A characterization of associative idempotent nondecreasing functions with neutral elements

Gergely Kiss

Mathematics Research Unit, University of Luxembourg
Luxembourg, Luxembourg

Joint work with Miklós Laczkovich, Jean-Luc Marichal, Gábor Somlai, Bruno Teheux

54th International Symposium on Functional equation,
Hajdúszoboszló, Hungary
Elementary properties of binary functions

Let $I = [a, b]$ be a closed real interval and let $F : I^2 \to I$ be a binary function (operation).
Elementary properties of binary functions

Let $I = [a, b]$ be a closed real interval and let $F : I^2 \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

1. F is idempotent, iff $F(x, x) = x$ holds for every $x \in I$.
2. F has a neutral element, iff there exists an $e \in X$ such that $F(e, x) = x$ and $F(x, e) = x$ for every $x \in I$.
3. F is associative, iff $F(F(x, y), z) = F(x, F(y, z))$ for every $x, y, z \in I$.
4. F is symmetric or commutative, iff $F(x, y) = F(y, x)$ if $\forall x, y \in I$.

Notation: If $F : I^2 \rightarrow I$ is associative, then we also say that the pair (I, F) is a (2-ary) semigroup.
Elementary properties of binary functions

Let $I = [a, b]$ be a closed real interval and let $F : I^2 \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. F is idempotent, iff $F(x, x) = x$ holds for every $x \in I$.
2. F has a neutral element, iff there exists an $e \in I$ such that $F(e, x) = x$ and $F(x, e) = x$ for every $x \in I$.
3. F is associative, iff $F(F(x, y), z) = F(x, F(y, z))$ for every $x, y, z \in I$.
4. F is symmetric or commutative, iff $F(x, y) = F(y, x)$ if $\forall x, y \in I$.

Notation: If $F : I^2 \rightarrow I$ is associative, then we also say that the pair (I, F) is a (2-ary) semigroup.
Let $I = [a, b]$ be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. F is *idempotent*, iff $F(x, x) = x$ holds for every $x \in I$.
Elementary properties of binary functions

Let $I = [a, b]$ be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. F is **idempotent**, iff $F(x, x) = x$ holds for every $x \in I$.
2. F has a **neutral element**, iff there exists an $e \in X$ such that $F(e, x) = x$ and $F(x, e) = x$ for every $x \in I$.
Elementary properties of binary functions

Let $I = [a, b]$ be a closed real interval and let $F : I^2 \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. F is *idempotent*, iff $F(x, x) = x$ holds for every $x \in I$.
2. F has a *neutral element*, iff there exists an $e \in X$ such that $F(e, x) = x$ and $F(x, e) = x$ for every $x \in I$.
3. F is *associative*, iff $F(F(x, y), z) = F(x, F(y, z))$ for every $x, y, z \in I$.
Elementary properties of binary functions

Let $I = [a, b]$ be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. F is **idempotent**, iff $F(x, x) = x$ holds for every $x \in I$.
2. F has a **neutral element**, iff there exists an $e \in X$ such that $F(e, x) = x$ and $F(x, e) = x$ for every $x \in I$.
3. F is **associative**, iff $F(F(x, y), z) = F(x, F(y, z))$ for every $x, y, z \in I$.
4. F is **symmetric or commutative**, iff $F(x, y) = F(y, x)$ if $\forall x, y \in I$.
Elementary properties of binary funtions

Let \(I = [a, b] \) be a closed real interval and let \(F : I^2 \to I \) be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. \(F \) is **idempotent**, iff \(F(x, x) = x \) holds for every \(x \in I \).
2. \(F \) has a neutral element, iff there exists an \(e \in X \) such that \(F(e, x) = x \) and \(F(x, e) = x \) for every \(x \in I \).
3. \(F \) is **associative**, iff \(F(F(x, y), z) = F(x, F(y, z)) \) for every \(x, y, z \in I \).
4. \(F \) is **symmetric or commutative**, iff \(F(x, y) = F(y, x) \) if \(\forall x, y \in I \).

