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Abstract

We analyze a recently proposed ordinal sorting procedure (Tomaso) for the assign-
ment of alternatives to graded classes and we present a freeware constructed from
this procedure. We illustrate it by two examples, and do some testing in order to
show its usefulness.
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1 Introduction

In this paper we analyze an ordinal sorting procedure for the assignment of
alternatives to graded classes in the presence of interacting points of view. This
procedure has been recently proposed by Roubens [7,9] and is now known
under the name Tomaso, which means “Tool for Ordinal Multi-Attribute
Sorting and Ordering.”

The technique used in this method proceeds in two steps: a pre-scoring phase
determines for each point of view and for each alternative a net score (the
number of times a given alternative beats all the other alternatives minus the
number of times this alternative is beaten by the others) and is followed by
an aggregation phase, using the discrete Choquet integral, which produces a
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global net score associated to each alternative. These global scores are then
used to assign the alternatives to graded classes.

The fuzzy measure associated to the Choquet integral can be learnt from
a subset of alternatives (called prototypes) that are assigned beforehand to
the classes by the decision maker. This leads to solving a linear constraint
satisfaction problem whose unknown variables are the coefficients of the fuzzy
measure.

Once a fuzzy measure is found, it is useful to interpret it through some be-
havioral parameters:

(1) The importance indices (Shapley importance indices), which make it pos-
sible to appraise the overall importance of each point of view,

(2) The interaction indices (Shapley interaction indices), which measure the
extent to which the points of view interact (positively or negatively).

The main purpose of this paper is to present a freeware, also called Tomaso,
which allows the user to apply this method to a learning set and analyze
the resulting assignments. It is written in Visual Basic, which increases its
ergonomy.

The paper is organized as follows. In Section 2 we recall the general sorting
procedure Tomaso. In Sections 3–5 we present the freeware Tomaso, its
implementation, and its application on two particular case studies. Finally, in
Section 6, we compare this procedure with classical methods in terms of both
results and computational efficiency.

2 The TOMASO method

In the present section, we briefly recall the procedure Tomaso. For theoretical
developments on this procedure, the readers are referred to [7].

Let A be a set of q potential alternatives, which are to be assigned to disjoint
classes, and let N = {1, . . . , n} be a label set of points of view to satisfy. For
each point of view i ∈ N , the alternatives are evaluated according to a si-point
ordinal performance scale; that is, a totally ordered set

Xi := {gi
1 ≺i gi

2 ≺i · · · ≺i gi
si
}.

We assume that each alternative x ∈ A can be identified with its corresponding
profile

(x1, . . . , xn) ∈
n

×
i=1

Xi =: X,

2



where, for any i ∈ N , xi represents the partial evaluation of x related to point
of view i.

Now, consider a partition of X into m nonempty classes {Clt}m
t=1, which are

increasingly ordered; that is, for any r, s ∈ {1, . . . ,m}, with r > s, the elements
of Clr have a better evaluation than the elements of Cls.

We also set

Cl>r :=
⋃
t>r

Clt (r = 1, . . . ,m).

The procedure Tomaso consists in partitioning the elements of A into the
classes {Clt}m

t=1. It is mainly based on the following result, adapted from [4,
Theorem 2.1], which states that, under a simple condition of monotonicity, it
is possible to find a discriminant function that strictly separates the classes
Cl1, . . . , Clm by ordered numerical thresholds.

For any xi ∈ Xi and any y−i ∈ X−i :=×j∈N\{i} Xj, we set

xiy−i := (y1, . . . , yi−1, xi, yi+1, . . . , yn) ∈ X.

Theorem 1 The following two assertions are equivalent:

(1) For all i ∈ N , t ∈ {1, . . . ,m}, xi, x
′
i ∈ Xi, y−i ∈ X−i, we have

x′
i <i xi and xiy−i ∈ Clt ⇒ x′

iy−i ∈ Cl>t .

(2) There exist
• functions gi : Xi → R (i ∈ N), strictly increasing, called criteria,
• a function f : Rn → R, increasing in each argument, called discriminant

function,
• m− 1 ordered thresholds {zt}m

t=2 satisfying

z2 6 z3 6 · · · 6 zm

such that, for any x ∈ X and any t ∈ {2, . . . ,m}, we have

f [g1(x1), g2(x2), . . . , gn(xn)] > zt ⇔ x ∈ Cl>t .

