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Abstract

The kesterite system (CZTSSe) is currently the most promising alternative for earth-
abundant absorber layers for solar cells in the context of sustainable energy. Nevertheless,
big efforts are still needed to bring CZTSSe from the lab into the market. At least
comparable efficiencies to CIGSe are necessary to start manufacturing of CZTSSe solar
cell on a commercial level. In this regard, the aim of this thesis is twofold. First,
the focus is set on the occurrence of secondary phases with respect to their location
in combination with device performance. Secondly, an improved synthesis routine is
implemented enabling better performing solar cells. In order to improve significantly
the device performances, several key issues remain. Among others, CZTSSe solar cells
suffer from a big Voo loss compared to the band gap of the absorber and thus the
identification and the elimination of the causes of this reduced Voc¢ play a major role in
the ongoing research. A further milestone would be compatible buffer layers to replace
CdS [1] in CZTSSe solar cells in a very near future. Hence, the first part of this thesis
deals with the optimization of the absorber/buffer interface of kesterite based solar cells
concerning secondary phases at the absorber surface by wet chemical surface treatments.
Furthermore, the interface itself is studied by using alternative buffer layers and first
results are presented. The second part of this thesis focuses on a new preparation method
of the kesterite material. One major finding of this section is that a Cu-rich step is needed

to considerably improve the solar cells by better transport properties.
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Chapter 1

Introduction

Throughout the past 50 years, the climate change or global warming, has become one
of the major concerns of our modern society. The earth’s climate is known to have a
periodic behaviour and it has varied several times during history. Just in the last 650
000 years, seven cycles of glacial advances and retreats are listed, mainly attributed to
small variations in the earth’s orbit [2|. Using this argument, humankind tried to deny
its responsibility in global warming. However, with growing scientific research, evidence
of human activity induced climate changes accumulates [3]. Up to date, a consensus
exists between most of the climate scientists (97 % of them [2]). They agree that the
climate trend over the last century is most likely due to human activities. Furthermore,
most of the leading scientific organisation endorsed this statement publicly [4]. On the
other hand, the energy demand has never been higher and is desperately growing. The
high living standards, the worlds population expansion and our economical model which
rely on compulsive consumption brings the earth‘s resources to an end in a very near
future. However, failing at changing our way of life, sustainable energy supply is a must.
This pressing need of alternative renewable energy sources has led the solar photovoltaic
sector or photovoltaics (PV) to a major contributor to the worlds energy supply. Despite
a period of economic crisis, the European Photovoltaic Industry Association (EPIA)
report on a 2013 record-year in terms of PV installations [5]. At least 38.4 Gigawatt
(GW) of new installed PV plants in 2013 and about 40 GW of solar installed in 2014
worldwide, testify of the growing impact of PV in our energy supply [5]. Despite the
hope set in safe, clean and environmental friendly energy supply, the job is far from done.
Photovoltaics, like every energy supply, is bound to follow the market rules and need to
be competitive. Up to date, the PV market is dominated by crystalline silicon solar
cells. They have proven high and stable efficiencies over time. The major drawback for
this type of solar cells is their relatively high production price due to the need of a high

degree of purity in the crystals. Furthermore silicon has an indirect bandgap and thus the
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Introduction 2

films need to be relatively thick to get enough light absorption. A promising alternative
consists of materials with a direct bandgap and thus a high absorption coefficient (> 10*
em~ 1) which allows to reduce the thickness of the films significantly and thus the price.
As a consequence, this type of solar cells are called thin film solar cells where currently
the best candidates are Cu(InGa)(SSe)2 (CIGS) closely followed by CdTe. Amorphous
hydrogen alloyed silicon, (a-)Si:H, is also investigated but is far behind CIGS and CdTe.
However, Cd is toxic and not classified as an environmental friendly element. In fact,
the political class restricts already the use of Cd by law [6]. In addition, figure 1.1 shows

the crust abundance of the most elements used in thin film solar cells. According to

106 T T T T T T T T T T T T T T T T T
Cust abundance

5
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Crust abundance [ppb by weight]
[631/$] @oud

Cd Te Cu In Ga Zn Sn Se S

Elements

FIGURE 1.1: Crust abundance of elements used in thin film solar cells [7] and price
comparison of the metals used in CIGSSe and CZTSSe solar cells [8].

this data it is clear that Te supply would become an issue in the future. These reasons
make CdTe less attractive for sustainable energy. CIGSSe consists of non-toxic elements,
but In and Ga are classified as critical raw materials from the European commission
which tries to replace them by similar elements in the future |9]. Furthermore, figure 1.1
also shows the average market prices in 2012 [8] for these elements, which are relatively
high compared to Cu. As a consequence, the research for alternative materials is in
constant expansion. One promising candidate for thin film photovoltaic is based on
an isoelectronic replacement of In by Zn and Sn. This material is known as kesterite
(CZTSSe) in reference to its crystal structure and is based on Cu, Zn, Sn metals rather
than In. From figure 1.1 it is clear that neither the abundance nor the price of its raw

materials would hinder the development of kesterite based solar cells.
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1.1 CZTSSe based solar cells

The potential of CZTS material for solar cell applications was first established by K.Ito in
1988 [10]. Since then, techniques to produce CZTSSe were explored, from high vacuum
methods to solution based routes, but CZTSSe material remained rather marginal. The
breakthrough came 23 years later with a 10% efficicency CZTSSe solar cell, published by
IBM [11]. The production method of this solar cell relies on a hydrazine based solution.
However, due to the hazardous nature of hydrazine, an equally efficient production route,
but more clean and safe, need to be found. Furthermore, 10% efficiency on lab scale
is certainly not enough to start commercial production in a near future. Hence, the
efficiencies need to be much more increased. Up to date, the CZTSSe record is of 12.6%,
still held by IBM with the hydrazine based process [12]. In this perspective, it is crucial

to first determine and understand the current limitations of the CZTSSe solar cells.

From the electrical point of view, the current generation in kesterite solar cells is severely
limited by a big loss in open circuit voltage compared to the band gap of the absorber
[13]. This low open circuit voltage contributes also to the low fill factor observed in
the kesterites solar cells. Among others, one reason often inferred is the presence of
secondary phase in the absorber [8]. Indeed, the existence region of pure kesterites is
very small as can be seen in the phase diagram [14] and thus the occurrence of secondary
phases is very likely. This secondary phases combined with a precise location in the solar
cells can be very detrimental to the solar cell performances. A special critical location
for the optoelectronic properties of the solar cells would be the heterojunction interface
itself. In fact, many kesterites/CdS devices are limited by interface recombination [11],
especially true for sulphur based kesterites. A further reason for low open circuit voltage
in kesterites solar cells could be the very small grains obtained in polycrystalline kesterite
materials which favours recombination at the grain boundaries [13]. However, it has been
observed experimentally in the field of CIGS that one way to increase the grain size is
the inclusion of a Cu-rich step in the growth of the material [15]. In this context,
this work focuses on two fundamental aspects in relation with the enhancement of the
solar cell performance. The first part of the manuscript focuses on the interface itself by
optimizing the absorber /buffer interface whereas the second part reports on the inclusion

of a Cu-rich step in the preparation method of kesterites.
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1.2 Thesis overview

The second chapter of this manuscript will briefly summarise the background and lit-
erature needed for the next chapters. To address the issue of the secondary phases oc-
currence, the third chapter will start with a systematic compositional study in relation
with secondary phases and solar cells performances. The nature and the implications of
these secondary phases combined with their location is studied. The next step is to focus
on the interface itself by applying wet chemical etching. Indeed wet chemical etching is
one way to remove unwanted secondary phases by selective etching or by thinning the
absorber and removing the upper layers with the unwanted phase on it. In this work,
mainly HCI] and bromine solutions are used as enchants. Finally, to pursue the search of
a completely environmentally friendly solar cell, alternative buffer layers are tested in a
third part of the second chapter. Moreover, the band-line up between Se-based kesterite
and a ZnSO buffer layer is investigated. The fourth chapter is dedicated to the inclusion
of a Cu-rich step in the production routine. The first part reports on a new preparation
method of the kesterite material whereas the second part reports on the comparison of
the absorbers with and without such a Cu-rich step. Moreover the benefits of a Cu-rich
step in relation with the solar cell performance in the context of this new preparation
routine are highlighted. At last, the final conclusions and outcomes of this work are

presented.
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Background theory and Literature

The hope set in kesterites (CuaZnSn(S,Se)s) to become a leading material for absorbers
in the field of photovoltaics is based on several considerations. First, to assure an opti-
mum light absorption in the absorber, the material need to have suitable optoelectronic
properties like a direct band gap and a high absorption coefficient which is the case for
kesterites [8]. Further, kesterite material has a band gap close to the optimum band gap
range predicted by the Shockley and Queisser limit [16] and shows p-type conductiv-
ity. Finally, the absorber material should also be stable under the processing conditions
used to produce solar cells [1]. This final requirement is also met by kesterite material.
Thus kesterite material has the basic requirements to be a suitable absorber layer in
photovoltaic applications. However, due to the high number of elements in the kesterite
compound, its complexity regarding material properties is very high. To partially over-
come this difficulty the pure selenide and sulphide compounds are studied separately.
This work focuses on the selenide kesterite compound. Hence, the sulphide compound
will not be discussed in this work. For a general review of kesterites including sulphide
compounds, see for example the book of Kentaro Ito [17]. In this chapter, the concept
of a kesterite based solar cell is demonstrated. First, the structural and opto electronic
properties of the kesterite material (CuyZnSnSey) related to its potential for photovoltaic
application are briefly summarised. Secondly, some insights in the fabrication method
used in this work to produce the kesterite absorber material are given. Thirdly, the
state-of-the art chalcopyrite solar cell is described. This later part of the present chapter
is extensively based on the work of H.W.Schock and R.Scheer, which can be found in
[18]. Finally, the basic principles of the main characterisation techniques used in this

work can be found in the last section of this chapter.
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2.1 Introduction to Cuy,ZnSnSe, material

The following section is mainly based on a book chapter [1] in Advanced Concepts in
Photovoltaics [19] regarding material properties of kesterite. The first part of this section
is concentrating on the crystal structure of kesterite. One of the issues encountered to
produce high efficient kesterite solar cells concerns secondary phases which are prolific in
CZTSe material compared to CIGSe manufactured the same way. Hence, the next part of
this section is briefly describing the phase equilibria in the Cu-Zn-Sn-Se system. Finally,

the electronic properties with respect to the Shockley-Queisser limit are discussed.

2.1.1 Crystal structure

CugZnSn(S,Se)4 belongs to the adamantine family. This specific family contains the
compounds which can be derived from an iso-electronic or cross substitution of starting
elements in group IV of the periodic table [1]. The iso-electronic substitution consists
of replacing atoms of a given group in the periodic table by atoms belonging to other
groups with the condition that the average number of valence electrons per atom remains
constant (the detailed theory of rationalised super-cell structures can be found in [20—
22|). For the iso-electronic substitution of group IV, the following equation must be

satisfied:
2in;v;

2in;

=4 (2.1)

where n; represents the number of atoms of the i-th kind with v; valence shell electrons
in the newly formed compound. Starting with the substitution of Si by Zn and Se
which have 2 and 6 valence electrons respectively, the formula of the new compound is
ZnSe since an average number of 4 valence electrons per atom is achieved. Similarly, by
replacing Zn with Cu and In as illustrated in figure 2.1 , the CulnSes compound is formed.
The same procedure applies to obtain CusZnSnSey from CulnSes. The crystal structure
of the adamantine family derives generally from the cubic diamond structure although a
crystallisation in the hexagonal space lattice can not be excluded for some compounds.
The symmetry is progressively lost with the ongoing complexity of the substitution [1].
Nevertheless the compounds still inherit some features of the parent compound and as
such in first approximation, CusZnSnSes may be viewed as a zinc blende structure with
two interpenetrating fcc networks [24], where the two sub-structures are constituted
of anions and cations in tetrahedral coordination respectively. However different crystal
modifications can occur in the CusZnSn(S,Se)4 compound due to different cation ordering
in one of the sub-lattices [25]. The main crystal modifications in the CusZnSn(S,Se)4
compound are known as kesterite, stannite and a structure derived from the Cu-Au

ordering of chalcopyrites [8]. They differ in the distribution of the Cu and Zn atoms on



Background theory and Literature 7

| i m w v Cu,ZnSnSe,

(a) (b)

FIGURE 2.1: (a) Illustration of the iso-electronic substitution of ZnSe to form CZTSe.
(b) Conventional unit cell for the kesterite structure, adapted from [23].

the available lattice sites [1]. The kesterite structure has been demonstrated theoretically
[26] and experimentally [25] to be the stablest structure by a few meV per atom for
the CuoZnSnS; and the CusZnSnSes compounds. The conventional unit cell of the
CugZnSnSey kesterite structure is illustrated in figure 2.1 (b). CusZnSnSey crystallises
in the tetragonal space lattice and belongs to the I4 space group symmetry. The lattice
constants used in this work can be found in table 2.1 and were determined experimentally

by S.Schorr et al. [8].

’ CusZnSnSey ‘
a[A]l]l 5.695
¢ [A] || 11.345
c/2a | 0.9960

TABLE 2.1: Experimentally determined lattice constants for CuyZnSnSey taken from

8.

2.1.2 Phase equilibria in the Cu-Zn-Sn-Se system

The phase diagram of the quaternary Cu-Zn-Sn-Se system mostly referred to in the field
of CZTSe was established by Dudchak and Piskach [14]. They reduced the complex Cu-
Zn-Sn-Se system to the pseudo-ternary CusSe-ZnSe-SnSes system following the phase
decomposition:

CuaZnSnSes = CugSe + ZnSe 4 SnSe (2.2)

This relation however, implies a stoichiometric Se content, i.e. a fixed Se partial pressure

and thus doesn’t account for other potential intermediate phases such as CuSe, Cuy_,Se
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and SnSe [1]. Moreover the pseudo-ternary phase diagram was established at a specific
temperature of 670 K (~ 400 °C) under thermodynamic equilibrium conditions [14].
Despite the assumptions made in the construction of the phase diagram, it still allows
to predict the nature and the extent of phase segregation in CZTSe samples. Phase
separation can be linked to the concept of substitutional defects. It occurs when the
initial crystal structure becomes to distorted, due to the increasing concentration of
substitutional defects, to remain stable. At a critical point of the ongoing substitution
it becomes energetically more favourable for the structure to separate in two or more
different phases [1, 27|. To represent a ternary system in a two-dimensional plot a
so called ternary plot is needed [28]|. The isothermal section for the CugSe-ZnSe-SnSes

system after [14] is shown in figure 2.2. The secondary phases that can occur according to

(1) CZTSe +Cu_Se + ZnSe

0.0, 4 (2) CZTSe + SnSe, +ZnSe
(3) CZTSe + Cu,SnSe, + SnSe,
(4) CZTSe+Cu,SnSe +Cu,Se

* CUZZnSnSe4

0.4
Cu28n893

FIGURE 2.2: Phase diagram representing the pseudo-ternary CusSe-ZnSe-SnSe; system
adapted from [14].

this figure with the assumptions discussed above, are CusSe, ZnSe, SnSes and CusSnSes.
The blue, pink, black and grey coloured lines of the ternary plot represent the regions
were CZTSe coexists with one other phase. The size of this bi-phasic regions, i.e. the
solubility range of the different phases, as the single phase CZTSe region, are not depicted
in this figure. However, the homogeneity region of CZTSe is smaller than 3 mol.% [14] at
~ 400 °C and is not suspected to deviate substantially from this value for normal CZTSe
synthesis temperatures (500 — 600 °C) [1|. Furthermore the solubility of CusZnSnSey in
CusSe, ZnSe, SnSes and CuaSnSes is lower than 2 mol.%, 1 mol.% (for ZnSe and SnSes)
and 0.5 mol.% respectively [14|. Hence the lowest solubility of CuyZnSnSey is observed
for CusSnSes. The low homogeneity region of CusZnSnSes can be linked to the iso-

electronic substitution (see section 2.1.1). Since every iso-electronic substitutional step
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results in an increase of the formal oxidation state of one or more of the constituent, the
thermodynamic stability of the compounds decreases with the ongoing substitution [1].
In the case of CZTSe the low thermodynamic stability can be traced back to the relative
weakness of the Sn-Se bond [1]. That is because of the high oxidation state of Sn which
tends to decrease by phase separation. The weakness of the Sn-Se bond is associated to
the fact that CZTSe is only stable over a small Se pressures range compared to CulnSes

[29] and explains partially why its manufacturing is so challenging.