Notation: If \(F : I^2 \to I \) is associative, then we also say that the pair \((I, F) \) is a (2-ary) semigroup.
Analytic:

1. F is monotone increasing
 1.1 in each variable iff $x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2)$ $(\forall x_i, y_i \in I, i = 1, 2)$
 1.2 in the first variable iff $x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y)$ $(\forall x_i, y \in I, i = 1, 2)$
 1.3 in the second variable.

2. F is monotone decreasing.

3. F is continuous.
Analytic:

1. F is monotone increasing
1. \(F \) is **monotone increasing**

1.1 in *each* variable iff

\[
x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2) \quad (\forall x_i, y_i \in I, i = 1, 2).
\]
Analytic:

1. F is *monotone increasing*

 1.1 in *each* variable iff

 $$x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2) \ (\forall x_i, y_i \in \mathbb{I}, i = 1, 2).$$

 1.2 in *the first* variable iff

 $$x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y) \ (\forall x_i, y \in \mathbb{I}, i = 1, 2).$$

2. F is monotone decreasing.
3. F is continuous.
Analytic:

1. \(F\) is **monotone increasing**

 1.1 in *each* variable iff \[
x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2) \quad (\forall x_i, y_i \in I, i = 1, 2).
\]

 1.2 in *the first* variable iff \[
x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y) \quad (\forall x_i, y \in I, i = 1, 2).
\]

 1.3 in the *second* variable.
Analytic:

1. F is **monotone increasing**
 1.1 in *each* variable iff
 \[x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2) \quad (\forall x_i, y_i \in I, i = 1, 2). \]

 1.2 in *the first* variable iff
 \[x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y) \quad (\forall x_i, y \in I, i = 1, 2). \]

 1.3 in the *second* variable.

2. F is monotone decreasing.
Analytic:

1. F is *monotone increasing*

 1.1 in *each* variable iff

 $$ x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2) \quad (\forall x_i, y_i \in I, i = 1, 2). $$

 1.2 in *the first* variable iff

 $$ x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y) \quad (\forall x_i, y \in I, i = 1, 2). $$

 1.3 in the *second* variable.

2. F is monotone decreasing.

3. F is continuous.
Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element.
Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element.

Main tool:

Theorem (Czogala, Drewniak, 1984)

Let $I = [a, b]$ be a closed real interval. If a function $F: I^2 \rightarrow I$ is associative, idempotent, monotone which has a neutral element $e \in I$, then there exists a monotone decreasing function $g: I \rightarrow I$, with $g(e) = e$, such that

$$F(x, y) = \begin{cases}
\min (x, y), & \text{if } y < g(x) \\
\max (x, y), & \text{if } y > g(x) \\
\min (x, y) \text{ or } \max (x, y), & \text{if } y = g(x)
\end{cases} \tag{1}$$

Lemma

If F is associative, idempotent and monotone (in each variable) then it is monotone increasing (in each variable).
Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element. Main tool:

Theorem (Czogala,Drewniak, 1984)

Let \(I = [a, b] \) be a closed real interval. If a function \(F : I^2 \rightarrow I \) is associative, idempotent, monotone which has a neutral element \(e \in I \),

\[
F(x, y) = \begin{cases}
\min(x, y), & \text{if } y < g(x) \\
\max(x, y), & \text{if } y > g(x) \\
\min(x, y) \text{ or } \max(x, y), & \text{if } y = g(x)
\end{cases}
\]
Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element. Main tool:

Theorem (Czogala,Drewniak, 1984)

Let $I = [a, b]$ be a closed real interval. If a function $F : I^2 \to I$ is associative, idempotent, monotone which has a neutral element $e \in I$, then there exits a monotone decreasing function $g : I \to I$, with $g(e) = e$, such that

\[
F(x, y) = \begin{cases}
\min(x, y), & \text{if } y < g(x) \\
\max(x, y), & \text{if } y > g(x) \\
\min(x, y) \text{ or } \max(x, y), & \text{if } y = g(x)
\end{cases}
\]
Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element.

