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Abstract

Automated topic identification of text has gained a significant attention since a vast
amount of documents in digital forms are widespread and continuously increasing.
Probabilistic topic models are a family of statistical methods that unveil the latent

structure of the documents defining the model that generates the text a priori.

They infer about the topic(s) of a document considering the bag-of-words assump-
tion, which is unrealistic considering the sophisticated structure of the language. The
result of such a simplification is the extraction of topics that are vague in terms of
their interpretability since they disregard any relations among the words that may
settle word ambiguity. Topic models miss significant structural information inherent

in the word order of a document.

In this thesis, we introduce a novel stochastic topic identifier for text data that ad-
dresses the above shortcomings. The primary motivation of this work is initiated
by the assertion that word order reveals text semantics in a human-like way. Our
approach recognizes an on-topic document trained solely on the experience of an
on-class corpus. It incorporates the word order in terms of word groups to deal with
data sparsity of conventional n-gram language models that usually require a large
volume of training data. Markov chains hereby provide a reliable potential to cap-
ture short and long range language dependencies for topic identification. Words are
deterministically associated with classes to improve the probability estimates of the
infrequent ones. We demonstrate our approach and motivate its eligibility on several
datasets of different domains and languages. Moreover, we present a pioneering work
by introducing a hypothesis testing experiment that strengthens the claim that word
order is a significant factor for topic identification. Stochastic topic identifiers are
a promising initiative for building more sophisticated topic identification systems in

the future.
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Chapter 1

Introduction

1.1 Study Motivation

The amount of documents available in digital form is overwhelming and continuously
increasing. Nowadays there is a growing interest in digesting the information pro-
vided in the text. Considering the limitations of human processing capacity, more
automatic text processing approaches have been developed to address the issue of
text understanding. When dealing with a big collection of text documents, it would
be convenient for each document to have a“short description” that could briefly give
us what it is about. We may use it to select the text(s) of interest or achieve a text
overview. Moreover, we may use the extracted information to introduce new metrics

to categorize, cluster or measure the “similarity” or “relevance” of documents.

Numerous approaches have been developed on how to extract content-features based
on different statistical weights [42, 50]. Recently, probabilistic topic models have
gained significant attention as a modern way to capture semantic properties of doc-
uments. LDA [9] which is a widely used topic identification method on large corpora
considers that documents are mixtures of distributions over words. LDA outputs

sets-of-words out of a collection of documents naming each individual set, a topic' as

"'We call the topic of LDA as L-topic to distinguish by the human perception of topic



it is demonstrated in Figure 1.1. They claim [9] that the significantly co-occurring
words in a document provide us with the LDA topics (L-topics) of a document.
For instance, they expect the terms “pasta” and “pizza” to appear in a document
discussing about Italian food. They employ the extracted sets-of-words to assign
L-topic mixtures to documents regarding their word proportion or they classify texts

regarding their L-topic similarity (word proportion).

word  prob. word  prob. word prob. word prob.

DRUGS 069 RED 202 MIND 081 DOCTOR 074
DEUG 060 BLUE 099 THOUGHT 066 DR. 063
MEDICINE .027 GREEN 096 REMEMBER .064 PATIENT .061
EFFECTS 026 YELLOW 073 MEMORY 037 HOSPITAL 049
BODY 023 WHITE .048 THINKING 030 CARE 046
MEDICINES 019 COLOR 048 PROFESSOR 028 MEDICAL 042
PAIN 016 BRIGHT .030 FELT 025 NURSE 031
FERSON 016 COLORS .029 REMEMBERED 022 PATIENTS .029
MARITUANA 014 ORANGE 027 THOUGHTS - 020 DOCTORS 028
LABEIL. .012 BROWN .027 FORGOTTEN 020 HEALTH .025
ALCOHOL 012 PINK 017 MOMENT 020 MEDICINE .017
DANGEROUS 011 LOOK 017 THINK 019 NURSING 017
ABUSE 009 BLACK 016 THING 016 DENTAL 015
EFFECT .009 PURPLE .015 WONDER 014 NURSES 013
ENOWN 008 CROSS 011 FORGET 012 PHYSICIAN 012
PILLS 008 COLORED _ .009 RECALL 012 HOSPITALS 011

Figure 1.1: Each LDA topic (column) lists sixteen words. Next to each word is
assigned the probability of the term to belong to the corresponding L-topic [54].

To infer about the document L-topics, LDA relies on the following assumptions:

e Documents are generated by initially choosing a document-specific distribution
over L-topics, and then repeatedly selecting an L-topic from this distribution

and drawing a word from the L-topic selected.

e The permutation of the words in the document let the model unaffected - each

document is modeled as a bag-of-words (BoW).

The latter assumption implies that the document structure is disregarded. The key

insight of LDA is the premise that words convey strong semantic information about




the content of the document. In other words, Blei et al. assume that texts on simi-
lar L-topics consist of the similar BoW. LDA definition of topic neglects other text
semantics; the authors mention [9] that: “A topic is characterized by a distribution
over the words in the vocabulary” and “the word distributions can be viewed as repre-
sentations of topics”. But, the fact that the word order is ignored is the main deficit
of this method; in fact, it is an important component [1] of the document structure
since two passages may have the same words statistics, nonetheless, different topics.
For example, the passages “the department chair couches offers” [56] and “the chair
department offers couches” [56] convey different topics but the vocabularies and the

word frequencies are identical.

The above example depicts that the human perception of topic encompasses the word
order. After LDA was published several works remark and deal with word order as a
significant factor to improve the quality of topics [58, 53, 41] and the performance of
clustering or classification systems. Word order has been considered as an indicative
factor for topic inference and a fundamental element to improve natural language
representation. In 2006 Wallach [56] claimed that: “It is likely that word order can
assist in topic inference”. In 2013, Shoaib et al. [53] claimed that: “Some recent topic
models have demonstrated better qualitative and quantitative performance when the
bag-of-words assumption is relaxed”, thus they introduced a model that is no longer
invariant to word reshuffling since it preserves the ordering of the words [53]. In 2009,
Andrews et al. [1] discuss the importance of word order in semantic representation.
They claim that: “The sequential order in which words occur (...) provide vital
information about the possible meaning of words. This information is unavailable
in bag-of-words models and consequently the extent to which they can extract seman-

tic information from text, or adequately model human semantic learning, is limited.”.

In this thesis, we study the word impact on topic recognition by introducing a model
to improve topic inference incorporating the order of words. Our topic identification
approach considers the sequential statistics of documents. It extends the prevalent

bag-of-words paradigm and infers about the topic discourse of text by considering



the inherent sequential semantics. The goal of our model is to classify a document
as ‘on’ - close with a domain specific discourse - or ‘off” otherwise. It detects similar

structural properties of a new document with respect to the provided input.

However, it is not a conventional binary classifier since it relies exclusively on the
experience of documents of one class. We often need to recognize documents of a
particular topic out of an ocean of ‘off” documents because it is easy to gather data
on the requested situation and it is rather expensive or impossible to do the same
for data of undesirable situations. In this setup, ordinary classification systems are
inappropriate since they require training in the entire universe of topics to be effec-

tive.

A promising approach to incorporate word sequence applied on different applications
related to natural language is using a Markovian model. In literature, Markovian
models have been used on text to perform topic segmentation [8, 45, 53], LDA-like
topic identification [1, 28, 45] and speech recognition [37, 48]. They provide a way
to model the sequential semantics of the natural language. In this work, we have
modeled a stochastic process for word sequences, where each word is conditionally
dependent of its preceding words. A Markov chain hereby provide a reliable potential
to incorporate language and domain dependencies for topic recognition. They are
trained to employ knowledge provided about the corpus words and recognize topics
regarding the sequential statistics of the input. The knowledge used is tuned and

gauged to achieve superior results.



1.2 Natural Language and Topic

The problem for scientists that deal with natural language is that human language
holds ambiguities. First, different words may convey the same meaning and each
word might have diverse meanings in different sentences. Second, at the sentence
level, the valid sequence of parts of speech, might have more than one reasonable
structure making it challenging to disambiguate the sentence meaning. Although
humans deal with natural language ambiguities effectively, it is not straightforward

how machines can deal with them.

The complexity of human language makes abstract notions like meaning or topic
difficult to be addressed. In topic research a central question someone may meet is:
What is a topic? Provided an answer to this question might reflect the building of

systems that perform effectively on identifying topics.

Linguists provide many definitions of a topic. In 1983, Brown and Yule [23] stated
that “the notion of topic is clearly an intuitively satisfactory way of describing the
unifying principle which makes one stretch of discourse ‘about’ something and the
next stretch ‘about’ something else, for it is appealed to very frequently in the dis-
course analysis literature”. According to the authors, the topic is a very frequent
- but usually undefined - term in discourse analysis. It has been used to represent
various meanings; Hockett [32] in 1958 used the term as a grammatical constituent
to describe sentence structure. In 1976 Keenan and Schieffelin [39] introduced the
term discourse topic that it was further explained by Brown and Yule in 1983 as the

notion of “what is being talked /written about”.

In computer science literature a topic is defined as a distribution over the vocabulary
[9]. Blei et al. [9] state that: “We refer to the latent multinomial variables in the
LDA model as topics, so as to exploit text-oriented intuitions, but we make no episte-
mological claims regarding these latent variables beyond their utility in representing

probability distributions on sets of words.” The previous quote implies that there



was not much research on further notions of topic. Actually, for computer scientists
topics are set of words that are used as features to accomplish other tasks such as

document similarity.

Apparently, the definition of topic in topic modeling disregards any information
about the topic structure. On the contrary, linguistic definitions of topic [23, 32, 39]
are rather abstract to be utilized by machines for topic identification. Although,
humans can recognize the topic of their interest in a straightforward manner, it is
challenging for scientists to pin down the procedure of automatic topic recognition.
It is challenging for human to provide the characteristics of the topic since it is a
multidimensional problem associated with the human intuition and personal inter-
pretation [14, 31].

This thesis does not address the problem of what a topic is. Instead, we scrutinize
a division of how to identify a topic in a piece of text. Therefore, we assume that
regardless of what a topic may be, it remains latent but somehow common knowl-
edge. We define a topic as the stochastic model that best recognizes what humans
consider as topics, modeling human semantic learning. We consider words and the
word sequence as the language aspects to be indicative of the latent topic. In this
thesis, we ignore any fine-granular distinctions between topic, field, theme et cetera.
We considered a particular probabilistic model, which we train to develop a robust
topic model oriented to formal written language. We aim to distinguish documents
of subtly different topics in terms of akin vocabularies experimenting on financial re-
ports. We examine the possibilities to generalize by introducing various probabilistic

topic models that we apply on the same datasets.



1.3 Objectives

The task of topics identification on written documents is a manifold assignment. Not
only due to the fact that a clear definition of what a topic is or how a topic look like is
missing (Subsection 1.2), but also because of the complexity and ambiguity of natu-
ral language texts. Natural language complexity makes inference assumption of topic
identification or classification methods to look as oversimplifications. Therefore, the

outcome of such methods is inaccurate considering the human understanding of topic.

In computer science, the task of topic identification has been considered as an in-
termediate step to perform several other tasks on large collections of documents like
organization, summarization, large corpora exploration et cetera. As far as the final
task provides a satisfactory outcome no further investigations have been conducted
on how to actually improve topic identification. A reason for that might be what Blei
claims in a review of 2011 [4] : “There is a disconnect between how topic models are
evaluated and why we expect topic models to be useful”. Moreover, questions related
to topic evaluation and topic model assumptions “have been scrutinized less for the
scale of problems that machine learning tackles” [4]. In other words, the assumptions

of topic models and their outcome are not subject of scrutinized research.

In this thesis, we extend the prevalent bag-of-words assumption exploring the perfor-
mance of topic identifier that encompass the word sequence of text. Consequently,

the research question is:

1. How well a stochastic topic identifier can perform on discriminating text of

different domains and languages?

The bag-of-words representation facilitates the inference of complex statistical mod-
els due to the simplification of the representation. The scenario in which the word
order is considered in a conventional topic model, would lead to intractable calcula-
tions. In this work, we keep the complexity of the model moderate to facilitate the

study of this research question.



Secondary, current topic models incorporate no prior knowledge about the ‘semantics’
of natural language. They are applied to a collection of not annotated documents
with no other information provided because their primary goal is to give an insight of
the corpus. In this work, we encompass prior knowledge in terms of sets of words with
common characteristics. In this way, we indent to enhance model’s discriminating

performance.

2. What form of prior knowledge would increase the topic identification efficiency
of the introduced model?

Many different pieces of knowledge can be incorporated regarding different criteria.
In our case, we heuristically explore the role of different linguistic components i.e

stopwords to boost the detection efficacy of the model.

Finally, several works [58, 53, 41] highlight the importance of word order as a signifi-
cant factor to perform topic inference and a key element to improve natural language
representation. Thus, they explore the efficacy of unsupervised and supervised meth-
ods that consider word order in their premise. Nevertheless, a quantification analysis
that exhibits the importance of word order in the text is missing. The third research

question is the following:

3. Which is the impact of word order, as an additional property of bag-of-words,

on topic identification?

To answer the above question we introduce a hypothesis testing experiment that
randomly generates documents out of a particular vocabulary and compares them
with the original documents probing the differences in topics. The next sections

outline the corresponding milestones.

1.4 Thesis Outline

Chapter 1 discusses the background and motivation of the research work of this the-

sis. Moreover, it provides the notion of topic as it is introduced in literature and



clarifies the direction of this research work. It specifies the research questions we

deal with in the next chapters.

Chapter 2 is dedicated to provide an overview of the related works. First, it summa-
rizes probabilistic topic models giving the development of them in time until LDA
was introduced. The basic concepts and the modeling fundaments are introduced.
Modern variations and improvements of LDA are provided as well. Some classifica-
tion methods are introduced because to some extent they may be used to discriminate
documents of different topics besides the fact that we use some classification methods
as a comparison to assess the efficacy of our approach. At the end advantages and
disadvantages of the introduced methods are provided and a discussion of what is

missing in the literature is given.

Chapter 3 is dedicated to the introduced approach. The milestones are given and
in the next sections, a set of methods to recognize topics are provided. A set of
stochastic models that consider word order are formalized and the inference and
learning is provided. At the end the classification steps of a new given document are
described and the classification boundary is identified. We name the set of identifiers
we introduced Markov topic identifiers (MTI) since they are based on Markov chains

to incorporate word order.