2.1.3 CZTSe and Shockley-Queisser limit

The Shockley-Queisser limit for a single junction states that a maximum efficiency exists
for a given absorber band gap. This limit has been theoretically developed based on the
detailed-balance principle [16]. The basic principle of a solar cell relies on the creation
of an electron-hole pair by the absorption of a photon. This charge carriers are then
separated and collected, which induces a current generation. However considering the
solar cell without additional light (under dark conditions) the photons responsible for
the creation of the charge carriers arise from the ambient at given temperature. Hence,
under the principle of detailed-balance, recombination of an electron-hole pair has to
occur as well and at steady state conditions the rate of photon emission equals the rate
of photon absorption, i.e. the solar cell is in thermal equilibrium with the surround-
ing. Under illumination, the rate of absorption increases but spontaneous emission or
radiative recombination still accounts for an inevitable loss in potential charge carriers.
Hence, the absorbed solar radiant energy can not be fully converted by the solar cell. The
detailed derivation of this fundamental physical limitation can be found in [18, 30, 31].
Figure 2.3 shows the maximum efficiencies calculated for the Shockley-Queisser limit in

dependence of the absorber’s band gap for two solar spectra, AM0O and AM1.5G. The
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FIGURE 2.3: Maximum solar cell efficiencies n(E,) under the Shockley-Queisser limit
(SQL) calculated for an AM1.5G spectrum (solid lines) and an AMO spectrum (dashed
lines), adapted from [16, 18].

AMO (Air Mass 0) accounts for the extra terrestrial solar spectrum and the AM1.5G

(Air Mass 1.5) stands for the global standard terrestrial spectrum normalised so that the
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integrated irradiance is 1000 W m~2 [30]. The ripples that occur in the n(E,) curve for
the AM1.5G spectrum compared to the AMO spectrum arise from the absorption bands
in the AM1.5G spectrum mainly due to water. While the curve for the AMO spectrum
has a single maximum at 1.3 eV, the curve for the AM1.5G spectrum has two, at 1.15
eV and 1.35 eV [18]. According to this graph, the optimum band gap for absorbers with
a theoretical device efficiency of at least 30 %, range from 0.95 eV < E, < 1.6 eV [1].
CZTS(e) material fit perfectly the match and their band gaps are in the range of 1 eV <
Ey < 1.5 eV. The band gap increases from the pure CusZnSnSe; compound to the pure
CugZnSnSy compound with additional sulphur content. The band gap of CZTSe for the
kesterite structure has been theoretically calculated [32-34| and the values range from
0.96 eV to 1.05 eV (for a review see [24]). However different crystal modifications can
occur in CZTSe besides the kesterite structure (see section 2.1.1) and thus variation in
experimental band gap values are expected [35]. Additionally to have a band gap fitting
in the Shockley-Queisser optimum range, it is essential for thin film solar cells that the
absorber has a direct band gap with a large absorption coefficient. Indeed, the number
of photons in the absorber is decreasing exponentially with the absorption coefficient
and the thickness of the film, known as the Beer-Lambert law. Hence, the absorption
coefficient needs to be as large as possible in order to thin the absorber as much as pos-
sible. The theoretical predictions [32-34] agree with experimental measurements [36-40]
on a direct band gap for CZTSe with an absorption coefficient larger than 10* cm™!.
The conductivity type of CZTSe is important for the design of a solar cell device. It is
inferred from literature that the conductivity of CZTSe is p-type 39, 41-44|. In addition
no n-type doping has been reported for CZTSe so far [1]. The doping level is critical
for solar cell performance [18] and should ideally be in the range of 105-10'6 ¢cm=3 [1].
Early reports indicated a too high doping level for absorbers in kesterites, for a review
see [1]. However, suitable doping levels have been achieved in state-of-the-art devices
[45].

2.2 Growth and Annealing

Thin film manufacturing relies on two separate aspects of the material. Firstly, the
right composition, i.e the combination of elements composing the material, has to be
obtained. Secondly, the elements have to react to form the desired crystalline compound
[1]. This two steps, deposition and reaction respectively, can be performed simultaneously
known as a single step process or in two distinguished processes known as a two-stage
or two step process. In CZTS(e) manufacturing however, example of truly single-stage
processes are rare and combined with a rather high process complexity compared to

the CIGS(e) case. The reasons for this enhanced difficulty to manufacture single stage
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CZTS(e) films is presumably related to the lower thermodynamic stability of CZTS(e)
[1]. It has been inferred that the weakness of the Sn-Se bond is responsible for this low
compound stability [29] requiring a precise Se partial pressure range (see section 2.1.1).
Furthermore, Sn incorporation at temperatures above 450° is problematic [43], requiring
a sufficiant Sn partial pressure as well. Nevertheless, 9.15% eficiency has been achieved
with a modified co-evaporation method at lower deposition temperature followed by an
in situ annealing in a Sn and Se rich environment for pure CZTSe [15]. Although it is
not a single stage process, strictly speaking, all the steps are carried out in the same
system. However, it is of interest to manufacture CZTSe at higher temperature in a
two-stage preparation method since the two steps can be optimised individually [1]. A
two step-process generally involves a precursor which is then processed to an absorber
in the second step. In this work, the precursor is manufactured with a low-temperature
co-evaporation method where the deposition and some of the reaction is occurring. The
second step, consists of an annealing step to crystallise or recrystallize the film. Hence,
the following section describes the basic principle of Physical Vapour Deposition (PVD),
the set up used in this work and the specific co-evaporation process used to deposit
CZTSe in the next chapters of this manuscript. Finally, the annealing step is described

as well.

2.2.1 Physical Vapour Deposition

Physical vapour deposition (PVD) is a generic term of powerful techniques in the field
of material deposition, varying from more specific vacuum deposition to sputtering or
reactive deposition methods. The thickness of the deposited films can vary from a few
nanometer to the range of some micrometer, although the term "thin film" is generally
reserved to films with thicknesses of the order of a micron or less (< 1076 m) [46]. PVD
techniques rely on an atomistic approach. This type of approach refers to an atom by
atom deposition of the over layer. The precursors in this work are more specifically

deposited by vacuum deposition also known as vacuum evaporation.

Principle and experimental set-up

Vacuum evaporation is a process which relies on thermal vaporization of atoms or
molecules from a solid or liquid source. The atoms are transported in the form of a
vapour through a high vacuum environment without or little collisions with the resid-
ual gas molecules of the chamber, to the substrate, where they condense and form a
layer [46]. To sufficiently enlarge the mean free path of the atoms at least a vacuum

of 10™* Torr is required. Nevertheless, to significantly reduce the contaminations in
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the film at least high vacuum (10~ Torr) is desirable. The best option would be ul-
tra high vacuum (< 10~ Torr) but this is difficult to implement and not necessary to
manufacture polycrystalline films for solar cells. A reasonable deposition rate for the
material of interest depends on the vaporization rate and need to be fairly high [46].
Typically, a vapour pressure of 1072 Torr is considered as a necessary value to give a
useful deposition rate. Materials with vapour pressures of 10~2 Torr above the solid are
described as subliming materials and materials with vapour pressures of 102 Torr above
a liquid melt are described as evaporating materials [46]. Many elements like Cu and
Sn evaporate since their melting point is well below 10~2 Torr but Se and Zn are on the
border line of evaporating and sublimating materials. In addition Se has a significant
portion of the vaporized species as clusters of atoms and thus need a special vaporization
source to ensure that the depositing vapour is in the form of atoms. Figure 2.4 shows a
schematic drawing of the evaporation system, that is a molecular beam epitaxy (MBE)

system, used in this work. A transfer chamber is use to load the substrates and unload
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FIGURE 2.4: Schematic drawing of a molecular beam epitaxy apparatus, by courtesy
of the LPV team.

the samples in the molecular beam epitaxy system with a typical base pressure of 1078
mbar. The substrates are mounted at an appreciable distance away from the evaporation
source to reduce radiant heating of the substrate by the vaporization source. Effusion
cells are used to evaporate Zn, Sn, Cu, and Se on commercially available Mo coated soda
lime glass for some samples and on in house deposited molybdenum for other samples.
Sample temperature is measured by a pyrometer and the deposition rates are controlled
by a quartz crystal monitor (QCM), an electron impact emission spectroscopy system
(EIES), and a pressure gauge. During the deposition the sample holder is rotating to

ensure a uniform deposition.
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Deposition of Cu,ZnSnSe, thin films

The deposition of CusZnSnSe4 thin films is problematic mainly due to the Sn loss at
temperatures higher than 400° C [47-49]. This loss occurs due to the formation of SnSe
[47, 49| which has a much higher vapour pressure than Sn at the usual substrate temper-
atures [50]. Systematic investigation of the growth of CZTSe at different temperatures
and evaporation conditions has shown the importance of the Se partial pressure [50]. At
380° at least a Se partial pressure of 3 % 1079 Torr is needed to incorporate all elements
in the film and a deposition time of 90 min enables to achieve the correct elemental con-
centrations in the film [50]. Figure 2.5 shows the elemental concentrations of Cu, Zn, Sn
and Se, determined with Energy Dispersive X-ray spectrometry (EDX) in dependence

of the substrate temperature, taken from [50]. The temperatures range between 320°
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FiGURE 2.5: Elemental concentrations of Cu, Zn, Sn and Se, determined with EDX,
in dependence of substrate temperature, taken from [50].

C and 515° C and this study has been performed under Se over pressure of 4 % 1076
Torr [50]. Three regimes appear in this figure, regime (I), regime (II) and regime (III).
The low temperature regime (I), below 350° C, is characterised with stable elemental
concentrations for all 4 elements. At temperatures above 350°, the concentration of Sn
starts to decrease accompanied with a decrease of Se. Regime (II), from 350° C to 430°
C, can thus be defined as the regime of Sn loss. Similarly, regime (III), from 430° C to
515° C, represents the regime of Zn loss. It should be noted that all the Zn disappears
at 515° C and the film is only left with Cu and Se. This results show that up to three
elements are volatile for usual deposition substrate temperatures. Hence, the growth of
uniform CZTSe with the desired stoichiometry is not straight forward. In this work, the
precursors are processed at a temperature of 320° C which is low enough to prevent Sn
loss and therefore enables the thorough control of the film composition. Additionally

all the precursors are deposited under a Se over pressure and a deposition time of 90
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min is implemented. Before every deposition the substrates and the sample holder are
cleaned by heating for one hour. The base pressure during the deposition is still in the
high vacuum range, between 10~® Torr and 2 * 10~7 Torr. The films thickness depend
strongly on the Se partial pressure [50] and on the deposition rates of the elements, i.e.
on the sources temperatures and therefore vary between 1 — 2 ym. More experimental

details, like flux measurements during the deposition are available in the next Chapter.

2.2.2 Annealing in a tube furnace

An additional annealing step is mandatory to improve the crystallinity of the precursor
deposited at 320° C [51]. Hence, the second step to produce a CZTSe absorber in this

work is performed in a tube furnace which is schematically drawn in figure 2.6 (a). The
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FIGURE 2.6: Schematic drawings of (a) an annealing tube furnace and (b) a graphite
box used in this work. Both pictures are taken and slightly adapted from [52].

oven or tube furnace is connected to an home built low vacuum/gas chamber that allows
to vary the kind of background gas and its pressure in a range between 10~ and 1300
mbar [52|. In this work, two different oven are used for sulphur contamination reasons.
However, the experimental procedure of both ovens are very similar. The annealing is
performed under a forming gas background (90 vol% Ny + 10 vol% Hs) at a pressure
of 1 mbar and a temperature of 500° C. Before every annealing, the samples are flushed
four times with forming gas at a temperature of 100° C. Furthermore, after annealing,
in order to bring the chamber at atmospheric pressure again and neutralise all possible
remaining HoSe molecules, the glass tube is flushed with No. The exhaust of the tube
furnace is therefore lead through a Zn acetate containing scrubber. The samples are
more specifically annealed in a graphite box, represented in figure 2.6 (b). The graphite
box is equipped with a small hole of a diameter of ~ 2 mm [52], enabling to fill the
box with the background gas during the flushing and before the annealing. However,
it has been shown that the sulphur kesterite compound decomposes at a temperature
over 400° C [49] mainly due to the higher vapour pressure of SnS compared to Sn (see
previous section). The surface of the samples are thus Sn depleted which is inferred as

a reason for poor device efficiencies [51|. This issue can be overcome by pushing the
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decomposition reaction towards CZTS by providing an high enough partial pressure of S
and SnS [51]|. Both reactions can be extended to the selenium kesterite compound since
the two compounds are very similar. Hence, both reactions for the selenium kesterite

compound can be summarized as follows [51]:
1
CuzZnSnSes(s) = CuaSe(s) + ZnSe(s) + SnSe(g) + iSeg(g) (2.3)

where (s) and (g) stands for the solid and the gas phase respectively. The process per-
formed in this work is based on this study and the samples are thus annealed with
additional Se and SnSe powder in the graphite box. Since two different ovens are used
in this work, they are referred to as oven (I) and oven (II) in all the following discus-
sions. A very small contamination of S appears in some of the CZTSe samples discussed
in the corresponding results chapters, due to the fact that both sulphur and selenium
kesterite coumpounds have been annealed in Oven (I) for practical lab sharing reasons.
Furthermore, temperature profiles on a systematic basis are only available for oven (II).

Therefore only a general temperature profile of oven (I) is presented in figure 2.7. This
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FIGURE 2.7: Temperature profile obtained by the measure of a thermocouple close to
the graphite box in one of the annealing tube furnaces used in this work (oven (I)),
taken from [52].

figure shows a typical temperature profile of an annealing run at 550° C in oven (I) [52].
The temperature profile is measured by placing the thermocouple outside the graphite
box, where the glass rod and graphite are connected. Since the thermal conductivity of
graphite with 6.67 W /(cmK) at 800 K is fairly large [53], it is assumed that the measured
temperature is in a good approximation the actual sample temperature. An error of a
few degrees should however be considered [52]. A very small temperature overshoot at
550° C can be observed in this profile. Since the annealing runs performed in this work,
are set at 500° C with a slight lower ramp compared to this figure, the temperature
overshoot of the samples in oven (I) can be neglected. Temperature profiles of oven (II)

are discussed when needed, in the corresponding sections.
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2.3 Solar cells

As pointed out in the introduction part of this work, one of the milestones in the CZTSe
thin films field is to reach comparable efficiency to CIGS(e) [1] to start production of
solar cells in a near future. Hence, this section is dedicated to the principles of solar
cells, starting from the basic structure of a CZTSe based solar cell followed by a more
specific discussion of the junction formation with special focus on the band alignment
and currents. Furthermore, some insights of recombination and loss mechanisms at the
interface and grain boundaries are given. Finally, the basic final device characterisation

techniques are briefly described as well as the experimental set-up used in this work.

2.3.1 Structure of CZTSSe based solar cell

Currently the world record of the kesterite based solar cell is held by IBM for a mixed
CZTSSe with 12.6% [12] device power conversion efficiency. The highest device power
conversion efficiency for the pure selenide compound (CZTSe) is of 10.4% [54]. The
solar cell design for both devices are strongly inspired by the related chalcopyrite thin
film solar cells. The basic concept of the chalcopyrite and kesterite solar cells relies on a
combination of a p-type absorber and a wide-gap n-type window layer [55]. Figure 2.8(a)
shows the schematic basic solar cell structure used in high efficiency devices. The p-type
CZTSe absorber layer is deposited by various techniques onto a molybdenum coated soda
lime glass substrate, where the molybdenum acts as back contact. The n-type partner for
the heterojunction is formed by a bilayered ZnO window structure. The window consists
of an undoped (i-ZnO) and a highly doped ZnO layer (nT-ZnO) sometimes referred as
transparent conductive oxide (TCO). The solar cell thus rely on a pn'*- heterojunction
formed between the absorber and the window layer. Aluminium doped ZnO (ZnO:Al
or AZO) is the most commonly TCO used for state-of-the-art devices. In chalcopyrite
solar cells the question if the i-ZnO layer contributes to the junction and if its presence
is necessary for good solar cell performances is extensively discussed. For an overview
the reader is referred for example to [55] and more particularly to [56-59]. However
the main function of the i-ZnO layer in standard solar cells is to reduce the influence of
inhomogeneities and pin holes due to an additional layer [60, 61]. Indeed, to improve
on one hand the lattice match in order to minimise defect occurrences and on the other
hand the band alignment at the junction, an additional n-type layer, the buffer layer, is
deposited. The standard buffer in thin film solar cells is a thin CdS layer (typically 50
nm) deposited by a chemical bath. Figure 2.8(b) shows a SEM cross section view of a
9.7% CZTSe solar cell [62]. It can be seen on that picture that the CdS buffer layer is very

thin compared to the other layers. Moreover a supplementary layer is referenced on this
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FIGURE 2.8: (a) Schematic basic CZTSe solar cell structure and (b) a SEM cross-
section view of a 9.7% efficient CZTSe solar cell, taken from [62] with permission.

figure as MgF, which is an anti-reflecting coating used to reduce the optical losses due
to reflection of the incident light by the TCO. Finally, the finished solar cell has a metal
grid deposited on top of the TCO to improve current collection, generally referred to as
front contact (not shown on this figure). Similarly to the absorber material discussed in
section 2.1.3 , the ZnO related compounds used as window layer in thin film solar cells
need a number of requirements to form a suitable partner for the junction [63] in terms
of device design, which will be discussed in more details in the next chapter and for
up-scaling and manufacturing purposes which will not be discussed in this manuscript.