Main tool:

Theorem (Czogala, Drewniak, 1984)

Let $I = [a, b]$ be a closed real interval. If a function $F : I^2 \to I$ is associative, idempotent, monotone which has a neutral element $e \in I$, then there exits a monotone decreasing function $g : I \to I$, with $g(e) = e$, such that

$$F(x, y) = \begin{cases}
\min(x, y), & \text{if } y < g(x) \\
\max(x, y), & \text{if } y > g(x) \\
\min(x, y) \text{ or } \max(x, y), & \text{if } y = g(x)
\end{cases} \quad (1)$$
Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element. Main tool:

Theorem (Czogala,Drewniak, 1984)

Let \(I = [a, b] \) be a closed real interval. If a function \(F : I^2 \rightarrow I \) is associative, idempotent, **monotone** which has a neutral element \(e \in I \), then there exits a monotone decreasing function \(g : I \rightarrow I \), with \(g(e) = e \), such that

\[
F(x, y) = \begin{cases}
\min(x, y), & \text{if } y < g(x) \\
\max(x, y), & \text{if } y > g(x) \\
\min(x, y) \text{ or } \max(x, y), & \text{if } y = g(x)
\end{cases}
\]

(1)

Lemma

If \(F \) *is associative, idempotent and monotone (in each variable) then it is monotone increasing (in each variable).*
The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

$x < y (x, y \in I) \Rightarrow x \geq g(y)$ or $y \leq g(x)$

$x < y (x, y \in I) \Rightarrow x \leq g(y)$ or $y \geq g(x)$ (2)

The set Γ_g denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g.

Lemma

If g satisfies (2) then

1. g is monotone decreasing.
2. The 'extended' graph $\Gamma_g = \{(x, y) : g(x^-) \geq y \geq g(x^+)\}$ is symmetric with respect to the line $x = y$.
The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:
The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

\[x < y \ (x, y \in I) \implies x \geq g(y) \text{ or } y \leq g(x) \]
\[
\begin{align*}
 x < y \ (x, y \in I) &\implies x \leq g(y) \text{ or } y \geq g(x) \\
\end{align*}
\]
The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

$$x < y \ (x, y \in I) \implies x \geq g(y) \text{ or } y \leq g(x)$$

$$x < y \ (x, y \in I) \implies x \leq g(y) \text{ or } y \geq g(x)$$

(2)

The set Γ_g denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g.
The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

$$
x < y \ (x, y \in I) \implies x \geq g(y) \text{ or } y \leq g(x)
$$

$$
x < y \ (x, y \in I) \implies x \leq g(y) \text{ or } y \geq g(x)
$$

The set Γ_g denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g.

Lemma

If g satisfies (2) then
The ’extended’ graph of \(g \)

Further analysis shows that \(g \) which arise in precious theorem also satisfies the following equations:

\[
\begin{align*}
 x < y \ (x, y \in I) &\implies x \geq g(y) \text{ or } y \leq g(x) \\
 x < y \ (x, y \in I) &\implies x \leq g(y) \text{ or } y \geq g(x)
\end{align*}
\]

(2)

The set \(\Gamma_g \) denotes the ’extended’ graph of \(g \) which is the graph of \(g \) with vertical line segments in the discontinuity points of \(g \).

Lemma

If \(g \) satisfies (2) then

1. \(g \) is monotone decreasing.
The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

\[
\begin{align*}
 x < y \ (x, y \in I) &\implies x \geq g(y) \text{ or } y \leq g(x) \\
 x < y \ (x, y \in I) &\implies x \leq g(y) \text{ or } y \geq g(x)
\end{align*}
\] (2)

The set Γ_g denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g.

Lemma

If g satisfies (2) then

1. g is monotone decreasing.
2. The 'extended' graph

\[
\Gamma_g = \{(x, y) : g(x - 0) \geq y \geq g(x + 0)\}
\]

is symmetric with respect to the line $x = y$.

