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Elementary properties of binary funtions

Let I = [a, b] be a closed real interval and let F : I 2 → I be a
binary function (operation).

We may define natural algebraic and
analytic assumptions.
Algebraic:

1. F is idempotent, iff F (x , x) = x holds for every x ∈ I .

2. F has a neutral element, iff there exists an e ∈ X such that
F (e, x) = x and F (x , e) = x for every x ∈ I .

3. F is associative, iff F (F (x , y), z) = F (x ,F (y , z)) for every
x , y , z ∈ I .

4. F is symmetric or commutative, iff F (x , y) = F (y , x) if
∀x , y ∈ I .

Notation: If F : I 2 → I is associative, then we also say that the
pair (I ,F ) is a (2-ary) semigroup.
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Analytic:

1. F is monotone increasing

1.1 in each variable iff

x1 ≤ x2, y1 ≤ y2 ⇒ F (x1, y1) ≤ F (x2, y2) (∀xi , yi ∈ I , i = 1, 2).

1.2 in the first variable iff

x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y) (∀xi , y ∈ I , i = 1, 2).

1.3 in the second variable.

2. F is monotone decreasing.

3. F is continuous.
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Czogala-Drewniak Theorem
Our first aim is to characterize idempotent, monotone increasing
(in each variable), 2-ary semigroups which have neutral element.

Main tool:

Theorem (Czogala,Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function F : I 2 → I is
associative, idempotent, monotone which has a neutral element
e ∈ I , then there exits a monotone decreasing function g : I → I ,
with g(e) = e, such that

F (x , y) =


min (x , y), if y < g(x)

max (x , y), if y > g(x)
min (x , y) or max (x , y), if y = g(x)

(1)

Lemma
If F is associative, idempotent and monotone (in each variable)
then it is monotone increasing (in each variable).



Czogala-Drewniak Theorem
Our first aim is to characterize idempotent, monotone increasing
(in each variable), 2-ary semigroups which have neutral element.
Main tool:

Theorem (Czogala,Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function F : I 2 → I is
associative, idempotent, monotone which has a neutral element
e ∈ I , then there exits a monotone decreasing function g : I → I ,
with g(e) = e, such that

F (x , y) =


min (x , y), if y < g(x)

max (x , y), if y > g(x)
min (x , y) or max (x , y), if y = g(x)

(1)

Lemma
If F is associative, idempotent and monotone (in each variable)
then it is monotone increasing (in each variable).



Czogala-Drewniak Theorem
Our first aim is to characterize idempotent, monotone increasing
(in each variable), 2-ary semigroups which have neutral element.
Main tool:

Theorem (Czogala,Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function F : I 2 → I is
associative, idempotent, monotone which has a neutral element
e ∈ I ,

then there exits a monotone decreasing function g : I → I ,
with g(e) = e, such that

F (x , y) =


min (x , y), if y < g(x)

max (x , y), if y > g(x)
min (x , y) or max (x , y), if y = g(x)

(1)

Lemma
If F is associative, idempotent and monotone (in each variable)
then it is monotone increasing (in each variable).



Czogala-Drewniak Theorem
Our first aim is to characterize idempotent, monotone increasing
(in each variable), 2-ary semigroups which have neutral element.
Main tool:

Theorem (Czogala,Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function F : I 2 → I is
associative, idempotent, monotone which has a neutral element
e ∈ I , then there exits a monotone decreasing function g : I → I ,
with g(e) = e, such that

F (x , y) =


min (x , y), if y < g(x)

max (x , y), if y > g(x)
min (x , y) or max (x , y), if y = g(x)

(1)

Lemma
If F is associative, idempotent and monotone (in each variable)
then it is monotone increasing (in each variable).



Czogala-Drewniak Theorem
Our first aim is to characterize idempotent, monotone increasing
(in each variable), 2-ary semigroups which have neutral element.
Main tool:

Theorem (Czogala,Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function F : I 2 → I is
associative, idempotent, monotone which has a neutral element
e ∈ I , then there exits a monotone decreasing function g : I → I ,
with g(e) = e, such that

F (x , y) =


min (x , y), if y < g(x)

max (x , y), if y > g(x)
min (x , y) or max (x , y), if y = g(x)

(1)

Lemma
If F is associative, idempotent and monotone (in each variable)
then it is monotone increasing (in each variable).



Czogala-Drewniak Theorem
Our first aim is to characterize idempotent, monotone increasing
(in each variable), 2-ary semigroups which have neutral element.
Main tool:

Theorem (Czogala,Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function F : I 2 → I is
associative, idempotent, monotone which has a neutral element
e ∈ I , then there exits a monotone decreasing function g : I → I ,
with g(e) = e, such that

F (x , y) =


min (x , y), if y < g(x)

max (x , y), if y > g(x)
min (x , y) or max (x , y), if y = g(x)

(1)

Lemma
If F is associative, idempotent and monotone (in each variable)
then it is monotone increasing (in each variable).