For a practical use of this result and in order to produce a meaningful result,
Roubens [9] restricted the family of possible discriminant functions to the
class of n-variable Choquet integrals and the criteria functions to normalized
scores.

Such scores, whose definition might vary from an application to another,
should have a precise meaning for the decision maker.
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Two natural approaches can be considered: either the score of each alternative
is built on the basis of all the alternatives in A or this score is constructed
in a context-free manner, that is, independently of the other alternatives.
The decision maker must be aware that the final results may significantly
differ according to the considered approach. Therefore, a prior analysis of the
problem is recommended to choose the scores appropriately.

In the first approach, one possible way to build the scores is to consider com-
parisons of the alternatives on each of the points of view. We consider Si(x),
the ith partial net score of alternative x ∈ A along point of view i ∈ N , as the
number of times that x is preferred to any other alternative of A minus the
number of times that any other alternative of A is preferred to x for point of
view i. We furthermore normalize these scores so that they range in the unit
interval, i.e.,

SN
i (x) :=

Si(x) + (q − 1)

2(q − 1)
∈ [0, 1] (i ∈ N),

where q = |A|. Clearly, this normalized score is not a utility, and should not be
considered as such. Indeed, observing an extreme value (close to 0 or 1) means
that x is rather “atypical” compared to the other alternatives along point of
view i. Thus, the resulting evaluations strongly depend on the alternatives
which have been chosen to build A.

Consider now the second approach, that is, where the score of each alternative
does not depend on the other alternatives in A. In this case, we suggest the
decision maker provides the score functions as utility functions. Alternatively,
we can approximate these utility functions by the following linear formula:

SN
i (x) :=

ordi(x)− 1

si − 1
∈ [0, 1] (i ∈ N),

where ordi : A → {1, . . . , si} is a mapping defined by ordi(x) = r if and only if
xi = gi

r. In this latter case, SN
i does not necessarily represent a real utility and

probably does not correspond to the utility the decision maker has in mind.
We therefore continue to call it a score.

Notice that the case studies we present in this paper are treated by means of
the scores of the first type, i.e., based on the comparison of alternatives.

The normalized scores of each alternative x are then aggregated by means of
a Choquet integral [2], namely

Cv(S
N(x)) :=

n∑
i=1

SN
(i)(x) [v(A(i))− v(A(i+1))],

where SN(x) stands for (SN
1 (x), . . . , SN

n (x)) and v represents a fuzzy measure
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on N ; that is, a monotone set function v : 2N → [0, 1] fulfilling v(∅) = 0
and v(N) = 1. This fuzzy measure merely expresses the importance of each
subset of points of view. Also, the parentheses used for indices represent a
permutation on N such that

SN
(1)(x) 6 · · · 6 SN

(n)(x),

and, for any i ∈ N , A(i) represents the subset {(i), . . . , (n)}.

The Choquet integral presents standard properties for aggregation (see [3,6]):
it is continuous, non decreasing, located between min and max. The major
advantage linked to the use of this integral derives from the large number of
parameters (2n− 2) associated with a fuzzy measure. However, this flexibility
can be also considered as a serious drawback when assessing the fuzzy measure.
To reduce the number of parameters, it is proposed to consider k-additive fuzzy
measures [3]: a fuzzy measure v on N is k-additive if its Möbius transform
m : 2N → R, defined by

m(S) =
∑
T⊆S

(−1)|S|−|T | v(T ) (S ⊆ N),

satisfies m(S) = 0 for S such that |S| > k and there exists at least one subset
S such that |S| = k and m(S) 6= 0. It can be shown that k-additive fuzzy

measures on N can be represented by at most
∑k

i=1

(
n
i

)
parameters.

We now explain how the fuzzy measure is assessed in this procedure.

Assume that all the alternatives of A ⊆ X are already sorted into classes
Cl1, . . . , Clm. In some particular cases there exist a fuzzy measure v on N and
m− 1 ordered thresholds {zt}m

t=2 satisfying

z2 6 z3 6 · · · 6 zm

such that for any x ∈ A, and any t ∈ {2, . . . ,m}, we have

Cv(S
N(x)) > zt ⇔ x ∈ Cl>t .