Characterization of associative, idempotent, monotone increasing functions with neutral element

Theorem (Martín-Mayor-Torrens,'03; K-Marichal-Teheux,'16)

Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F : I^2 \rightarrow I$ is associative, monotone increasing, idempotent and has a neutral element $e \in X$
Characterization of associative, idempotent, monotone increasing functions with neutral element

Theorem (Martín-Mayor-Torrens,’03; K-Marichal-Teheux,’16)

Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F : I^2 \rightarrow I$ is associative, monotone increasing, idempotent and has a neutral element $e \in X$ if and only if there exists a decreasing function $g : X \rightarrow X$ with $g(e) = e$ such that extension of Γ_g is symmetric
Characterization of associative, idempotent, monotone increasing functions with neutral element

Theorem (Martín-Mayor-Torrens,'03; K-Marichal-Teheux,'16)

Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F : I^2 \rightarrow I$ is associative, monotone increasing, idempotent and has a neutral element $e \in X$ if and only if there exists a decreasing function $g : X \rightarrow X$ with $g(e) = e$ such that extension of Γ_g is symmetric and

$$F(x, y) = \begin{cases}
\min (x, y), & \text{if } y < g(x) \text{ or } y = g(x) \text{ and } x < g^2(x) \\
\max (x, y), & \text{if } y > g(x) \text{ or } y = g(x) \text{ and } x > g^2(x) \\
\min (x, y) \text{ or } \max (x, y), & \text{if } y = g(x) \text{ and } x = g^2(x)
\end{cases}$$

Moreover, in this case F must be commutative except perhaps on the set of points (x, y) such that $y = g(x)$ and $x = g(y)$.
Characterization of associative, idempotent, monotone increasing functions with neutral element

Theorem (Martín-Mayor-Torrens,'03; K-Marichal-Teheux,'16)

Let \(I \subseteq \mathbb{R} \) be a closed interval. The function \(F : I^2 \to I \) is associative, monotone increasing, idempotent and has a neutral element \(e \in X \) if and only if there exists a decreasing function \(g : X \to X \) with \(g(e) = e \) such that extension of \(\Gamma_g \) is symmetric and

\[
F(x, y) = \begin{cases}
\min (x, y), & \text{if } y < g(x) \text{ or } y = g(x) \text{ and } x < g^2(x) \\
\max (x, y), & \text{if } y > g(x) \text{ or } y = g(x) \text{ and } x > g^2(x) \\
\min (x, y) \text{ or } \max (x, y), & \text{if } y = g(x) \text{ and } x = g^2(x)
\end{cases}
\]

Moreover, in this case \(F \) must be commutative except perhaps on the set of points \((x, y)\) such that \(y = g(x) \) and \(x = g(y) \).
The n-ary semigroups are generalizations of semigroups.
\(n \)-ary semigroups and basic properties

The \(n \)-ary semigroups are generalizations of semigroups.

\(F_n : I^n \to I \) is \(n \)-associative if for every \(x_1, \ldots, x_{2n-1} \in I \) and for every \(1 \leq i \leq n-1 \) we have

\[
F_n(F_n(x_1, \ldots, x_n), x_{n+1}, \ldots, x_{2n-1}) = \\
= F_n(x_1, \ldots, x_i, F_n(x_{i+1}, \ldots, x_{i+n}), x_{i+n+1}, \ldots, x_{2n-1}).
\]
n-ary semigroups and basic properties

The \(n \)-ary semigroups are generalizations of semigroups.

- \(F_n : I^n \to I \) is \(n \)-associative if for every \(x_1, \ldots, x_{2n-1} \in I \) and for every \(1 \leq i \leq n - 1 \) we have

 \[
 F_n(F_n(x_1, \ldots, x_n), x_{n+1}, \ldots, x_{2n-1}) = \\
 = F_n(x_1, \ldots, x_i, F_n(x_{i+1}, \ldots, x_{i+n}), x_{i+n+1}, \ldots, x_{2n-1}).
 \]

- \(F_n \) is idempotent if \(F_n(a, \ldots, a) = a \) for all \(a \in I \).
The \(n \)-ary semigroups are generalizations of semigroups.