In Chapter 4 we provide a number of test scenarios on different datasets to evaluate
the Markovian topic identifiers performance. We discuss the presented results com-
pared with the baseline results provided by the widely used classifiers of naive Bayes
and support vector machines. Different measures are used to assess the models per-
formance in a ten-fold cross validation schema. The implemented experiments reflect
the introduced research question of Section 1.3. The number of classified samples
are provided in the appendix sections where each section is dedicated to a model
introduced. In Chapter 5 we summarize the overall research work and we provide
potentials and shortcomings it exhibits. We suggest extensions and possible appli-

cations of the introduced model as well.
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Chapter 2

Related Works

This chapter is dedicated to present the state-of-the-art of topic identification. We
present works that are related and hold the same objectives like the model proposed
in this thesis. Some of the related work is summarized in the following two Sec-
tions 2.1 and 2.2.

At the beginning, we provide a brief overview of the most important topic models
and their extensions. We present the probabilistic topic models that disregard the
word order in documents, BoW assumption. We highlight the fundamental ideas
behind and the formalization of each single model providing in chronological order
the evolution of topic modeling until latent Dirichlet allocation was introduced. We
later present some extensions of LDA that amend its initial text generation schema
capturing different aspects of a topic like topic evolution or topic correlations corpus-
wide. Moreover, they relax the BoW assumption dealing with word collocations to

form L-topics.

Later, we discuss some of the widely known classifiers that may be used in topic re-
lated tasks to discriminate the topic of a new document. We select the classifications
methods that are representative regarding the inference assumptions and feasible to
be applied on text. For instance back propagation neural networks are not presented

since they exhibit high computational cost to converge on multidimensional problems

11



like topic classification.

Finally, in Section 2.3 we discuss the pros and cons of the probabilistic topic models
and classifiers. We spotlight the improvements we intend to achieve in this thesis
contradicting the already presented methods of this chapter. In particular, we discuss
the advantages of our method in terms of cost-effectiveness and performance that

the two other cannot provide.

2.1 Probabilistic Topic Models

Topic models are a suite of algorithms used to discover the themes of large and un-
structured document collections and can be used to organize the collections. They
are generative statistical models that uncover the hidden thematic structure that has
generated the document collection. They are effective, thus widely used, on applica-

tions in the fields of text classification and Information Retrieval (IR) [4].

In this section, we introduce models where the hidden topic structure of a document
is explicitly provided in the definition of the model. The set of models we discuss
feature a proper hierarchical Bayesian probabilistic framework that permits the use
of wide range of training and inference techniques. The topics of the models are not
a priori determined but rather extracted from the document collection. Once the
training phase is accomplished, the model can infer about new documents using the
statistical inference process. Probabilistic topic models can also be used for vari-
ous tasks like document or topic similarity exploration; they deal with these tasks
by comparing probability distributions over the vocabularies. Thus, methods like

Kullback-Leibler or Jensen-Shannon divergence are applied.

Topic models are considered to be text generators with different statistical assump-
tions about the parameters that generate the text. They infer about the posterior
distribution from the data and they require no prior knowledge or labeling of the

documents. The vocabulary of the documents and the word frequencies is the nec-
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essary input to the topic models. Moreover, topic models deal effectively with words
of similar meanings and distinguish among words with multiple meanings. They go
one step further annotating documents with thematic information and provide the
relationship among the assigned themes. To achieve their goal they consider that
the words are chosen from sets of polynomial distributions which are used to deduce
about the significantly co-occur words in the collection. They consider that each
document is a mixture of word distributions and they define each individual multi-

nomial distribution to be a topic.

= -::02:‘ 10 DOC: money' bank! loan'
h-"@.v Fa __'____.--"', bank' money'  money’
park 3 benk! logn
£
& loay Q*:tl
i uen| 5
l|_|_|—._._o-|
. L i 1
TORIC 4 DGCE maonay oa ';"
5 a bank? river’ loan’ stream-
— henk' monsy
"] ”‘!:'c‘,_
Ll
F . .
iy 2 DOC2:  rivers  bank’
&l —D_" stream® bank® rver® river?
w Lty Hy ) stream” bank*
-ir&.
e
TOPIC 2

Figure 2.1: The generative process of topic models with two topics and three docu-
ments [54].

Figure 2.1 demonstrates a generative process with two topics and three documents.
Topic 1 and topic 2 are about money and river respectively. They exhibit different
word distributions according to the word importance for the topic. Docl and Doc3
are produced by topic 1 and topic 2 respectively with weights 1.0, while Doc2 is
generated by an equal mixture of both topics. The superscript on each word indicate
the topic that is employed to draw the word. The way the model is defined does
not presume word exclusivity in topics, i.e., bank occurs in both topics. This allows

topic models to capture word with multiple meanings (polysemy). The generative
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process described in Figure 2.1 neglects the word order of the documents; this is the

common bag-of-words assumption of many statistical language models.

Following in this section, we will describe the development of probabilistic topic
models from a simple model to recent and sophisticated models that deal with state-
of-the-art issues like the relationship between topics. First, we present the mizture of
unigrams as the primary method to perform topic identification. It is a method close
to Naive Bayes (NB) which exhibits several deficits. In subsection 2.1.2, we present
Probabilistic Latent Semantic Indexing (pLSI) which is a probabilistic development
of Latent Semantic Indexing (LSI). In 2.1.3 we present the LDA model which is
a development of pLSI. Latent Dirichlet allocation overstepped pLSI shortcomings
assuming that the topics are drawn from a Dirichlet distribution. LDA stimulated
the deployment of several topic models that comprise several extension and amplified
modeling capacities. It goes beyond text analysis and is applied to music and image
analysis. In the following sections, we present significant LDA developments with

diverse setups and various research objectives.

2.1.1 Mixture of Unigrams

In 2000 Nigam et al. introduced a simple generative topic model for documents called
mixture of unigrams. [46]. This model assigns only one topic z for a document and
then a set of N words is generated from the conditional multinomial distribution
p(w|z). This type of model is suitable for supervised classification problems where
the set of possible values of 2z corresponds to the classification tags. The key idea of
the mixtures of unigrams is that each topic is related to a particular language model
that draw words pertinent to the topic. A mixture of unigrams is identical to naive
Bayes classifier with Ny the size of the vocabulary and M training documents where
the set of possible topics are given.

The mixture of unigrams model is demonstrated in Figure 2.2. A directed graph
with “plates” is used to represent the model, in which each node indicates a random

variable and the direct edge represents the statistical dependencies between the vari-
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Figure 2.2: The mixture of unigrams model

ables. The plates express the replication of different parts of the graph. The inner
plate represents the document and the outer plate the collection of documents. The
numbers in the lower-right corners of the plates represent the document collection
size which is M and the document vocabulary which is N, for a document d. Each
document has a single topic z as is shown in the graph. The graphical model of Fig-
ure 2.2 reveals the conditional probability distributions for the nodes with parents
i.e., w. The conditional probability p(w|d) follows the multinomial distribution. For
the variables without parents a prior distribution is assumed; i.e., for z a multino-
mial distribution over the possible topics is defined. For a document d the following

probability is defined:

p(d) =Y p(z) [ [ plwal2) (2.1)

Practically, the implementation of the mixture of unigrams model requires the calcu-
lation of the multinomial distributions p(z) and p(w|z). Granted that we are provided
with a set of labeled document, each one annotated with a topic, we can calculate
the parameters of these distributions utilizing the maximum likelihood estimation
(MLE). For this reason, we calculate the frequency of each topic z; that appears in
the collection of documents. We estimate the p(w|z) for each z; by counting the times
each w; appears in all documents assigned with z;. In case that a word w; does not
exist in any documents with label z;; MLE will assign zero probability to p(w;|z;).

A number of different smoothing methods (i.e., Laplace[29]) can be applied to ensure
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that this does not happen. If the topic labels are not provided for the documents
the expectation-maximization technique[19] can be applied. After the training phase
has been completed, the topic inference about new documents can be achieved using

Bayes rule.

2.1.2 Probabilistic Latent Semantic Indexing

One widely studied issue in IR is the query-based document retrieval. Suppose a doc-
ument retrieval system which intends to sort documents regarding their relevance to
a query. The challenge of implementing such a system is to deal with the ambiguity
of natural language and the short length of typical queries that increase the complex-
ity of the system. If we simply build the system on matching words in documents
with words in queries we will end up dropping most relevant documents since short
user queries tend to contain synonyms for the essential words. Another key point is
the polysemy of the words; for instance if a query contains the word ‘bank’ multi-
ple sets of documents will be matched regarding the various meanings of the word.
Documents that discuss the banking sector and rivers will be returned. To address
the previously mentioned issues additional information needs to be considered from

text that reveals the semantic content of a document beyond the set of words itself.

LSI [18, 3] was introduced in 1990 to deal with these concerns in a more effective
manner. LSI is a technique that maps documents in a semantic space with lower
dimensions, for that matter, texts with alike topics will be close each other in the
produced space. The latent topic space in LSI is derived from the word co-occurrence
in the whole collection of documents, on that front, the degree of relevance between
two documents is also a matter of the other documents! in the collection. The cen-
tral technique that LSI employs comes from linear algebra and it is called Singular

Value Decomposition (SVD) [3]. It is used to perform noise reduction and at the

ITwo documents are close whether they share a sufficient big number of words. For example,
in the world wide web, two documents that contain words about programming languages will be
close in the latent space. But between two documents in a collection of texts of software engineers,
more terms need to be common for the documents to be close.
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same time, it plummets the scale of the problem.

Nonetheless, The effect of SVD on words has been criticized since it is hard to be
assessed. Therefore, Hofmann introduced probabilistic latent semantic indexing [33]
to provide improvements on LSI. Actually, probabilistic Latent Semantic Indexing
preserves the same objective but it is different from LSI since it has a probabilistic
orientation with a clear theoretical justification that LSI lacks. pLSI is demonstrated
in Figure 2.3 and is described by the following generative model for a document in

a collection:

e Choose a document d,, with probability p(d)
e For each word n in d,,

— Choose a topic z, from a multinomial conditioned on d,, with probability
p(z|dm)

— Choose a word w,, from a multinomial conditioned on the previously cho-

sen topic z, with p(w|z,)

O+-O—0

d z W Nd u

Figure 2.3: The probabilistic latent semantic indexing model

From the graphical model of Figure 2.3, we notice that pLSI relies on certain as-
sumptions of independence about the documents in the collections and the words in
the document. More precisely, the words are conditionally dependent of the topics
and conditionally independent of the documents. The key assumption on which pLSI

relies upon is the BoW assumption. In particular, the word order of the document
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is not incorporated in the model. Additionally, in pLSI model each observed item
(word) of the data is associated with a latent variable (topic); this one-to-one asso-

ciation is called aspect model[34, 51] in literature.

The objective of pLSI is to estimate the probability:

p(w,d) =Y = p(z) P(w|2)p(d|z) (2.2)

zeZ
Hofmann introduced a version of expectation-maximization to train the model in an
unsupervised manner. In experiments performed by the author, pLSI overstepped
the latent semantic analysis in IR tasks.

pLSI finds various applications in information retrieval and topic classification. In IR
the similarity between query keywords w, and document d; needs to be estimated.

This similarity is defined as follows:

Similarity(w,, d;) = w, - P(w,w) - dj (2.3)

where P(w,w) denotes the probability similarity matrix between the words. In topic
classification the key point is to estimate the similarity between two documents d;
and d;. w; and w; are the normalized word vectors of the frequencies of the words
that have been calculated from d; and d; respectively. The similarity is defined as

follows:

Similarity(d;, d;) = d; - P(w,w) - d]T (2.4)

Compared to mixture of unigrams, pLSI exhibits enhanced modeling facilities, since
it allows a document to discuss more than one topics. As a matter of fact each
word in a document can be derived from a different topic. Moreover, pLSI has a
broader range of applications than the ad hoc LSI. pLSI relies on a solid theoretical
background that allows it to have a clear interpretation of its results. Nevertheless,
pLSI exhibits a drawback on the assigned topic proportion of a document. By the

generative process of pLSI, we realize that the topic mixture assigned to a document
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is estimated from the collection. When pLSI deals with standalone IR tasks this
may not be crucial. But, in various other tasks like text categorization, the lack
of flexibility on handling newly seen documents cause issues on document inference.
Coupled with the above, the principle of learning the topic distribution for each
document in the collection leads to a high number of parameters estimations that
grow with the number of documents in the collection making pLSI inappropriate for

large scale datasets.

2.1.3 Latent Dirichlet Allocation

In 2003 Blei et al. published a work named latent Dirichlet allocation [9] which is
one of the most popular topic models. It goes beyond information retrieval and it
is applicable not only to text but on images and music collections. Latent Dirich-
let allocation can be considered as a generalization of pLSI in which the Dirichlet
distribution is utilized to ‘identify’ the topics. On that front, LDA is considered to
be a complete generative probabilistic model with high descriptive power since the
number of model parameters is independent of the number of training documents as
pLSI regards. Additionally, LDA is robust to overfitting thus widely used for large

scale problems.

Let’s suppose that LDA is applied on a corpus of three topics, such as medicine,
finance, and biology. A document that describes a disease treatment may discuss
either medicine and biology topics. The medicine texts have a number of words that
exhibit high probability in appearing in a document related to medicine. Likewise,
there is a set of words that are related to biology with a corresponding probabil-
ity. During the generation process of LDA on a document about disease treatment,
the topics will be randomly selected at the beginning. The probability of selecting
the topics of medicine and biology will be increased and following a word will be
selected. Words that are related to the two topics will have the higher probability
to be selected. After N words have been selected, where N is the vocabulary size

of the document, the selection is accomplished and the document is generated. The
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formalization of the generative process for a document d is as follows:

e Choose topic proportion 6 for document d with a Dirichlet parameter a.
e For each word w € d:

— Choose a topic z, from a multinomial distribution over topics with pa-

rameters 6.

— Choose a word w,, from a multinomial distribution over words with pa-
rameters ¢*»; where ¢*» = p(w|z,) is the multinomial conditioned over

words for topic z,.

LDA assumes that a text is constituted of a particular topic multinomial distribution
sampled from a Dirichlet distribution. The number of topics is k£ and a priori given.
Then, each of these k topics is repeatedly sampled from generate each word in the
document. Therefore, a topic is defined to be a probability distribution of the words.
The documents are described as a mixture of topics with a certain proportion. The

plate graphical representation of LDA is demonstrated in Figure 2.4.

The graphical representation of LDA uses plates to represent the replicates. The
outer plate represents the documents, each one of them is described by a topic mix-
ture # which is sampled by a Dirichlet distribution with hyperparameter o. The
inner plate represents the repeated sampling from 6. The filled circle represent the
observations (words) and the hollow circles represent the hidden variables of the

model. The arrows represent the dependencies between the linked nodes.