For an extensive study about ZnO based TCO see for example [64].

2.3.2 Heterojunction

The electronic properties of the CZTSSe and related chalcopyrites solar cells are de-
termined by their band-structure line-up, as usual in semiconductor based devices. In
section 2.3.1 the basic structure of thin film solar cells is shown, consisting mainly of
a backcontact (bc), an absorber layer (a), a buffer layer (b), a window layer (w) and a
front contact (fc). Thus, several interfaces between materials with different properties
are present and influence the band line up by the barrier heights of the contacts and by
the band-edge offsets of the heterostructures. However, the complete band line up needs
to additionally consider the band bending. A primary explanation attempt within the
depletion approximation [65] is to consider that the junction of a p-type and an n-type
semiconductor will bring the holes on the p-side and the electrons on the n-side to recom-
bine at the interface, leaving a region with only negatively and positively charged ions,
the space charge region (SCR), inducing an electrical potential and thus band bending.
Hence, the band bending depend on the doping profiles which is discussed in more details
in the next section. Insights into the complete detailed picture can be found in [18] and

for more details about band line up at specific interfaces, see the work of W. Ménch [66].
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In this manuscript the focus is set on the bandoffsets at the absorber-buffer interface and
on the specific band diagram of a pn™ junction between the absorber and the window

layer and to some extend the influence of the buffer layer is described.

Energy band diagrams

In Anderson’s model from 1962 [67] the band offsets at the semiconductor heterostruc-
tures are determined via the vacuum level (E,q.), used as reference level at the interface
(see figure 2.9). The electron affinity (x), the ionization energy (F;) and the work func-
tion (W) are defined as being the minimal energy needed to extract an electron from
the conduction band minimum (E¢pgary), the valence band maximum (Ey gjs)) and the
Fermi energy level (Ef)), respectively, with respect to the reference vacuum level (see

Figure 2.9). The bandgap is defined as E; = Ecpy — Eyvpy and as already mentioned
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FI1GURE 2.9: Band offsets determination via Anderson’s model between a p-type ab-
sorber (superscript a) and an n-type window layer (superscript w). The band offsets
are positive in both cases.

before, By < E7’, where the superscripts denote the absorber’s (a) and the window’s
(w) bandgaps. The conduction band offset (CBO = AE,) and the valence band offset
(VBO = AE,) are determined by aligning the vacuum levels of the two semiconductors
before contact formation. The sign convention for AFE,. and AE, can be derived as fol-
lows [18]. To have a positive bandgap difference, AE, > 0, AE, has to be defined as
AE, = Ey — E7, where the window band gap is assumed to be larger than the absorber

band gap. If AE. and AFE, can be expressed by, as suggested by the Anderson model:

AE. = Etgy — Eégy = X — x", and (2.4a)
AE, = E&BM - E$BM = E’ZU - E’?? (24b)
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then:
AE, = AE. + AFE, (2.5)

With the above definitions, a positive band offset (or spike-like situation) is an energy
barrier which a charge carrier needs to overcome by spending kinetic energy to move
from the absorber to the window layer. Similarly, a negative band offset (or a cliff-
like situation) induces a gain of kinetic energy of the charge carrier passing across the
junction. In solar cells, the minority charge carriers determine the photo current and
since the generation of electron-hole pairs occur in the absorber, electrons, as the minority
carriers there, are of particular importance. Hence, AFE, is of high interest since it gives
insights about the possible energy barriers for electrons that might occur at interfaces
and their influences on charge carrier collection. The VBO for a particular interface can
be determined from experiment (see section 2.4.4) or calculated from theory and with

help of the relation 2.5 an indirect value of the CBO can be obtained.

However, the Anderson’s model and its ideal E,q. level is only valid in the limit where no
interface states are present, nor extrinsic or intrinsic dipoles [68]. They would influence
the charge transfer while establishing the equilibrium state and thus thereby influence
the Fermi level. Moreover, a high density of the charged interface states could even
induce Fermi level pinning, i.e. the band line up is no longer determined by band offsets
but by the charged interface states. Hence, to get a more accurate model the influence

of the dipoles and interface states need to be taken into account.

Heine [69] was the first to link the quantum-mechanical tunnel effect to metal-
semiconductor interfaces. This concept was applied to semiconductors heterostructures
[70], where the wave functions of the corresponding valence or conduction electrons could
tunnel across the interface within the band-edge discontinuities. This model considers a
continuum of virtual gap states within the band gap of the bulk material. These interface
induced gap states (IFIGs) are an intrinsic property of the semiconductor [66] and thus
an additional energy level can be defined: the charge neutrality level or branch-point
energy. This energy level is defined as the energy level where the character of the IFIGs
changes from predominantly valence-band-like or donor-like, to mostly conduction-band-
like or acceptor-like. Hence, the sign and amount of the net charge in the IFGs depend
on the Fermi level position relative to their branch-points. As a consequence, if the
Fermi level doesn’t coincides with the charge neutrality level, intrinsic interfaces dipoles
are present. In other words, the band offsets can be expressed as a zero-charge transfer
term and a dipole term. Including and generalizing Paulings’s electronegativity concept,
results in the more general IFIGs and electronegativity theory. However in semiconduc-
tors junctions the electronegativity term is small and thus can be neglected. With this

assumption, the difference in the branch point energies of two semiconductors is directly
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linked to the VBO: AE, = E%p — Efp, where E% ), and Ep are defined with respect to
the VBM. The major consequence of this theory result in defining a new reference (the
branch points) in contrast to the Eyqe, i.e. at the junction formation the branch-points
between the two semiconductors align instead of Fy,. and thus the band alignment pic-
ture is modified. The major drawback of this method is that the branch point energies
need to be theoretically calculated and depend on the used numeric calculation method.
Hence, to draw the band diagram, only branch point energies calculated with the same
numerical method can be compared and thus big efforts to build up such value tables
need to be done for still many materials. One way to overcome the lack of available
band offsets data is by assuming that the band offsets are subject to a linear transitivity
rule[18]. This rule states that the band offset between two semiconductors A and B can
be obtained by the known band offsets with respect to a third semiconductor C, i.e. band
offsets between A and C and between B and C enables a derived value for a band offset

between A and B.

Current transport across the junction

The description of the carrier transport in the pn™ junction with the standard struc-
ture described in section 2.3.1 is strongly dependent on the electronic properties of the
different layers, which will determine the band diagram and thus the final device char-
acteristics. In order to decouple the electrostatic potential and the chemical potential,
the band diagram from figure 2.9 is adapted in figure 2.10 by defining an electrostatic
potential energy level, —qgp. Furthermore, a general situation is represented since in a
non-equilibrium situation, the semiconductor properties, like carrier concentrations, can
no longer be described with one single Fermi level. However, two distinct quasi-Fermi
levels, E'r, and Efry,, can be defined and are suitable to describe the properties for holes
and for electrons respectively, in non-equilibrium conditions. With the definitions given

in figure 2.10 the quasi Fermi levels can be expressed by:

Epn(z) = —qp(2) — x(2) — Ep
Erp(z) = —qp(2) — x(2) — E4(2) + Ep(2), (2.6b)

where E,(z) and E,(z) are the absolute values of the reduced chemical potentials (see
figure 2.10); they only depend on the carrier densities (n and p) and on the density
of states in the conduction band and in the valence band (N, and N,). In fact, the
expressions 2.6 can be identified with the electrochemical potentials of electrons and
holes respectively. Hence, the transport equations for electrons and holes which relates

the electric current densities,.J,(2) and Jy,(2), to a gradient of electrochemical potential
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FIGURE 2.10: General energy band diagram for a semiconductor in non-equilibrium
conditions with two Fermi levels for holes and for electrons, adapted from [18]. Note
that the electron affinity x is now defined in reference to the electrostatic potential

—q.

along the z axis, can be expressed with the help of equations 2.6 by [18]:

Iu(2) = pan() ) ) [ . dEd”} (2.7a)
) = () TR — )| ) ) SR B

where p,, and p, are the mobilities of electrons and holes respectively. The transport
equations 2.7 state that the electric current in semiconductors and in semiconductor junc-
tions are driven by gradients of the electrostatic potential, gradients of electron affinity
and bandgap and by gradients of carrier density and density of states (included in the last
differential term with the reduced chemical potentials) [18]. However, to calculate the
current densities from the transport equations, the gradient of the electrostatic potential
has to be derived first. Although the electrostatic potential is in general not known, the
Poisson‘s equation relates electrostatic potential gradients and charge densities by [18]:
dIn(e(z)) dip(z) () p(2)

dz dz dz2  e(z) (28)

where, €(z) is the position dependent dielectric function. Obviously, the space charge
p(z) is dependent on the mobile charges (p(z) and n(z)) and on the fixed ions (charged

donors N (z) and charged acceptors N (z)) and the relation is given by:

p(z) = q(p(z) —n(z) + Nl';(z) — N, (2)). (2.9)
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FIGURE 2.11: Energy band diagram for an asymmetric pn* junction including the
electrostatic potential on a different energy scale, adapted from [18].

The space charge can be further expressed by inserting the equations of the densities of

mobile carriers in equation 2.9, which are given by [18]:

p(2) = No(2)F, /Q{W} = N,(2)F, /2{ _igfz) } (2.10a)
n(z) = No(2) F /Z{EJ““;IW} —N)F /2{_%(2)} (2.10D)

Where F /2{n} is the Fermi-Dirac integral of order 1/2 and F; j5{n} ~ exp{n} within the
Boltzmann approximation. Here, the absolute values of the reduced chemical potentials
for holes and electrons, E,(z) and E,(z) respectively, represent the distance of the Fermi

level to the corresponding band, since in equilibrium only one Fermi level is present.

In a junction formation, the dielectric function and all the above discussed potentials
may change at the semiconductors interfaces. The electrostatic potential distribution
can be calculated for a pn junction by inserting the expression of the space charge 2.9
with equations 2.10 in the Poisson‘s equation 2.8 and by considering that the charge
neutrality over the whole volume of the junction must be conserved. Within the depletion
approximation and considering that the dielectric functions are constant within each
layer, an analytical solution for the electrostatic potential distribution can be derived
[71]. Figure 2.11 shows the potential distribution obtained across a pn™ junction with
the resulting band diagram. The depletion approximation states that the impurity atoms
are completely ionized in the SCR and that the charge contributions due to free carriers in
this region are omitted. A simple picture of an effective potential inducing band bending
was already mentioned in the introductory part of this section. The built-in voltage,

Vi, for an absorber-window junction and for an absorber-buffer-window junction with
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no interface states, worth:
qVyi = Eg - By — B+ Ax, (2.11)

where y represents the sum of the band offsets between the different layers building the
junction. In the example of figure 2.11, Ax = AFE. = 0. The interface is at the position
z = 0 and the potential drop at the interface is given by:

Vi NG

—(0)= —————— 2.12
#(0) e*NG +e¥NE ( )

with the superscript a and w referring to the absorber’ and to the window’ side of the
interface respectively. From the last equation it can be stated that for an asymmetric
doping, e” N} > €*N§, ¢(0) = 0 and thus the depletion region mostly extends into the
absorber, in contrary to a symmetric doping where the depletion region extends equally in
the window layer. The band bending can be calculated via the difference of the potential
energy and thus for the situation depicted in figure 2.11, the band bending is given by
equation 2.11: ¢Vi; — (—qp(0)) = ¢Vi;. Hence, the relation between band bending and
doping profiles can now be visualised in equation 2.11 trough £ and E}’ [65]. By using
the charge neutrality condition, assuming no interface states and by assuming Np > N4,

the width of the SCR in the absorber, w®, is given by:

2(Vp — Ve

wi(V) = P
A

(2.13)
The additional voltage V' accounts for a more general case when an external bias is
applied to the junction. It can be seen from equation 2.13 that the SCR extends under
reverse bias and decreases with forward bias. Moreover, the SCR width depend explicitly

on the doping in the absorber N§.

However, the situation represented in figure 2.11 is a good approximation but does not
entirely reflect the situation in CZTSe solar cells and an additional layer has to be
considered. Figure 2.12 shows a schematic band diagram for a CZTSe/CdS /i-ZnO/AZO
solar cell adapted from [1, 18]. The principle of the junction remains the same as discussed
above since the buffer layers are considered to be completely depleted [18]. To build a
good solar cell device, type inversion at the absorber surface is needed [18, 72|, which
implies that £ is small in the bulk and large at the interface. To describe type inversion,
E5(z = 0) is introduced(see figure 2.11) and is defined as the distance of the Ey gy to
the Fermi level at the interface. For an ideal situation, Ej(z = 0) ~ Eg [18]. It can be

seen from figure 2.11 that E7(z = 0) is given by adding up the band bending and Ej
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FIGURE 2.12: Energy band diagram for a typical CZTS(e) based solar cell structure
as described in section 2.3.1 adapted from [1, 18§].

and by inserting equation 2.11:
Ep(z=0) = (¢Vhi + q0(0)) + Ej = Eg — E;/ + Ax + q¢(0), (2.14)

where the Ay given in equation 2.11 is now the sum of the band offsets between the
absorber-buffer and between the buffer-window layers: Ay = AE¢ b+ AEY™. Note that
here ¢(0) # 0 since the SCR extends to the buffer-window interface. From equation 2.14
it can be visualised that Eg(z = 0) depends on the doping of both window layer and
absorber layer, on one hand trough the position of the equilibrium Fermi level in the
term E} and on the other hand through gqp(0). Additionally, £ (2 = 0) depends on the
doping in the buffer layer, Ng. As can be traced back in the textbook of R.Scheer and
H.W. Schock, at low N}, and fixed buffer layer thickness (d°), E4(z = 0) only depends
on N¢, and thus decreases with increasing N% [18]. For N% > N¢% the situation is
simplified to a pn™ situation, and the type inversion is favoured. Finally, from equation

2.14, Ej(z = 0) increases with increasing band offsets Ay.

However, at the beginning of this section is was shown that a positive AF, is an energy
barrier for electrons in the conduction band and thus hamper the transport across the
junction. This apparent contradiction can be overcome by finding a compromise value
for AFE, which favours type inversion and which still allows current transport across the
junction by thermal energy. The current density resulting from the flow of charge carriers
activated by thermal energy over an energy barrier is described within the thermionic

emission (TE) theory [18, 66]; expressed and approximate by:

* _(bb 1 _¢b
Jrp = A*T? exp {kT ~ qun’chﬂ, exp o [ (2.15)

where A* is the effective Richardson constant depending on the effective mass. If the free

electron mass is used instead of the effective mass, Ay = 120 Aem 2K ~2. Furthermore,
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FIGURE 2.13: Current densities with respect to an energy barrier ¢, determined from
thermionic emission for different temperatures.

in equation 2.15, v, ; stands for the electron and hole thermal velocity, ¢y is the general
expression for a current barrier and Jrg stands for the current density derived from
thermionic emission theory. Figure 2.13 shows the current densities plotted against the
energy barrier for different temperatures, calculated from the last term in equations 2.15.
For comparison with free electrons, the dotted bruin curve was obtained by using the
second term in equations 2.15 with A* = Ay. The other three curves where computed
with the default values of v,, = 107em - 57! and N. = 2 - 10'8cm ™3 given in [18]. Note
that for all the curves, ¢, = 0.5¢V implies J ~ 0 mAcm ™2, even for the free electrons at
T = 0° C. A short-circuit density, Js¢ (see next section for further details), of 35m.Acm =2
is depicted on figure 2.13. The value has been chosen since it represents an achievable
Jsc within this thesis. The limit of the Jgo current value is situated at a barrier heigh of
=~ 0.43eV at a temperature of 20° C. The same value prevails for a temperature of 0° C
where a ¢y, of 0.4eV can be tolerated. Even the maximum Jgc ~ 50mAcm ™2 predicted
for a EY = 1leV band gap through the Schockley-Queisser limit [73], passes through a
¢p = 0.4eV barrier. Hence, from this simple development, a AEg b < 0.4€eV is desirable.
This value results from typical chalcopyrites default parameters. Nevertheless, a limit
of AE®" < 0.4eV has also been theoretically calculated for kesterites [1]. However, it is
difficult to measure AE¢ b experimentally. One method, by XPS, is presented at the end
of this chapter.

