A characterization of associative idempotent nondecreasing functions with neutral elements

Gergely Kiss
Mathematics Research Unit, University of Luxembourg
Luxembourg, Luxembourg

Joint work with Miklós Laczkovich, Jean-Luc Marichal, Gábor Somlai, Bruno Teheux
$54^{\text {th }}$ International Symposium on Functional equation, Hajdúszoboszló, Hungary

12-19. June 2016.

Elementary properties of binary funtions

Let $I=[a, b]$ be a closed real interval and let $F: I^{2} \rightarrow I$ be a binary function (operation).

Elementary properties of binary funtions

Let $I=[a, b]$ be a closed real interval and let $F: I^{2} \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Elementary properties of binary funtions

Let $I=[a, b]$ be a closed real interval and let $F: I^{2} \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions. Algebraic:

Elementary properties of binary funtions

Let $I=[a, b]$ be a closed real interval and let $F: I^{2} \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.
Algebraic:

1. F is idempotent, iff $F(x, x)=x$ holds for every $x \in I$.

Elementary properties of binary funtions

Let $I=[a, b]$ be a closed real interval and let $F: I^{2} \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. F is idempotent, iff $F(x, x)=x$ holds for every $x \in I$.
2. F has a neutral element, iff there exists an $e \in X$ such that $F(e, x)=x$ and $F(x, e)=x$ for every $x \in I$.

Elementary properties of binary funtions

Let $I=[a, b]$ be a closed real interval and let $F: I^{2} \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. F is idempotent, iff $F(x, x)=x$ holds for every $x \in I$.
2. F has a neutral element, iff there exists an $e \in X$ such that $F(e, x)=x$ and $F(x, e)=x$ for every $x \in I$.
3. F is associative, iff $F(F(x, y), z)=F(x, F(y, z))$ for every $x, y, z \in I$.

Elementary properties of binary funtions

Let $I=[a, b]$ be a closed real interval and let $F: I^{2} \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. F is idempotent, iff $F(x, x)=x$ holds for every $x \in I$.
2. F has a neutral element, iff there exists an $e \in X$ such that $F(e, x)=x$ and $F(x, e)=x$ for every $x \in I$.
3. F is associative, iff $F(F(x, y), z)=F(x, F(y, z))$ for every $x, y, z \in I$.
4. F is symmetric or commutative, iff $F(x, y)=F(y, x)$ if $\forall x, y \in I$.

Elementary properties of binary funtions

Let $I=[a, b]$ be a closed real interval and let $F: I^{2} \rightarrow I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. F is idempotent, iff $F(x, x)=x$ holds for every $x \in I$.
2. F has a neutral element, iff there exists an $e \in X$ such that $F(e, x)=x$ and $F(x, e)=x$ for every $x \in I$.
3. F is associative, iff $F(F(x, y), z)=F(x, F(y, z))$ for every $x, y, z \in I$.
4. F is symmetric or commutative, iff $F(x, y)=F(y, x)$ if $\forall x, y \in I$.
Notation: If $F: I^{2} \rightarrow I$ is associative, then we also say that the pair (I, F) is a (2-ary) semigroup.

Analytic:

Analytic:

1. F is monotone increasing

Analytic:

1. F is monotone increasing
1.1 in each variable iff

$$
x_{1} \leq x_{2}, y_{1} \leq y_{2} \Rightarrow F\left(x_{1}, y_{1}\right) \leq F\left(x_{2}, y_{2}\right) \quad\left(\forall x_{i}, y_{i} \in I, i=1,2\right) .
$$

Analytic:

1. F is monotone increasing
1.1 in each variable iff

$$
x_{1} \leq x_{2}, y_{1} \leq y_{2} \Rightarrow F\left(x_{1}, y_{1}\right) \leq F\left(x_{2}, y_{2}\right) \quad\left(\forall x_{i}, y_{i} \in I, i=1,2\right) .
$$