The Dirichlet variables in LDA are vectors 6 that receive values in (k — 1) simplex,
thus Zle 0; = 1. The probability density of a k-dimensional Dirichlet distribution

over the multinomial distribution § = (6, ..., 6) is defined as:

Dir(ay,...,a;) = % E 0r! (2.5)
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Figure 2.4: The latent Dirichlet allocation topic model

where ['() is the gamma function and the «; are the Dirichlet parameters. Each «;
can be interpreted as a prior observation count on the number of times a topic z, has
appeared in a document, before the training of the model. The implementation of
LDA by the authors uses a single Dirichlet parameter «, such that each o; = . The
single o parameter results in a smoothed multinomial distribution with parameter 6.
The hyperparameter (3 is the prior observation count on the number of times words
are sampled from a topic before any observations on the corpus occurred. This is a
smoothing of the word distributions in every topic. In practice, a proper choice of «

and ( depends on the number of topics and the vocabulary size.

2.1.4 Latent Dirichlet Allocation Extensions

LDA is a significant topic model on which many researchers based their work to
capture other properties of the text. To do so, they added variables to their models
to describe the development of topics over time, the relationship among topics, the
role of syntax in topic identification and so on. In the following, we briefly present
some of recently introduced topic models where the majority of them are based on

the fundamentals of latent Dirichlet allocation.

In 2006 Blei et al. introduced dynamic topic models [6] to analyze the evolution of
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topics over time in a sequentially organized corpus of documents. This approach
infers about the latent parameters of the model using the variational method. The
parameters of the model follow the multinomial distribution. A state space repre-
sentation is used to transmit the multinomial parameters upon the words of each
topic. The Correlated Topic Model (CTM) [5] was designed to provide correlation
among topics. The key idea that CTM relies on is that a document discussing about
medicine is more likely to be related to disease than astronomy. The assumption of
LDA that topics are drawn from a Dirichlet distribution confines LDA to provide the
correlation between topics. To facilitate topic correlations, topic models assume that
topics have correlations via the logistic normal distribution that exhibit a sufficient

satisfactory fit on test data.

In 2004 Blei et al. introduced an extension of LDA -named hierarchical latent Dirich-
let allocation [25] - that deals with topics in the manner of hierarchies. On that
front, they combine a nested Chinese Restaurant Process (CRP) with a likelihood
that relies on a hierarchical variant of latent Dirichlet allocation to derive a prior
distribution on hierarchies. In 2010, the supervised topic model [7] was introduced
to deal effectively with prediction problems. They designed a topic model to perform
prediction regarding the vocabulary. They examine the prediction power of words
with respect to the topic class. They compare LDA with supervised topic model and

they find the new model to more effective.

In traditional topic models, such as LDA, most of the syntactic words are removed
since we are only interested in meaning and only long-range dependencies are con-
cerned. Therefore, topic models focus on identifying semantic words through doc-
uments or entire collections. On the contrary, the composite model [26] that was
introduced by Griffiths et al. considers the short-range dependencies as well. It
blends a Hidden Markov Model (HMM) to capture the parts of speech and a latent
Dirichlet allocation to extract words that are deemed semantic. Composite model
competes for part-of-speech taggers and it is not used for topic classification itself.

In Figure 2.5 it is demonstrated the generating phase of this model where an au-
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tomaton is constructed to describe the structure of the language. Figure 2.5 shows
the transitions of a three class HMM annotated with the corresponding probabilities.
The semantic class shown in the middle consists of three topic sets each one assigned
a probability. The other two classes are simple multinomial distribution over words.
Document phrases are generated by following the transitions of an automaton like
the one in 2.5. Particularly, a word is chosen from the distribution associated with
each syntactic class, a topic follows and a word comes next from a distribution asso-

ciated with that topic for the semantic class.
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Figure 2.5: The generating phase of composite model [26]

Although exchangeable word models are useful for classification or information re-
trieval, they are limited for problems that depend on more fine-grained qualities of
language. For instance, a topic model is efficient on providing documents relevant
to queries but it cannot suggest relevant phrases for question answering. Syntactic
Topic Model (STM) [12] is a document model that blends the observed syntactic
structure with the latent thematic structure of a document. STM intends to extract
groups of words that are utilized the same way in similar documents. STM can be
used to incorporate document context into parsing models but is not a full parsing
model. It provides a way to learn both simultaneously rather than combining the
two heterogeneous methods. Syntactic topic models have been used for statistical

natural language generation [17].
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In 2009, C. Wang et al. introduce a generative probabilistic model [57] to capture
firstly the corpus-wide topic structure and secondly the topic correlation across cor-
pora. They test their model on a dataset extracted from six different computer
science conferences; they evaluate their model on the abstracts parts of the text.
Additionally, researchers have studied the efficiency of topic models on different lev-
els of resolution. Bruber et al. [27] consider that each sentence discusses one topic
and all the words in a sentence are assigned the sentences topic. The goal of the
authors is to perform word sense disambiguation. Wallach [56] extended LDA to fa-
cilitate n-gram statistics by designing a hierarchical Dirichlet bigram language model.
They produce more meaningful topics than LDA since bigrams statistics restrict the

dominant role of stopwords.

2.2 Text Classification

This section is dedicated to the presentation of text classification methods in the
literature. It is a hotspot in the fields of Natural Language Processing (NLP) and
information retrieval. The main goal of a classification method is to identify rules in
the training set that discriminate new text in one or more of the predefined classes.

Text classifiers can be used, to sort regarding the topic of a document.

We present some of the important text classification methods in terms of efficiency
and computational cost when applied on texts. We spotlight two of the most used
classifiers on a text. We select naive Bayes as a primitive classifier that we com-
pare our approach. We evaluate the word order impact on topic identification since
naive Bayes classifies based solely on the word independence in the document. In
contrast, we select Support Vector Machines (SVM) as a sophisticated, effective and

computationally efficient [35] method to perform topic classification.
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2.2.1 Naive Bayes

NB is a classification method that reduces the complexity of the calculations. It is
based on the assumption of conditional independence between data features. Despite
the fact that the independence assumption does not reflect the reality, it is an effective
classifier [62]. NB deals effectively with numerical and nominal data and it can be
used in a wide variety of applications independent independent from the domain.

Naive Bayes classifiers relies on the Bayes theorem as it is depicted in 2.6

Ply)P( | y)
P = =7 2.6
le)= =5 (26)
Where = (z1,--- ,x,) is the data feature vector and y is the class variable. The
independence assumption is formulated as in 2.7:
P(x | y) = P(x1, - 20| y) = [[ Plai | v) (2.7)

i=1
Usually, the assumption about the feature distributions NB considers are discrete.

NB is defined for Gaussian distribution with parameters o, and p, as follows:

exp (_ﬂ) | (23)

P(:EZ ’y): 202
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In text classification, words are considered as the classification features of the docu-
ment. To identify the class ¢ a new document d = (w; - - - w,) belongs, NB calculates
the product of the likelihoods of the words given the class P(c | d) multiplied by the
class probability P(c) - called prior probability. It performs these calculations for
all the classes. The class of the new document is the class with the maximum score.

The mathematical formalization is shown in 2.9.

Cmap = argmax(P(c | d)) = argmax(P(c) (2.9)

An important issue naive Bayes classifiers exhibits is the existence of a word w in
the test set where they do not appear in a particular class ¢ of the training set. Then

its conditional probability P(w | ¢) is equal to zero which results in zero product of
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probabilities. To anticipate this some extra probability mass for the unseen words
in the testing documents is considered. We use Laplace smoothing [44] that assumes
that for each word w of the test corpus: N(w | ¢) > 1. The Laplace smoothing
formalization is shown in 2.10.
Plufe) = — w0 (2.10)
VI+ > N(w,c)

weV

Where N(w,c) is the frequency the word w exist in document of class ¢ and |V is

the vocabulary size of the training set.

2.2.2 Support Vector Machines

SVM is a classifier that, maximizes the separation margin hyperplane between two
classes[36]. The linear SVM identifies the maximum margin between the closest data
points of the distinct classes. The filled points of the two classes depicted in Fig-
ure 2.6 define the support vectors. In 2.6 it is demonstrated points the points of two
classes that are linearly separable. — Support vector machines can separate classes
that are not linearly separable by projecting the data points to a higher dimensional

space using various kernel functions.

To identify the support vectors for a given dataset, we consider the case where two
data classes Sj, Sy exist. Labeling the data points by vy, € {—1,1} Joachims [36]

uses the following equations:
e The plane of the positive support vectors is: w? - x +b = +1
e The plane of the negative support vectors is: w? - @ +b= —1

We define a hyperplane such that:
wl -z +b> +1, when 3, = +1 and wT - ¢ +b < —1, when y;, = —1. We can write
the previous two as:

ye(wT -z +0) > 1, Yk (2.11)
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The goal to maximize the separation distance is achieved by the optimization problem
in 2.12

L 1 2
minimise — ||w||
2 (2.12)
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Figure 2.6: Support vector machine hyperplane

Equation 2.11 provides the hard margin hyperplane where the data points are linearly
separable. It is unlike in real problems lines or even curves can separate the data
points by their classes. Therefore, it is advantageous to allow some data points to
lie on the wrong side of the hyperplane. This is beneficial because it prevents the
overfitting of the model on the training dataset. The soft margin version of SVM
relaxes the margin constraint penalizing the miss-positioned data points. The idea
of using a soft margin is to find a line that penalizes points on the “wrong side” of

the line as it is depicted in Figure 2.7. The hyperplane is defined in 2.13:

yr(w” @ +0) >1—& & >0 (2.13)

The constraint in 2.13 allows a margin lower than 1 and a penalty of C¢; for each

data point where &, > 1 when the point lies on the wrong side or 0 < & < 1 when
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Figure 2.7: Soft margin support vector machines

the point lies on the correct side. The optimization problem is defined as in 2.14.

L 1, -
minimise 5 |w||”+ C ;1 (&)
= (2.14)

s.t. yk(’wT-iL‘k+b) >1—¢& & >0

Practically, C' is empirically determined using cross-validation. The error rate of an
SVM classifier is determined by the number on non-zero &. The slack variable and

penalization assist on making SVM robust to overfitting.

Another aspect of SVM is the kernel function. The role of kernel function is to map
the initial feature space to a new of different dimensions feature space that can make
the separation problem feasible. In general, a good kernel function depends on the
data domain. Some of the widely used kernels are the linear, polynomial, radial basis

functions.
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2.3 Discussion

We have explored some widely known topic models in text. We have unveiled the
most prominent trends and the most significant paradigms in topic analysis of text.
Some classification techniques have been presented that may be used to perform topic
analysis. Any classification problem where the classification labels denote topics are
considered as topic-oriented tasks. Not to mention that many different probabilistic
topic models and classification approaches have been introduced that are not pre-
sented here but all of them are based on the same anchors. The majority of the
machine learning methods that deal with document topics consider the documents
as bag-of-words and they are based on content features to form the topics or separate

among them.

Notably, topic models considered to be the state-of-the-art in topic identification
due to their expressiveness and efficiency when dealing with large corpora. More-
over, they provide the necessary capacity to model several aspects of topics like the
topic evolution or the topic correlations et cetera. A point often overlooked is that
the majority of topic models are unsupervised lacking of accurate results and accu-

racy of the systems.

In particular, topic models are used to identify the latent semantic structure and
they are a powerful tool that can infer about the structure representation. They
provide a framework to address questions about the topic structure and they provide
potentials to infer about semantic representations that, to some extent approximate
human semantic knowledge. They outperform several other models in information
retrieval and they are effective when dealing with word synonyms. They are modular
and easily extended to capture interactions about semantics and syntax in natural

language and can be used to solve problems in several other contexts.

Despite the extended use of topic modeling in different genre of problems in text and

image analysis, it exhibits a number of downsides. Foremost, it is not clear how the
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evaluation and model checking is performed. In 2012 Blei [4] claimed that “There is a
disconnect between how topic models are evaluated and why we expect topic models to
be useful”. Given that topic models are often used for organization, summarization
and large corpora exploration; the typical evaluation methods of machine learning
where a subset of the training set is held out as test set, is not proper to evaluate
the organization or the model interpretation. Frequently, a manual inspection of the
output needs to be performed to assess the efficiency of a topic model. It remains
an open question to develop of evaluation methods that measure how well the al-
gorithms perform. Additionally, given a new corpus and a new task, questions like
which topic model better describes the collection of text or which of the assumptions

are important for the task can hardly be addressed.

Moreover, the statistical inference of topic models is in some cases problematic. De-
spite the fact that statistics provide a rich toolbox to comfort the inference of latent
variables in topic models, it is still computationally expensive to infer about complex
models that are in some cases intractable. Considering that the newly and more so-
phisticated probabilistic models that were introduced do not yield significant gains
over the simpler models; the extent in which, more complex systems will be on focus
remains uncertain since system designers pursue a combination of good results for

low cost.

On the other hand, classification methods may be used on topic discrimination but it
is not their main orientation; thus, they are not widely used tools for topic analysis.
But, despite their low expressiveness, topic classifiers rely on knowledge-intensive
resources that increase their discriminating capacity. Nonetheless, topic classifiers
require enormous human effort for text annotation and data gathering for wanted

and unwanted situation for the classifiers to be trained properly.

Our approach combines the advantages of both approaches to achieve simultaneously
high accuracy and cost-effectiveness. Our position on this problem is to use a robust

statistical techniques to improve discriminating performance avoiding the necessity
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of gathering data of all unwanted situations. Our method requires training solely on

the experience of one-class documents to sufficiently recognize them.
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Chapter 3

MTI Methodology

3.1 Introduction

The anchor where probabilistic topic models are based is the BoW assumption. Both
probabilistic latent semantic indexing [33] and latent Dirichlet allocation [9] neglect
the order of the words in the document; therefore they represent documents in a
form where the word sequence is ignored i.e., word-document matrix. In probabilis-
tic topic modeling the exchangeability [9] of the words in a document is a convenient
simplification that leads to computationally efficient methods. Nevertheless, the ef-

fect of such a simplification is the disregard of the semantics of the text.

Later, we introduce a set of models to incorporate the word order as an additional
property over the bag-of-words methods to better capture the document ‘semantics’
[56, 30, 53, 38]. Moreover, different works [58, 53, 41] have shown that the word
sequence - in terms of word collocation - improves the interpretation of produced
topics compared to unigram methods. Alongside, the study of the interplay between
topic recognition and word order haven’t been explored previously; yet it is an ap-

pealing finding.

We introduce a topic recognition method trained solely on the experience of one-class
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documents and it is evaluated regarding its classification efficacy compared with so-
phisticated binary classifiers that rely on BoW representation. We explore the extent
in which word order contributes to topic recognition. The structural knowledge can
provide us with a more solid perception of the topic. In that front, we utilize Markov
chains that consider common properties of the words in the document - i.e., stop-
words. We deal with words of the same group in the common manner capturing
the fluctuation of the predefined groups in the document. The groups-of-words that
input the model are determined according to their functionality or their statistical
importance. In this way, we regard the short-range dependencies of the words along

with the long-range dependencies of content words that dominate the corpus.