2.3.3 Diode model of the solar cell

The transport mechanism paths in a pn junction were discussed in the last section.

However, in order to completely describe the transport occurring in a semiconductor
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device based on a pn junction, the generation and recombination processes of electron-
hole pairs (EHP) need to be considered. The continuity equations for electrons and holes

rely on the total particle number conservation and are expressed by:

875(:) — G(2) = Un(2) + 2‘%‘9 (2.16a)
op(z) 1dJy(2)
B = Orl2) = Uple) = TH S (2.16b)

where Gy, p(2) and Uy, p(z) are the generation and recombination rates of electrons and
holes respectively. The generation and the recombination rates for electrons and for
holes may differ due to trap states [18|. In the absence of trap states, the generation of
an electron is indissociable with the generation of a hole and thus G, (z) = Gp(z) and
the same way U, (2) = Uy,(z). Different EHP processes can occur in solar cells: thermal
or photo generation and recombination through various paths in the pn junction. The
principle of a solar cell relies on the generation of EHP close to the interface, the charge
carriers are then separated due to the gradients of the electrochemical potentials and are
either collected at the contacts or participate in various recombination processes. The
generation and recombination currents will further contribute to the total current as can
be seen from the continuity equations 2.16. In addition, current contributions due to
different gradients, as seen from the transport equation 2.7, occur as well. Thus, the
individual contributions to the total current will be more or less dominant, depending
among others, on the charge carrier distribution within the solar cell, the electrostatic
potential gradient, the generation and the recombination of EHP. This makes the inter-
pretation of the current-voltage characteristics of a solar cell rather difficult. However,
in first approximation the current-voltage (JV) characteristics can be described within

the diode model discussed in the following.

one-diode model

It was shown in the last section, from the transport equations 2.7, that potential gra-
dients induces a current in the junction, the diode current, Jgjoge = Jn(2) + Jp(2). In
addition, light with an energy above the absorbers band gap, generates an EHP result-
ing in a photo generated current,.J,,, which can be calculated by the integration of the
continuity equations 2.16. In order to decouple the photo generated current from the
diode current, the superposition principle sates that the total current under illumination

can be expressed by [18]:

J1ight V') = Jaiode(V) — Jpn(V) (2.17)
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Jdiode

FIGURE 2.14: Equivalent circuit for the one-diode model.

The superposition principle is valid as long as the diode current is the one flowing under

illumination [18]. In addition, the diode current can be expressed under the form:

Jdiode(V) = J0<exp {ZZT} - 1>, (2.18)

where, Jj is called the saturation current density, A, the diode factor and k the Boltzmann
constant. The saturation current density can be further expressed by its activation energy
E,:

—E
J() = Jo(] eXp{Ak;}, (2.19)

where Jyo is the reference current density [18]. Furthermore, within the one-diode model,
the current can be described with the help of an equivalent circuit, figure 2.14, where
a series resistance,Rg, and a parallel or shunt resistance, Rgy,, account for losses in the

total current. With these considerations, the total current can be expressed as [18]:

q(V — JlightRS) } _ 1) + w — Jph(V)_ (2.20)

Jiight(V') = J()(exp { T Ren

An ideal diode would be achieved by considering the photo current to be independent
of the voltage, J,, (V) = Jph, the series resistance to be very small (Rg — 0) and the

shunt resistance to tend to infinite (Rgp, — 00).

Solar cells parameters

However, to describe and compare solar cells, the relevant solar cell parameters need to
be extracted from equation 2.20. The short circuit current, Jg¢, is the current flowing

at V =0, and is given by [18]:

Jsc(0) = ne(V = 0)Jpn, (2.21)
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where 7.(V') stands for the collection function. Jg¢ is also the maximum current density
produced by the device. The open-circuit voltage, Vpc, is the quasi Fermi-level splitting
at the contacts and thus represents the maximum voltage which can be produced by the
cell. Voc is also the voltage at Jy;gnt(Voc) = 0 and thus by considering Rgé < Jpn/Voc,
equation 2.20 becomes [74]:

AKT . [ J AKT [,
VOC:kln{ph—i—l}%kln{ph}. (2.22)
q Jo q Jo

Furthermore, by inserting equation 2.19 in the last term of equation 2.22 , with n(0) =1
(see equation 2.21), Vpc can also be expressed by [75]:

E, AR {JOO}_Ea Alen{Joo}
q q '

Voo =—%— "l
°¢ Ty Jph Jsc

; (2.23)

This equation shows that a plot of Voo versus the temperature, 7', gives a value for
the activation energy, F,, with the extrapolation of Voo to 0 K . The activation energy
can then be compared to the band gap in order to get information on the location of
the dominant recombination path. Indeed, if £, < Ej, the dominant recombination
path is located at the interface and if F, ~ Ej the dominant recombination path is one
of the other possible paths (for further details on the different recombination paths see
next section). With the help of the Jgc and Voo definitions, the fill factor, F'F', can be

defined:
~ Vopdmp

FF = ,
VocJsc

(2.24)

where V,,,,, and J,,,,, stand for the voltage and the current values at the maximum power
point. In fact, the FF' describes the "squareness" of the JV curve and the higher the
FF, the better the solar cell. The efficiency of a solar cell is defined by the maximum
power density output divided by the incident solar power density (Psyy) and by inserting
equation 2.24:

~ Vipdmp  FFVocJsc

Psun Psun

In order to compare solar cell efficiencies of different devices under standard operating

(2.25)

conditions, 7, is usually measured at 25° C under an illumination equivalent to an AM1.5
spectrum. 1, Voo, Jso and F'F' are the basic solar cell parameters which characterise
a device. To further analyse a solar cell, the diode current parameters, Jy and A and
circuit losses, Rg and Rgy, need to be taken into account. To do so, The JV curves need

to be fitted by the one-diode model equation 2.18 [75].
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FIGURE 2.15: Schematic presentations of the most relevant recombination paths oc-

curring in a solar cell device, after [18]: (1) recombination at the interface, (2) recom-

bination in the bulk, (3) recombination at the back contact, (4) recombination in the
SCR and (5) recombination in the buffer layer.

2.3.4 Recombination and loss mechanisms

The diode current of a heterostructure can be based on different recombination paths
which take place at different locations in the solar cell. The recombination can be
classified into band to band recombination and defect related recombination. Defects,
if not totally avoided, can be minimised in solar cells, in contrary to band to band
recombination. Furthermore, the energy produced by the recombination of an EHP can
be transferred to photons, electrons or phonons, which result in radiative, Auger and
phonon recombination respectively. The radiative recombination process, is the direct
recombination of an EHP and is the main reason for a theoretical efficiency limit of an
ideal pn junction, described in the Schockley-Queisser model [16]. However, for solar
cells, the location where these recombination processes occur is most relevant since they
determine the diode current. Figure 2.15 schematically shows the different recombination
zones: (1) at the absorber-buffer interface, (2) in the bulk of the absorber also called the
quasi neutral region (QNR), (3) at the back contact, (4) in the space charge region and
(5) in the buffer layer. Recombination in the space charge region (4) and at the interface
(1), can be further tunnelling assisted, not shown in the picture. In CZTSe solar cells,
due to the large band gap of the window and the buffer layer, the recombination processes
take mainly place in the absorber layer and path (5) can be neglected. Thus the diode
current, Jgiode = Jn(2) + Jp(2), can be identified with the minority carrier density in
the absorber which is highest at the interface, Jyjoqe = Jn(2) at J,(z = 0) [18]. The
starting point to calculate the diode current, is the integration over the SCR of the
continuity equation (equation 2.16) and by adding the contribution of the current at the
interface. Then, J,(z = 0) — J,(z = —w?®) = J3CF 4+ JIF . (for the definition of —w?

see picture 2.11). Recombination in the QNR and at the back contact can only occur
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by the transport of carriers to the recombination sites by diffusion and is thus diffusion
limited. The diode current contribution in the QNR can be expressed by the diffusion

equation:
dn(z)
dz ’

(=—w?)

Titode = Jnlz = —u") = qDy

(2.26)

where D,, stands for the diffusion coefficient for electrons. The diode current has thus

three contributions, in the SCR, in the QNR and at the interface:
sz’ode = Jn(z = 0) = gé\;f + J[iszgd]g + Jéilgde (227)

In general, several recombination mechanisms occur in parallel and each contribution
has the form of the diode equation 2.18 [18]. The magnitude of each contribution is
characterised by its Jy and its A factor. The saturation current, Jy, can be further
characterised by its activation energy, E, and by its Jyo (see equation 2.19). In the
following, we will discuss the different recombination mechanisms in relation with the
diode parameters. Furthermore, the recombination at grain boundaries will very briefly
be introduced. At last, optical losses and quantum efficiency analysis will be briefly

discussed.

Diode parameters

Interfaces in CZTSe solar cells, like the junction, the back contact, or grain boundaries,
may exhibit a large amount of defect related interface states [18]. It is mentioned in the
previous section, that different recombination processes can occur. It turns out, that by
comparing the minority carriers lifetime, the limiting process up to date in chalcopyrites
solar cells, is defect related [18]. Recombination via a single defect density, Ny, is de-
scribed within the Schockley-Read-Hall (SRH) recombination model. This model defines
demarcation levels, which differentiate the behaviour of the defect with the location of
its energy level: if E; lies in between those levels, Ny acts as a recombination center
and if Ey lies above or below, Ny acts as a trap state for electrons or holes respectively.
Nevertheless, with the help of this model, an expression for the net recombination rate
can be derived [18]:

np—n%

R=U-Gy= ,
0 Yp(n +n*) + v (p + p*)

(2.28)

where Gy is the thermal generation rate, n* = Ngexp{—(E; — Eq)/kT} and p* =
Ny exp{(—E4)/kT} are the auxiliary carrier densities and stands for carrier emission
from trap states. 7, and 7, in the case of bulk recombination without tunnelling are

the minimum lifetime of electrons and holes. In the case of interface recombination,
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Yn = Sgol and v, = Sp_ol, where S,0 and Sy, are the nominal interface recombination
velocities. The net recombination rate is necessary to calculate each diode contribution

dominated by defect related recombination.

For interface recombination, the diode current at the interface is given by [18] :
diode = 4R, (2.29)

and with the help of expression 2.28, J, éf;de may be derived. To further determine Jy and
A, some additional consideration have to be taken into account according to different
discrimination levels, after [18]. The first reason for interface recombination is a different
interface band gap (E;F ) than from the absorbers bulk (E7), which is the case for a
"cliff-like" situation (see section 2.3.2). Whereas for a "spike-like" situation, only one
"straight" recombination path can occur, that is where only the bands of the absorber are
involved; for a "cliff-like" situation an additional cross-recombination path, between the
electrons from the buffer conduction band and holes from the absorbers valence band can
take place. From the SRH recombination model this reduced interface band gap may act
as a high recombination center (RC). The second level of discrimination concerns Fermi
level pinning. If one of the quasi Fermi levels, E(2 = 0) or Ej(z = 0), is fixed (pinned)
with varying electric bias, then Fermi level pinning is present and these cases depend on
N é’F . If the Fermi levels are not pinned, step 3 consist of taking the doping ratios into
account: eV Np > NG, eV N < e?N§ and eV NF = e?N§. Next, step 4, evaluates the
type of recombination centres, which may be discrete, N; with one E,, or energetically
distributed, Ny(E). At last, the interface recombination may be assisted by tunnelling

or not, which will not be considered here.

In section 2.3.2 the importance of the doping ratios were discussed. To simplify the
discussion, we introduce the quantity, = e*N4/(e*N¢ + e NJ), and similarly, 1 — 0 =
eYNPE/(e* NG + € Njy) may be defined [18]. For a high asymmetric junction, eV N} >
e*Nj and 6 ~ 0. Considering the discrete interface state case, with E¢.z ), — Eq ~ Ej /2,
and without Fermi level pinning, the activation energy may be expressed as: FE, =
Min(Ey, E§ +AE.). Thus, the activation energy is given by the interface band gap, E;F ,
and is reduced compared to the bulk band gap for AE. < 0. The inverse diode quality
factor for interface recombination is given by the relation: 1/A = 1 — 6. Hence, for the
situation described above, A = 1. In general, without tunnelling, de diode factor is in the
range of A =1 to A = 2, depending on the doping ratio. However, if Fermi level pinning
(FLP) occurs at a position above the middle of the band gap, E2(z = O) < E;F/27
the activation energy is reduced by E%(z = O). Thus, E, = E;F — E2(z = O). Hence,
B, = Qﬁf , where qﬁzb’ is a barrier for holes. Similarly, the Fermi level pinning occurring at

a position below the middle of the band, gives E, = E%(z = O).
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Table 2.2 summarises the values of the activation energies and diode factors given above,

and further gives values for recombination in the SCR and in the QNR. Furthermore,

’ Recombination region H 1/A ‘ E, H

SCR 12 | ES
QNR 1 | ES
IF without FLP 1-6 EfF
IF with FLP 1| 4

TABLE 2.2: Inverse diode factors and activation energies for a pn™ junction with a
single defect state for different recombination processes, after [18].

table 2.2, highlights the information linked to each diode parameter. The diode pa-
rameter A, gives information about the location of the dominant recombination path.
However, even for the best CZTSe absorbers, the solar cells are dominated by SCR re-
combination [1]. Thus, the discrimination between SCR and IF recombination is rather
difficult based on A alone. Therefore, the location of dominant recombination path, is
mostly done by measuring F,, by temperature dependant current-voltage measurements
(see section 2.3.3). Furthermore, the diode current is characterised by FE, and by Jy

(equation 2.19) , where Jyg is related to the carrier life times [18].

Grain boundaries

In polycrystalline absorbers, grain boundaries (GBs) may show higher recombination
rates than in the bulk. Additionally, the GBs may be charged and therefore induce band
bending [18]. Thus the situation is similar to interface recombination depicted above
and the net recombination rate can be calculated by equation 2.28 with the nominal
interface recombination velocity S$P and Sg)B . In order to describe the effect of the GBs
on the junction, the orientations of the GBs can be classified in two types, horizontal or
vertical. In other words, in reference to the junction, they can be parallel (horizontal)
or perpendicular (vertical) [18]. Since the junction has been described with the position
parameter (z), it is easier to study the effect of a GB at a fixed position 255, Thus, we
consider a horizontal neutral GB. The effect of such a GB on the solar cell parameters is
notifiable if 2B is located in the SCR and the solar cell parameters undergo a minimum
for S¢Bne = SI%Bp“ [18]. Hence, if the electrons and holes velocities are almost the

same, the minimum occurs at the electronic junction n® =~ p®.

In addition, GBs may be charged. Negatively charged GBs, provided by acceptor states
close to Ey pas, induce upward band bending as depicted in figure 2.16(a) and positively
charged GBs, provided by donor states close to Ecpar, induce downwards band bending

as depicted in figure 2.16(b) [18]. However, negatively charged GBs are unlikely in p-
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FIGURE 2.16: Schematically representation of a band diagram crossing a GB for (a)
negatively charged GB and (b) for a positively charged GB, after [18].

type absorbers, since the small E%(z = z%%) (figure 2.16(a)) implies low occupation of
GBs acceptor states, which further implies a very high density of acceptor states [18].
In contrast, a positively charged GB is more likely in a p type absorber and since it
attracts electrons and extends the SCR, the GB enhance recombination [18] compared

to the neutral case.

Similarly to a horizontal GB, if a vertical GB runs trough the complete absorber, recom-
bination is highest in the SCR at the electronic junction. Furthermore the efficiency (7)
reduction is less than for a horizontal GB [18]. Recombination increases for a positively
charged vertical GB due to electron attraction like in horizontal GBs. In addition, GB
inversion may occur for large band bending, which induces an extension of the junction
into deep in the absorber depending on the size of the GB. This n-type channel induces
further causes of shunting in the solar cell [18]. In conclusion grain boundaries should

be avoided at least in the SCR.