The ’extended’ graph of g

Further analysis shows that g which arise in precious theorem also
satisfies the following equations:

x < y (x , y ∈ I ) =⇒ x ≥ g(y) or y ≤ g(x)

x < y (x , y ∈ I ) =⇒ x ≤ g(y) or y ≥ g(x)
(2)

The set Γg denotes the ’extended’ graph of g which is the graph of
g with vertical line segments in the discontinuity points of g .

Lemma
If g satisfies (2) then

1. g is monotone decreasing.

2. The ’extended’ graph

Γg = {(x , y) : g(x − 0) ≥ y ≥ g(x + 0)}

is symmetric with respect to the line x = y .
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Characterization of associative, idempotent, monotone
increasing functions with neutral element

Theorem (Mart́ın-Mayor-Torrens,’03; K-Marichal-Teheux,’16)

Let I ⊆ R be a closed interval. The function F : I 2 → I is
associative, monotone increasing, idempotent and has a neutral
element e ∈ X

if and only if there exists a decreasing function
g : X → X with g(e) = e such that extension of Γg is symmetric
and

F (x , y) =


min (x , y), if y < g(x) or y = g(x) and x < g2(x)
max (x , y), if y > g(x) or y = g(x) and x > g2(x)
min (x , y) or max (x , y), if y = g(x) and x = g2(x)

Moreover, in this case F must be commutative except perhaps on
the set of points (x , y) such that y = g(x) and x = g(y).
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n-ary semigroups and basic properties

The n-ary semigroups are generalizations of semigroups.

I Fn : I n → I is n-associative if for every x1, . . . , x2n−1 ∈ I and
for every 1 ≤ i ≤ n − 1 we have

Fn(Fn(x1, . . . , xn), xn+1, . . . , x2n−1) =

= Fn(x1, . . . , xi ,Fn(xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1).
(3)

I Fn is idempotent if Fn(a, . . . , a) = a for all a ∈ I .

I Fn has neutral element e if for every x ∈ I and 1 ≤ i ≤ n we
have F (e, . . . , e, x , e, . . . , e) = x , where x is substituted into
the i ’th coordinate.

An important construction:
Let (X ,F2) be a binary semigroup and Fn := F2 ◦ F2 ◦ . . . ◦ F2︸ ︷︷ ︸

n−1

.

Then Fn is n-associative.
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have F (e, . . . , e, x , e, . . . , e) = x , where x is substituted into
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n−1

.

Then Fn is n-associative.
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Dudek-Mukhin’s results

Theorem (Dudek-Mukhin, 2006)

If an n-associative Fn has a neutral element e, then Fn is derived
from an associative function F2 : I 2 → I where
F2(a, b) = Fn(a, e, . . . , e, b). (i.e: Fn = F2 ◦ · · · ◦ F2︸ ︷︷ ︸

n−1

.)

By the definition of F2, the element e is also a neutral element of
F2.
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Main lemmas

Lemma
Let Fn be n-associative, idempotent, monotone in at least two
variables and derived from F2. Then F2 is also monotone.

Lemma
Let Fn = F2 ◦ · · · ◦ F2 be idempotent and monotone increasing,
n-associative. Then F2 is idempotent as well.

By a previous lemma, if F2 is monotone, idempotent, associative,
then F2 is monotone increasing in each variable. Easily, Fn is also
monotone increasing in each variable.
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Generalization of Czogala-Drewniak theorem

We denote min (a1, . . . , an) and max (a1, . . . , an) by min(a1,...,n)
and max(a1,...,n), respectively.

Theorem
Let I ⊆ R be an interval. Let Fn : I n → I be idempotent,
n-associative, monotone in at least two variable and has a neutral
element. Then there exists monotone decreasing function g such
that Γg is symmetric and for every a1, . . . , an for which g(ai ) 6= aj
(∀i 6= j)

Fn(a1, , . . . , an) =

{
min(a1,...,n), if g(max(a1,...,n)) > min(a1,...,n)
max(a1,...,n), if g(max(a1,...,n)) < min(a1,...,n)
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Characterization of idempotent, monotone increasing,
n-ary semigroups with neutral elements

Theorem
Let I be as above. Let Fn : I n → I be an idempotent n-ary
semigroup, which is monotone increasing in each variable and has
a neutral element iff there exists monotone decreasing function g
such that Γg is symmetric and
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min(a1,...,n), if g(max(a1,...,n)) > min(a1,...,n)
or g(min(a1,...,n)) < max(a1,...,n)

max(a1,...,n), if g(max(a1,...,n)) < min(a1,...,n)
or g(min(a1,...,n)) > max(a1,...,n)

max or min, if g(max(a1,...,n)) = min(a1,...,n)
and g(min(a1,...,n)) = max(a1,...,n)
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Proof of Idempotency: Backward induction

Lemma
Let Fn = F2 ◦ · · · ◦ F2 be idempotent and monotone increasing,
n-associative. Then F2 is idempotent as well.