Of course, if such a fuzzy measure does exist then the thresholds may be
defined by

zt := min
x∈Cl>t

Cv(S
N(x)) (t = 2, . . . ,m).

In real situations, the assignment of all alternatives is not known but has to
be determined. However, this assignment, or equivalently the fuzzy measure v,
can be learnt from a reference subset, made up of prototypes that have been
sorted beforehand by the decision maker.
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Practically, the decision maker is asked to supply such a prototypical subset
P ⊆ A and the assignment of each of its elements to a given class; that is, a
partition of P into prototypical classes {Pt}m

t=1, where Pt := P ∩ Clt for all
t ∈ {1, . . . ,m}. Here some prototypical classes may be empty.

As the Choquet integral is supposed to strictly separate the classes Clt, we
must impose the following necessary condition

Cv(S
N(x))− Cv(S

N(x′)) > ε , (1)

for each ordered pair (x, x′) ∈ Pt × Pt−1 and each t ∈ {2, . . . ,m}, where ε is a
given strictly positive threshold.

These separation conditions, put together with the boundary and monotonic-
ity constraints on the fuzzy measure, form a linear constraint satisfaction
problem whose unknowns are the coefficients of the fuzzy measure. Thus the
sorting problem consists in finding a feasible solution satisfying all these con-
straints. If ε has been chosen too big, the problem might have no solution. To
avoid this, we can consider ε as a non-negative variable to be maximized. In
this case its optimal value must be strictly positive for the problem to have a
solution.

In the resolution of this problem, we use the principle of parsimony. If no
solution is found for k = 1, we turn to k = 2. If no solution is still found,
we turn to k = 3, and so forth, up to k = n. Notice however that an empty
solution set for k = n is necessarily due to an incompatibility between the
assignment of the given prototypes and the assumption that the discriminant
function is a Choquet integral.

Due to the increasing monotonicity of the Choquet integral, the number of
separation constraints (1) can be reduced significantly. For example, if x′′ ∈
Pt−1 is such that Cv(S

N(x′)) > Cv(S
N(x′′)) then, by transitivity, the constraint

Cv(S
N(x))− Cv(S

N(x′′)) > ε

is redundant.

Now, we can define a dominance relation D on X as follows: For each x, y ∈ X,

xDy ⇔ SN
i (x) > SN

i (y) ∀i ∈ N.

Being an intersection of complete (total) orders, the binary relation D is a
partial order, i.e., it is reflexive, antisymmetric, and transitive. Furthermore
we clearly have

xDy ⇒ Cv(S
N(x)) > Cv(S

N(y)).
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It is then useful to define, for each t ∈ {1, . . . ,m}, the set of non-dominating
alternatives of Pt,

Ndt := {x ∈ Pt | @ x′ ∈ Pt \ {x} : xDx′},

and the set of non-dominated alternatives of Pt,

NDt := {x ∈ Pt | @ x′ ∈ Pt \ {x} : x′Dx},

and to consider only constraint (1) for each ordered pair (x, x′) ∈ Ndt×NDt−1

and each t ∈ {2, . . . ,m}. Thus, the total number of separation constraints boils
down to

m∑
t=2

|Ndt| |NDt−1|.

Finally, suppose that there exists a k-additive fuzzy measure v∗ that solves
the problem above. Then any alternative x ∈ A will be assigned to

• the class Clt if

min
y∈Ndt

Cv∗(S
N(y)) 6 Cv∗(S

N(x)) 6 max
y∈NDt

Cv∗(S
N(y)),

• one of the classes Clt or Clt−1 if

max
y∈NDt−1

Cv∗(S
N(y)) < Cv∗(S

N(x)) < min
y∈Ndt

Cv∗(S
N(y)).

3 The freeware TOMASO

We now present the freeware Tomaso, 3 which is an implementation (written
in Visual Basic) of the algorithm presented in Section 2. In the present section
we describe briefly the various aspects of the freeware. In the next section, we
present an application on a fictitious example of evaluation of students, we
show how the freeware deals with a leave-one-out procedure, and we present
a way to test its performance on this particular example. In the following
section, we present an application of the method to a classification problem
of quality indices for association rules.