Optical losses and Quantum Efficiency analysis

In addition to defect-related recombination losses described in the last section and to
parasitic losses, Rg and Rgy, in the one diode model, optical losses are occurring as well
in solar cells. Within the superposition principle, this losses can be described with the
help of the photo current term in equation 2.20. However, the superposition principle
is often not verified in practice. Hence, to partially overcome this fact, the photo cur-
rent is allowed to be voltage dependant [18|. Additionally, the photo current density
in an pn junction under illumination depends on the energy spectrum of the incident
light. This can be expressed by an energy or wavelength dependant generation rate,
G(A, z). Hence, Jp,(V) may be derived by the integration of the continuity equations
for electrons and holes 2.16 at steady state conditions, On(z)/0t = 0 and Op(z)/0t = 0
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and by replacing the generation rate by a generation function, G(\, z). Intuitively the
generation in the absorber is dependent on the different optical losses that undergoes
the incoming photon flux density, d®,(\), at a given wavelength. Hence, neglecting the
effect of multiple reflection and interference, considering an absorber/buffer /window het-
erostructure, dG(\, z) over the incident photon flux density at a given wavelength may
be approximated by [18]:

m = T(\)(1 — R(\) exp{—a’(N\)d°}a?(\) exp{—a®(\)z}. (2.30)
T'(\), is the transmittance of the window layer and R(\)) the reflectance. They account
for different optical losses like reflection at the air/window interface and shadowing effect
of the grids which reduces the effective solar cell area. Furthermore, the two exponential
functions accounts for the absorption in the buffer and absorber layer described within
the Beer-Lambert law, where a®? are the respective absorption coefficients. The collected
current may be derived with the help of a collection probability, the collection function
Ne(z, V) and with the normalized generation function, G, (A, z) = dG(A, z)/d® (). Fi-

nally the expression of the photocurrent is:

AQ dy
Tn(V) = —q / ’ dq);A(A) / G\, 2)ne(z, V)dzd\ (2.31)
Aw —do

The external quantum efficiency, EQE, is the spectral response of the solar cell, which de-
scribes the wavelength dependence of the charge carrier flux density. Thus, the definition
is [18]:

—dJpn(A\, V)
EQE\ V)= —E2"_~ 2.32
QE(V) = — s (232
This definition can be rewritten as [18]:
A5 ddy(N)
Jpn(V) = —q N EQE(\V)dA (2.33)
Ag
Hence, by identification of equation 2.31 and 2.33, EQE is given by:
db
EQE\,V) = Gn(\, 2)ne(z, V)dzdA (2.34)
7dll

In fact, the last equation shows that the external quantum efficiency measures the charge
collection probability of charge carriers generated with respect to a given photon flux

density at a fixed wavelength. Hence, EQE is a charge collection efficiency.

It was shown in section 2.3.2 that the SCR width is voltage dependant (equation 2.9).

More specific, the SCR width extends under reverse bias and decreases under forward
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FIGURE 2.17: EQE set-up used during the time frame of this project, taken from [76].

The monochromatic light beam path is shown in gray. Furthermore, the input signals

are shown as full round symbols, whereas the output signals are shown with the help
of contour diamonds.

bias. Furthermore, the collection function is highest in the SCR (7. ~ 1) and decreases in
the QNR. Moreover, if the electron diffusion length L% < d*, the collection function may
be approximated by 7.(z) ~ exp{(z + w®)/L%}. Inserting this expression in equation

2.34 and assuming no absorption in the buffer layer gives the Gértner formula [18]:

exp{—a“(A)w“(V)})
1+ a2(N)Le

EQE\,V) =T\ (1 - R(N)) (1 — (2.35)
Equation 2.35 states that the voltage dependence of EQE is a consequence of the voltage
dependence of the width of the SCR, w*(V'). For short wavelengths, a®(A\)w*(V') > 1,
which implies FQF ~ 1 and thus EQE is voltage independent. However, the voltage
dependence of the EQE increases for longer wavelength. In fact, as the collection width
of the photo induced carriers, L., approches w?®, the influence of the voltage is large,
since Leoy ~ w® 4+ L% [18]. Similarly, if L¢ > w®, the photocurrent is almost voltage

independent.

Experimental Set-Up

It is mentioned above that EQE enables the determination of the spectral response of a
solar cell. Furthermore, the EQE curve is a possible way to determine the band gap of
the absorber which can vary from process to process [1]. EQE measurements are thus
inherent to solar cell characterisation. Figure 2.17, taken from [76], schematically shows
a classical EQE set-up, used during this thesis. The monochromatic light beam is created
lamps passing trough a monochromator. Two different detectors are used, a Si and a
InGaAs diode. This enables to cover the most relevant spectrum depending on the band
gap. For kesterites this range is from = 300 nm to = 1600 nm. The light beam is then
focused onto the sample surface with a ~ 2 mm spot size [77]. To measure the output
signal, the sample is contacted to a potentiostat which also amplifies the signal. Since

the signal is still low, a lock-in amplifier is needed, which uses a chopper behind the
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monochromator to get the reference signal. In addition, to measure voltage dependent
EQE, a DC bias can be applied to the sample, through the potentiostat. The whole

experimental set-up is computer monitored.

2.4 Compositional and structural analysis

Finally, X-ray diffraction and Electron Back Scatter Diffraction (EBSD) measurement
techniques are very briefly described. Finally, the basic characterization methods for

composition determination, EDX, SEM and SIMS are very briefly described.

2.4.1 Compositional and morphological analysis

This section describes very briefly the morphological and the compositional measure-
ment techniques used in this work. The morphology is investigated by scanning electron
microscopy (SEM) and the bulk composition by energy/wavelength dispersive X-ray
spectroscopy (EDX/WDX respectively). The compositional depth profiles of the sam-
ple are investigated by secondary ion mass spectroscopy (SIMS). The SEM, EDX and
WDX measurements are all performed in the same microscope instrument equipped with
EDX/WDX detectors and rely on the interactions of an electron beam with the sample’s
surface. Figure 2.18 (a) sketches the relevant interactions for the above mentioned char-

acterisation techniques [52]. The impinging primary electron beam creates secondary
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FIGURE 2.18: (a)Interaction of a primary electron beam with a sample’s surface gener-

ating secondary electrons (SE) in the first 50 nm of the sample, leading to backscattered

electrons (BSE) deeper down in the film, and creating characteristic X-rays from the

shown volume of primary excitation. (b) Schematic picture of the creating of secondary
and the characteristic X-rays adapted from [31, 52].

electrons (SE) close to the surface. This secondary electrons lead to backscattered elec-

trons (BSE) and to relaxation of the atoms by characteristic X-ray emissions further
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in the bulk (< 3 pm). It should be noted that the relaxation of the atoms can also
result in the emission of Auger electrons. They are useful for surface characterization
mainly in Auger electron spectroscopy (AES), but this technique is not discussed here.
The emission of characteristics X-rays is illustrated in more details in figure 2.18 (b).
However, by investigating secondary electrons, it is possible to get very surface sensitive
informations and similarly bulk measurements are enabled by the detection of the BSE
and/or by the characteristic X-rays. In the following, SEM, EDX, WDX and SIMS are
very briefly introduced. For further details the reader is referred to [31, 78§].

Scanning Electron Microscopy (SEM)

SEM is the characterisation technique the most widely used for thin film imaging [31].
The spatial resolution can be in the range of 1—5 nm 78] with the use of a focused electron
beam and modern microscopes can provide resolutions down to below 1 nm [31]. In SEM
measurement, secondary electrons (SEs) as well as backscattered electrons (BSEs) are
detected. A contribution of the Auger electrons can also be observed in the spectrum.
Since the SEs arise from the near surface region, they are used to investigate the surface
morphology. In this type of measurements, the SE detector is geometrically arranged in a
way to assure the measure of a majority of SEs, since the BSEs have more defined emission
directions. In practice, an image is gained by scanning the primary electron beam over
a two dimensional grid. The escaping SEs are collected in a scintillator detector for
every grid point and the more electrons are detected, the brighter is the spot on the
computer generated image. Hence, by scanning over a given area, a two dimensional
contrast image is created [52]. . To ensure a high contrast picture in which fine details
are distinguishable, a high electron current during the measurement is preferable [78§].
Furthermore, since the penetration depth of the primary electron beam depends on its
energy, a low beam energy is favoured for surface sensitive measurements. Besides surface
topography, SEM enables to visualize areas of elemental differences. This is done via the
BSEs scattered from the bulk. The contrast in the picture due to the elemental difference
is explained by a larger scattering cross section for heavy atoms compared to light atoms
and thus the amount of BSEs coming from a heavy atom is larger than that coming from
a light atom. The SEM images done within the scope of this work are taken in the SE

mode at an acceleration voltage of the primary electron beam of 7 keV.

Energy/wavelength Dispersive X-ray Spectrometry (EDX/WDX)

Energy dispersive X-ray spectroscopy, EDX or EDS is a technique that uses the charac-

teristic X-rays emitted from the bulk to determine a relative composition of the elements
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in the sample. In this process, electrons in the innermost shells (e.g. the K shell) are
ejected living a hole in the shell (see figure 2.18 (b)). The atom then relaxes, i.e. a tran-
sition of an electron from a higher energetic state (e.g. from the L shell) to the empty
state in the K shell occurs, leading to the emission of characteristic X-rays. The relax-
ations from the outer shells to the K shell are all K lines. For example, the transitions
from the L shell and the M shell to the K shell are more specifically called K, and Kg
respectively. Similarly the transition from the M shell to the L shell is the L, line. Since
the energetic states differ from element to element and thus the energetic positions of the
given transitions, each element has a characteristic spectrum. In this way, a qualitative
information of the elemental composition can be obtained. Additionally, by comparing
the intensities of the different lines with those of a reference sample, also quantitative
analysis can be performed. However, the accuracy of the quantitative information in
EDX measurements is affected with several matrix related problems. Therefore, usually
a ZAF correction is taken into account, where Z stands for the atomic number effect,
A for the X-ray absorption effect and F for the X-ray fluorescence effect, respectively.
The Z correction is needed due to the decrease of the X-ray emission efficiencies with
the atomic number Z. This fact could be related to an increase in scattering effects.
The X-ray absorption factor, describes the possible re-absorption of the generated X-
rays in the bulk of the sample and the X-ray fluorescence factor describes the possible
measurement errors with the emission of secondary X-rays by fluorescence |78]. These
ZAF effects depend on the matrix of the sample. Hence, to practically implement good
corrections in the composition determination, a reference material of a similar matrix
and know composition has to be used to calibrate the system [52, 78]. Besides the effects
of the matrix, other problems occur in EDX measurements like the overlapping of lines
from different elements. in the case of CZTSe the L lines from Cu and Zn overlap and
thus the K lines have to be used. This implies an high enough energy of the primary
beam which is set at 20 keV in the frame of this work. At this energy, the interaction
volume is fairly high (down to 1200 nm according to Monte-Carlo simulations [52]) and
thus the Mo from the substrate is visible. Furthermore, at 20 keV only the L lines of Sn
and Mo are visible at 20 keV and are thus used for composition determination. Since
S and Mo can hardly be distinguished in EDX measurements due to the overlapping of
their L-lines, wavelength dispersive X-ray spectroscopy (WDX) has to be used. Unlike
EDX where all the energies are collected at the same time, WDX collects one wavelength
at the time at a specific angle according to the Bragg’s law. This enables a 10 times
better resolution than EDX and thus the S and Mo lines can be separated from each
other. In this work, WDX is used to determine the S content when needed. Since the
interaction volume of the probed sample at 7 keV only reaches 300 nm in depth [52],

some complementary surface composition analysis is done at 7 keV.
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Secondary Ion Mass Spectrometry (SIMS)

In contrast to the measurement techniques discussed above, in secondary ion mass spec-
trometry (SIMS) the impinging beam is an ion beam. In this work, Cs™ ions are used
to investigate the elemental composition. In SIMS the incident ions have an energy be-
tween 1 and 10 keV. Similarly to the cases discussed above, when a primary ion hits
the surface, an energy transfer occurs with the atoms and molecules of the underlying
surface. Secondary ions are emitted and accelerated from the surface by an applied
voltage before entering in an analyser and detector system [79]. The ions are separated
by their different mass/charge ratios by the analyser and the elements present in the
sample can thus be identified by their mass. Two different modes are possible in SIMS
measurements, known as static and dynamic SIMS respectively. In static SIMS a low
primary beam current and a low sputter rate assure a very surface sensitive analysis.
Dynamic SIMS however enables a depth profile of the sample by systematic removal of
the surface layer. One big issue in SIMS measurement is the difficulty of quantitative
analysis due to the matrix effect. Indeed, the sputtering yield of secondary ions depends
on the matrix composition. Hence, in inhomogeneous samples in depth, the yield of the
different ions vary as well, making quantification of the results very difficult [79]. One
approach to reduce the effect of the matrix is to detect the molecular MCs™ ions rather
than single M ions, where M is an element in the matrix [80]. This approach is applied
in the SIMS measurement presented in this work but no quantitative analysis is carried

out. All analysis is based on the compositional depth profiles only.

2.4.2 X-Ray Diffraction

The crystal structure of materials is generally studied trough diffraction measurement
techniques. The interatomic distances in crystals are in the range of 0.15-0.4 nm and
correspond to X-rays wavelengths with photon energies of 3-8 keV [81]. Hence, interfer-
ence and diffraction phenomena are observable when crystalline structures are exposed
to X-rays. This section briefly exposes the basic principle of X-ray diffraction with spe-
cial focus on the grazing incidence approach. Additionally, some insights into preferred

orientation and texture in polycrystalline films are given.

The basic principle

X-ray diffraction (XRD) is a technique based on the elastic scattering of X-rays by elec-
trons [81]. In a crystal, the X-rays are elastically scattered from a family of lattice planes

hkl. For simplicity, this phenomenon is considered as reflections from a series of parallel
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planes inside the crystal, depicted in figure 2.19 [31]. Since the x-rays originate from the
same monochromatic source, the reflections may interfere constructively or destructively.

The reflected beam with maximum intensity is thus achieved by constructive interfer-

Ay SiN (6)

FIGURE 2.19: Schematic representation of waves reflection from lattice planes to illus-
trate Bragg’s law [31].

ence, i.e. the difference in path lengths between both reflections must be an integer
multiple of the wavelength, A. This is known as the Bragg’s law and is mathematically
expressed as:

nA = 2dpsind (2.36)

where dp;; is the inter-planar spacing between the hkl planes and 6 is the Bragg angle
measured between the incoming beam and the surface sample. Both quantities are
defined and depicted in figure 2.19. The relation between dpx; and hkl for a tetragonal

lattice is given by [28, 81]:
1 RP+E P

2 2

- (2.37)

iy, a
where a and c are the lattice parameters. Then, by inserting equation 2.37 in equation
2.36, a relation between the Bragg angle and the hkl planes is found. Polycrystalline
diffraction methods are classically performed at fixed A and at varying € [31]. One of the
possible configuration, is the symmetric 6-20 geometry. In this configuration the angle
between the incoming beam and the surface of the sample, 6;,, and the angle between
the detector (and thus the outgoing X-ray) and the sample surface, 0y, are kept the
same during the scan, 6;, = 0,,:. Hence, the angle between the incoming beam and
the detected X-rays is 20 and also the reason for naming this approach 6-26 scans. To
maintain the wanted geometry, a scan is performed while moving the source and the
detector at the same rate. The intensity of the scattered X-rays is measured trough the
detector for each angle in the wanted range and thus the result is presented as an 1(20)
diffractogramm. However, in this configuration only the planes hkl that are parallel

to the sample surface contribute to the measured signal [81]. Hence, in polycrystalline
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films only a fraction of the crystallite that are oriented in such a way to satisfy Bragg’s

condition, contribute to the signal.