In the following sections we present a set of models that rely on the sequential and
statistical knowledge of the word groups in the text to detect documents with re-
spect to the topic of our interest. In this context, we retain stopwords as significant
structural components that topic models disregard. Markov chains models provide
us with the necessary capacity to describe the document semantics in an automata
representation. We train our model to learn the transitions among the predefined

states (word groups) and the emission of the words in the corpus.

In addition, we explore whether a richer - in terms of word order - document rep-
resentation that provides a closer match to human semantic representation can be
a powerful tool to infer about a “human topic”. Particularly, we explore the ef-
ficiency of the sequential statistics of different structural elements by introducing
several sequential topic models. We conduct a number of experiments to explore the

possibilities to generalize.

We assess our model in three different scenarios to prove first that our method is as
effective as other classifiers in the “easy” case of distinct topics, second in the case
where other classifiers exhibit low performance and third on different domains and
language. In the first scenario, our approach is assessed on two corpora that belong

on different domains. In the second scenario we evaluate our approach on corpora of
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the same domain simulating conditions close to what it is described in Wallach [56]
work as an example where BoW based models exhibit low discriminating capacity.
Document A is: “the department chair couches offers” [56] and document B is: “the
chair department offers couches” [56]. The third scenario is applied on German lan-

guage and on health domain documents of German newspapers.
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3.2 Milestones

As mentioned in section 3.1 our research method is based on the extension of the
BoW based topic models incorporating the word order. Our method is data in-
dependent and it is based on four main working tasks to infer about the research
hypothesis in Section 1.3. The first task is the Model Definition where our research
model is introduced and some formalizations are provided based on Markov chains
(Section 3.4). The second working task is the Word Groups Composition, in which
group of words are constructed and fused to the model. Different manners to form
the groups and different criteria are considered as it is described in Section 3.4. The
third task is Model Training. Here, the inference and learning of the model parame-
ters are performed and the topic boundary is identified based on the topic scores of
the training set. The fourth working task is the Model Evaluation in comparison to
BoW based classifiers on three different dataset that cover three different scenarios

as described in Section 4.1.

In line with the research hypothesis in Section 1.3, we define six working milestones
that end to the evaluation of the research model in Chapter 4 followed with some

discussion about the results in the Chapter 5.

1. Model Definition: Model formulations are provided.

2. Word Groups Constitution: Form the word groups that are considered by
the model.

3. Inference and Learning: The model parameters are estimated on the dataset.

4. Document Classification: The classification task and the boundary identi-

fication are presented.
5. Data Acquisition: Assembling the input.

6. Evaluation: Quality measures and performance interpretation.
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3.3 Notation

In the Table 3.1 below is provided the notation used to describe the proposed model:

Notation Description

X; A random variable in a stochastic process.
T The state set of a stochastic random variable.
ti An element of the state set.

S A set of nodes of a directed graph.

Si A node in a directed graph.

E A set of edges in a directed graph.

& An edge in a directed graph.

D A text corpus.

d A document

\% The vocabulary of a corpus.

C The classification classes.

w; The i-th word of a document.

w' The i-th word of the vocabulary.

Ng The length of a document d.

IX| The cardinality of set X.

Table 3.1: Notation
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3.4 MTI Definition

Markov Chains

A Markov chain is a stochastic process [11] that undergoes transitions between states
on a set of states. It is a sequence of random variables with the Markovian property
claiming that the current state depends only on the previous state as is depicted in
equation 3.1. The set of possible values of X; is called state set and it is denoted
with T.

P(XnJrl =1 ’ X1 :tl,XQZtQ,...,Xn:tn) :P(XnJrl =1 | Xn:tn> (31)

where:

X1, Xs, ..., X, are random variables

Markov models may be used to model sequential events. We essentially, model the
probabilities of going from one state to another. They are used in NLP and speech
recognition to model sequences of words, numbers or other tokens. An alternative
representation of a Markov chains is a directed graph with S = {S;,---S,,} and
E = {&, --&,_1} where S and E denote the set of nodes and the set of edges re-
spectively. The edge &; connects the state S; and S;;; i and i+1 positions. Each &;
is labeled by the probability of going from S; — S; € &;. The probability of hopping
from one state to the next one is called transition and the matrix that stores the

transition is called transition matrix.

When time is not considered, the chain represents a finite state machine assigning a
probability of going from each vertex to an adjacent one. When the probability of
edge &; is zero then we exclude the edge &; in the graph. Figure 3.1 illustrates an
example of a finite state machine with S = {Sunny, Rainy, Partly cloudy} and the

transition probabilities of hopping between the pairs of states assigned on each edge.

37



0.3 0.5

F 3

Partly

Sunny l cloudy

(

Figure 3.1: Finite state machine with three possible states

Proposed Approach

The models described in the following subsections rely on a Markov chain where a
state X;,; depends on the two preceding states X, ; and X; for a state sequence
X = (Xy,...,Xn), where X; is a random variable. In Equation 3.2 it is depicted
the previously mentioned dependency. We define as T = {t1,ts, -+ ,ty} the state

space of Markov chain.

PXiy1=thn | Xi=t,....X;=t,) = P(Xiz1 =t | Xic1 =th1, X; =1,)
(3.2)
The limited horizon (Equation 3.2) is the first fundamental property of our Markov
chain. This dependency does not change over time - it is time invariant. For instance,
if the state t,,1 has 0.1 probability to occur after the states t,_; and t, at the
beginning of a document, this probability remains the same for the same sequence
of states at each other position in the document as it is depicted in Equation 3.3.

Time invariance is the second property of our Markov chain.
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P(Xz=thy1 | X1 =th1, Xo=1t,) = P(Xip1 =tp | Xic1 = th1, Xi=1t,) (3.3)

The transition matrix of the models is defined as: A = (a(t;,t;,t;)) where:

Cl(ti,tj,tk) = P(XtJrl = tk | Xt,1 = ti, Xt = tj) (34)
where:
M
alti tj ty) >0, Vi, j,kand Y a(ti,t; ) =1
k=1

The set of possible states are defined by the word classes that are a priori provided
to the model. The models that are introduced later in Section 3.5 are differentiated
by the type and number of the words classes that are considered. The groups are
crafted either manually or by using ranking methods for words in the corpus. Each
group contains words of similar structural function in the text. In this setting, we
introduce the notion of emission which is the probability of a word w® € V to emit
given the document class. In our case, the document class c¢; = on. The emission

matrix B = (b(w')), where b(w’) is as in 3.5:

b(w") = P(w' | cq = on) (3.5)

where:

K
b(w') > 0 and Zb(wi) =1
i=1

The value K is the cardinality of the vocabulary . Since we train our system on
one class documents, we refer to the emission probability as b(w') = P(w'). Our
proposed approach permits the emission of only a single word w® € V. In other
words, we consider uni-grams and ignore bi-grams, tri-grams et cetera emissions. The
b(w') calculation is provided in Formula 3.15. For a document d = (wy, ..., w,,), the

emission distribution assumes conditional word independence given the document
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class ¢4 as it is demonstrated in 3.6.

P(d | ¢g) = H P(w; | ¢q) (3.6)

The initial distribution of the Markov chain leaves the structure of Markov chain
unaffected. The initial probability matrix is II = (n(¢;,t;)) and it is calculated
in 3.7. The 7 (¢;,t;) denotes the probability of having the sequence (¢;,¢;) in the first
two positions of a document. We define the set S = T? to be the ordered pairs of

states.

W(ti,tj) = P(Xl = ti,XQ = tj> (37)

where:

The summary of the notation of the second order Markov chain we introduced above

is shown in Table 3.2

Set of states T ={ty,....txm}
Set of ordered pairs S = T?
Corpus vocabulary V={w! ...  wk}

Initial state probabilities (m(ti,t;), 1 <i,j <M

(b(w'), 1<i< K

IT
State transition probabilities A
B

Word emission probabilities

State sequence X ={X1,....,Xn}

Table 3.2: Proposed approach notation
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The following described models posit two classes of document d, C = {on, off}. The
models ignore any topic fluctuations, thus each single document discuss a sole topic,
which is either ‘on’ or ‘oft’. Any contingent topic transitions may result to ‘off’ clas-
sification. The models are trained to recognize ‘on’ documents only. The documents

not recognized as ‘on’ are considered to be ‘off’.

In fact, a document class depends on a range of factors like the topic distribution,
the context, et cetera. As stated, we posit that the document class depends solely on
the sequence of the states and the emission of the words. The algorithm takes advan-
tage of the class labels of the annotated documents and regards that the document
collection is generated only by considering that the employed words are influenced
by the two previous states. We refer to the introduced set of models with the name
Markovian Topic Identifiers (MTT).

The MTT are not ordinary topic classifiers since they are trained on instances of the
same class. They are trained on the “experience” of the dataset that discusses the
topic of our interest and they are employed to resolve whether an unknown document
is ‘on’ or ‘off’ the given topic. Shortly, they perform one-class classification since
they solely “learn” the properties of the ‘on’ topic and they are not trained on ‘off’

topics as binary classifiers require to perform.

The MTI models provide an exploratory analysis of the impact of different proper-
ties of word to recognize topics based on the semantics of the input. For example,
in subsection 3.5.1, we investigate the impact of stopwords in topic detection; thus
we consider two classes of words. One that reflects the stopwords and the other, the

rest of the vocabulary. Several other models are introduced in the following section.
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3.5 Word Groups Constitution

The primary objective of this process is to form groups of words that are data-
representative. The language sequential models that treat words as atomic units
suffer from sparsity [15]. Thus, in several different works [13], words are treated in
terms of clusters regarding a common role they exhibit. For instance, verb and nouns
words are studied to “unveil their semantic roles” [22] . The labor that it is needed
to train a statistical system to understand language is significantly reduced [22] since
fewer classes are considered compared to language models where each single word is

a class itself [15].

In this work, we form sets of words by following heuristic criteria exploring their
efficacy as prior knowledge on topic recognition. The sets are formed considering

linguistic components [59] i.e structural® or content? words.

We apply two different methods to form the word groups. Firstly, by manually
crafted (Subsection 3.5.1) the word sets and secondly by an explanatory analysis
of the dataset regarding different statistical measures (Subsection 3.5.2) that rank

terms regarding their “importance” to the topic class.

3.5.1 Manually Crafted Word Groups
The Role of Stopwords

This model explores the role of stopwords that topic models ignore [9] and Shoaib
[53] claims that “It is not clear the role that the stopwords play in topic modeling”.
Here, we define two groups, one consists of the stopwords and the other consists of

the content words of the document. The stopwords for the English language come

1Or functional are the words that convey a short lexical meaning and their main goal is to hold
the sentences together
20r lexical words words have meaning(s) i.e., nouns, verbs
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from the Stanford NLP? and counts three hundred and fifty nine words, and for the

German language come from nltk* stopwords list is one hundred and twenty nine.

Each word is assigned a tag value which corresponds its state in the Markov chain.
The stopwords are considered topic neutral; thus, they assigned the label ‘n’. The
rest of the terms considered to convey on-topic meaning; therefore, they are labeled
as ‘0’. Therefore, the transition set of states is T = {o,n}. We define as O the set of

‘on’ words and as N the set of neutral words, where O NN = ().

To map a document d to the transition sequence, we define a mapping function ¢:
D — K such that:

d = (wy,wa, ... wy,) — ¢(d) = (I(wy), [(ws),...1(w,,)) (3.8)
where:
K:OT”andI( ) =" ?wa@
n=1 n ifweN
and

Z = max ny

At the implementation level, we consider one more state that might appear only in
the test documents in case that we meet a word that never occurred in the training
set. This state is called “unknown” and it is denoted as ‘u’. We introduce this state
in order to enhance the discriminating power of our model. This state is assigned
to the unknown words of the test set and it never appears in the training corpus by
default. Considering the set of state T and the “unknown state” we estimate the
transition matrix A as in 3.19. The initial probabilities II are estimated as in 3.20.

The emission for a word w® € V is estimated as in Equation 3.18.

The state automaton has a state space S = T2. The current model automaton is

3http://www-nlp.stanford.edu/software/corenlp.shtml
4http://www.nltk.org
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illustrated in Figure 3.2. If S = {S},---S,} is the set of nodes of the state automa-
ton and E = {&,---&,} its set of edges, then, V 5;,5; € S, S; — S; ¢ E. This
means that we need to calculate a subset of all possible connection of the nodes of
the automaton. For example, there is not a directed edge between S; = (n,n) and
S; = (0,0) nodes because the probability of such a transition is zero. This decrease

the number of transition calculations in the model.

On each edge a label of the form P(¢; | t;,t;) is assigned that denotes the probability
to meet ¢; while the two previous states are (¢;, ty), where t;,¢;, ¢, € T. The transition,
in this case, is from state (t;,t) to (s, ;). For example, the edge &; : (0,n) — (n,n)
has a probability P(n | o,n) to occur. We refer to this model as Stopwords_Model.

P(n | n,n)

0

P(n|o,n) Plo | n,n)

Plo| o.n)

P(n | n,0)

P(n | 0,0} Plo | n.o)

Plo| o,0)

Figure 3.2: State diagram of Stopwords_Model
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3.5.2 Weighting Schemes Crafted Word Groups

In this set of models, we rely on a weighting schemes to constitute the initial groups
of words, we consider in our model. In literature exist several word selection methods
for dimensionality reduction that are important for tasks like clustering and docu-
ment classification. Some of the widely used methods are information gain, mutual
information and chi-square. As described in a comparative study by Yang et al.
[60] all of the previously mentioned methods are calculated in conjunction with the
classification classes. They rely on formulas that weight the words regarding to at
least two classes. In this work, we propose a system that relies only on one-class
documents. Thus, we need weighting schemes that are class independent. As a
rather promising approach [10, 49] that relies on the word frequency and the corpus
size, we use Term Frequency (TF)-Inverse Document Frequency (IDF) to extract the

“important” words and form groups of words.

TF-IDF Weighting Schema

The TF - IDF [50] was introduced as a weighting factor that reflects the “importance”
of a word w in a document d. For each word, the word frequency is calculated and
the inverse frequency of the word in the corpus I it is contained is also computed

according to the formula:

TFIDF(w,d, D) = TF(w,d) x IDF(w,D) (3.9)

where TF is the logarithmically scaled word frequency defined as:

TF(w,d) = log(f(w,d)+ 1) (3.10)
and the IDF scale factor for the “importance” of the word:

D)
[deD:wed|

TF-IDF is designed to attenuate the effect of terms that occur very often in a col-

IDF(w,D) = log (3.11)

lection of documents. TF-IDF scales down the term frequency of a word w by the
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reversed metric of the total number of documents containing the term w. TF-IDF is
used as an “importance” measure of the words in a collection of documents. In our

case, higher TF-IDF score implies higher topic importance.