The freeware Tomaso can be used for supervised classification of ordinal
multi-criteria data. In order to work properly, it requires some information
about the structure of the data. We call a prototypical set the set of objects
used to build the classifier. It is described by a set of alternatives which are
already classified by the decision maker.

3 Available at http://patrickmeyer.tripod.com
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This means that the class of problems which can be solved by this method
is quite particular. The decision maker must be aware of some a priori infor-
mation on certain objects of his decision problem. He must be an expert in
the field and should be able to give a global evaluation on some particular
elements. Later, when the model is built, new alternatives can be considered.
The classifier will then assign them to one or more of the predefined classes,
according to the preferences of the decision maker.

When using the freeware, at first the user has to load the file with the data he
wants to analyze 4 . These data have to be of ordinal nature and, as mentioned
before, can be composed of the prototypes and some alternatives that need to
be classified.

After the calculation of the net scores, the user has to fix the number of classes
and their structures. This last point is achieved by adding the prototypes to
their respective classes, which can be done either manually or by loading a file.
At the end of this step, the alternatives which are not assigned to any class
do not belong to the prototypical set and will either be used as a test subset
(to check the validity of the method) or simply as objects to be classified.

The next stage of the freeware is to check the consistency of the assignments
within the set of prototypes. The inconsistencies can be of two types:

• Two alternatives x and y with the same net scores for each criterion (SN(x) =
SN(y)) belong to two different classes

• Two alternatives x and y so that x dominates y (i.e. SN
i (x) ≥ SN

i (y)∀i ∈ N)
and y belongs to a better class than x.

If no inconsistency is detected, the freeware allows the user to go on. Else,
the user has to change the definition of the classes by the prototypes (either
manually, or by loading another class file). The next step is the determina-
tion of the non-dominating set of alternatives and the non-dominated set of
alternatives in each class. These sets are not empty, because the user should
add at least one alternative in each class. As already mentioned earlier, this is
meant to reduce the number of separation constraints and is justified by the
increasing monotonicity of the Choquet integral.

The resolution of the linear constraint satisfaction problem is the next stage.
The user can choose between fixing the value of k < n or solving the problem
for k = n. In both cases, a file of constraints is computed. An external solver 5

uses this file as an input and tries to solve the problem.

4 See tutorial at http://patrickmeyer.tripod.com for a detailed description of
the data file formats
5 lp solve 3.0, downloadable at ftp://ftp.ics.ele.tue.nl/pub/lp solve/,
released under the LGPL license
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If the problem has no solution for k = n, the user should revise the definition
of the classes. On the other hand, if there is a solution for the problem, the
following results are displayed:

• The coefficient of the fuzzy measure v,
• The values of the Möbius transform m of v,
• The value of ε,
• The borders of the classes (for each class Clt, given by the maximal and the

minimal value of the Choquet integral of the alternatives of Clt),
• The Shapley importance indices for each point of view i,
• The Shapley interaction indices for each pair of points of view,
• The Choquet integral of each prototype.

An important tool is the assignment of the alternatives which are not in the
prototypical set to the classes, according to the previously built model. During
this step, it may happen that the Choquet integral of some of these objects may
not be between the limits of any of the classes. In that case, those alternatives
are assigned to “imprecise” classes which lie between the original classes. If
for one particular alternative x the decision maker is not satisfied with such a
fuzzy assignment between classes Clr and Cls, he may revise the definition of
the adjacent classes in order to include x or maybe another alternative similar
to x. Else, one can say that alternative x simply belongs to class Clr or Cls.

To check the structure of the set of prototypes, it is possible to apply a par-
ticular leave-one-out procedure to the data. For each alternative x of the pro-
totypical set, the model is rebuilt without the alternative. Then x is assigned
to a class, according to the prototypes. This class should then be the original
class of x. If not, it is considered as an error. At the end of the whole pro-
cedure, a high error ratio, say e/p, with e close to p (p is the cardinality of
the prototypical set and e is the number of badly classified alternatives during
the leave-one-out procedure) does not necessarily mean that the data of the
prototypes are badly chosen. It either stands for a “minimal” prototypical set,
where nearly each alternative is important for the building of the model, or
for a quite complex data structure. In this latter case, the set of prototypes
should perhaps be revised and enriched with new alternatives to increase its
diversity.