1.2 in the first variable iff

$$
x_{1} \leq x_{2} \Rightarrow F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right) \quad\left(\forall x_{i}, y \in I, i=1,2\right)
$$

Analytic:

1. F is monotone increasing
1.1 in each variable iff

$$
x_{1} \leq x_{2}, y_{1} \leq y_{2} \Rightarrow F\left(x_{1}, y_{1}\right) \leq F\left(x_{2}, y_{2}\right) \quad\left(\forall x_{i}, y_{i} \in I, i=1,2\right) .
$$

1.2 in the first variable iff

$$
x_{1} \leq x_{2} \Rightarrow F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right) \quad\left(\forall x_{i}, y \in I, i=1,2\right) .
$$

1.3 in the second variable.

Analytic:

1. F is monotone increasing
1.1 in each variable iff

$$
x_{1} \leq x_{2}, y_{1} \leq y_{2} \Rightarrow F\left(x_{1}, y_{1}\right) \leq F\left(x_{2}, y_{2}\right) \quad\left(\forall x_{i}, y_{i} \in I, i=1,2\right) .
$$

1.2 in the first variable iff

$$
x_{1} \leq x_{2} \Rightarrow F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right) \quad\left(\forall x_{i}, y \in I, i=1,2\right) .
$$

1.3 in the second variable.
2. F is monotone decreasing.

Analytic:

1. F is monotone increasing
1.1 in each variable iff

$$
x_{1} \leq x_{2}, y_{1} \leq y_{2} \Rightarrow F\left(x_{1}, y_{1}\right) \leq F\left(x_{2}, y_{2}\right) \quad\left(\forall x_{i}, y_{i} \in I, i=1,2\right) .
$$

1.2 in the first variable iff

$$
x_{1} \leq x_{2} \Rightarrow F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right) \quad\left(\forall x_{i}, y \in I, i=1,2\right) .
$$

1.3 in the second variable.
2. F is monotone decreasing.
3. F is continuous.

Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element.

Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element. Main tool:

Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element. Main tool:

Theorem (Czogala,Drewniak, 1984)
Let $I=[a, b]$ be a closed real interval. If a function $F: I^{2} \rightarrow I$ is associative, idempotent, monotone which has a neutral element $e \in I$,

Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element. Main tool:

Theorem (Czogala,Drewniak, 1984)
Let $I=[a, b]$ be a closed real interval. If a function $F: I^{2} \rightarrow I$ is associative, idempotent, monotone which has a neutral element $e \in I$, then there exits a monotone decreasing function $g: I \rightarrow I$, with $g(e)=e$, such that

Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element. Main tool:

Theorem (Czogala,Drewniak, 1984)
Let $I=[a, b]$ be a closed real interval. If a function $F: I^{2} \rightarrow I$ is associative, idempotent, monotone which has a neutral element $e \in I$, then there exits a monotone decreasing function $g: I \rightarrow I$, with $g(e)=e$, such that

$$
F(x, y)=\left\{\begin{array}{cl}
\min (x, y), & \text { if } y<g(x) \tag{1}\\
\max (x, y), & \text { if } y>g(x) \\
\min (x, y) \text { or } \max (x, y), & \text { if } y=g(x)
\end{array}\right.
$$

Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing (in each variable), 2-ary semigroups which have neutral element. Main tool:

Theorem (Czogala,Drewniak, 1984)

Let $I=[a, b]$ be a closed real interval. If a function $F: I^{2} \rightarrow I$ is associative, idempotent, monotone which has a neutral element $e \in I$, then there exits a monotone decreasing function $g: I \rightarrow I$, with $g(e)=e$, such that

$$
F(x, y)=\left\{\begin{array}{cl}
\min (x, y), & \text { if } y<g(x) \tag{1}\\
\max (x, y), & \text { if } y>g(x) \\
\min (x, y) \text { or } \max (x, y), & \text { if } y=g(x)
\end{array}\right.
$$

Lemma

If F is associative, idempotent and monotone (in each variable) then it is monotone increasing (in each variable).