The Role of TF-IDF

In this model, we use three sets of words. One is crafted by the stopwords and it
is denoted as N. The second consists by the first thousand most important words
with respect to TF-IDF ranking and is denoted by F and the third set is the rest of

the input vocabulary; denoted as Q. The previously defined sets are pairwise disjoint.

The set of states of the Markov model is T = {f, n, o} for the F, N and O respectively.
The TF-IDF is applied on the input dataset to rank the words regarding the input
documents. In this case, TF-IDF provides us with a ranked list of the words that

are considered to be important for the topic of our interest.

We define a mapping function ¢: ) — K that maps a document d to the transition

sequence as follows:

= (wy, wa, ... wy,) — &(d) = (I(wy), [(wa),...1I(w,,)) (3.12)
where:
p f ifwelF
K=|]JSs"and I(w)=4n ifweN
" o ifweO
and

7 = max ng

As in the Stopwords_Model, at the implementation level, we consider the “unknown
state” denoted as ‘u’. We need this state in order to enhance the discriminating

power of our model. This state is assigned to the unknown words of the test set
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and it never appears in the training corpus. Considering the set of state T and
the “unknown state” we estimate the transition matrix A as in 3.19. The initial
probabilities II are estimated as in 3.20. The emission matrix B is estimated as in
equation 3.18. The set of states for the finite state automaton of this model has a
set of states S = T2. We refer to this model by TF_IDF_model

The Role of Latent Dirichlet Allocation

In this model, we explore the discriminating power of the introduced sequential model
blended with groups of words produced by latent Dirichlet allocation. Latent Dirich-
let allocation is used to extract the corpus-wide topics of the dataset. It provides
the significant co-occurrent words in the collection sorted into a predefined number
of sets. We explore how the LDA topics fluctuation in the training set can be used

to recognize the input topic on unknown documents.

To extract the corpus-wide topic we utilize the LDA package® of R. The number of
topics are predefined to three. The total number of words into the three sets is nine
hundred and ninety. LDA topics as illustrated in Figure 1.1 can produce topics that
contain common words. In our case we craft the groups to be pairwise disjoint; we

select two hundred unique words for each set.

On that front, we assume that a word w' € V is assigned a tag value in T =
{p1,p2,p3,m,0}. The p; to ps represent the tags for the three topics extracted by
LDA. The tag n is assigned to stopwords and the tag o is assigned to the rest of the
vocabulary. We denote the corresponding sets as Py, Py, P3, N and O respectively.
We define a map function ¢ that maps a document d to a transition sequence as
follows: ¢: D — K such that:

d = (w1, ws, ... w,) — o(d) = (I(wy), I(wy),...1(w,)) (3.13)

Shttps://cran.r-project.org/web /packages/lda/lda.pdf
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where:
z p, fwel;, for1<i<3

K:US" and I(w)=qo0 ifwe (3.14)
n=1

n ifweN

and

7 = max ny

We refer to this model as LDAS3_Model.

3.6 MTI Training

In this section, we discuss the model inference parameters (Subsection 3.6.2) and
the document classification process of a new document (Subsection 3.6.3). Following
the document classification process we present a way to deal with the classification
boundary identification given that we have calculated the scores of only the on-
topic class documents. At the beginning (Subsection 3.6.1) we discuss the document

representation structure that facilitates the training process.

3.6.1 Document Representation and Pre-processing

Before discussing the inference and learning of the models parameters and the docu-
ment classification formalization it is important to discuss how a document is repre-
sented. The standard in statistical NLP and machine learning is the feature vector.
Feature vector provides the ability to deal with different text objects like words,
sentences et cetera. It facilitates the test of various hypothesis using different math-
ematical frameworks. The common BoW representation considers a document as a
probability distribution of words for a given vocabulary. In this case, a feature vec-
tor is a set of unique words its one assigned a positive real number lower than one,
which represents a probability. Other options exist where instead of a probability
the frequency or a boolean value that denotes the word existence occur. Generally,

a feature vector can contain several feature like the document length or other infor-
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mation related to the text.

Our representation retain the entire collection of documents as it is. The fundamental
idea is to store each document in a form of tri-grams to facilitate the mathematical
calculations. For instance the document: “The unemployment rate was projected”
is represented in the form of trigrams as: {[The, unemployment, rate|, [unemploy-
ment, rate, was|, [rate, was projected|}. This technique is used in other domains
like speech recognition or language modeling. The trigram representation although

requires more storage capacity eases the implementation of the model.

Moreover, we discard any punctuation of the source text and convert all words in
lower case. Since we are interested of the word sets fluctuations and not the word
fluctuations itself; our approach is not influenced by the different forms of the same
word stems because they exhibit high probability to co-exist in the same predefined

groups.

3.6.2 Inference and Learning

The models described in 3.5.1 and 3.5.2 rely on a Markov chain. To infer the model
parameters we need to calculate the Bayesian statistics of the model. As introduced
in section 3.4 the transition, emission and initial probabilities need to be estimated

on the training set.

The most intuitive way to estimate probabilities is the Maximum Likelihood Es-
timation (MLE). The MLE estimations are frequents counts normalized to receive
values between zero and one. For a fixed set of observed data, MLE parameter values
provide the maximum probability of the training corpus. The MLE estimators are

denoted with the ~ symbol to discriminate from probability values.

The training data consists of documents where each document d = (wy,...,wy,)
is paired with the hidden state sequence ¢(d) = (I(wy), I(ws),...I(w,,)) provided
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by the ¢: D — K function of each model, where I(w;) € T. We define N(w*)
and N (tg,t;,t;) the number of times the word w is observed in the corpus and the
number of times the hidden sequence (¢;, t;, t;) has been observed in the training
corpus respectively.

Given the above definitions, the maximum likelihood estimates are:

N(w?)

wieV
X N(tzatﬂ7tk>
B B 1
a(tnt]’t’f) 3 N(tiytj7tk> e
tp€T

and

{deD | (I(wy), I(ws)) = (ti ;) }]

Rt 1) = 5

(3.17)

The a(t;, t;, ), b(w') and 7 (t;,t;) do not consider events that are not present in the
training corpus making the probability of observed events the higher it can be. In
NLP, even if we use a large training collection of documents, it is very likely that in
the test corpus we meet words unseen in the training corpus. The MLE assign zero
probabilities to unseen words/states or combinations of them; these zeros will prop-

agate through the multiplication of subparts probabilities ending up to bad classifiers.

To resolve the issues that arise from data sparseness, we need to assign some proba-
bility mass to unseen events. Therefore, we utilize a smoothing method to consider
some probability mass for events never occurred in the training set. One simple way
to smooth the probabilities is by adding one to zeros and on the other hand, we
reduce the non-zeros ones. In other words, we discount the non-zero probabilities to
get the probability mass that we assign to the zero counts. This method is called

Laplace smoothing [44].

Considering Laplace smoothing we update Formulas 3.15, 3.16 and 3.17 as follows:
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~ 1+ N(w')

') = = N (3.18)
wieV
At by ty) = |T|1+sz(§3<z’,2?tk> (3.19)
and
(i) = 1+ [{deD | (I(w), [(w)) = (t;,1;)}] (3.20)

S|+ D]

In 3.18 we ensure that unseen words in a test document receive a non-zero proba-

_ 1
V]

generated words is very significant, more than the transitions probabilities since it

bility. In particular, each unseen word w is assigned P(w) Smoothing the

might exist many new words that do not emit in the training corpus.

Similarly, in 3.19 we assign a probability mass of P(ty | t;,t;) = IT%I for each unseen

transition £ : (¢;,t;) — (¢, ). For each unseen pair (¢;,¢;) of initial probabilities we
1

assign probability mass of P(¢;,t;) = ) as it is provided by 3.20.

3.6.3 Document Classification

The classification of a new unknown document d relies on the two following tasks.
First, we map d to a topic space regarding a score we introduce in this section.
Second, we deduce ‘on’ class for d whether its classification score falls into the clas-

sification boundary created by the topic scores of the training documents.

Usually, in probabilistic binary classification methods we infer about the class of
document d according to the probabilities of d to belong ¢; or ¢y class. The class

cq € {c1, o} is the class where P(cq | d) is maximized:
P(cq | d) = maz{P(c; | d), P(c2 | d)}
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In our model, we can not use the probability as a classification measure since we
train our system in solely one class. Instead, we use a topic score that is derived
directly from the posterior probability P(cy = on | d), which is the probability of the

document d to belong to class ¢4 = on.

To achieve the classification of d = (wy, ws, ..., w,,) into two classes C = {on, off },
we need the corresponding ¢ function, ¢: D — K for each model introduced in 3.5.1
to 3.5.2 that maps the document d into the sequence of states ¢(d). The probability
of d to be ‘on’ given the transition sequence ¢(d) is P(cq = on | d). Using Bayes

rule, P(cg = on | d) is estimated as follows:

P(cg=on | d) oc P(d | cq = on)

where:
P(d | cg=on) =7(I(wy), I(wy)) * blwy) * b(ws) Ha([(wi,g, I(w;—1), I(w;)) * b(w;)

(3.21)
We logarithm over 3.21 and normalize dividing by document length to yield length
independent scores. We refer to the above-introduced score as Logarithmic Topic

Score (LTS).

log(m (1 (wn), I(w2)) * b(wr) * b(ws)) + idi[log(a(f (Wi-2), I(wi-1), I (w;))) + log(b(ws))]
LTS = =

g

(3.22)
We believe that documents of the same topic yield scores concentrated around a lim-
ited area. Documents that exhibit high frequency of words the are not in the training
set, we forsee, to have high LTS score because we assign a small emission probability
to unknown words. Documents that have vocabularies close to the training set but

of different topic we expect to have different fluctuation of the Markov states, thus
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values located on different areas of input corpus. In the next subsection 3.6.4 we

introduce the method that we determine the topic boundary.

3.6.4 Classification Boundary Identification

In this section, we handle the issue of identifying a classification boundary given the
value space of only one class of documents. We want to identify the bounding values

of the LTS topic score distribution of the training corpus.

In literature two approaches have been proposed to address one-class classification
problems. In 1999 Scholkopf et al. [52] extended SVM to deal with solely one-class

instances. Scholkopf proposed a way to identify a boundary given data of one class.

First, they use a kernel function to map data to a feature space F and then they
setup an optimization problem in which they separate the mapped data from the
origin using the conventional support vector machines technique. The classification
function returns +1 in a confined region where the training data points are located

and -1 elsewhere.

In 2004 Dax et al. [20] proposed a method that provides a hyperspherical boundary
in feature space that surrounds the training data points. The spherical classification
boundary is described by a center o and a radius R. The center is a linear com-
bination of support vectors and the distance of all data points from the center is
less than R. The soft margin penalized technique (Subsection 2.2.2) is used for data
points where the distance is greater than R. This problem is an optimization problem

where they minimize the outliers effect.

Practically, to specify the topic boundary we use the e1071 library or R-project which
implements the LIBSVM [16] library of SVM. The implementation of e1071 library
follows Scholkopf’s implementation [52] The tolerance of the boundary to outliers is

determined by the v parameter, where v € (0,1). The lower value v receives, the
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fewer outlier ratio it exhibits as is depicted in 3.3.

decision

[ ] decision

Figure 3.3: Boundary variation on different v values

o4



Chapter 4

MTI1 Evaluation

4.1 Data Acquisition

In this thesis, we obtain data for three different evaluation scenarios. We gather
documents that discuss the topic that we train our model. This consists the gold
standard dataset. Some more datasets are obtained to evaluate the discriminating
power of our model that exhibit low and high vocabulary overlapping to the gold

standard dataset.

4.1.1 Federal Reserve Datasets

We download documents from Federal Reserve Bank (FED) of the United States.
FED is the central bank of the USA and its main goals are to provide the USA
with a safer, more flexible, and more stable monetary and financial system. The
first corpus is called Federal Reserve Open Market Committee (FOMC) and it is the
gold standard document that we train our model. The second dataset we collect
comes also from FED and it is called Beige Book. We select these datasets because
they are in well written English, they are issued by the same institute and they both
lay on the same domain. They discuss different financial aspects concerning the US

economy and we assume that regardless their different themes that maybe exist in,
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each collection discusses one particular topic.

Federal Open Market Committee Corpus

The emphasis of the gold standard dataset is on a particular topic. We download
FOMC documents between the years 2007 and the end of 2014. The gold standard
comprises the official releases of the Federal Open Market Committee of Federal Re-
serve concerning the monetary policy decision in the United States. These reports
are released eight times per year. Furthermore, it comprises the corresponding meet-
ing Minutes that include personalized statements and further policy details released
three weeks after the date of the policy decision. In addition to FOMC, an FEco-
nomic Projection is issued to supplement FOMC releases four times annually. The
data include charts and figures that are not subject to this work. The number of
the documents that consist the gold standard dataset is one hundred and fifty eight.
The dataset is downloaded from the official website! of the Federal Reserve Bank of
the United States.

Beige Book Corpus

The second collection of documents is used to evaluate the performance of our model
in the case that we have documents of the same domain. This dataset consisting
of the Beige Book summaries. The Beige Book summaries are released two weeks
before FOMC meetings and eight times per year exposing anecdotal information
about the current economic conditions in its District sourced by banks, economists,
market experts et cetera. This corpus consists of brief and extended reports for each
event from 2007 and the end of 2014. The corpus counts one hundred and twelve

documents downloaded from the official website of FED.

http://www.federalreserve.gov/monetarypolicy/default.htm
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4.1.2 American National Corpus

The third dataset is the generic Manually Annotated Sub-Corpus (MASC) corpus
part of the Open American National Corpus (OANC) downloaded from the official
website?. It is a balanced collection of mainly written texts of half million words
of contemporary American English. It is comprised of nineteen different genres
of text discussing different topics. The corpus has been manually annotated by
the authors for logical structure, tokenizations and part-of-speech, name entities et
cetera. OANC and MASC rely on contributions of data from various linguistics
and NLP communities. The genres distribution is demonstrated in Table 4.1. The

number of documents of MASC is three hundred and ninety.