- \(F_n : I^n \rightarrow I \) is \(n \)-associative if for every \(x_1, \ldots, x_{2n-1} \in I \) and for every \(1 \leq i \leq n-1 \) we have

\[
F_n(F_n(x_1, \ldots, x_n), x_{n+1}, \ldots, x_{2n-1}) = \\
= F_n(x_1, \ldots, x_i, F_n(x_{i+1}, \ldots, x_{i+n}), x_{i+n+1}, \ldots, x_{2n-1}).
\]

- \(F_n \) is idempotent if \(F_n(a, \ldots, a) = a \) for all \(a \in I \).

- \(F_n \) has neutral element \(e \) if for every \(x \in I \) and \(1 \leq i \leq n \) we have \(F(e, \ldots, e, x, e, \ldots, e) = x \), where \(x \) is substituted into the \(i \)'th coordinate.
\textbf{\textit{n}-ary semigroups and basic properties}

The \textit{n}-ary semigroups are generalizations of semigroups.

\begin{itemize}
 \item $F_n : I^n \rightarrow I$ is \textit{n}-associative if for every $x_1, \ldots, x_{2n-1} \in I$ and for every $1 \leq i \leq n - 1$ we have
 \begin{equation}
 F_n(F_n(x_1, \ldots, x_n), x_{n+1}, \ldots, x_{2n-1}) = \\
 = F_n(x_1, \ldots, x_i, F_n(x_{i+1}, \ldots, x_{i+n}), x_{i+n+1}, \ldots, x_{2n-1}).
 \end{equation}

 \item F_n is \textit{idempotent} if $F_n(a, \ldots, a) = a$ for all $a \in I$.

 \item F_n has \textit{neutral element} e if for every $x \in I$ and $1 \leq i \leq n$ we have $F(e, \ldots, e, x, e, \ldots, e) = x$, where x is substituted into the i'th coordinate.
\end{itemize}

An important construction:
Let (X, F_2) be a binary semigroup and $F_n := F_2 \circ F_2 \circ \ldots \circ F_2$.\footnote{$n-1$ times}

Then F_n is \textit{n}-associative.
Theorem (Dudek-Mukhin, 2006)

If an n-associative F_n has a neutral element e, then F_n is derived from an associative function $F_2 : I^2 \to I$ where $F_2(a, b) = F_n(a, e, \ldots, e, b)$. (i.e: $F_n = F_2 \circ \cdots \circ F_2$.)
Theorem (Dudek-Mukhin, 2006)

If an n-associative F_n has a neutral element e, then F_n is derived from an associative function $F_2 : I^2 \rightarrow I$ where $F_2(a, b) = F_n(a, e, \ldots, e, b)$. (i.e: $F_n = F_2 \circ \cdots \circ F_2$.)

By the definition of F_2, the element e is also a neutral element of F_2.
Main lemmas

Lemma

Let F_n be n-associative, idempotent, monotone in at least two variables and derived from F_2. Then F_2 is also monotone.
Main lemmas

Lemma

Let F_n be n-associative, idempotent, monotone in at least two variables and derived from F_2. Then F_2 is also monotone.

Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone increasing, n-associative. Then F_2 is idempotent as well.
Main lemmas

Lemma
Let F_n be n-associative, idempotent, monotone in at least two variables and derived from F_2. Then F_2 is also monotone.

Lemma
Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone increasing, n-associative. Then F_2 is idempotent as well.

By a previous lemma, if F_2 is monotone, idempotent, associative, then F_2 is monotone increasing in each variable. Easily, F_n is also monotone increasing in each variable.
Generalization of Czogala-Drewniak theorem

We denote $\min(a_1, \ldots, a_n)$ and $\max(a_1, \ldots, a_n)$ by $\min(a_1, \ldots, n)$ and $\max(a_1, \ldots, n)$, respectively.
Generalization of Czogala-Drewniak theorem

We denote \(\min(a_1, \ldots, a_n) \) and \(\max(a_1, \ldots, a_n) \) by \(\min(a_1, \ldots, n) \) and \(\max(a_1, \ldots, n) \), respectively.

Theorem

Let \(I \subseteq \mathbb{R} \) be an interval. Let \(F_n : I^n \to I \) be idempotent, \(n \)-associative, monotone in at least two variable and has a neutral element.
Generalization of Czogala-Drewniak theorem

We denote $\min(a_1, \ldots, a_n)$ and $\max(a_1, \ldots, a_n)$ by $\min(a_1, \ldots, n)$ and $\max(a_1, \ldots, n)$, respectively.