The 'extended' graph of g

The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

$$
\begin{align*}
& x<y \quad(x, y \in I) \Longrightarrow x \geq g(y) \text { or } y \leq g(x) \tag{2}\\
& x<y \quad(x, y \in I) \Longrightarrow x \leq g(y) \text { or } y \geq g(x)
\end{align*}
$$

The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

$$
\begin{align*}
& x<y \quad(x, y \in I) \Longrightarrow x \geq g(y) \text { or } y \leq g(x) \tag{2}\\
& x<y \quad(x, y \in I) \Longrightarrow x \leq g(y) \text { or } y \geq g(x)
\end{align*}
$$

The set Γ_{g} denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g.

The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

$$
\begin{align*}
& x<y \quad(x, y \in I) \Longrightarrow x \geq g(y) \text { or } y \leq g(x) \tag{2}\\
& x<y \quad(x, y \in I) \Longrightarrow x \leq g(y) \text { or } y \geq g(x)
\end{align*}
$$

The set Γ_{g} denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g.
Lemma
If g satisfies (2) then

The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

$$
\begin{align*}
& x<y \quad(x, y \in I) \Longrightarrow x \geq g(y) \text { or } y \leq g(x) \tag{2}\\
& x<y \quad(x, y \in I) \Longrightarrow x \leq g(y) \text { or } y \geq g(x)
\end{align*}
$$

The set Γ_{g} denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g.

Lemma

If g satisfies (2) then

1. g is monotone decreasing.

The 'extended' graph of g

Further analysis shows that g which arise in precious theorem also satisfies the following equations:

$$
\begin{align*}
& x<y \quad(x, y \in I) \Longrightarrow x \geq g(y) \text { or } y \leq g(x) \tag{2}\\
& x<y \quad(x, y \in I) \Longrightarrow x \leq g(y) \text { or } y \geq g(x)
\end{align*}
$$

The set Γ_{g} denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g.

Lemma

If g satisfies (2) then

1. g is monotone decreasing.
2. The 'extended' graph

$$
\Gamma_{g}=\{(x, y): g(x-0) \geq y \geq g(x+0)\}
$$

is symmetric with respect to the line $x=y$.

Characterization of associative, idempotent, monotone increasing functions with neutral element

Theorem (Martín-Mayor-Torrens,'03; K-Marichal-Teheux,' ${ }^{16 \text {) }}$ Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F: I^{2} \rightarrow I$ is associative, monotone increasing, idempotent and has a neutral element $e \in X$

Characterization of associative, idempotent, monotone increasing functions with neutral element

Theorem (Martín-Mayor-Torrens,'03; K-Marichal-Teheux,'16) Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F: I^{2} \rightarrow I$ is associative, monotone increasing, idempotent and has a neutral element $e \in X$ if and only if there exists a decreasing function $g: X \rightarrow X$ with $g(e)=e$ such that extension of Γ_{g} is symmetric

Characterization of associative, idempotent, monotone increasing functions with neutral element

Theorem (Martín-Mayor-Torrens,'03; K-Marichal-Teheux,' ${ }^{16 \text {) }}$ Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F: I^{2} \rightarrow I$ is associative, monotone increasing, idempotent and has a neutral element $e \in X$ if and only if there exists a decreasing function $g: X \rightarrow X$ with $g(e)=e$ such that extension of Γ_{g} is symmetric and
$F(x, y)= \begin{cases}\min (x, y), & \text { if } y<g(x) \text { or } y=g(x) \text { and } x<g^{2}(x) \\ \max (x, y), & \text { if } y>g(x) \text { or } y=g(x) \text { and } x>g^{2}(x) \\ \min (x, y) \text { or } \max (x, y), & \text { if } y=g(x) \text { and } x=g^{2}(x)\end{cases}$