Genre No. words Pct corpus
Court transcript 30052 6%
Debate transcript 32325 6%
Email 27642 6%
Essay 25590 5%
Fiction 31518 6%
Gov’t documents 24578 5%
Journal 25635 5%
Letters 23325 5%
Newspaper 23545 5%
Non-fiction 25182 5%
Spoken 25783 5%
Technical 27895 6%
Travel guides 26708 5%
Twitter 24180 5%
Blog 28199 6%
Ficlets 26299 5%
Movie script 28240 6%
Spam 23490 5%
Jokes 26582 5%

Table 4.1: MASC topics specification

2http://www.anc.org/
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4.1.3 HC German Corpora

HC is a German corpus consist of documents of published on three different source,
newspapers, web blogs and twitter. The list of some of the sources and the number
of documents collected from each one of them is depicted in Table 4.3%. The corpus
is downloaded from the original source® preserving only the news items that come

from newspapers and magazines.

The list of documents available from newspapers and magazines are assigned the
code numbers one and two respectively. The dataset contains documents that lay on
twenty-eight different categories assigned specific codes that denote the topic of each
document. Some of the topics of HC corpus are Politics, environment, food, health,

crime & law, travel, arts, sport, science and technology, travel et cetera.

We retrieve the documents that are about health, crime & law, and travel and discard
all the rest. These three categories contain a number of documents that ensure the
statistical significance of our experiments and at the same time the processing time
remains acceptable. The number of documents that we retain for each of the three

topics is shown in Table 4.2.

Topic No. of document
Health 1150

Crime & Law 501

Travel 1138

Table 4.2: HC topics-documents specification

3Downloaded from http://www.corpora.heliohost.org/statistics.html
4http://www.corpora.heliohost.org/

58



Source

spiegel.de
sueddeutsche.de
tagesspiegel.de
muensterschezeitung.de
abendblatt.de
stern.de

zeit.de

welt.de
handelsblatt.com
kn-online.de
rp-online.de

focus.de

faz.net
ruhrnachrichten.de
noz.de
augsburger-allgemeine.de
In-online.de
derwesten.de
an-online.de
badische-zeitung.de
jungewelt.de

haz.de

fazfinance.net
az-web.de
neues-deutschland.de
taz.de

blogger.de
blogmonster.de
twitter.com

No. of document
4931
1251
1104
1611
3461
3143
2775
3517
1159
126
4265
831
4396
1567
4595
3567
142
1061
3912
229
517
571
4021
3908
4662
635
7935
5353
947774

Table 4.3: HC corpus sources
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4.1.4 Corpora Overview

An overview of the corpora specifications is depicted in Table 4.4. It is provided
the number of documents for each corpus, the vocabulary size, the number of tokens

each dataset consists of and the mean document length.

Corpus Documents Vocabulary | Tokens Mean Document Length
FOMC 158 6000 500,000 3,259

Beige Book 112 9000 1,200,000 10,721

MASC 390 35,000 500,000 1,317

HC Health 1150 38,000 280,000 211

HC Crime & Law | 501 13,000 60,000 117

HC Travel 1138 54,000 400,000 341

Table 4.4: Corpora specification

4.2 Validation Techniques

In machine learning beside the model selection and its parameters inference, we
address the problem of model validation. Obviously, the dataset and the model se-
lection process are linked in such a way where we choose the model that exhibits
the lower error rate on the training dataset. It would be ideal if we could utilize the
whole training set to estimate the hit and error rate of the model. However, machine
learning algorithms tend to “learn” in a satisfactory way the training set but lack
generalization. In other words, they memorize the training samples than represent-
ing the underlying relationships. On that front, they exhibit worse performance on
the unknown datasets they are applied; a potential performance estimation on the

training dataset tends to be optimistic with respect to the test set.

In literature, this is called owverfitting and several methods have been proposed to

estimate the efficacy of the model in a realistic way. Following we present the three
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methods that are widely used to validate supervised machine learning algorithms

with respect to a particular dataset.

Hold-Out Validation

A common approach is the hold-out method where the training set is split into two
disjoint sets where one of them is used to train the model and the other to estimate
its performance and it is called test set (Figure 4.1). Usually, the training set pos-
sesses the higher proportion of the training set since sufficient number of samples
need to be fed to the algorithm for its parameters to be estimated properly. The
proportion of the training set might be split into two third and one third for the
learning and the test set respectively. In practice, different proportions can be used

depending on the size of the training set and the complexity of the model.

Data

<

Training Test

Figure 4.1: Holdout validation method

Hold-out exhibits two significant shortcomings. Considering the learning curve in
Figure 4.2, where the model accuracy increases with the size of the training set, the
hold-out efficacy estimation is pessimistic since only a part of the of the training set
is used for model training. Moreover, it may happen that the learning set proportion
is not sufficiently representative deriving a misleading efficacy estimation. This is
due to the fact that the hold-out method relies on a singular split of the train and

test set.

61



Test Accuracy

—o— Leamer 1

—— Leoarmer 2
#r— Learmer 3
& Leamer 4

—»— Leamer 5

1 10 0 1000
Size of Tranng Compus (Miions of Whrds)

Figure 4.2: Learning curve of different learners on text data [2]. It demonstrates the
rising accuracy performance as the training set is increasing.

Cross Validation

In k-fold cross-validation, the training set S is partitioned in k disjoint equal sized
folds Si, Ss, ... Sk. The validation is repeated k times and for each iteration one of the
k folds is used for validation and the rest k-1 is used for learning. For each iteration
i€{1,2,...k} the algorithm is trained on S\S; and tested on S; as is illustrated in
Figure 4.3, for k = 5. The supervised method efficacy is estimated on every of the k
subsamples. Practically, the validation is performed on the entire training set and the

error rate is the average of the errors on the k iterations [40] as shown in equation 4.1

k

1
Cavg = 7 Z e; (4.1)

i=1
The advantage of cross-validation compared with the hold-out method is that the
whole set is used for training and testing. In this setting we avoid inappropriate
splits that lead to inaccurate performance estimations that are too pessimistic for

the model. The average error estimation provides us with more realistic efficacy
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estimation.

Data

1

Training Test

Test

Test

Test

Test

Figure 4.3: Cross-validation method with five folds. Each iteration uses the one fifth
of the data for testing. The five folds are equally sized and disjoint.
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An important point concerning k-fold cross validation is the criteria that we choose
the value of k. In general, it is a trade-off between efficacy estimation and compu-
tational time. In case that k is large, the bias of the error estimate is small and
the efficacy assessment is pragmatic. On the other hand, the computational time to
perform more iteration is expensive considering that some of the machine learning
models exhibit high computational complexity. In case that k is small, the bias of
the error is higher and the estimator is conservative. Apparently, the iterations are

less and the computational time is reduced.

In general, the choice of the number of cross-validation iterations is practically cor-
related with the size of the dataset. For large datasets, even three iterations could
provide sufficiently accurate error estimates, but more iterations are needed on sparse
datasets to receive an accurate estimation. The commonly used value for k is ten;

the test set on each iteration is the ten percent of the entire training set then.

Leave-One-Out Validation

Leave-one-out is analogous to cross-validation. In a set of N training samples, N-1 are
used for the learning phase and one for efficacy estimation. The process is repeated
N times since all the dataset samples are used for testing. In this extreme case of
cross-validation, the error estimate is unbiased but it could exhibit high variance.
Moreover, the computational cost is the highest since the number of folds is equal
to the number of training instances. For each fold, a new model has to be trained

making this validation method slow.

This approach is suitable when there is not sufficient number of data or they are not
properly distributed in order to be split into training and test set as in conventional
validating approaches. Ultimately, it is sensible to use five or ten-fold cross validation

since they appear to be quite effective in practice.
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4.3 Evaluation Measures

In literature different evaluation methods have been developed to measure the per-
formance of classification systems. In this section, we present several measures that
can be used on binary classification to measure the efficacy of the positive and neg-
ative samples or of the entire test set. All of the classification measures we present

in this section are based on a confusion matrix as it is illustrated in table 4.5

Prediction outcome

total
True False P
Positive || Negative
52
25
False True N
Positive || Negative

Table 4.5: Confusion matrix

The binary classification performance is described by a number of measures that facil-
itate the performance estimation based on different statistical observations. Firstly,
we describe what the values true positive/negative and false positive/negative rep-

resent in table 4.6.

In table 4.7 we summarize the most important measures. We denote X and X the
random variables for the class and the prediction respectively. We refer to the true
positives as TP, the true negatives as TN, the false positives as FP and the false
negatives as FN. The positive samples are P and the negatives are N, the positive

and negative class is @ and © respectively.
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Terminology Description

True Positive A p‘o'srclve sample which is classified as
positive

L A i le which is classifi
False Positive nggatlve sample which is classified as
positive

A negative sample which is classified as

True Negative :
negative

A positive sample which is classified as

False Negative :
negative

Table 4.6: Terminology of confusion matrix

Following we introduce the most important measures to evaluate classifications sys-
tems. We provide the values of accuracy, recall, specificity, precision and Matthews

correlation coefficient our models achieve in the Section 4.4.

The accuracy of a classifier is the ratio of correctly classified samples:

Correctly classified samples TP+TN

A = = 4.2
couracy Test size PrTN+ PP N 4P
Precision represents the ratio of positive prediction that is correct.
Precisi Correctly classified positive samples TP (4.3)
recision = = )
Positive classified samples TP+ FP

Recall represents the ratio of positive labeled samples that are correctly predicted.

It is also known as sensitivity or true positive rate.

Correctly classified positive samples TP

Recall = =
cea Positive samples TP+ FN

(4.4)
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Specificity represents the ratio of negative labeled samples that are correctly pre-

dicted.

Correctly classified negative samples TN
Negative samples TN+ FP

Speci ficity = (4.5)
False positive rate (FPR) represents the ratio of negative labeled samples that are

misclassified as positive.

Correctly classified negative samples FpP

FPR = =
Negative samples FP+TN

(4.6)

F} score is the harmonic mean of precision and recall. It receives values Fy € [0,1],
where 1 is the best score and 0 is the worst. Good classification algorithms maximize
precision and recall simultaneously. In general, a classifier that exhibits a moderate
good performance on both is favored over overly high performance on only one of
them.

preciston - recall

Fi=2 (4.7)

precision + recall

Matthews Correlation Coefficient (MCC) [43] is a quality measure of a binary clas-
sification. It returns the correlation coefficient between the actual and the predicted
class values. The coefficient value MCC € [-1,1]. MCC = -1 is the worst value MCC
receives since it denotes a total discrepancy between the actual and the predicted
values. MCC = 1 denotes a perfect concordance between the actual and the pre-
dicted values. MCC = 0 denotes a prediction not superior to the random classifier®.
The advantage of MCC is that it can be used even if the two classes possess different
proportion whereas metrics like accuracy, precision, recall, specificity etc are mis-
leading if they are not contrasted with random classifier predictions. MCC is also

known as phi coefficient.

5A random classifier is the classifier that predicts always according to the class that possesses
the higher proportion in the training set
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where:

Metric

Accuracy

Precision

Recall or Sensitivity

Specificity or True

Positive Rate

False Positive Rate

MCC® or Phi Coeffi-

cient

F Score

Rate of Positive Pre-
dictions

Rate of Negative Pre-
dictions

Lr_s.p

Mee= VP S0-5)1-P)

N=TN +TP+FN + FP,

g_TP+FN

-

TP+ FP

P="—_~-
N

Description

Returns a classification quality
measure with respect to random

classifier.

Represents the harmonic mean of

precision and recall.

P(X = @)

P(X = ©)

(4.8)

Estimation

ACC = LE2IN

PREC = £

TP+FP

REC = I
SPEC = LX
FPR = ££

TP TN—FP-FN

MCC =
\/P(TP+FP)-(TN+FN)-N

precision-recall
precision+recall

F1:2

TP+FP
RPP = T£4EF

_ T'N+FN
RNP = TN+F

Table 4.7: Classification performance measures

SMCC returns a value C € [-1,1]. C = 0 implies a random prediction. C = 1 implies a perfect
prediction. C < 0 implies a worse than random prediction
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4.4 Results

In this section we proceed to the MTI (Chapter 3) evaluation results. We propose
three evaluation scenarios the outcome of which we discuss subsequently. The first
scenario evaluates the Stopwords_Model, TF_IDF_Model and LDA3_Model of Sub-
section 3.5.1 and 3.5.2 in comparison with two widely used binary classifiers NB and
SVM presented in Section 2.2. The datasets the three models discriminate are the
FOMC and the MASC corpus presented in Subsection 4.1. In the second scenario,
our models are evaluated on the FOMC and Beige Book corpora. The Markovian
topic identifiers are compared with NB and SVM as in the first scenario. In the third
scenario, Stopwords_Model and TF_IDF_Model are evaluated on two subcases to ex-
plore their performance on German language and on other than financial documents.
We conduct two tests, one the HC Health against the HC Crime & Law corpus and
the other the HC Health corpus against the HC Travel corpus. In both cases, the

on-topic documents are the ones of the health topic.

In both experimental scenarios we take into account the following evaluation metrics:
Precision, recall, accuracy, specificity and MCC introduced in Table 4.7. All the tests

are conducted using a ten-fold cross-validation method presented in Subsection 4.2.

We choose the precision (PREC) and recall (REC) measures for our models because
we are interested in the percentage of positive predictions that are correct and the
the percentage of positive labeled instances that were predicted as positive. We ex-
amine how our models deal with the recognition of on-topic documents since they are
trained on them. Furthermore, we calculate the specificity of our models to explore

how accurately our model discard off-topic documents.

The MCC is used because it is a comparison coefficient between the proposed model
and the default classifier. In our case the compared corpora are unbalanced, so the
default classifier achieves accuracy higher than fifty percent. MCC provides us with

a numerical value of how much better our classifier is regarding the default classi-
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fier. The accuracy (ACC) provides the proportion of predictions that are correct but
it should be interpreted in contradistinction with the default classifier performance

otherwise it can be misleading.

As it was presented in Subsections 3.6.4 a classification boundary is calculated given
the topic scores LTS of the training collection. To do so the one class SVM method
is used [52]. The selection of the v (Subsection 3.6.4) value is important since it
dramatically influence the classification performance. When 0.1 < v < 0.3 we notice
that we achieve high accuracy values in all the scenarios. In particular, in the ma-
jority of the scenarios when v = 0.3, we achieve the highest performance values. To
keep it uniform we select v = 0.3 for all scenarios, since even if we do not reach the
highest performance values we are close to them. The selection of v = 0.3 does not

change the rank of the performance of MTI models in each scenario.

The classification tasks and the processing steps of the algorithms were implemented
in R-project and some corresponding CRAN [55] libraries that implement different
classification, evaluation and plotting tools. Weka’ was used to apply the baseline
classifications of NB and SVM. Weka [61] provides an easy and convenient environ-
ment to perform plenty of data mining and machine learning tasks. It is an open
source framework implemented in Java that provides, among the implementation of
popular algorithms, other pre-processing and manipulation tools and graphic repre-

sentation facilities.

