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Elementary properties of binary funtions

Let / = [a, b] be a closed real interval and let F : /> — /| be a
binary function (operation). We may define natural algebraic and
analytic assumptions.
Algebraic:
1. F is idempotent, iff F(x,x) = x holds for every x € /.
2. F has a neutral element, iff there exists an e € X such that
F(e,x) = x and F(x,e) = x for every x € /.
3. F is associative, iff F(F(x,y),z) = F(x, F(y,z)) for every
x,y,z €l
4. F is symmetric or commutative, iff F(x,y) = F(y, x) if
Vx,y €.
Notation: If F : 12 — | is associative, then we also say that the
pair (I, F) is a (2-ary) semigroup.
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1. F is monotone increasing
1.1 in each variable iff

x1 <x0,0n <yp= F(xi,n) < Flo,ym) (Yx,yieli=1,2).

1.2 in the first variable iff

x1 <xp = F(x,y) < F(x,y) (Vxi,y €1,i=1,2).

1.3 in the second variable.
2. F is monotone decreasing.

3. F is continuous.
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Czogala-Drewniak Theorem

Our first aim is to characterize idempotent, monotone increasing
(in each variable), 2-ary semigroups which have neutral element.
Main tool:

Theorem (Czogala,Drewniak, 1984)

Let | = [a, b] be a closed real interval. If a function F : 1> — | is
associative, idempotent, monotone which has a neutral element
e € I, then there exits a monotone decreasing function g : | — |,
with g(e) = e, such that

min (x,y), if y < g(x)
F(x,y) = max (x, ), ify>g(x) (1)
min (x,y) or max(x,y), ify = g(x)

Lemma
If F is associative, idempotent and monotone (in each variable)
then it is monotone increasing (in each variable).
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The 'extended’ graph of g

Further analysis shows that g which arise in precious theorem also
satisfies the following equations:

x<y (x,yel)=x>g(y)ory < g(x)
x<y (x,yel)=x<g(y)ory>g(x)

()

The set [, denotes the 'extended’ graph of g which is the graph of
g with vertical line segments in the discontinuity points of g.

Lemma
If g satisfies (2) then

1. g is monotone decreasing.

2. The ‘extended’ graph

Mg ={(x,y)  g(x—0) >y >g(x+0)}

is symmetric with respect to the line x = y.
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Characterization of associative, idempotent, monotone
increasing functions with neutral element

Theorem (Martin-Mayor-Torrens,'03; K-Marichal-Teheux,'16)

Let | C R be a closed interval. The function F : 12 — | is
associative, monotone increasing, idempotent and has a neutral
element e € X if and only if there exists a decreasing function

g : X — X with g(e) = e such that extension of [y is symmetric
and

min(x,y), ify <g(x) ory = g(x) and x < g?(x)
F(x,y) =< max(x,y), ify>g(x)ory=g(x) and x > g?(x)
min (x, y) or max(x,y), ify = g(x) and x = g?(x)

Moreover, in this case F must be commutative except perhaps on
the set of points (x,y) such that y = g(x) and x = g(y).
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n-ary semigroups and basic properties

The n-ary semigroups are generalizations of semigroups.

» F,: 1" — | is n-associative if for every xi,...,x0,-1 € | and
for every 1 < i < n—1 we have

Fn(Fn(Xl, . ,Xn),Xn+1, e 7XQn_l) =
B (3)
= Fa(x1, s Xy Fa(Xig1, - -+ Xitn)s Xitngds - - X2n—1)-
» F,is idempotent if Fy(a,...,a) =aforall ac .

» F, has neutral element e if for every x €  and 1 < i < n we
have F(e,...,e,x,e,...,e) = x, where x is substituted into
the i"th coordinate.

An important construction:
Let (X, F2) be a binary semigroup and F, .= Foo Fpo...0 F.

n—1
Then F, is n-associative.
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If an n-associative F,, has a neutral element e, then F, is derived
from an associative function Fy : 12 — | where
Fa(a,b) = Fp(a,e,...,e,b). (ie: Fp=Fro---0F,.)

n—1
By the definition of F;, the element e is also a neutral element of
F>.
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Main lemmas

Lemma
Let F,, be n-associative, idempotent, monotone in at least two
variables and derived from F>. Then F> is also monotone.

Lemma
Let F, = Fyo---0o Fy be idempotent and monotone increasing,
n-associative. Then F, is idempotent as well.

By a previous lemma, if F, is monotone, idempotent, associative,
then F; is monotone increasing in each variable. Easily, F, is also
monotone increasing in each variable.
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We denote min (ay,...,an) and max(ai, ..., an) by min(ai,.. n)
and max(aj,.. n), respectively.

Theorem

Let | C R be an interval. Let F, : I" — | be idempotent,
n-associative, monotone in at least two variable and has a neutral
element. Then there exists monotone decreasing function g such

that [y is symmetric and for every ay, ..., an for which g(a;) # a;
(Vi #J)
min(ai,..n), if g(max(ai, . n)) > min(a1,. n)
Fn(al,,...,an)z e X Y . [AES)
max(ai,.. n), if g(max(ai, . n)) < min(ai, . n)
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Characterization of idempotent, monotone increasing,
n-ary semigroups with neutral elements

Theorem

Let | be as above. Let F, : 1" — | be an idempotent n-ary
semigroup, which is monotone increasing in each variable and has
a neutral element iff there exists monotone decreasing function g
such that Iy is symmetric and

min(ay,..n), if g(max(ai,.. n)) > min(ai,. n)
or g(min(a1,. n)) < max(ai,. n)

Foa a) = max(ai,..n), if g(max(a1,...n)) < min(a1,.. n)
&Ly €n or g(min(a1,.. n)) > max(ai,. n)

max or min, if g(max(a1,. n)) = min(a1,. n)

L and g(min(ay,.. n)) = max(a1,.. n)
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Lemma

Let F, = Fy0---0 Fy be idempotent and monotone increasing,

n-associative. Then F; is idempotent as well.

Let F;=Fyo---0F, for every 2 < | < n and let k < n be the
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smallest such that Fj is idempotent. Assume that

Fr_1(a,...,a) = b # a.

Fi(a,...,a,a,b) | Fx(a,...,a,b,b) | ... | Fx(a,b,...,b,b)
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