Characterization of associative, idempotent, monotone

 increasing functions with neutral elementTheorem (Martín-Mayor-Torrens,'03; K-Marichal-Teheux,'16) Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F: I^{2} \rightarrow I$ is associative, monotone increasing, idempotent and has a neutral element $e \in X$ if and only if there exists a decreasing function $g: X \rightarrow X$ with $g(e)=e$ such that extension of Γ_{g} is symmetric and
$F(x, y)= \begin{cases}\min (x, y), & \text { if } y<g(x) \text { or } y=g(x) \text { and } x<g^{2}(x) \\ \max (x, y), & \text { if } y>g(x) \text { or } y=g(x) \text { and } x>g^{2}(x) \\ \min (x, y) \text { or } \max (x, y), & \text { if } y=g(x) \text { and } x=g^{2}(x)\end{cases}$
Moreover, in this case F must be commutative except perhaps on the set of points (x, y) such that $y=g(x)$ and $x=g(y)$.

n-ary semigroups and basic properties

The n-ary semigroups are generalizations of semigroups.

n-ary semigroups and basic properties

The n-ary semigroups are generalizations of semigroups.

- $F_{n}: I^{n} \rightarrow I$ is n-associative if for every $x_{1}, \ldots, x_{2 n-1} \in I$ and for every $1 \leq i \leq n-1$ we have

$$
\begin{align*}
& \quad F_{n}\left(F_{n}\left(x_{1}, \ldots, x_{n}\right), x_{n+1}, \ldots, x_{2 n-1}\right)= \tag{3}\\
& =F_{n}\left(x_{1}, \ldots, x_{i}, F_{n}\left(x_{i+1}, \ldots, x_{i+n}\right), x_{i+n+1}, \ldots, x_{2 n-1}\right) .
\end{align*}
$$

n-ary semigroups and basic properties

The n-ary semigroups are generalizations of semigroups.

- $F_{n}: I^{n} \rightarrow I$ is n-associative if for every $x_{1}, \ldots, x_{2 n-1} \in I$ and for every $1 \leq i \leq n-1$ we have

$$
\begin{align*}
& \quad F_{n}\left(F_{n}\left(x_{1}, \ldots, x_{n}\right), x_{n+1}, \ldots, x_{2 n-1}\right)= \tag{3}\\
& =F_{n}\left(x_{1}, \ldots, x_{i}, F_{n}\left(x_{i+1}, \ldots, x_{i+n}\right), x_{i+n+1}, \ldots, x_{2 n-1}\right) .
\end{align*}
$$

- F_{n} is idempotent if $F_{n}(a, \ldots, a)=a$ for all $a \in I$.

n-ary semigroups and basic properties

The n-ary semigroups are generalizations of semigroups.

- $F_{n}: I^{n} \rightarrow I$ is n-associative if for every $x_{1}, \ldots, x_{2 n-1} \in I$ and for every $1 \leq i \leq n-1$ we have

$$
\begin{align*}
& \quad F_{n}\left(F_{n}\left(x_{1}, \ldots, x_{n}\right), x_{n+1}, \ldots, x_{2 n-1}\right)= \tag{3}\\
& =F_{n}\left(x_{1}, \ldots, x_{i}, F_{n}\left(x_{i+1}, \ldots, x_{i+n}\right), x_{i+n+1}, \ldots, x_{2 n-1}\right) .
\end{align*}
$$

- F_{n} is idempotent if $F_{n}(a, \ldots, a)=a$ for all $a \in I$.
- F_{n} has neutral element e if for every $x \in I$ and $1 \leq i \leq n$ we have $F(e, \ldots, e, x, e, \ldots, e)=x$, where x is substituted into the i 'th coordinate.

n-ary semigroups and basic properties

The n-ary semigroups are generalizations of semigroups.