Let Fl = F2 ◦ · · · ◦ F2︸ ︷︷ ︸
l−1

for every 2 ≤ l ≤ n and let k ≤ n be the

smallest such that Fk is idempotent. Assume that
Fk−1(a, . . . , a) = b 6= a.

Fk(a, . . . , a, a, b) Fk(a, . . . , a, b, b) . . . Fk(a, b, . . . , b, b)

Fk(a, . . . , a, a, a) Fk(a, . . . , a, b, a) . . . Fk(a, b, . . . , b, a)



Proof of Idempotency: Backward induction

Lemma
Let Fn = F2 ◦ · · · ◦ F2 be idempotent and monotone increasing,
n-associative. Then F2 is idempotent as well.

Let Fl = F2 ◦ · · · ◦ F2︸ ︷︷ ︸
l−1

for every 2 ≤ l ≤ n and

let k ≤ n be the

smallest such that Fk is idempotent. Assume that
Fk−1(a, . . . , a) = b 6= a.

Fk(a, . . . , a, a, b) Fk(a, . . . , a, b, b) . . . Fk(a, b, . . . , b, b)

Fk(a, . . . , a, a, a) Fk(a, . . . , a, b, a) . . . Fk(a, b, . . . , b, a)



Proof of Idempotency: Backward induction

Lemma
Let Fn = F2 ◦ · · · ◦ F2 be idempotent and monotone increasing,
n-associative. Then F2 is idempotent as well.

Let Fl = F2 ◦ · · · ◦ F2︸ ︷︷ ︸
l−1

for every 2 ≤ l ≤ n and let k ≤ n be the

smallest such that Fk is idempotent.

Assume that
Fk−1(a, . . . , a) = b 6= a.

Fk(a, . . . , a, a, b) Fk(a, . . . , a, b, b) . . . Fk(a, b, . . . , b, b)

Fk(a, . . . , a, a, a) Fk(a, . . . , a, b, a) . . . Fk(a, b, . . . , b, a)



Proof of Idempotency: Backward induction

Lemma
Let Fn = F2 ◦ · · · ◦ F2 be idempotent and monotone increasing,
n-associative. Then F2 is idempotent as well.

Let Fl = F2 ◦ · · · ◦ F2︸ ︷︷ ︸
l−1

for every 2 ≤ l ≤ n and let k ≤ n be the

smallest such that Fk is idempotent. Assume that
Fk−1(a, . . . , a) = b 6= a.

Fk(a, . . . , a, a, b) Fk(a, . . . , a, b, b) . . . Fk(a, b, . . . , b, b)

Fk(a, . . . , a, a, a) Fk(a, . . . , a, b, a) . . . Fk(a, b, . . . , b, a)



Proof of Idempotency: Backward induction

Lemma
Let Fn = F2 ◦ · · · ◦ F2 be idempotent and monotone increasing,
n-associative. Then F2 is idempotent as well.

Let Fl = F2 ◦ · · · ◦ F2︸ ︷︷ ︸
l−1

for every 2 ≤ l ≤ n and let k ≤ n be the

smallest such that Fk is idempotent. Assume that
Fk−1(a, . . . , a) = b 6= a.

Fk(a, . . . , a, a, b) Fk(a, . . . , a, b, b) . . . Fk(a, b, . . . , b, b)

Fk(a, . . . , a, a, a) Fk(a, . . . , a, b, a) . . . Fk(a, b, . . . , b, a)



Lemma
Let a and b be as above. Further let x1 = . . . = xl = a and
xl+1 = . . . = xk = b. Then for every π ∈ Sym(k) we have

Fk(x1, . . . , xk) = Fk(xπ(1), . . . , xπ(k)).

Lemma
Let l and m be fixed and l + m = k . Then for any 1 ≤ m ≤ k − 2

Fk(a, . . . , a︸ ︷︷ ︸
l

, b, . . . , b︸ ︷︷ ︸
m

) = Fl(a, . . . , a︸ ︷︷ ︸
l

),

and Fk(a, b, . . . , b︸ ︷︷ ︸
k−1

) = a.

b = Fk−1(a, . . . , a) Fk−2(a, . . . , a) . . . a

a b = Fk−1(a, . . . , a) . . . F2(a, a)
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Thank you for your kind attention!