4 Assigning students to graded classes

In order to validate the Tomaso method, we apply it on the following ex-
ample. Consider a set of students evaluated in three courses: mathematics,
physics, and literature. For each course, the evaluation scale has three ordered
qualitative levels: bad ≺ medium ≺ good. In total this makes 27 possible dif-
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ferent students. Besides, for each student, a decision maker has given a global
evaluation on an qualitative ordinal scale with three levels: bad (1) ≺ medium
(2) ≺ good (3). We analyze two different subproblems of this example. The
first one uses the complete set of 27 students as prototypes and any future
assignment has to be correct, because the 27 students represent all possible
cases. The second study is on a random subset of the set of 27 students. It is
somewhat more realistic, as a global information is known only on a subset
of students. There, future assignments are not necessarily correct. In order to
test the usefulness of the method, a particular algorithm of cross validation
will be applied to the problem.

4.1 Subproblem 1: 27 students

Figure 1 represents the assignments of the decision maker, and the dominance
relations between students of the same class. The determination of the non-

(2 3 2)

(1 3 2)

(2 3 3)

(3 2 3)

(1 3 3)

(3 3 3) (3 3 2) (3 2 1)(3 3 1)

(3 1 1)

(2 1 1)

(1 1 2) (1 1 1)

(3 1 3)

(3 2 2)

(2 3 1)

(2 2 3)
(3 1 2)

(2 1 3)

(2 2 2)

(1 2 3) (1 2 2)

(1 3 1)

(1 1 3)

(2 1 2)

(2 2 1)

(1 2 1)

Good

Bad

Medium

Medium

Fig. 1. Assignments of the decision maker

dominating and non-dominated sets of alternatives for each class results in
the following table:
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NDg (333)

NDm (223) (331)

NDb (133) (313) (221)

Ndg (232) (322)

Ndm (222) (231) (321)

Ndb (111)

The extreme sets (NDg and Ndb) will not be used in the linear constraint
satisfaction program.

The problem has a solution for k = n = 3, with ε = 0.086 (but no solution
can be found for k < 3). This means that all the prototypes can be assigned
to their correct classes with the help of a Choquet integral as a discriminant
function. Interesting parameters are the importance indices which are shown
in the following table:

Math Physics Literature

0.417 0.417 0.166

4.2 Subproblem 2: a subset of the 27 students

For this problem, we chose a random subset of the 27 prototypical students
as follows: we scan sequentially the original set of 27 students and assign each
student with a probability of 1/2 to the new subset. The randomly generated
subset used here is described in the following table:

Good (322) (332) (323) (333)

Medium (321) (331)

Bad (311) (121) (131) (312) (132) (313) (123) (133)

The structure of this problem if given in Figure 2. The original classes are
represented by dashed lines. The prototypical classes are described by solid
lines. The goal is to reconstruct the original classes as accurately as possible.

The determination of the non-dominating and non-dominated sets of alterna-
tives for each class results in the following table:
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(2 3 2)

(1 3 2)

(2 3 3)

(3 2 3)

(1 3 3)

(3 3 3) (3 3 2) (3 2 1)

(3 1 1)

(2 1 1)

(1 1 2) (1 1 1)

(3 2 2)

(2 3 1)

(2 2 3)
(3 1 2)

(2 1 3)

(2 2 2)

(1 2 3) (1 2 2)

(1 3 1)

(1 1 3)

(2 1 2)

(1 2 1)

Bad

Good

(3 3 1)

Medium

(3 1 3)

Bad

(2 2 1) Bad

Fig. 2. Assignments of the decision maker

NDg (333)

NDm (331)

NDb (133) (313)

Ndg (322)

Ndm (321)

Ndb (311) (121) (123)

We observe that these sets are quite reduced in comparison to the previous
subproblem.

The problem has a solution for k = n = 3, with ε = 0.115. The importance
indices are given in the following table:

Math Physics Literature

0.389 0.389 0.222
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They are similar to those of the first subproblem. Mathematics and Physics
have the highest importance indices with equal values.