- $F_{n}: I^{n} \rightarrow I$ is n-associative if for every $x_{1}, \ldots, x_{2 n-1} \in I$ and for every $1 \leq i \leq n-1$ we have

$$
\begin{align*}
& \quad F_{n}\left(F_{n}\left(x_{1}, \ldots, x_{n}\right), x_{n+1}, \ldots, x_{2 n-1}\right)= \\
& =F_{n}\left(x_{1}, \ldots, x_{i}, F_{n}\left(x_{i+1}, \ldots, x_{i+n}\right), x_{i+n+1}, \ldots, x_{2 n-1}\right) . \tag{3}
\end{align*}
$$

- F_{n} is idempotent if $F_{n}(a, \ldots, a)=a$ for all $a \in I$.
- F_{n} has neutral element e if for every $x \in I$ and $1 \leq i \leq n$ we have $F(e, \ldots, e, x, e, \ldots, e)=x$, where x is substituted into the i 'th coordinate.
An important construction:
Let $\left(X, F_{2}\right)$ be a binary semigroup and $F_{n}:=\underbrace{F_{2} \circ F_{2} \circ \ldots \circ F_{2}}_{n-1}$,
Then F_{n} is n-associative.

Dudek-Mukhin's results

Theorem (Dudek-Mukhin, 2006)
If an n-associative F_{n} has a neutral element e, then F_{n} is derived from an associative function $F_{2}: I^{2} \rightarrow I$ where
$F_{2}(a, b)=F_{n}(a, e, \ldots, e, b)$. (i.e: $F_{n}=\underbrace{F_{2} \circ \cdots \circ F_{2}}_{n-1}$.)

Dudek-Mukhin's results

Theorem (Dudek-Mukhin, 2006)
If an n-associative F_{n} has a neutral element e, then F_{n} is derived from an associative function $F_{2}: I^{2} \rightarrow I$ where
$F_{2}(a, b)=F_{n}(a, e, \ldots, e, b)$. (i.e: $F_{n}=\underbrace{F_{2} \circ \cdots \circ F_{2}}_{n-1}$.)
By the definition of F_{2}, the element e is also a neutral element of F_{2}.

Main lemmas

Lemma
Let F_{n} be n-associative, idempotent, monotone in at least two variables and derived from F_{2}. Then F_{2} is also monotone.

Main lemmas

Lemma

Let F_{n} be n-associative, idempotent, monotone in at least two variables and derived from F_{2}. Then F_{2} is also monotone.

Lemma
Let $F_{n}=F_{2} \circ \cdots \circ F_{2}$ be idempotent and monotone increasing, n-associative. Then F_{2} is idempotent as well.

Main lemmas

Lemma

Let F_{n} be n-associative, idempotent, monotone in at least two variables and derived from F_{2}. Then F_{2} is also monotone.

Lemma
Let $F_{n}=F_{2} \circ \cdots \circ F_{2}$ be idempotent and monotone increasing, n-associative. Then F_{2} is idempotent as well.
By a previous lemma, if F_{2} is monotone, idempotent, associative, then F_{2} is monotone increasing in each variable. Easily, F_{n} is also monotone increasing in each variable.

Generalization of Czogala-Drewniak theorem

We denote $\min \left(a_{1}, \ldots, a_{n}\right)$ and $\max \left(a_{1}, \ldots, a_{n}\right)$ by $\min \left(a_{1, \ldots, n}\right)$ and $\max \left(a_{1, \ldots, n}\right)$, respectively.

Generalization of Czogala-Drewniak theorem

We denote $\min \left(a_{1}, \ldots, a_{n}\right)$ and $\max \left(a_{1}, \ldots, a_{n}\right)$ by $\min \left(a_{1, \ldots, n}\right)$ and $\max \left(a_{1, \ldots, n}\right)$, respectively.
Theorem
Let $I \subseteq \mathbb{R}$ be an interval. Let $F_{n}: I^{n} \rightarrow I$ be idempotent, n-associative, monotone in at least two variable and has a neutral element.