4.4.1 Evaluation Classifiers Selection

In both experimental scenarios, we compare our models performance with the base-
line results provided by the other two classifiers, NB and SVM. In literature exist
several other classifiers that are used for text classification. We select the multi-

nomial NB because it is a primitive classifiers than rely solely on the bag-of-words

"Weka stands for Waikato Environment for Knowledge Analysis
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representation without the utilization of extra weighting methods or optimizations.
It uses only the emissions of the words given the class to discriminate between the
two classes. The MTI models rely also on the emissions (Subsection 3.6.2) with the
extra property of the word sequences provided by the transitions (Subsection 3.6.2).
NB provides in our case the “ground zero” to study our research questions 1 and 2

presented in Section 1.3.

The selection of SVM as the second baseline classifier is preferred since it is effective
in text classification [35] providing an upper bound of the efficiency of our models.
SVM are effective in text classification since they provide zero weight to the words
that do not contribute to discrimination and weights the terms that support the
classification process (support vectors). In its soft margin version, they penalize the
missclassified terms and using the kernel trick (Subsection 2.2.2). they exhibit high

discriminating efficiency.

Having a baseline comparison framework in one’s disposal we can identify how well
our models perform. The baseline performance of NB and SVM facilitates a com-
parison between the baseline provided results and the efficiency of the introduced
models preserving the same input. Herein, the aspect of evaluating the topic recog-
nition performance of the Markovian topic identifiers is examined. The topic recog-
nition is evaluated in terms of classification performance between ‘on’ and ‘off” topic

istances.

4.4.2 Experimental Scenario 1

In this scenario, we evaluate the performance of Stopwords_model, TF_IDF _model
and LDA3_Model as described in Section 3.5 on the two dataset that discusses dif-
ferent topics. The dataset we train our model is the FOMC dataset that has a clear
financial orientation (Section 4.1). The topic of FOMC documents is the monetary

policy in the USA. The topic of FOMC is the one we intend to recognize.
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The dataset that we use to evaluate our model in conjunction with FOMC is the
MASC corpus. It is a generic dataset that discusses several topics covering different
domains. We examine the efficacy of our method on “learning” the ninety percent
of FOMC and recognize it among the rest ten percent set of FOMC and the entire

MASC corpus documents in a single iteration of a cross-validation setup.

We consider this as the “easy” case since the topics of the two collections are clearly
different and lay on different domains. Thus, in this scenario we use as baseline
classifiers NB and SVM, as discussed in 4.4.1, to be the “ground zero” of our models

performance estimation.

Classifier PREC | REC | ACC(%) SPEC | MCC | Kernel
NB 0.90 0.90 99.4 1 0.90 —
SVM 0.90 0.90 99.2 0.90 0.90 Radial
Stopwords_Model | 1 0.81 99.2 1 0.90 —
TF_IDF _Model 1 0.83 99.3 1 0.91 —
LDA3_Model 1 0.63 98.5 1 0.79 —

Table 4.8: Classification results - Experimental scenario I

At a first glance of the models accuracy in Table 4.8 we realize that all of them
classify with high accuracy, greater than ninety-eight percent. MCC shows that the
majority of methods perform much better that the default classifiers since MCC
value is close to one. The MCC value of LDA3_Model is significantly lower that
all the other models. The reason is that its recall REC = 0.63 is low. Considering
Stopwords_Model and TF_IDF_Model we notice that both reach with efficacy on this

scenario.

The precision (PREC) and specificity (SPEC) of Stopwords_Model, TF_IDF_Model
and LDA3_Model is one. In other words the percentage of positive predictions that
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are correct is one hundred percent; and the percentage of negative labeled instances
that are predicted as negative is one hundred percent respectively. This means that

our models don’t have false positive but they exhibit a number of false negatives.

In absolute number, one to five documents are miss-classified as negative in the first
two proposed models during the ten-fold cross-validation iterations. For LDA3_Model
the number of miss-classified documents are three to seven. In Tables A.1, B.1
and C.1 are exposed the numbers of documents classified in each iteration. A rea-
son for that might be a miss-classification error of one-class SVM and/or the lack
of enough samples for the proposed models to unveil properly the FOMC structure.
Taking into consideration the values of precision and specificity we realize that our
models can miss-classify a positive sample but they never miss-classify a negative
sample. In other words the resulted positive classified documents discuss the topic

of our interest.

4.4.3 Experimental Scenario II

In this scenario, we evaluate the performance of Stopwords_Model, TF_IDF_Model
and LDA3_Model on the two datasets that discuss different topics but lay on the
same domain. The two datasets are the FOMC, that discuss the monetary policy
in the US, and the Beige Book. Both of them have clear financial orientations and

issued by Federal Reserve Bank.

We consider this as the “difficult” case since the topics of the two collection fall into
the same domain. As previously we use as baseline classifiers NB and SVM to be
provided with “ground zero” performance of two widely used methods on text. As
we can see in Table 4.9, NB exhibits an accuracy of fifty-eight percent, which is ap-
parently poor. It classifies as bad as the random classifier does since MCC measure is
zero. The reason is that in NB the entire vocabulary contributes to the classification

of the two corpora of similar terminology.

73



On the other hand SVM classification accuracy rockets to more than ninety-nine
percent. The reason for this is that support vector machines classify regarding a
subset of the training set. In particular, it identifies the words (support vectors)
that have some discriminating power and weights zero to the rest of the vocabulary.
The MCC classification performance of SVM is close to one which means an almost

perfect efficacy compared to the default classifier.

Classifier PREC | REC | ACC(%) SPEC | MCC | Kernel
NB 0.34 0.58 58.4 0 0 —

SVM 0.99 0.99 99.6 0.99 0.99 Radial
Stopwords_Model | 1 0.66 95.8 1 0.79 —
TF_IDF _Model 1 0.82 97.7 1 0.90 —
LDA3_Model 1 0.64 95.6 1 0.78 —

Table 4.9: Classification results - Experimental scenario II

As in experimental Scenario I of Subsection 4.4.2 the precision (PREC) and speci-
ficity (SPEC) of Stopwords_Model and TF_IDF_Model is one. This means that our
models do not have false positive but they have a number of false negatives. In
absolute numbers three to eight documents are miss-classified as negative in the
Stopwords_Model during the ten-fold cross-validation iteration (Table A.2) and one
to four for TF_IDF_Model (Table B.2). For LDA3_Model the miss-classified docu-
ment are three to nine as depicted in Table C.2 Considering the values of precision
and specificity we realize that our models can miss-classify a positive sample but they
never miss-classify a negative sample. This means that the resulted positive classified

documents discuss the topic of our interest.

Comparing the three proposed methods we realize that TF_IDF_Model outperforms
Stopwords_Model and LDA3_Model. In particular, the accuracy is better (about
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ninety-eight instead of about ninety-six percent of the other two models) and the re-
call of TF_IDF_Model is twenty five percent higher that the one of Stopwords_Model
and LDA3_Model. The MCC measure indicates again that the TF_IDF_Model clas-
sifies better that other two proposed models with respect to the default classifier.

4.4.4 Experimental scenario 111

In this scenario we evaluate the performance of Stopwords_model and TF_IDF _model
as described in Section 3.5 on a different language than English and different domains
that finance. We conduct two experiments, both on German language but different
topics. In the first experiment we train our model on HC Health corpus against the
HC Crime & Law corpus, the specifications of them are presented in Table 4.4. We
discard LDA3_Model since it exhibits lower discriminating performance than Stop-
word_Model and TF_IDF_Model.

In the second experiment, we evaluate the performance of HC Health corpus against
HC Travel corpus (Table 4.4). In the following two subsections, we discuss the effi-

cacy of our models by the measurements provided in Tables 4.10 and 4.11.

Health versus Crime & Law

Classifier PREC | REC | ACC(%) | SPEC | MCC
Stopwords_Model | 0.82 0.79 93 0.96 0.76
TF_IDF_Model 0.75 0.78 91.1 0.94 0.71

Table 4.10: Experimental Scenario III - Health vs Crime & Law

At a first glance of the models performance in Table 4.10 we realize that both models

exhibit high accuracy greater than ninety percent. The MCC value indicates that
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both classify significantly better than default classifier since both values are signifi-
cantly higher than zero. Comparing Stopwords_Model and TF_IDF_Model we notice

that the former performs slightly better in contrast to scenarios I and II.

The recall values are very close to both models, slightly lower than 0.8. As in scenar-
ios I and II, a number of false negatives exist; in other words about eighty percent of
the ‘on’ instances are predicted correctly. What it is different regarding the scenario
I and II is that in this case we have a number of false positives; this means that a
proportion of eighty-two percent and seventy-five percent of the ‘on’ classified docu-

ments are correct in Stopwords_Model and TF_IDF_Model respectively.

The precision values exhibit some difference, since Stopwords_Model is nine percent
higher than TF_IDF_Model and both, are close to one. This means that a num-
ber of false positives exist when dealing with the German language. In contrast, in
scenarios I and II the number of false positives was zero. Furthermore, Specificity
rockets close to one for both models which means that as in scenarios I and II our
proposed models are very effective on the percentage of correctly classified ‘off” docu-
ments since its higher than ninety-four percent for both models. We notice the same
in scenarios I and II since both reach the highest value of precision. The absolute

numbers of miss-classifications can be seen in Tables A.3 and B.3).

Health versus Travel

Classifier PREC | REC | ACC(%) SPEC | MCC
Stopwords_Model | 0.76 0.79 95.8 0.97 0.75
TF_IDF _Model 0.76 0.70 95.2 0.98 0.70

Table 4.11: Experimental Scenario III - Health vs Travel

In Table 4.11 we observe that both models have accuracy values that are close and
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greater than ninety-five percent. The MCC value indicates that both classify signif-
icantly better than default classifier since both values are apparently greater than
zero. Comparing Stopwords_Model and TF_IDF _Model we notice that the former

performs slightly better in contrast to scenarios I and II.

The precision values are identical and lower than 0.8. In other words a number of false
positives exist as in the previous experiment of HC Health versus HC Crime & Law.
Likewise, we realize that our models exhibit a significant number of false positives
when dealing with the German language. The recall values are different. In partic-
ular, Stopwords_Model has twelve percent higher recall value than TF_IDF_Model.
In contrast to the first two experimental scenarios where recall is one, a significant

number of false negatives exist.

Specificity rockets close to one for both models. Similarly, as in scenarios I and II our
proposed models can effectively discard ‘off’ documents since specificity is greater
than ninety-seven percent for both models. We observe the same in scenarios I and
IT since both reach the highest value of precision. The absolute numbers of miss-

classifications can be seen in Tables A.4 and B.4).

4.4.5 Word Order Impact on Topic Recognition

In this chapter, we perform an exploratory analysis of the impact of word order on
topic recognition. We essentially study the research question three we pose in Sec-
tion 1.3. We conduct a number of experiments to prove that the topic of a collection
of documents is bound to a particular word order. As Wallach depicted in her work
[56] the documents A, B “the department chair couches offers” [56] and “the chair
department offers couches” respectively exhibit the same word statistics but convey
different topics. We are motivated by this example to prove that shuffling the words

in the documents of a corpus we come up with several other topics.
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We notice that the LTS scores exhibit a small standard deviation in the experiments
of the Subsections 4.4.2 and 4.4.3 when the document collection discuss a single
topic. On the contrary, when the corpus discuss diverse topics, then the standard
deviation is greater. In the Table 4.12, we see the standard deviations of the corpora

of the scenarios I and II.

Model Corpus
FOMC | Beige Book | MASC
Stopwords_Model | 0.17 0.14 1.01
TF_IDF_Model 0.2 0.13 0.98

Table 4.12: Corpora standard deviation

In both models the standard deviations of FOMC and Beige Book are small in
comparison with the standard deviation of MASC corpus. In particular in Stop-
words_Model the MASC corpus standard deviation is six and seven times higher than
the standard deviations of FOMC and Beige Book respectively. In TF_IDF_Model
the standard deviation of MASC corpus is five and seven times higher than FOMC
and Beige Book respectively.

This notice reflects the behavior of LTS scores produced by our approach consider-
ing the emissions, transitions and initial probabilities of the corpus. The LTS scores
are located around a particular number for each corpus and exhibit high variance
whether the corpus discussed topics that lay on a broad spectrum. The fact that
documents of different topics receive distant topic scores is sensible leading to re-

markable classification accuracy in experimental scenarios I, IT and III.

In Plot 4.4 is demonstrated the histograms and the densities of FOMC, Beige Book
and MASC corpora scores for the Stopwords_Model. As it is noticed their range of
scores is smaller than the MASC corpus. Similarly, for the TF_IDF_Model, we see
in Plot 4.5 that the scores of MASC corpus are scattered in a broader area than the
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Figure 4.4: Stopwords_Model scores histograms and densities

other two datasets.

Hypothesis Testing

We believe that by randomly permuting the words in the documents of a single-topic
collection, we produce a permuted corpus that discusses more than one topic as in
the documents “the department chair couches offers” [56] and “the chair department
offers couches” [56] of Wallach. The obtained collection we expect to have a larger

variance of scores as MASC corpus exhibits.
To explore the impact of word order on topic identification we introduce a statistical

hypothesis testing. We calculate later how likely it is a higher standard deviation to

occur on the permuted corpora. Given that the null hypothesis is true, we accept or
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Figure 4.5: TF_IDF _Model scores histograms and densities

reject it with respect to the standard deviations of the permutations. We introduce

the following null hypothesis:

1. Null hypothesis (Hy): The order of the words in documents does not affect the
topic(s) of the corpus.

The null hypothesis is rejected if the p-value which is the probability under the null
hypothesis is less than the significance level of sy = 0.05. This means that at least
ninety five percent of the permuted corpora should have a greater standard deviation

than the initial corpus (unpermuted).

We conduct the permutations experiments on the Beige book which exhibits the
smallest standard deviation in the TF_IDF_Model. We perform a number of P per-
mutations, which in our case is one hundred, on a random sample of ten percent of

the beige book corpus. The p-value is the probability that the permuted corpora
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have lower standard deviation than the original one. The p-value is calculated as in

Equation 4.9.

[{sd; > sdy, 1 <i < P}
OP (4.9)

pval =1 —

where:

P =100

The histogram and densities of the standard deviations of the permuted corpora are
illustrated in Figure 4.6. The red perpendicular line represents the standard devia-
tion of the source corpus from where the permutations were derived. The permuted
corpora standard deviations are located rightmost of the red line at their majority.

The p-value is calculated to be pval = 0.5.
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Figure 4.6: Beige Book permutations distribution

The evidence of p-value is equal to the significance level sy which means that the H

is rejected at the sg level of significance. Thus, we accept the alternative hypothesis

Hi.