We can also see that there is a solution for k = 2, with ε = 0.069. In this case,
the importance indices are given in the following table:

Math Physics Literature

0.500 0.300 0.200

The (pairwise) interaction indices are given in the following table:

(Math, Physics) (Math, Literature) (Physics, Literature)

0.200 0 0.400

Coming back to the solution with k = 3, the leave-one-out procedures gives
a misclassification ratio of 14.29%. This means that 2 alternatives out of the
14 of the prototypes were badly reclassified. Besides, the importance indices
stay rather constant during these 14 leave-one-out procedures. The three next
tables resume the value of the Shapley indices for the three branches (mathe-
matics (m), physics (p) and literature (l)).

m 0.389 0.389 0.375 0.389

p 0.389 0.389 0.375 0.389

l 0.222 0.222 0.250 0.222

m 0.417 0.389 0.389 0.389 0.389

p 0.417 0.389 0.389 0.389 0.389

l 0.167 0.222 0.222 0.222 0.222

m 0.389 0.389 0.389 0.389 0.389

p 0.389 0.389 0.389 0.389 0.389

l 0.222 0.222 0.222 0.222 0.222

The average values for mathematics and physics are both 0.39 with a variance
of 7.43 · 10−5. For literature the mean is 0.220 with a variance of 2.89 · 10−4.

The assignments of the remaining 13 alternatives are resumed in the following
table:
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Student Assignment Original Class

(111) bad bad

(211) bad bad

(221) medium bad

(231) medium medium

(112) bad bad

(212) bad bad

(122) bad bad

(222) good medium

(232) good good

(113) bad bad

(213) bad bad

(223) good medium

(233) good good

The three erroneous assignments (indicated in boldface type) lead to an error
rate of 23.08%. If we analyze these problems, they are not surprising at all.
The randomly chosen subset has very few representatives in the middle class
of medium students. The three erroneous assignments slide from the middle
to the top class, or from the lower to the middle class. Hence we can conclude
that the class of medium students is quite problematic in this particular case.
But the error rate is still satisfactory.

In order to determine if the algorithm used in the Tomaso method is useful on
this particular example of 27 students, we use a special 2-fold cross validation.
The goal is to prove that the previous randomly chosen subproblem is not a
particular case, and that pertinent conclusions can be drawn for any possible
prototypical subset of the 27 students.

The general idea behind this test is to split the data D of the 27 students in
2 random subsets, a training set R and a test set T . The model is built on
R and tested on T . The resulting classification (on T ) is then compared to
the original classes of D. To determine the accuracy of the model, an error
ratio is calculated by dividing the number of misclassified elements of T by
the cardinality of T .

In this particular example, we build a certain number S of subsets of the set
of 27 students. One condition needs to be fulfilled: there must be at least one
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object of each decision class in the subset. To do so, we scan sequentially the
original set of 27 students and assign each student with a probability of 50%
to the new subset. Afterwards, we check if each class is represented at least
once in the new set of students.

Let X be a random variable which represents the error ratio. Our main concern
is the mean value of X, E[X], on all possible subsets of D under the constraint
described before.

In order to give an estimation of E[X] we calculate the mean X of X on 30
subsets. The values for the Xi are given in the following table:

0.2857 0 0.2308 0.2500 0.5455

0.1538 0 0.1429 0.0667 0.1818

0.3571 0.4286 0 0.4286 0.5333

0.3889 0.3333 0 0.1538 0.0769

0.2500 0.2941 0.2308 0.3077 0.0769

0.1250 0.1333 0.2222 0.3125 0.2308

Hence X = 0.2247 and the standard deviation s = 0.0231.

Besides, the normality of the distribution given by the values in the previous
table cannot be rejected. Hence we compute the Student confidence interval
around the value of X. Finally:

P (E[X] ∈ [0.2131, 0.2363]) = 99%.

More intuitively, we can claim that with a probability of 99%, Tomaso allows
to classify the students of this example with an error rate between 21.31% and
23.63% if the prototypes are chosen randomly as described beforehand.

We observe that the previous example treated in Subsection 4.2 is not aber-
rant, and that it could represent a real case study. Further more the conclusions
drawn from it are pertinent.