Generalization of Czogala-Drewniak theorem

We denote $\min \left(a_{1}, \ldots, a_{n}\right)$ and $\max \left(a_{1}, \ldots, a_{n}\right)$ by $\min \left(a_{1, \ldots, n}\right)$ and $\max \left(a_{1, \ldots, n}\right)$, respectively.
Theorem
Let $I \subseteq \mathbb{R}$ be an interval. Let $F_{n}: I^{n} \rightarrow I$ be idempotent, n-associative, monotone in at least two variable and has a neutral element. Then there exists monotone decreasing function g such that Γ_{g} is symmetric and for every a_{1}, \ldots, a_{n} for which $g\left(a_{i}\right) \neq a_{j}$ $(\forall i \neq j)$

Generalization of Czogala-Drewniak theorem

We denote $\min \left(a_{1}, \ldots, a_{n}\right)$ and $\max \left(a_{1}, \ldots, a_{n}\right)$ by $\min \left(a_{1, \ldots, n}\right)$ and $\max \left(a_{1, \ldots, n}\right)$, respectively.
Theorem
Let $I \subseteq \mathbb{R}$ be an interval. Let $F_{n}: I^{n} \rightarrow I$ be idempotent, n-associative, monotone in at least two variable and has a neutral element. Then there exists monotone decreasing function g such that Γ_{g} is symmetric and for every a_{1}, \ldots, a_{n} for which $g\left(a_{i}\right) \neq a_{j}$ $(\forall i \neq j)$

$$
F_{n}\left(a_{1},, \ldots, a_{n}\right)= \begin{cases}\min \left(a_{1, \ldots, n}\right), & \text { if } g\left(\max \left(a_{1, \ldots, n}\right)\right)>\min \left(a_{1, \ldots, n}\right) \\ \max \left(a_{1, \ldots, n}\right), & \text { if } g\left(\max \left(a_{1, \ldots, n}\right)\right)<\min \left(a_{1, \ldots, n}\right)\end{cases}
$$

Characterization of idempotent, monotone increasing, n-ary semigroups with neutral elements

Characterization of idempotent, monotone increasing, n-ary semigroups with neutral elements

Theorem
Let I be as above. Let $F_{n}: I^{n} \rightarrow I$ be an idempotent n-ary semigroup, which is monotone increasing in each variable and has a neutral element iff

Characterization of idempotent, monotone increasing,

 n-ary semigroups with neutral elementsTheorem
Let I be as above. Let $F_{n}: I^{n} \rightarrow I$ be an idempotent n-ary semigroup, which is monotone increasing in each variable and has a neutral element iff there exists monotone decreasing function g such that Γ_{g} is symmetric and

Characterization of idempotent, monotone increasing,

 n-ary semigroups with neutral elementsTheorem
Let I be as above. Let $F_{n}: I^{n} \rightarrow I$ be an idempotent n-ary semigroup, which is monotone increasing in each variable and has a neutral element iff there exists monotone decreasing function g such that Γ_{g} is symmetric and
$F_{n}\left(a_{1},, \ldots, a_{n}\right)=\left\{\begin{array}{ll}\min \left(a_{1, \ldots, n}\right), & \text { if } g\left(\max \left(a_{1}, \ldots, n\right)\right)>\min \left(a_{1}, \ldots, n\right) \\ \text { or } g\left(\min \left(a_{1}, \ldots, n\right)\right)<\max \left(a_{1}, \ldots, n\right)\end{array}\right)$

Proof of Idempotency: Backward induction

Lemma
Let $F_{n}=F_{2} \circ \cdots \circ F_{2}$ be idempotent and monotone increasing, n-associative. Then F_{2} is idempotent as well.