Theorem

Let $I \subseteq \mathbb{R}$ be an interval. Let $F_n : I^n \rightarrow I$ be idempotent, n-associative, monotone in at least two variable and has a neutral element. Then there exists monotone decreasing function g such that Γ_g is symmetric and for every a_1, \ldots, a_n for which $g(a_i) \neq a_j$ ($\forall i \neq j$)
Generalization of Czogala-Drewniak theorem

We denote \(\min(a_1, \ldots, a_n)\) and \(\max(a_1, \ldots, a_n)\) by \(\min(a_1, \ldots, n)\) and \(\max(a_1, \ldots, n)\), respectively.

Theorem

Let \(I \subseteq \mathbb{R}\) be an interval. Let \(F_n : I^n \rightarrow I\) be idempotent, \(n\)-associative, monotone in at least two variable and has a neutral element. Then there exists monotone decreasing function \(g\) such that \(\Gamma_g\) is symmetric and for every \(a_1, \ldots, a_n\) for which \(g(a_i) \neq a_j\) (\(\forall i \neq j\))

\[
F_n(a_1, \ldots, a_n) = \begin{cases}
\min(a_1, \ldots, n), & \text{if } g(\max(a_1, \ldots, n)) > \min(a_1, \ldots, n) \\
\max(a_1, \ldots, n), & \text{if } g(\max(a_1, \ldots, n)) < \min(a_1, \ldots, n)
\end{cases}
\]
Characterization of idempotent, monotone increasing, n-ary semigroups with neutral elements
Characterization of idempotent, monotone increasing, n-ary semigroups with neutral elements

Theorem

Let I be as above. Let $F_n : I^n \rightarrow I$ be an idempotent n-ary semigroup, which is monotone increasing in each variable and has a neutral element iff

\[
\begin{align*}
\Gamma g &\text{ is symmetric and } \\
F_n(a_1, \ldots, a_n) &= \begin{cases} \\
\min(a_1, \ldots, a_n), & \text{if } g(\max(a_1, \ldots, a_n)) > \min(a_1, \ldots, a_n) \\
\max(a_1, \ldots, a_n), & \text{if } g(\max(a_1, \ldots, a_n)) < \min(a_1, \ldots, a_n) \\
\text{max or min}, & \text{if } g(\max(a_1, \ldots, a_n)) = \min(a_1, \ldots, a_n) \\
g(\min(a_1, \ldots, a_n)) &= \max(a_1, \ldots, a_n) \\
\end{cases}
\end{align*}
\]
Characterization of idempotent, monotone increasing, n-ary semigroups with neutral elements

Theorem

Let I be as above. Let $F_n : I^n \rightarrow I$ be an idempotent n-ary semigroup, which is monotone increasing in each variable and has a neutral element iff there exists monotone decreasing function g such that Γ_g is symmetric and

\[
F_n(a_1, \ldots, a_n) = \begin{cases}
\min(a_1, \ldots, a_n), & \text{if } g(\max(a_1, \ldots, a_n)) > \min(a_1, \ldots, a_n) \\
\max(a_1, \ldots, a_n), & \text{if } g(\max(a_1, \ldots, a_n)) < \min(a_1, \ldots, a_n) \\
\text{or } g(\min(a_1, \ldots, a_n)) > \max(a_1, \ldots, a_n), & \text{if } g(\max(a_1, \ldots, a_n)) = \min(a_1, \ldots, a_n) \\
\text{or } g(\min(a_1, \ldots, a_n)) < \max(a_1, \ldots, a_n). & \text{if } g(\min(a_1, \ldots, a_n)) = \max(a_1, \ldots, a_n)
\end{cases}
\]
Characterization of idempotent, monotone increasing, \(n \)-ary semigroups with neutral elements