Grazing Incidence X-ray Diffraction (GIXRD)

In random oriented polycrystalline thin film, it happens that the symmetric 6-20 geom-
etry yields low peak intensities and poor peak to background ratios [31]. That is mainly
related to the short path lengths in thin films which enables unwanted interactions with
the underlying substrate. To improve the situation for weakly diffracting films, a low-
angle XRD technique like grazing incidence X-ray diffraction (GIXRD) can be applied.
In an GIXRD measurement the incoming beam is kept at a constant angle o and only
the detector is moved over a 26 range of interest. GIXRD is thus an asymmetric XRD
scan where the path length of the X-rays is increased by a small o angle. The schematic

principle of a GIXRD measurement is shown in figure 2.20. In contrast to the 6-20, the

detector

sample surface \9

FIGURE 2.20: Schematic representation of a GIXRD experiment, after [31].

direction of the scattering vector is no longer perpendicular to the samples surface and
varies during the GIXRD scan. Hence the angle between the diffracting lattice planes
and the sample surface varies during the measurement. Typically, a = 1° already in-
creases largely the diffraction volume [31]. For « values below the critical angle for total
external reflection, a., typically 0.1-0.5° for Cu K, radiation, the penetration depth of
the X-rays is usually below 10 nm which makes it a very surface sensitive technique [31].
However caution has to be taken with « values around the critical angle. The actual
measured scattering angle could be different than the Bragg angle due to the refraction
of the X-rays at the sample surface and thus induce a peak shift in the diffractogram
[31].
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Preferred orientation and texture

In polycrystalline thin films, the crystallites are rarely randomly oriented i.e. the dis-
tribution of their orientations is rarely isotropic [81]. It often happens that a certain
crystallographic orientation [hkl| is preferentially oriented with respect to the sample
reference frame. This anisotropy of the crystallite orientation is known as texture or pre-
ferred orientation and can be identified in a symmetric -2 measurement. For this, the
0-26 scan has to be compared to a powder pattern of randomly oriented grains. Indeed,
with preferred orientation of the crystallites, pronounced enhancement of certain Bragg
reflections, I(hkl), and reduction of others, occur in the diffraction pattern compared to
the reference powder diffractogram [81]. A simplified method to quantify the texture of
a film is to determine the texture factor or texture coefficient. This approach relies more
specifically on the comparison of the integrated intensities of the measurement with those
of a powder reference. The reference data which is commonly used is generally that of
the ICDD database, where ICDD stands for the international centre for diffraction data.
The expression of the measured integrated intensity for a specific hkl reflection is given
by [81]:

I = SCF™ - Ty - | Fngal® - Mo - Lp - Agoo (2.38)

where SCF™ stands for a scaling factor that regroups the effects of the instrumental
settings on the intensity. The texture factor, Tpx; reflects different density of crystallite
orientations for a given plane hkl. The intensity is also scaled by the structure factor,
| Fiu|? which takes into account the nature and the spatial arrangement of the scattering
atoms in the hkl planes. The multiplicity factor, mpx;, specifies the number of equivalent
lattice planes that may all cause reflections at the same 6 angle. Lp, stands for the
Lorentz-polarisation factor which also includes the geometric factor, for more details see
[81]. Finally, Agog is the absorption factor for a finite thickness according to the Beer-
Lambert law. The expression of the intensity for a random orientated powder (Thy = 1

for all hkl directions) of infinite thickness (Agag = 1) is given by [81]:
I]{IZDD = SCFICDD . |Fhkl’2 s Mhpgkl - Lp (239)

It is clear from equations 2.38 and 2.39 that |Fyu|? - mpx - Lp cancel out by comparing
both expressions. To derive a suitable expression for T} the sum of the intensities,
Yndpe, are calculated for all Bragg peaks appearing in the investigated 26 range. Then,
both sums, of the measured and the ICDD diffractograms are normalized to a certain
value. This step allows to rule out the scaling factors, SCFI¢PP and SCF™. An other
way of normalization is to first normalize the single intensities (i.e. scale the highest

intensity to a value of 100) and then calculate the texture coefficient for each hkl plane
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according to equation:
Inia/TLG PP
(1/n)[SnThe/ TEG PP

Thii = (2.40)

Although, the absorption factor remains unconsidered in this equation 2.40 the texture
coefficient determined with this equation gives a first estimation and is used in many
publications [81]. The texture coefficient as given in equation 2.40 may be viewed as a
weight factor which measures the degree of enhancement or reduction of the reflection

of a given hkl plane compared to the powder reference [81].

2.4.3 Electron BackScatter Diffraction (EBSD)

Electron backscatter diffraction, EBSD is a technique based on the diffraction of
backscattered electrons [31]. The basic experimental set-up consists of a SEM (scanning
electron microscope) equipped with an EBSD detector which is typically a phosphor
screen and a CCD camera [82]. For a complete detailed description of the experimental

set-ups the reader is referred to [82].

The basic principle

The principle is based on Bragg’s law, similarly to the X-ray diffraction technique. Hence,
it is a technique used to investigate, among others, the crystal structure and more particu-
larly the crystal orientation of the grains in polycrystalline films. Backscattered electrons
(deflected more than 90°) are emitted in all directions when an incoming electron beam
impinges into a crystal within the polycrystalline film [31|. The backscattered electrons
which fulfil Bragg’s condition 2.36, form a specific diffraction pattern on the phosphor
screen, known as the kikuchi or EBSD pattern. The physical aspect of a kukuchi pattern
is a crossing bands pattern, each band corresponding to a specific hkl plane reflection.
EBSD is a very surface-sensitive technique [31]. Although the penetration depth for an
electron beam at 20 kV is of a few pum, the backscattered electrons contributing to the
diffraction pattern arise from only a few tens of nm in the sample [31|. Hence, the sam-
ple’s surface need a careful preparation and for rough sample, surface polishing is often
required. To reduce the absorption of the backscattered electrons from the surrounding
material, the sample is tilted compared to the position perpendicular to the incoming
electron beam. The tilt angle is usually about 70° which offers a compromise between
the EBSD diffraction pattern resolution and the reduction of the absorbed backscattered
electrons [31]. In a fully automated EBSD system, the orientations or the texture is
represented in a coloured EBSD map. For this, the measured position (corresponding

to the interplanar angles) and widths (related to the Bragg angles) of specific bands in
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the kikuchi pattern are indexed by comparison with simulated patterns from a specific
crystal [31]. Therefore the resulting EBSD maps refer to a particular symmetry. In this
work, the tetragonal lattice with I4 space group symmetry and the lattice parameters
given in section 2.1.1 are applied as reference settings in the measurements to determine

the texture in Chapter 5.

Inverse pole figures

Additionally to the coloured map, the EBSD texture measurements are often presented
under the form of an inverse pole figure. The detailed derivation and mathematical
description of pole and inverse pole figures can be found in [81, 83, 84]. Pole and inverse
pole figures are derived from the stereogaphic projection [83]. Figure 2.21 shows the

construction of an inverse pole figure. In order to describe orientations of crystallites in
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FIGURE 2.21: Schematic representation of the construction of an inverse pole figure,
taken from [85].

a sample two coordinate system have to be defined. The coordinate system of the sample
and the coordinate system of the crystallite or crystal. The sample coordinate system,
XY Z, is usually defined as, rolling direction (RD), transverse direction (TD) and normal
direction (ND). In an inverse pole figure the sample coordinate are attached to the crystal
coordinate sample, i.e. the crystal coordinate system is the reference. Hence, the axes
of the projection sphere or reference sphere [84] are aligned with the crystal directions.
The crystal is located at the center of the sphere [84]. The intersection of a direction
with the sphere surface is defined as a pole. To construct an inverse pole figure, the poles
are projected onto the equatorial plane as further depicted in figure 2.21. The directions
plotted in the figure are the stereographic projection of crystal directions parallel to
either the normal direction (ND), rolling direction (RD) or transverse direction (TD) in
the sample. Due to the symmetry, in a cubic lattice only the directions fitting in the

triangle shown in figure 2.21 need to be investigated. In a lower tetragonal symmetry,
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the triangle with directions (001),(100) and (010) need to be investigated. However, the
intrinsic feature or inverse pole figures still allow one degree of freedom, the rotation
around one direction [86]. Thus grains with identical axes parallel to a specified inverse
pole figure projection direction are not distinguishable from each other although possibly
in a significant different orientation. The EBSD measurements in an inverse pole figure,
are usually presented with a colour code where each direction has a colour. In contrast
to the coloured EBSD map where the grains are distinguishable, in an inverse pole figure

each grain is represented as a direction coloured point in the triangle of interest.

2.4.4 Photoelectron spectroscopy (PES)
The basic principle

Photoelectron spectroscopy is a surface sensitive technique, based on the photoelectric
effect [87|. The sample is irradiated with monoenergetic soft X-rays in XPS or with
monoenergetic UV light in UPS. The energy of this photons enables the bind electrons
to be extracted from the valence band for UPS or from the core levels for XPS, with a

certain kinetic energy [88, 89]:
KE =hv — BE — W, (2.41)

where hv is the energy of the incident photon, BE is the binding energy of the atomic
orbital from which the electron originates and Wy is the spectrometer work function. The
work function was defined in section 2.3.2 and represents the energy needed to extract
an electron from the Fermi energy to the vacuum level. However, equation 2.41 shows a
direct relation between the kintetic energy and the binding energy. Hence, by analysing
the kinetic energies of the ejected electrons the binding energies can be derived and
thus insights into the electronic structure are obtained. Additionally, since each element
has a unique set of binding energies [90],i.e. a characteristic energy spectrum, insights
into the elemental composition are possible. Furthermore, the formation of chemical
bonds will induce the energy levels to shift and thus in the PES spectrum the binding
energies appear to be shifted compared to the binding energies of the pure element, i.e.
chemical shifts are observed, and thereby, PES spectra allow analysis over the chemical
environment [89]. Besides the extraction of an electron by the photoelectric effect, the
vacancy in the core level can be filled by an electron from a neighbour orbital by emission
of a fluorescent X-ray photon or by emission of a secondary electron. The later, is called
the Auger process [90]. The secondary electron or the secondary photon can then further
eject an electron or relax into a vacancy with again release of an electron or photon. In

addition the electrons could undergo inelastic scattering. Hence, one incident photon
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engage a cascade of processes and thus the spectra show a background signal which
increases with smaller kinetic energy and thus also with smaller binding energies [90].
In XPS, two X-ray sources are used in general, the Mg K, with an energy of 1253.6 eV
or an Al K, with an energy of 1486.6 e¢V. However, most of the elements have their
major photoelectron peaks below 1100 eV [89] and thus the Mg K, is sufficient and
was used for the specific measurements discussed in this thesis. The UV source for the
UPS spectra was operated with a He-I gas discharge with an energy of 21.21 eV [68].
The spectrometer workfunction (see equation 2.41) was calibrated with the Fermi level
of the Au 4f7/; line to be at 84.0 eV'. The calibration was done with the help of a thin
gold coating onto the sample holder. By definition, the location of the Fermi level is at
BE =0 eV [90].

Experimental determination of VBO by core-level XPS

One of the fairly reliable experimental method to determine the VBO is based on the
different energy positions of the core levels in the bulk materials and at their related
interface. Due to the escape depths of the photoelectrons of only 2nm [66], one of the
semiconductors has to be very thin. In fact, to correctly account for the band bending,
the best method is to measure first the core levels of one semiconductor (the substrate
layer referenced in the following by the superscript X) and than measure the core levels
while growing layer by layer the second semiconductor on top of the substrate (referenced
by the superscript Y). This widely used technique today was pioneered by R.W.Grant
and by E.A . Kraut [91, 92| in 1978. Figure 2.22 schematically explains the dependencies of
the corresponding band offsets to known or measurable quantities, adapted from [92-94].
Note that some quantities, mainly 6* and Vpgp, which have already been introduced in
the previous section, differ slightly in notation, this is so because they are referenced to a
different energy scale. In general, an interface is accompanied by a deviation of the charge
distribution near the surface compared to that of the bulk. As a consequence, Poisson’s
equation (equation 2.8) predicts a spatially varying electrostatic potential Vpp, (Vé{B
for the substrate in exemple 2.22). Thus all the energy levels in a given semiconductor
bend by the same amount, linked to the potential by the elementary charge ¢q. In XPS
measurements the important quantities are the binding energies Eg. Therefore, figure
2.22 shows the energy scale in terms of binding energies which are measured with respect
to the Fermi level Ef (Ep = 0). The bulk energy levels, referenced with (b) in contrast
to (i) for the interface related values, for the substrate are given on the left hand side
of the figure, while those of the deposited layer are given on the right hand side of
the picture. The band extrema, Ecpy and Ey g, the band gaps E,, the difference

between the VBM and the Fermi level, 6%, core level energies for different elements Ecy,
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FIGURE 2.22: Band diagram with the relevant quantities for band alignment determi-
nation via XPS measurements, adapted from [92-94].

and their respective offset AEqr, AFE., AE, can be distinguished in figure 2.22. The
bulk values and the interface values of the core levels, Ecr(b) and Ecp (i) respectively,
can be determined via the XPS measurements and the band gap value should be known
or found via optical measurements. Hence, the EgB 4 (1), the B, (i) and the ¢VEs at
the interface should be expressed by the known values for substrate material (X). For
this we need to assume that the bulk band gap equals the surface band gap and that the

differences between the binding energies remain constant from the bulk to the interface:

EX(b) = E)X (i) (2.42a)
B (b) = Efpa(b) = EEL (i) — Efpar(i) (2.42b)

Then the EZ5,,(i), the EiX5,,(i) and the gVZ5 interface values can be expressed as:

E&pum(i) = (BEL — Efpy) + Ej( — BJp(4) (2.43a)
Ep (i) = EX, (i) — (EX, — EX 2.43b
VBM(Z) = CL(Z) ( CL VBM) (2. )
qVip = Bop(i) — (ESp — Bvpy) — 0% (2.43¢)

Finally, from equation 2.43(b) and from AE, = EY 5, — E{f5,,, one can express the
VBO between semiconductor X and Y:

AE, = (B¢ — Evpar) — (BEbr — EVpy) + AEo(i), (2.44a)
AE, = BE&, — BES, + AEcr(i) (2.44b)
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where AEcy(i) = E&; (i) — EX,(i). Moreover, the binding energies of the core levels
of the material X and Y are defind as follows: (EZX; — EXg,,) = BEX, and (EY; —
E%,/ BM) = BEgL. However, in this development, the sign of AFE, is supposed to be
positive with respect to the energy axis in figure 2.22 as is custom in XPS literature
[92-94]. Hence, to relate AFE, to the definitions given in 2.4, an additional analysis of
the situation has to be made considering the band gap values in relation with definitions
2.4 and with respect to the positive energy axe. Finally, applying relation 2.5 to the

measured VBO and the known band gap values, gives an indirect value for the CBO.

The limitation of this technique can be visualised by equation 2.42(a) which neglects
variations of the band gap . Generally the interface band gap and the bulk band gap
values are different due to the intrinsic properties of the interface [18|. Moreover, in
the solar cell field, absorbers are generally KCN etched before junction formation and
Bér et al [95] showed that this etching results in a measurable widening of the band
gap at the interface, even at the surface. Furthermore, this method neglects intermixing
and interdiffusion of the different elements constituting the two semiconductors at the
interface. However, the core level binding energies are measured layer by layer and thus
the junction formation can be followed step by step. Hence, this method provides reliable
values of VBO.



Chapter 3

Composition and Interface Study

3.1 Introduction

In the previous chapter it is mentioned that one big issue of the CusZnSn(S,Se), based
solar cells is the small existence region of its pure compound [8]. As a consequence the
formation of detrimental secondary phases is still a challenge in the CuyZnSn(S,Se), field.
Current knowledge places the more efficient devices in the Cu-poor and in the slightly
Zn-rich region [96], shown in figure 3.3. However this knowledge relies on empiric obser-
vations for specific preparation routes. Hence, for a different process this parameters may
not represent the best choice. Therefore the first part of this chapter will be dedicated
to study the effect of different compositions on the absorbers made by a two step-process
involving physical vapour deposition and annealing, which circumvent the effect of the
Sn loss described in section 2.2.2 and in [51]. One step further is to discuss the presence
of secondary phases in our absorbers. Indeed secondary phases will affect the behaviour
of the solar cell and could be problematic, especially if they are located at the interface
[97]. In this regard chemical etching before junction formation is one way of removing
undesirable phases [98]. Thus, the second part of this chapter is dealing with chemical
etching. In fact, due to the particular growth conditions (Zn-rich in an Se saturated
atmosphere) ZnSe is very likely to be one of the prominent secondary phase present in
our absorbers and acidic solutions has been applied to etch ZnSe crystals [99]. Morover
HCI etching has been already used in the field of CZTSe [100] to improve the solar cells
and thus seem to be a suitable etchant. Furthermore, as we vary the compositions, some
absorbers are very likely to form a Cu-Sn-Se related phase. Since from CIGS(e) [98],
bromine etching is known to remove various metal selenides, it is applied for various sur-

face treatments. Thus, the chemical etching described in the second part of this chapter,
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consists more specific of HCl and Bromine methanol etching. However, the heterojunc-
tion interface itself may become a serious limitation to the solar cell performance and
needs to be improved in many devices [101]|[11]. One reason for this, is that the solar cell
structure is simply adapted from the related chalcopyrites Cu(In,Ga)Se2 (CIGS) solar
cell with a Mo back contact, a CdS buffer layer and a ZnO window. Solely, Cd is known
to be toxic and its use is already subject to European legislation for hazardous material
[102]. Further, with a band gap of 2.42 eV, some absorption in the buffer layer can not
be avoided, limiting the solar cell performance, especially in the short wavelength re-
gion. At last, the band-alignment between the absorber and the buffer layer, may not be
optimised and would lead to interface recombination, especially true for sulphur based
kesterites [73]. Hence, alternative buffer layers are needed for the optimisation of the
band alignment at the absorber/buffer interface, as well as for Cd-free, truly non-toxic
cells. Therefore, in the last part of this chapter a prospective study of one of the promis-
ing alternative buffers, namely ZnS;O(_;), for the use in CZTSe is presented. First

results are discussed with respect to the band-alignment.