Proof of Idempotency: Backward induction

Lemma
Let $F_{n}=F_{2} \circ \cdots \circ F_{2}$ be idempotent and monotone increasing, n-associative. Then F_{2} is idempotent as well.
Let $F_{I}=\underbrace{F_{2} \circ \cdots \circ F_{2}}_{l-1}$ for every $2 \leq I \leq n$ and

Proof of Idempotency: Backward induction

Lemma

Let $F_{n}=F_{2} \circ \cdots \circ F_{2}$ be idempotent and monotone increasing, n-associative. Then F_{2} is idempotent as well.
Let $F_{I}=\underbrace{F_{2} \circ \cdots \circ F_{2}}_{l-1}$ for every $2 \leq I \leq n$ and let $k \leq n$ be the
smallest such that F_{k} is idempotent.

Proof of Idempotency: Backward induction

Lemma

Let $F_{n}=F_{2} \circ \cdots \circ F_{2}$ be idempotent and monotone increasing, n-associative. Then F_{2} is idempotent as well.
Let $F_{I}=\underbrace{F_{2} \circ \cdots \circ F_{2}}_{l-1}$ for every $2 \leq I \leq n$ and let $k \leq n$ be the
smallest such that F_{k} is idempotent. Assume that $F_{k-1}(a, \ldots, a)=b \neq a$.

Proof of Idempotency: Backward induction

Lemma

Let $F_{n}=F_{2} \circ \cdots \circ F_{2}$ be idempotent and monotone increasing, n-associative. Then F_{2} is idempotent as well.
Let $F_{I}=\underbrace{F_{2} \circ \cdots \circ F_{2}}_{l-1}$ for every $2 \leq I \leq n$ and let $k \leq n$ be the
smallest such that F_{k} is idempotent. Assume that $F_{k-1}(a, \ldots, a)=b \neq a$.

$$
\begin{array}{c|c|c|c}
F_{k}(a, \ldots, a, a, b) & F_{k}(a, \ldots, a, b, b) & \ldots & F_{k}(a, b, \ldots, b, b) \\
F_{k}(a, \ldots, a, a, a) & F_{k}(a, \ldots, a, b, a) & \ldots & F_{k}(a, b, \ldots, b, a)
\end{array}
$$

Lemma

Let a and b be as above. Further let $x_{1}=\ldots=x_{l}=a$ and $x_{I+1}=\ldots=x_{k}=b$. Then for every $\pi \in \operatorname{Sym}(k)$ we have

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)=F_{k}\left(x_{\pi(1)}, \ldots, x_{\pi(k)}\right)
$$

Lemma

Let I and m be fixed and $I+m=k$. Then for any $1 \leq m \leq k-2$

$$
F_{k}(\underbrace{a, \ldots, a}_{l}, \underbrace{b, \ldots, b}_{m})=F_{l}(\underbrace{a, \ldots, a}_{l}),
$$

and $F_{k}(a, \underbrace{b, \ldots, b}_{k-1})=a$.

Lemma

Let a and b be as above. Further let $x_{1}=\ldots=x_{l}=a$ and $x_{I+1}=\ldots=x_{k}=b$. Then for every $\pi \in \operatorname{Sym}(k)$ we have

$$
F_{k}\left(x_{1}, \ldots, x_{k}\right)=F_{k}\left(x_{\pi(1)}, \ldots, x_{\pi(k)}\right)
$$

Lemma

Let I and m be fixed and $I+m=k$. Then for any $1 \leq m \leq k-2$

$$
F_{k}(\underbrace{a, \ldots, a}_{1}, \underbrace{b, \ldots, b}_{m})=F_{l}(\underbrace{a, \ldots, a}_{1}),
$$

and $F_{k}(a, \underbrace{b, \ldots, b}_{k-1})=a$.

$$
\begin{array}{l|l|l|l}
b=F_{k-1}(a, \ldots, a) & F_{k-2}(a, \ldots, a) & \ldots & a \\
a & b=F_{k-1}(a, \ldots, a) & \ldots & F_{2}(a, a)
\end{array}
$$

Thank you for your kind attention!