We also have analyzed the variation of the importance indices over these 30
cross validations. In a majority of cases, the order “mathematics ∼ physics �
literature” is maintained. But the values for each criterion are varying signifi-
cantly. It is important to emphasize here that the exact values of these indices
should merely be considered as parameters.

15



5 Assigning quality measures of association rules to graded classes

We present a second example to show that the Tomaso method can be used in
various real-life problems where a MCDA problem requires graded classes as an
output. This particular example comes from the data mining and knowledge
extraction fields. Certain data mining algorithms, especially those used for
unsupervised learning, can generate a large number of rules (A → B; read: if A
is satisfied then B is probably also satisfied). They need to be evaluated before
being presented to an expert in order to reduce their number, and to retain
only the “best” and the most interesting ones. Intuitively one could say that
an association rule is “good” if it has few counterexamples. Therefore, many
quality measures have been proposed to evaluate rules. Most of them have
different properties and express more subtle properties than simply counting
the counterexamples. These properties are often contradictory and conflicting.
In [5] the authors have described quality measures on a limited set of criteria.
Currently, the work has progressed and a set of 20 measures is evaluated on 8
criteria. The interested reader should refer to [5] for further details. The list
of criteria is given hereafter:

• g1: Asymmetric processing of A and B (To distinguish A → B rules from
B → A rules) (asymmetric (1) � symmetric (0)).

• g2: Decrease with nb (nb = |B|) with fixed |A| (decreasing with nb (1) �
non-decreasing with nb (0)).

• g3: Constant at independence (If A and B are independent, the rule contains
no information. Hence the quality measure should take a fixed value at inde-
pendence (e.g. 0)) (fixed value at independence (1) � value at independence
varying with rule (0)).

• g4: Constant at situation of logical rule (If no counterexample to the rule
exists, the measure should take a fixed maximum value (e.g. 1)) (constant
at maximum (1) � maximum value dependant on rule (0)).

• g5: Shape of the curve [measure = f(counterexamples)] (A slow decrease
with the number of counterexamples allows to keep the rule longer, a fast
decrease with the number of counterexamples bans the rule faster; depends
on the preferences of the expert) (concave (2) � linear (1) � (0) convex or
convex (0) � linear (1) � concave (2)).

• g6: Sensitivity to the total number of examples of the analyzed data table
(sensible (1) � not sensible (0)).

• g7: Ease to fix an acceptance threshold (If the value of the measure lies
above this threshold, the rule is accepted, else it is rejected) ((1) easy �
hard (0)).

• g8: Intelligibility of the measure (easily explainable (2)� basic mathematical
knowledge required (1) � hardly explainable (0)).

The data matrix is shown in Table 1. The expert would like to assign these 20
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g1 g2 g3 g4 g5 g6 g7 g8

Sup 0 0 0 0 1 0 1 2

Conf 1 0 0 1 1 0 1 2

r 0 1 1 0 1 0 1 1

CenConf 1 1 1 0 1 0 1 2

PS 0 1 1 0 1 1 1 1

Loe 1 1 1 1 1 0 1 1

Zhang 1 1 1 1 2 0 0 0

- ImpInd 1 1 1 0 1 1 1 0

Lift 0 1 1 0 1 0 1 1

Surp 1 1 0 0 1 0 1 1

Seb 1 0 0 1 0 0 1 1

OM 1 1 1 1 0 0 1 2

Conv 1 1 1 1 0 0 1 1

ECR 1 0 0 1 2 0 1 1

Kappa 0 1 1 0 1 0 1 0

IG 0 1 1 0 2 0 1 0

IntImp 1 1 1 1 2 1 1 0

EII 1 1 1 1 2 1 0 0

PDI 1 1 1 0 1 1 1 0

Lap 1 0 0 0 1 0 1 0
Table 1
Decision matrix for the quality measures problem

measures to 3 graded classes: Good � Medium � Bad. During a discussion,
he is asked to provide at least one measure for each class. He chooses a few
measures he knows quite well, and for which he is able to interpret the resulting
rules and their quality. The assignment of the prototypes is given in Table 2.
One should mention here that this assignment is reflecting the preferences of

Good CenConf Loe OM EII

Medium Zhang ECR PDI

Bad Sup Surp Kappa

Table 2
Assignment of the prototypes

the expert. He is not necessarily a data mining expert. Therefore, he is not
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aware of all the subtilities of the measures, but during the discussion, he gets
information on the 8 selected properties and on certain measures.