3.2 Composition Study

In this section, the effect of the composition on the absorber is studied. The preparation
routine of the samples relies on a two step process. First the precursors are deposited by
physical vapour deposition at a low enough temperature to circumvent the decomposition
issue. In a second step, the precursors are annealed at high temperature with additional
Sn and Se. This way, the decomposition of kesterite is avoided. In the following, further
details of the sample production method used in this work are given and for more specific
details of the sample growth in our high vacuum deposition system, the reader is referred
to [50].

3.2.1 Experimental details
Physical vapour deposition (PVD)

The CZTSe polycrystalline precursors are produced by co-evaporating all the elements
(Cu, Zn, Sn and Se) at 320°C onto a 3 mm thick molybdenum coated soda lime glass in
a molecular beam epitaxy system as described elsewhere [50]. Precursors with different
compositions are obtained by tuning the fluxes of the elements. In this work, Sn (and Se)
are preferentially kept constant and Cu and Zn are varied. As a consequence the films are
not all of the same thickness and fluctuate around 1.5um £ 0.5um. Before every process,

the evaporation rates for each metal element are measured by Electron Impact Emission
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Spectroscopy (EIES) and by Quartz Crystal Monitoring (QCM) while the shutters of the
other elements are closed. This, to ensure the most independent flux measure as possible.
The evaporation rate for selenium is obtained after the process by EIES only, since QCM
is not adapted for Se [46]. Figure 3.1 shows the evaporation rates or the fluxes of the
different elements for one Cu-poor (Cu/(Zn+Sn)< 1) and one Cu-rich (Cu/(Zn+Sn)> 1)
process. The Cu flux is much higher for both, EIES and QCM measures in the Cu-rich
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FIGURE 3.1: Evaporation rates determined by (a) Electron Impact Emission Spec-
troscopy (EIES) and (b) by Quartz Crystal Monitoring (QCM) for each element while
the shutters of the other elements are closed.

process, as aimed for. Nevertheless, the elements’ evaporation rates are not totally
independent from each other, as can be seen from the Sn fluxes. Although the Sn source
was kept at a constant temperature in almost all the Zn-rich processes and especially
for the two processes shown on figure 3.1, the evaporation rates differ from process to
process. Furthermore, the fluxes measured alone are not reliable to estimate the final
composition of the film, especially for QCM measurements, as can be stated by EDX

measurements after the process, shown in table 3.1. Indeed, compared to the ratios of

| Process || Zn/Sn | Cu/(Zn+Sn) ||

Cu-poor 1.20 0.86
Cu-rich 1.27 1.39

TABLE 3.1: 20 keV EDX values for precursors from the Cu-poor process and the Cu-rich
process shown on figure 3.1.

the fluxes determined by QCM in figure 3.1 (b), it is clear that the QCM measurements
fail to predict a rough estimate of the final film composition. Although this discrepancy

between measured fluxes and actual compositions could be due to the fact that during
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growth all the elements are evaporated all in once and that therefore the interactions
between them need to be taken into account, EIES measurements give a better estimate.
To some extend, the influence of possible interactions between the different elements
are considered by measuring the fluxes by EIES during the whole process. Figure 3.2

shows the evaporation rates during the process of all the elements. The evaporation
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FIGURE 3.2: Evaporation rates determined by Electron Impact Emission Spectroscopy
(EIES) during growth of the precursors for (a) Cu-poor precursor and (b) Cu-rich
precursor.

rates are stable during the processes but do not respect the proportionality between the
elements to form Kesterites (CuaZnSnSey). Furthermore, the ratios of the fluxes still do
not agree with the values of table 3.1 and thus can not be used to determine the final
film composition. It follows that the fluxes and thus the temperatures to obtain a given

composition, need to be adapted with the help of EDX measurements.

Nevertheless, the general observation in regards of the fluxes of the processes described in
this work, is that the Sn flux varies with the Cu flux. This can be visualised in figure 3.1
(b), were the Sn flux increases in the Cu-rich process although the source temperatures
are kept constant. However, to exclude the influence of the possible interactions as
described above on one hand and the influence of the Zn source, which temperature is
normally varied, on the other hand, the EIES flux measures during growth are compared
in table 3.2 for two Cu-rich processes, A and B. These processes were performed the same
day in a row and only the temperature of the Cu source is varied while the temperatures
of the Zn and the Sn sources are kept constant. The Sn flux deceases with decreasing Cu
flux. However, the final film composition can not be derived from the flux ratios and thus
table 3.2 shows the final film composition for the processes A and B as determined by
EDX measurements. In contrast to the fluxes, the Sn content decreases with increasing

Cu content in the final film. In other words, for high Cu content, low Sn and lower Se (not
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Cu-rich EIES EDX
process || Zn | Sn | Cu || Zn/Sn | Cu/(Zn+Sn)
A 28 16|23 1.44 1.70
B 28 11.3| 18 1.33 1.19

TABLE 3.2: EIES fluxes during growth and 20 keV EDX values for precursors from two
Cu-rich process were only the Cu source is varied.

shown) content are observed. This observation leads to the conclusion that Sn is hard to
incorporate at 320°C with a high Cu flux. To overcome this issue, the temperatures of
the Zn source are slightly decreased with increasing Cu source temperatures. From this,
it follows that a Sn rich and Cu-rich composition is very hard to achieve at a substrate
temperature of 320°C. To do so, the temperatures have to be very much increased,
respectively decreased. As a consequence, aiming at specific fine tuned compositions is
only possible with a high number of processes. Figure 3.3 shows the compositions of the
precursors in the phase diagram. The compositions of the precursors are determined by
EDX and vary as:
0.8 <Cu/(Zn+ Sn) <16

and
0.7< Zn/Sn <1.7.

Annealing details

However, the precursors are not constituted of high enough quality material to perform
as an absorber in solar cells. Indeed solar cells made out of precursors did not result in
working devices. This is due to the low temperature deposition. Hence, the precursors
are annealed for 30 min in a graphite box inserted in a tube furnace at 500°C in an
Hy/Ng atmosphere with 1 mbar total pressure. To avoid decomposition of the CZTSe
during the final heat treatment as mentioned earlier, the films are annealed in an SnSe
and Se atmosphere provided in form of powders in the graphite box (for further details
see [51] and [52] ). The amount of powder is kept constant at 20mg Se and 15mg SnSe
for the majority of the samples. In the following we will assume those weights of powders

if not specified otherwise.

Solar cell finishing

The solar cell described in this work, are basically all based on the same structure as
described in section 2.3.1. The only difference is the buffer layer for the solar cells

discussed in section 3.4. Nevertheless, they all have a molybdenum back contact which
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is deposited on a glass substrate of 3 mm thickness for most of the samples and of 2
mm thickness when the molybdenum was produced in our home laboratory. For the
latter type of back contact, the thickness of molybdenum deposited is 480 nm. In the
following, a glass thickness of 3 mm is considered, if not specified otherwise. After the
deposition of the precursor and annealing, the absorber has an average thickness of 1.5
pm as determined by SEM cross sections. Furthermore, in order to remove a possible
Cu,Se secondary phase and to refresh the surface before solar cell finishing [103], all the
annealed samples are etched in 5 wt% KCN for 30 s as standard procedure. This later
point is important to clarify, even with additional surface treatments by etching, every
sample finished as a solar cell discussed in this work was additionally etched with 5wt %
KCN immediately before depositing the CdS buffer layer by chemical bath deposition.
The CdS buffer layer has an average thickness of 50 nm. It is clear that the solar cells
discussed in section 3.4 do not follow this rule since they do not have a CdS layer. The
specific etchings used in the case of the samples in that section are described there.
Further, the window deposition is performed by RF-magnetron sputtering of an i-ZnO
layer of 80 nm and an Al-doped ZnO of 380 nm. At last, an Ni-Al grid is deposited by
e-beam evaporation for front contacting. The typical size for the solar cells is 0.5 cm?

total area.

3.2.2 Results and discussion

Fig. 3.3 shows the sample compositions as determined by EDX plotted in the phase
diagram adapted from I.V. Dudchak et al. [14] as precursors and after annealing. In
order to be able to represent the compositions of the samples in the phase diagram, the
Se content is assumed to be stoichiometric, i.e. Se is considered to be at 50 atomic
wt% in the EDX measurements of the final film. Although a relatively broad region
of the phase diagram around the single phase CusZnSnSe4 existence region has been
prepared via coevaporation, after the annealing the compositions shift significantly and
the final film compositions are always situated on the CusSnSes-CusZnSnSes and on the
ZnSe-CuaZnSnSey tie lines. Hence, from that figure it is suggested that for this set of
samples we have either the ternary CusSnSes, or the binary ZnSe as secondary phases in
the absorber. Moreover, figure 3.4 shows the composition ratios of the precursors before
and after annealing, linked to each other in order to follow the composition shift for each
sample. The samples tend to reach the slight Cu-poor and Zn-rich region after annealing.
The more the initial composition differ from this region the higher the composition shift.
The shift in the Zn/Sn ratio is only possible by losing Zn or by gaining Sn. Yet, the
vapour pressure of Zn (107! Torr is much higher than SnSe (107% Torr) at 380° [50].
Moreover, SnSe is added in the form of powder in the graphite box. It is thus likely that
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FIGURE 3.3: Sample compositions plotted in the phase diagram adapted from [14] as

precursor (gray dots) and after annealing (red dots). The different regions of the phase

diagram () CupZnSnSey, (2) CusZnSnSes + CusSe + ZnSe, (3) CuzZnSnSey + SnSesy

+ ZnSe , (4) CuzZnSnSey + CusSnSes + SnSey and (5) CuzZnSnSes + CuzSnSes +

CugSe represent the existence region of CusZnSnSes and secondary phases. The tie

lines represent the regions where CusZnSnSe, and one secondary phase are present as
indicated in the graph.

18 T T T T T
m  Precursors
® Precursors after annealing

Cu/(Zn+Sn)
R

1.0 ‘\q -
\w.

08} -

0.6 0.8 1.0 1.2 1.4 1.6

Zn/Sn

FIGURE 3.4: Cu/(Zn + Sn) and Zn/Sn composition ratios of the precursors before
and after annealing. The arrow links the same sample before and after annealing.



Composition and Interface Study 56

because of our production routine in the annealing oven, SnSe is incorporated in our
samples during the annealing. This is especially true if the samples are Cu-rich. Indeed
the more the samples are Cu-rich the higher a shift in composition. Hence, it is likely

that Cu and SnSe form a CusSnSes phase according to the phase diagram of Dudchak

et al.
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FIGURE 3.5: Cu/(Zn+ Sn) and Zn/Sn composition ratios in function of the solar cell
efficiency for (a) the precursors and (b) the precursors after annealing (absorbers).

The best absorber layers gave an efficiency of around 4% if the composition was Cu-poor
and Zn-rich. Although the composition of the absorbers changed after annealing there
is a clear correlation between solar cell efficiency and precursor composition as can be
seen in figure 3.4(b). The precursor compositions close to Cu-poor and Zn-rich gave the
best results as absorbers whereas Cu-rich and Sn-rich precursors did not lead to working

devices after annealing.

SIMS measurements

Moreover SIMS depth profile measurements performed on the absorbers indicate a clear
trend of two different profiles related to the efficiency of the solar cells. Two typical
examples of those SIMS depth profiles are depicted in Fig. 3.6. The solar cells with an
efficiency above 4% (Fig. 3.6(a)) show a depth profile where the Zn ratio at the surface
is higher than in the bulk. The low efficiency or non-working solar cells exhibit SIMS
depth profiles similar to the one shown in Fig. 3.6(b). These depth profiles have in
common that the Zn content at the interface decreases compared to the bulk. Moreover
the Cu and Sn content is only slightly increased in the first few hundred nanometers of
the absorber compared to the rest of the film. Finally the Cu-content very close to the
heterojunction strongly decreases. Additionally it has to be pointed out that Cu and

Sn profiles in all SIMS measurements vary together over almost all the absorber depth.
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The region of the phase diagram where the most precursors are grown is in the Zn-rich

region. The few samples grown under Sn-rich conditions are mostly on the Cu-poor side.

The Zn increase at the back occurring in most of the SIMS profiles is in agreement with

a ZnSe phase at the back contact [104].
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FIGURE 3.6: Two normalised SIMS depth profiles of unetched absorbers for (a) ab-
sorber that gave a solar cell efficiency higher than 4% and (b) absorber that gave no
working solar cell.

This shows that we have different compositions at the surface then in the bulk which
could not be determined via integral composition measurements. Moreover the different
compositions at the surface can be related to secondary phases. The Cu and Sn related
phase strongly inhibits solar cell devices. It is safe to assume that the profiles in Fig. 3.6
(a) indicates a ZnSe phase at the surface, and the profiles in Fig. 3.6 (b) a Cu, Sn
related phase which, based on the phase diagram of Dudchak et al., could be the ternary
CusSnSes phase. Although the ternary CusSnSes phase has not been directly measured,
this phase presents a lower band gap of 0.84 eV [105] which will result in a strongly
reduced Voc. This lower Voo was observed in the set of solar cells in correlation with
the Cu, Sn related phases at the surface in the SIMS profiles. Both secondary phases
are detrimental to solar cell devices. The ternary due to its lower band gap leads to

increased recombination, while the ZnSe phase limits the current [106] .

3.3 Interface optimisation by chemical etching

It was argued in the previous section that we do have secondary phases in our absorbers in
a broad composition range of the samples. The most prominent secondary phases are the

ternary CusSnSes and the ZnSe phases. From the last section, we conclude that ZnSe
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is much less detrimental than the ternary CusSnSes. Still, the presence of secondary
phases at the interfaces is a limiting factor in CZTSSe solar cells since most devices
exhibit dominant interface recombination [11]. In order to improve the heterojunction
interface chemical etching methods can be used to remove detrimental secondary phases.
In this regard Timmo et al. [100] studied chemical surface treatment on monograin
powders using several etchants such as HCl and bomine methanol (Bre-MeOH). Further,
HCI solutions has successfully been employed by H. Tamura et al. [99] to etch ZnSe
crystals. On the other hand, there is no well established etching procedure in literature
to remove the ternary. However, from CIGS(e) research [98], Bro-MeOH is known to
be a good etchant for most metal selenides and thus could be used for the ternary. In
this section, we study surface etching with HCI and Bro-MeOH of CZTSe polycrystalline

absorbers with respect to secondary phases and solar cells parameters.

3.3.1 Removal of the ZnSe phase

3.3.1.1 HCI etching

The sample growth and annealing were performed as described in section 3.2.1. How-
ever, in section 3.2.2 it is shown that the samples can be divided in two categories by
SIMS measurements, i.e. having either a ZnSe or a Cu-Sn-Se phase on top (figure 3.6).
Therefore, the etchant used was chosen to be HCI or Bro-MeOH depending on the main
phase on top. HCI etching was performed on samples that showed a Zn-rich and Cu-poor
composition and a SIMS depth profile like shown in 3.6(a). SEM cross-sections of two
absorbers performed in the same PVD and annealing run (Fig. 3.7) before and after HCI
etching, suggest that HCI is removing a secondary phase. Fig. 3.7(a) shows a possible
phase segregation on top of the absorber (smaller grains on top of the surface in the SEM
micrograph (a)) while in Fig. 3.7(b) this phase segregation seems to be removed or at

least minimized. Furthermore, 20 kV EDX measurements were performed on absorbers
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FIGURE 3.7: SEM cross-sections of sample I (a) without etching (b) after 1 min HCI
etching.

etched for 1 min with HCI at different concentrations. The results can be seen in tables
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3.3, 3.4 and figures 3.8. The value of the different HCIl concentrations seem to be quite
awkward at first side. This is due to the fact that the solutions were diluted from the
pure solution to 5% and 10% (assuming the pure HCI solution to be at 100%). For more
clarity, we referred to the real Wt%, which gives 1.76Wt%, 3.36Wt% and 37Wt% for the
5% diluted, the 10% diluted and the pure solution respectively. Figure 3.8 and table 3.3

show the metal ratios variation with the HCI concentrations measured by 20 kV EDX

for two different samples.