2. Alternative hypothesis (Hy): The order of the words affects the topic(s) of the
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corpus.

One reason for receiving scores of high standard deviations might be the fact that
the permuted documents in each corpus contain a sequence of words that never ex-
ist in human written language. Thus, they are assigned very low probabilities in
the transitions calculated on the training set. This could influence significantly the
standard deviation of a corpus. Considering the groups of words we utilize in the

permutation tests only a sequence of stopwords is unusual to occur in reality.

To assure that this is not the reason for the low received p-value that led us to accept
the alternative hypothesis H;, we conduct an experiment of ten permutations on the
ten percent of randomly selected documents of the MASC dataset that has a wider
diversity of topics. We receive nine standard deviations greater than the original
corpus and one that it is lower than the original one as it is depicted in Plot 4.7.

The red line represents the original collection of documents standard deviation value.
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Figure 4.7: MASC permutations distribution
In case that the reason for the nine highly standard deviated corpora is the abnormal
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consecutive stopwords then the consecutive stopwords distribution of the only low
standard deviated corpus would be different of the nine highly standard deviated
corpora. We calculate the correlation of the stopwords duplet, triplet, quadruplet,
quintuplet et cetera vector of the one against the other nine others. The values we
receive are all close to one as it is shown in Table 4.13. Perm 1 is the permutation
one that exhibits lower standard deviation than the source. With Perm 2 to 10, we

denote the rest nine permutations with standard deviations higher than the source.

Perm 7
0.9999321

Perm 10
0.9999321

Perm 9
0.9997212

Perm 8
0.9999692

Perm 6
0.9999560

Perm 5
0.9999158

Perm 4
0.9999417

Perm 3
0.9999799

Perm 2

Perm 1 | 0.9998980

Table 4.13: Permutation correlations

For the calculation of the correlations of Table 4.13 we use Pearson correlation that
makes no assumptions about the distributions of the population. Pearson correlation
[47] measures is a correlation measure providing the linear dependence between two
variables X and Y. It outputs +1 in case of a perfect positive correlation, 0 in case

of no correlation and -1 in a perfect negative correlation.

As a result, we point out that in the low standard deviated permuted corpora, the
stopwords sequences are not distributed differently than the nine others. Therefore,
stopwords effect is not the reason for the low p-value. It is due to the fact that by
permuting the words in a document we receive more topics as Wallach [56] claimed
with her example in 2006: Document A: “the department chair couches offers” [50]
can be permuted to document B: “the chair department offers couches” whereas

documents A and B discuss different topics.
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Chapter 5

Summary

5.1 Conclusions

This research work presents a stochastic process to recognize documents of a par-
ticular topic. The primary motivation stems from an assumption coherent with
probabilistic topic models. Their inference relies on the bag-of-words representation
of documents; only the word and their frequencies are considered in the model. We
introduce an approach based on high order Markovian chains to capture the natural

language semantics inherent in the sequence of words.

The MTTI are supervised topic models since they consider the human background
to infer about the model parameters. They are oriented to recognize similar to the
training corpus document structures; in this way they discriminate a document as
‘on’ or ‘off” topic. Their discriminating power is based on the premise that docu-
ments of the same topics follow the same patterns. Following infrequent to the input
patterns leads to distant to the on-topic documents scores. The models are trained
on the experience of one class input thus they need less effort than usual binary

classifiers that require data for both the wanted and unwanted situations.

In this thesis, we figure out that the introduced topic identifiers exhibit a satisfactory
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performance on several different scenario, different domains and languages compared
to other popular topic classifiers. In experimental scenarios I and II in Section 4.4 we
notice that the MTT compete for classifiers that rely on bag-of-words representation.
MTT perform as effective as NB and SVM in scenario I; they approach the perfor-
mance of SVM and overstep NB in scenario II. MTI performance is satisfactory in
the German language as well. Considering the research question one as defined in
Section 1.3 we deduce that the stochastic topic identifiers can perform satisfactorily

on discriminating text of different domains and languages.

MTT are fused with prior knowledge in terms of groups of words with common char-
acteristics. It is shown that the stochastic model that relies on TF-IDF weight-
ing scheme exhibits a supreme performance in comparison to the other stochas-
tic models introduced in experimental scenario I and II. On the other hand, the
Stopwords_Model exhibits supreme performance in the German language in sce-
nario III although the performance of TF_IDF _Model competes for the one of Stop-
words_Model. A reason for this may be the special characteristics of each language.
Accordingly, to answer the research question two in Section 1.3 we need to conduct

more experiments.

Moreover, in this thesis we experiment the inter-correlation of topic and word se-
quence and we conclude that word order impacts the topic of a document (research
question three in Sections 1.3). Granted that we define a topic as the model that
best fits what humans consider as a topic, we are provided the terrain to study the
impact of word restructuring on topic modulation since the topic of a document is
reflected in a particular score area. We strengthen in this way the intuition that
humans have as it is depicted in Wallach work [56]; we may produce a new topic by
simply restructuring the words of a passage. To put it in a different way, the order
of the words is selected in a concrete way to convey the authors topic. We conclude
that the documents produced by restructuring the word sequence convey different

topics.
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In conclusion, the MTI models exhibit a number of strengths compared to other topic
identification and classification methods that rely on the bag-of-words paradigm. We
highlight the advantages and potentials of the introduced models in the following

points:

e MTI models require small training datasets to be effective. Not only due to the
fact that they recognize a topic by unveiling the structure of only same topic
documents but also because they consider a set of words to reduce the number
of the possible transitions manipulating data sparsity. Both considerations

make MTT cost performance efficient.

e In MTT pre-processing steps are not required. Probabilistic topic models and
conventional classifiers require the feature vector of word frequencies to per-
form. The construction of such a vector adds extra computational cost to the
bag-of-words models. Not to mention the extra pre-processing steps that are
required to increase their effectiveness i.e., word stemming. In MTI the doc-
uments are represented in their original form and special pre-processing steps
like stemming is not necessary to be implemented since words with the same

stem may occur in the same set of words.

e MTI can be used on interdisciplinary fields and on different applications. The
proposed models rely on learning the common patterns of the training collection
of documents which is reflected on the probability values. MTI models may
be used to recognize the writing style of a person since it is characterized by
a particular vocabulary and a manner the words are structured. Moreover,
they may be used on image topic identification. The key point is to define in
a proper way how the word and the document are reflected on an image. A
reasonable way is to consider that the pixels block are the words and an image
is a document. The aspect of the multidimensionality of images with respect
to a document needs to be addressed because a picture element is featured
by many dimensions itself. Consequently, the application and the parameters

estimation of MTT on images need further studies to be achieved.
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e MTI models capture fine-grained topic semantics. MTI models as it is shown
in the experimental scenario II may be used to perform a more fine-grained
analysis of topics that lay on the same domain; a scenario where a robust
classifier like naive Bayes exhibit poor performance. In particular, MTI exhibit
high accuracy on discriminating documents of financial domain as shown. MTI
meet the requirements of retrieving documents that have a particular theme or

discuss a particular subject. i.e., the sovereign debt crisis in Europe.

e MTI models are closer to the human semantic representation than bag-of-
words models. Human perception and cognition embrace human memory to
infer about the gist of text [24]. Topic categorization includes not only the
memorization of words but also the manner words are linked. Besides, the
personal interpretation and conception which is challenging to model, word
order contributes to topic identification mechanism. Although MTI models do
not address questions that lay into cognitive science, they simulate to some
extend the topic categorization learning. The usefulness of such systems may
assist firstly, in better understanding human learning processes and secondly,

in the development of better classification models that mimic human brain.

5.2 Shortcomings and Future Work

The MTT models proposed in this thesis exhibit some shortcomings that could lead
to some interesting future research. In the following points, we summarize some

weaknesses our approach exhibits.

e MTI models are language dependent. They adhere to the word order to calcu-
late a score and classify a document as ‘on’ or ‘off” topic. They are tested on
English and German language and exhibit a remarkable discriminating perfor-
mance. Nevertheless, some languages like Greek and Russian allow flexibility
in the order of the words while preserving the same syntax, thus the same topic.

The generalization of MTT models on any language requires further studies.
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e MTI models are expensive in both time and space. The MTI models have a
large number of parameters that need to be estimated. In large corpora of
millions of tokens it is computationally demanding to train and validate its
performance in a ten-fold validation scenario. Moreover, the input of our mod-
els is not the conventional vector space but the entire collection of documents

retaining the word order of the documents.

Finally, in the next points, we provide some extensions and future research based on

the fundaments provided in this thesis.

e The MTI models can be extended and tested with different parameters and
prior knowledge. Firstly, MTI models can be extended to incorporate the
emissions of bigrams and trigrams in order to deal effectively with common
collocations like fiscal deficit or White House. This provides more realism to
the model since in domain-oriented documents several n-gram may appear.
The way in which a bigram or a trigram phrase will be selected instead of a
uni-gram, may be achieved either by incorporating a set of usual n-grams or
by an exploration analysis of the corpus based on statistical measures - i.e.,

c-value [21] - to detect n-grams.

e The MTI Markov chains can be extended to incorporate longer memory. We
can introduce Markovian topics identifiers to rely on higher order Markov
chains. It is feasible in this case to deal with the sparsity of data without
dramatically increase the volume of the training set, but just adjusting the
content and the number of sets of words used. This allows models that perform
topic identification at the sentence level. In this way, we can study whether
processing text at a higher level - i.e sentence level - affects topic identification.

This may lead us to the development of more sophisticated models.

e The MTT can recognize topics in a dynamic manner. MTI models are trained

on a fixed set of documents to infer whether an unknown document is ‘on’ or
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‘off” topic. MTT can be designed to incorporate “knowledge” that they miss
by updating their parameters without being trained again on the whole. In
this way they maximize their performance based on the feedback from the
environment as the time goes by. The complex of such a model is high and
requires sophisticated techniques to make MTI modular. This topic learning

approach may imply some human external assistance to be maintained simpler.

The MTI could be language independent. As mentioned in Section 5.2, MTI
rely on the word order to infer about a topic. In some languages like the Greek
one can convey a particular topic by changing in several ways the sequence of
the words. MTT are not designed to capture these details since they stick to
the word order. We might design a language independent stochastic model by
incorporating syntactical knowledge to relax the word order strictness of our

approach.
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Appendix A

Stopwords_Model

A.1 FOMC - MASC Corpora

Iteration TP TN FP FN

1 14 390 O 2
2 12390 O 3
3 13 390 O 3
4 14 390 O 2
) 12390 O 4
6 14 390 O 2
7 12390 O 4
3 13 390 O 3
9 12390 O 4
10 13 390 O 2

Table A.1: Stopwords_Model ten-fold cross validation performance on FOMC -
MASC corpora
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A.2 FOMC - Baige Book Corpora

Iteration TP TN FP FN

1 12 112 0 4
2 13 112 0 3
3 11 112 0 5
4 12 112 0 4
) 10 112 O 6
6 11 112 0 5
7 10 112 0 6
8 11 112 0 4
9 8 112 0 8
10 7 112 0 8

Table A.2: Stopwords_Model ten-fold cross validation performance on FOMC - Beige
Book corpora
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A.3 HC German Corpus (Health - Crime & Law)

Iteration TP TN FP FN

1 93 481 20 23
2 90 482 19 25
3 88 482 19 27
4 92 481 20 23
) 90 481 20 25
6 99 481 20 17
7 89 483 18 25
8 94 482 19 20
9 93 482 19 22
10 87 483 18 28

Table A.3: Stopwords_Model ten-fold cross validation performance on HC Health -
HC Crime & Law corpora
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A.4 HC German Corpus (Health - Travel)

Iteration TP TN FP FN

1 89 1111 27 26
2 93 1109 29 22
3 89 1111 27 24
4 86 1113 25 30
5 91 1109 29 24
6 89 1110 28 27
7 90 1110 28 26
8 92 1108 30 24
9 94 1111 27 21
10 94 1110 28 19

Table A.4: Stopwords_Model ten-fold cross validation performance on HC Health -
HC Travel corpora
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Appendix B

TF IDF Model

B.1 FOMC - MASC Corpora

Iteration TP TN FP FN

1 12390 O 4
2 15 390 O 1
3 12390 O 3
4 13 390 O 3
) 15 390 O 1
6 14 390 O 2
7 15 390 O 1
8 11 390 O 5
9 13 390 O 3
10 11 390 O 4

Table B.1: TF_IDF_Model ten-fold cross validation performance on FOMC - MASC
corpora
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B.2 FOMC - Baige Book Corpora

Iteration TP TN FP FN

1 13 112 0 3
2 11 112 0 4
3 15 112 0 1
4 12 112 0 4
) 14 112 0 2
6 12 112 0 4
7 12 112 0 3
8 12 112 0 4
9 15 112 0 1
10 13 112 0 3

Table B.2: TF_IDF _Model ten-fold cross validation performance on FOMC - Beige
Book corpora
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B.3 HC German Corpus (Health - Crime & Law)

Iteration TP TN FP FN

1 94 471 30 21
2 95 472 29 21
3 79 472 29 37
4 97 471 30 17
) 70 470 31 39
6 89 471 30 26
7 9 472 29 17
8 93 471 30 21
9 91 471 30 24
10 91 472 29 25

Table B.3: TF_IDF_Model ten-fold cross validation performance on HC Health - HC
Crime & Law corpora
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B.4 HC German Corpus (Health - Travel)

Iteration TP TN FP FN

1 76 1111 26 39
2 84 1113 24 31
3 8 1111 26 31
4 89 1111 26 25
5 70 1114 23 45
6 80 1111 26 36
7 7 1113 24 39
8 81 1111 26 34
9 79 1113 24 36
10 86 1111 26 29

Table B.4: TF_IDF_Model ten-fold cross validation performance on HC Health - HC
Travel corpora
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Appendix C

LDA3 Model

C.1 FOMC - MASC Corpora

Iteration TP TN FP FN

1 9 390 0 7
2 10 390 O 6
3 13 390 O 3
4 9 390 0 6
) 9 390 0 7
6 13 390 O 3
7 9 390 0 7
3 10 390 O 6
9 9 390 0 7
10 9 390 0 6

Table C.1: LDA3_Model ten-fold cross validation performance on FOMC - MASC
corpora
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C.2 FOMC - Baige Book Corpora

Iteration TP TN FP FN

1 12 112 0 4
2 12 112 0 4
3 9 112 0 7
4 9 112 0 7
) 8 112 0 7
6 12 112 0 4
7 11 112 0 D
8 10 112 0 6
9 6 112 0 9
10 13 112 0 3

Table C.2: LDA5_Model ten-fold cross validation performance on FOMC - Beige
Book corpora
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