A solution is found for k = 1. This additive model allows to classify the
non-prototypical alternatives as shown in Table 3. The importance indices are

Good Conf Conv IntImp

Medium PS -ImpInd Seb

Medium ∪ Bad r Lift

Bad Lap IG

Table 3
Assignment of the remaining measures

shown in Table 4. These results are in close relation with the current research
which is made on the evaluation of quality measures of decision rules. In [5] the
authors analyze the same type of problem, with the Promethee-Gaia method
for multiple criteria ranking. Our results are not in contradiction with those
published in [5].

6 Benefits and specificities of TOMASO and comparison to two
classical MCDA methods

In the general context of multicriteria decision aiding and sorting methods,
Tomaso has two major particular features.

First of all, it is able to cope with interacting criteria. This allows to deal with
a larger set of problems, and the definition of the criteria is less restrictive
than for classical methods (like Promethee [1], or Electre Tri [8]).

Secondly, the decision maker doesn’t have to provide difficult information on
parameters of the model (like weights for the criteria). They are “learnt” from
a set of well-known alternatives by the decision maker. One could say that in
certain problems this may be as complicated as determining the weights of the
criteria. But our experience has shown that in our case studies, expert decision
makers have an a priori knowledge about a few objects of the problem they are
analyzing. This particular information is fully exploited in Tomaso through
the concept of prototypes.

g1 g2 g3 g4 g5 g6 g7 g8

0.182 0.000 0.182 0.182 0.000 0.181 0.001 0.273
Table 4
Importance indices
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In the theoretical example of the assignment of students to graded classes, we
observe first of all that the particular classification of the prototypes implies
interaction among criteria (no model could be found for k = 1). In case of
the two classical MCDA methods Promethee and Electre Tri, the cri-
teria require to be independent. This restrictive condition implies that here a
solution which is compatible with the decision maker’s preferences cannot be
found. The strong condition of independent criteria may be quite restrictive
in many real-life cases.

Another point concerns the information that the decision maker has to provide.
In Promethee, a weight system has to be determined in order to obtain
a final ranking on the alternatives. Some visualization tools allow an easier
fixing of these parameters, but nevertheless, this information is quite complex
and hard to obtain. In Electre Tri, a procedure allows to provide some
prototypical alternatives to the method, in order to fix certain parameters. But
other parameters still need human interaction (thresholds). Anyway, nothing
guarantees that a solution to the classification of the prototypical alternatives
will be found if the criteria are not independent. In Tomaso the decision
maker, such as a teacher in a student evaluation, has to express a global
feeling on a subset of students. No further parameter has to be fixed. These
assignments are “natural” opinions of the teacher on some students, without
any precise considerations on the exact weights of the different matters. In this
case, this simplified information is enough to build a model, and to provide
the “weights” of the criteria by means of the Shapley indices.

A further specificity of the Tomaso method is the possibility to use and work
with purely ordinal data. No further information is required. In Promethee,
the user has to decide what type of preference function he wants to use in order
to make different ordinal and cardinal scales comparable. Besides, each pref-
erence function requires some parameters to be fixed by the user. The method
Electre Tri also needs some parameters to be fixed by the decision maker.
In our case, the problem is solely analyzed (and solved) by asking the decision
maker a minimal number of questions on global evaluations concerning the
alternatives and no further information on the structure of the data.

7 Conclusion

We have introduced a freeware that uses the procedure Tomaso to build a
supervised classifier.

Some interesting observations can be made with the help of this tool. We want
to emphasize that the interaction indices as well as the Shapley indices are
mainly parameters of the method. In particular the importance indices should
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not be interpreted as “real” weights of the problem. Even if they are stable
during the leave-one-out procedures, this doesn’t indicate that they “fit” to
the decision maker’s mind. As we have shown in the last part of Section 4.2,
they can vary quite significantly from one prototypical set to another. At most
their order can give an indication on the ranking of the “real” weights.
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