Theorem

Let \(I \) be as above. Let \(F_n : I^n \rightarrow I \) be an idempotent \(n \)-ary semigroup, which is monotone increasing in each variable and has a neutral element iff there exists monotone decreasing function \(g \) such that \(\Gamma_g \) is symmetric and

\[
F_n(a_1, \ldots, a_n) = \begin{cases}
\min(a_1, \ldots, n), & \text{if } g(\max(a_1, \ldots, n)) > \min(a_1, \ldots, n) \\
& \text{or } g(\min(a_1, \ldots, n)) < \max(a_1, \ldots, n) \\
\max(a_1, \ldots, n), & \text{if } g(\max(a_1, \ldots, n)) < \min(a_1, \ldots, n) \\
& \text{or } g(\min(a_1, \ldots, n)) > \max(a_1, \ldots, n) \\
\max \text{ or } \min, & \text{if } g(\max(a_1, \ldots, n)) = \min(a_1, \ldots, n) \\
& \text{and } g(\min(a_1, \ldots, n)) = \max(a_1, \ldots, n)
\end{cases}
\]
Proof of Idempotency: Backward induction

Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone increasing, n-associative. Then F_2 is idempotent as well.
Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone increasing, n-associative. Then F_2 is idempotent as well.

Let $F_l = \underbrace{F_2 \circ \cdots \circ F_2}_{l-1}$ for every $2 \leq l \leq n$ and
Proof of Idempotency: Backward induction

Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone increasing, n-associative. Then F_2 is idempotent as well.

Let $F_l = F_2 \circ \cdots \circ F_2$ for every $2 \leq l \leq n$ and let $k \leq n$ be the smallest such that F_k is idempotent.
Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone increasing, n-associative. Then F_2 is idempotent as well.

Let $F_l = F_2 \circ \cdots \circ F_2$ for every $2 \leq l \leq n$ and let $k \leq n$ be the smallest such that F_k is idempotent. Assume that $F_{k-1}(a, \ldots, a) = b \neq a$.
Proof of Idempotency: Backward induction

Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone increasing, n-associative. Then F_2 is idempotent as well.

Let $F_l = F_2 \circ \cdots \circ F_2$ for every $2 \leq l \leq n$ and let $k \leq n$ be the smallest such that F_k is idempotent. Assume that $F_{k-1}(a, \ldots, a) = b \neq a$.

$$
\begin{align*}
F_k(a, \ldots, a, a, b) & \quad F_k(a, \ldots, a, b, b) & \quad \cdots & \quad F_k(a, b, \ldots, b, b) \\
F_k(a, \ldots, a, a, a) & \quad F_k(a, \ldots, a, b, a) & \quad \cdots & \quad F_k(a, b, \ldots, b, a)
\end{align*}
$$
Lemma
Let a and b be as above. Further let $x_1 = \ldots = x_l = a$ and $x_{l+1} = \ldots = x_k = b$. Then for every $\pi \in \text{Sym}(k)$ we have

$$F_k(x_1, \ldots, x_k) = F_k(x_{\pi(1)}, \ldots, x_{\pi(k)}).$$

Lemma
Let l and m be fixed and $l + m = k$. Then for any $1 \leq m \leq k - 2$

$$F_k(a, \ldots, a, b, \ldots, b) = F_l(a, \ldots, a),$$

and $F_k(a, b, \ldots, b) = a$.
Lemma
Let a and b be as above. Further let $x_1 = \ldots = x_l = a$ and $x_{l+1} = \ldots = x_k = b$. Then for every $\pi \in \text{Sym}(k)$ we have

$$F_k(x_1, \ldots, x_k) = F_k(x_{\pi(1)}, \ldots, x_{\pi(k)}).$$

Lemma
Let l and m be fixed and $l + m = k$. Then for any $1 \leq m \leq k - 2$

$$F_k(a, \ldots, a, b, \ldots, b) = F_l(a, \ldots, a),$$

and $F_k(a, b, \ldots, b) = a$.

\[
\begin{array}{c|c|c|c|c}
 b & F_{k-1}(a, \ldots, a) & F_{k-2}(a, \ldots, a) & \ldots & a \\
 a & b & F_{k-1}(a, \ldots, a) & \ldots & F_2(a, a)
\end{array}
\]
Thank you for your kind attention!