦ f ∗, where g is a constant function on E and
f ∗ : En → E is an arbitrary function. In all other cases the representation (4) is unique.

Corollary 4.4. A continuous function f : En → R is strongly comparison meaningful if
and only if there is a continuous, strictly monotone or constant mapping g : E → R and
an index i ∈ [n] so that

f = g ◦ Pi.

5 Conclusion

We have described the structure of a general comparison meaningful function. As corol-
laries, some results concerning special cases (monotone and/or continuous operators) were
characterized. Moreover, our characterization can be understood also as a hint how to
construct comparison meaningful operators.
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