It appears that for both samples the Zn/Sn ratio decreases
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FIGURE 3.8: Variation of the composition ratios after etching with different HCI con-
centrations for (a) absorber (I) and for (b) absorber (II).

H Samples I and II

| Cu | Zn [ Sn [ Zn/Sn | Cu/(Zn+Sn) ||

I without etching 23.13 | 14.30 | 12.46 1.15 0.86
I etched with 1.76 Wt% HC1 || 22.99 | 14.19 | 12.53 1.13 0.86
I etched with 3.36 Wt% HC1 || 23.19 | 14.35 | 12.64 1.14 0.86
I etched with 37 Wt% HCI 23.48 | 13.68 | 12.58 1.09 0.90
IT without etching 21.99 | 16.16 | 11.83 1.37 0.79
IT etched with 1.76 Wt% HCI || 22.44 | 15.85 | 11.89 1.33 0.81
IT etched with 3.36 Wt% HCI || 22.56 | 15.20 | 12.14 1.25 0.83
IT etched with 37 Wt% HCl 22.57 | 15.24 | 12.08 1.26 0.83

TABLE 3.3: 20 kV EDX values for metals in samples I and II as precursors.

while the Cu/(Zn + Sn) increases, indicating Zn to be etched by HCl. However, the
respective variations show a clear trend but are not significant compared to the expected
measurement errors (see Chapter 2). Therefore, table 3.3 and table 3.4 show the values of
the metals and the chalcogenes in more details. Cu and Sn contents generally tend to in-
crease for both samples, while the Zn content decreases, which can be specially observed
for the more Zn-rich sample. Although we study the selenium kesterites in this work,

some sulphur contamination occurred in the samples studied in this section. Therefore,
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table 3.4 retraces the values of the sulphur content as well as those for selenium. As can
be seen from the table 3.4 the sulphur contamination is small. Nevertheless, from the
values it is clear that Se and S are etched by HCIl. This can be seen in particular for
sample II, were the S content first decreases than increases, while the Se content increases
first and than decreases with the concentration. On the other hand, for sample I, only
the S content decreases. This can be explained by the fact that sample II is much more
Zn-rich than sample I and thus more ZnSe is present at the surface. It can be assumed
that the S contamination with some of the excess Zn, form a ZnS phase on top of both
samples. Since the S content is the same in both samples, the ZnS content should be
similar as well. As a result, in sample II, the amount of ZnSe is much higher compared to
ZnS, than in sample 1. If we assume different etching rates for the two phases, ZnS being
etched faster than ZnSe, it is clear that the removal of ZnSe can be observed in sample
IT and not in sample I. These results are in agreement with the work of H. Tamura et al.
[99] and A.Fairbrother [107] concerning the ZnSe and the ZnS respectivly. Consequently,
to remove the ZnSe phase on top of our absorbers, we used the pure HCI solution (37
Wt%) for 1 min.

H Samples I and II H Se ‘ S ‘ Se+S H

I without etching 47.53 | 2.49 | 50.02
I etched with 1.76 Wt% HC1 || 47.61 | 2.21 | 49.82
I etched with 3.36 Wt% HCl || 47.93 | 2.16 | 50.09
I etched with 37 Wt% HCI 48.27 | 1.83 | 50.10
IT without etching 48.39 | 1.72 | 50.12
IT etched with 1.76 Wt% HCI || 48.74 | 1.56 | 50.30
IT etched with 3.36 Wt% HCI || 48.15 | 1.68 | 49.83
IT etched with 37 Wt% HCl 49.08 | 1.18 | 50.26

TABLE 3.4: 20 kV EDX values for Se and S in samples I and II as precursors.

3.3.1.2 SIMS measurements

In addition to the EDX measurements discussed in the previous section we performed
SIMS measurements and figure 3.9 depicts a comparison between absorbers before and
after HCI etching (sample I in the previous section). In figure. 3.9(a) and (b) the same
absorber was analysed before and after HCI etching respectively. The Zn profile changes
after etching. At the surface the Zn ratio decreases compared to the bulk and compared
to the profile of the unetched absorber (Fig. 3.9 (a)). Again, these measurements agree
with the results given in [99] that acidic solutions remove a Zn related secondary phase
and sustain the result that HCI can be used to remove the ZnSe phase. Furthermore,

these results show that ZnSe can be removed from a CZTSe surface by HCI etching.
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FIGURE 3.9: Different SIMS depth profiles for (a) absorber (I) without etching, (b)
the same absorber (I) after HCI etching.

3.3.1.3 Solar cells

The effect of the ZnSe phase removal on the solar cells can be visualised in figure 3.10. The
solar cells were made from the sample I series in section 3.3.1.1. HCI etching improved the
solar cell efficiency by 10% relative and reached 5%. The table in figure 3.10 lists the solar
cell parameters for both absorbers. Although all parameters improved slightly besides
the parasitics resistances, the current increased with the ZnSe removal. Considering the
result of T. Watjen et al. [106] that ZnSe could block the current, confirms that the
ZnSe phase is at least partially removed by HCI etching.

3.3.2 Removal of the Cu-Sn-Se related phase

3.3.2.1 Bry-MeOH etching

In figure3.6 we exposed the two categories of SIMS profiles. As mentioned earlier, the
samples presenting a SIMS profile like figure 3.6(b) were etched by Bra-MeOH in order
to remove the Cu-Sn-Se related phase. The etching by Bro-MeOH results in a global
flattening of the initial surface morphology [98]. Moreover it was shown that surface
compositions stay constant during the etching process in the case of CIGSe. As a result,
Bra-MeOH was used to reduce the thickness of CIGS(e) absorbers. Thus, in this work,
Brs-MeOH is used as a non-selective etchant which will remove the ternary if present.
The procedure used for the bromine methanol etching was developed in [108| and [35],

and the reader is referred to those works for more details.
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FIGURE 3.10: IV curves in the dark and under illumination from solar cells made

unetched sample I, and same absorber I etched with HCI.

3.3.2.2 SIMS measurements

Figure 3.11(a) and (b), show SIMS profiles of an absorber before and after etching with
Bra-MeOH. The profiles are getting flatter at the surface after the Bro-MeOH etching.
There is no more a decrease of the Zn ratio or an increase of the Cu and Sn ratios towards
the surface. These observations are valid for all absorbers treated with Bro-MeOH and
strongly corroborate the model of a Cu, Sn related phase at the near surface region,

which could be at least to a large part, removed by Bra-MeOH.

3.3.2.3 Solar cells

In the following, we discuss the solar cells resulting from etched and unetched absorbers.
As already mentioned before, the samples of Fig. 3.3 without any surface treatment

besides the KCN etching, with compositions of slightly Cu-poor and Zn-rich gave solar
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FIGURE 3.11: Different SIMS depth profiles for (a) an absorber without etching and
(b) the same absorber after Bro-MeOH etching.

cell efficiencies above 4% on a regular basis. The solar cells made from absorbers that
were etched improved significantly. 5.8% could be achieved with Bro-MeOH. The IV
curves for solar cells whose absorbers were treated with bromine methanol are shown
in Fig. 3.12. The IV curve under illumination of the Bro-MeOH etched absorber shows
significant improvements of the Fill Factor and V¢ in agreement with the strong decrease
in Jy and the decrease in the diode factor. The parasitic resistances are not affected by
the etching. In addition it has to be pointed out that the solar cell parameters for
absorbers etched with Bro-MeOH seem to depend on the composition of the precursors
(see Table 3.5 and Table 3.6). In fact samples I and II gave the best solar cell devices.
They significantly improved (from 0.5% to 5.8% and from 3.3% to 5.4%) and this can
be understood while looking at the compositions of the precursors. They were less
Cu-poor (Cu/(Zn+Sn) > 0.9 then sample III. Because of the high Cu content they
could potentially form more ternary on top during the annealing in an SnSe atmosphere.
Therefore the Voo of unetched devices is very low. Bro-MeOH could remove the ternary
and thereby remove one of the detrimental secondary phases which inhibits solar cell

device efficiency.

H Samples H Zn/Sn ‘ Cu/(Zn+Sn) H

I 1.24 1.05
II 1.33 0.91
III 1.16 0.84

TABLE 3.5: 20 keV EDX values for precursors of absorbers which were etched after-
wards with Bro-MeOH.
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H Samples H Voc [mV] \ n %] \ Jsc [mA /cm?] ‘ FF [%] H
I without etching 137 0.5 13.5 28
I after Bro-MeOH 338 5.8 35.4 49
IT without etching 261 3.3 28.3 45
IT after Bro-MeOH 324 5.4 32.7 51
IIT without etching 345 4.3 23.5 53
IIT after Bro-MeOH 324 4.8 28.2 53

TABLE 3.6: Solar cell parameters for absorbers with different precursors compositions
before and after Bro-MeOH etching.

3.3.3 Summary

From the observations described above it is clear that HCl and Bro-MeOH improve solar
cell devices by removing secondary phases. The phase diagram, EDX measurements
and SEM cross-sections imply CuaSnSes and ZnSe as most likely prominent detrimental

secondary phases. From SIMS measurements it appears that the detrimental secondary
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phases are located at the surface and that etching either with HCl and Bra-MeOH could
at least partially remove them, improving the surface. Solar cell IV curves showed that
the device parameters could be improved, especially Voo by Bro-MeOH treatment. This
is possibly due to the ternary CusSnSes formation on top even for standard compositions
(Cu/(Zn+Sn) < 1) which strongly inhibits working devices. Efficiencies above 5% have
been achieved with both HCl and Bro-MeOH etchants although Bro-MeOH is more
suitable to remove the Cu, Sn related phase. 5.8% efficiency has been achieved with
Bro-MeOH etched absorbers.

3.4 Alternative Cd-free buffer layer

In this section an other path for interface optimisation is investigated. The common so-
lar cell structure for kesterites based on the related chalcopyrites Cu(In,Ga)Ses (CIGS)
knowledge was introduced in section2.3.1. Currently, the highest efficiencies are obtained
by using a CdS buffer layer deposited by chemical bath deposition (CBD)[12]. However,
Cd is known to be toxic and detrimental to the environment. In addition, it is not
yet clear whether the CdS is the ideal heterojunction partner for kesterites (see section
3.4.1). Moreover the common CdS layer, with a band gap of about 2.4 — 2.5 €V is ab-
sorbing in the solar spectrum range and thus limits the level of optimum performance
of the cells, especially in the short wavelengths domain [109]. For this reasons, one of
the major objectives in the field of chalcopyrite technology remains the development of
Cd-free alternative buffer layers. From the investigations over the last years in the field
of CIGS, it is suggested that the most relevant materials for alternative buffers are based
on InyS3, ZnS,;01_,, Zn;_.Mg,O, and their derivatives; mostly deposited by: chemical
bath deposition (CBD), atomic layer deposition (ALD), ion-layer gas reaction (ILGAR),
sputtering, evaporation (PVD), and ultrasonic spray pyrolysis (USP) [109-111]. In a
first attempt to study alternative buffer layers for CZTSSe [112], InyS3 gave good device
results compared to ZnO and ZnS. However, in the last few years, Zn(S,0) based alter-
native buffer layers have emerged and they are of growing interest in both CIGS(e) and
CZTS(e) fields [113]. Their advantage upon other materials relies on their ability to vary
their electron affinity over a wide range with the S/O content, i.e. the band alignment at
the absorber /buffer heterojunction can be varied from a cliff like configuration to a spike
like configuration, with major implications for the recombination mechanism in the solar
cell [18, 72]. In addition, it has been shown [113| that the ZnS,O;_, layers are suitable
as substitution for the CdS buffer layers in standard chalcopyrite-based solar cells and
recently reached 18.6% efficiency [61]. In the following, InaSs and Zn(S,0) buffers are

applied to selenide-kesterites.
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3.4.1 Band offsets from theory and literature

Very little experimental information is available for the band alignment at the interface
of the CdS/selenide kesterite absorber; most experimental and theoretical investigations
have concentrated so far on the sulphide kesterite and do not agree so far. From the
theoretical investigations for the pure sulphide compound 2 studies determined a cliff
like situation [114, 115] whereas a spike like configuration is reported in [116]. On the
experimental side, again, 2 studies report on a cliff at the CdS/CZTS interface [117, 118§]
in contrary to a spike at the interface in [119]. The studies performed in [117, 118| are
done by inverse photoemission spectroscopy where the conduction band minimum can be
measured in contrast to XPS alone. Moreover in [119] flat bands conditions are assumed
while measuring under illumination. For this reasons the studies claiming a cliff like
situation seem more reliable for the sulphide kesterite [73]. The CuaZnSn(S;Se(;_y))4
compound is found in [118] to form a spike like interface with the CdS buffer layer for
x = 0.28. This is in agreement with [120], where a spike is found for the pure selenide
compound. In section 2.3.2 it is mentioned that one reliable method to determine the
band offset consists of aligning branch points instead of vacuum levels and in the frame
of a regular collaboration with the theoretical group of Silvana Botti, we had the chance
to get calculated branch point energies [121], determined with the method given in [122].
The branch point energies are ESp = 0.96 eV with a band gap of E;( = 0.96 eV for
CZTSe and Egp = 1.8 eV with E;f = 2.15 eV for CdS, respectively. The valence band
offset is given by the difference of the branch point energies for 2 semiconductors in a
good approximation (see section 2.3.2): AE, = 0.84 eV. Thus, considering the calculated
band gaps, the conduction band offset is of AFE, = 0.35 eV which also gives a spike-like
configuration as is shown in figure 3.13. The calculated value for the CZTSe band gap
agrees perfectly with the experiment. The CdS band gap, however, is a little smaller.
Nevertheless, from the theoretical and experimental results listed above, one can conclude
that the conduction band offset goes from a cliff to a spike with increasing x content for

the CupZnSn(S,Se(;_,))4 material.

In this context, a buffer layer material which can adapt its electron affinity is a serious
advantage upon other materials since the deposition process could in theory be applied
to the whole range of x contents in the CuQZnSn(S:ESe(l_x)M material to perform the
best band alignment. Figure 3.14 shows ab-initio calculated band offsets for different
compositions (z), in the ZnS;O1_, material [123]. The band gap (E,) variation from ZnO
to ZnS is due to the increase of both band maxima and goes trough a minimum at E, =
2.83 ¢V for = 0.5 [123]. As mentioned above, the conduction band minimum (Ecpar) of
the ZnS, 01—, layers can be increased with the x content and in a good approximation the

increase occurs for x > 0.5, whereas for z < 0.5, Ecpgas is almost constant. The valence
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FiGure 3.13: Flat band diagram representing the band alignment at the
CdS/CusZnSnSe, junction based on calculated branch point energies and band gaps
by S.Botti [121] with the method described in [122].

band maximum, instead, has an opposite behaviour; Ey gjs increases for 0 < z < 0.5
and is almost constant for x > 0.5. It has been shown that a good agreement between
the calculated Ey pp; and the experimental value of Ey pgas from sputtered ZnS,O1_,
layers can be achieved for the ZnS,0;_,/CIGS(e) heterostructure [68].
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FIGURE 3.14: Schematic ab-initio calculated band diagram at 0 K for ZnS,O;_,
material [123], adapted from [68§]

3.4.2 Experimental procedure for Cd-free solar cells.

The following experimental-part was done in the framework of a collaborating project

with Helmholtz-Zentrum Berlin [124]. The absorbers are prepared in the home laboratory
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in Luxembourg and taken to Berlin where alternative buffer layers (ZnS;O1_, and IngSs)
are deposited. The solar cell finishing and characterisation and the XPS/UPS analysis

is done in Berlin as well.

Experimental details about the absorber

As mentioned above, the absorbers are done in the home laboratory by the "capri"
process, involving a Cu-rich precursor. This process is described in details in the next
chapter. Whereas the absorbers produced by the "capri" process give around 6% effici-
cency on a regular basis, unfortunately, the absorbers made for the Cd-free solar cells
turned to be much less effective (efficiency around 3 %). The reason for this, is that due
to the large number of samples needed, the absorbers were annealed two by two instead
of one by one. Moreover the cooling rate was larger compared to the standard processes

and therefore might have affected the solar cell efficiency by order-disorder effects [125].

Experimental details about the alternative buffer layers

The films of ZnS,O;_, are prepared in Berlin, by RF-sputtering using mixed ZnO-ZnS
targets with 3 different S/(S + O) ratios and thus x contents; x = 0.25, = = 0.33,
x = 0.40. The buffer layers for all compositions are deposited at room temperature
(RT) and some z = 0.33 buffer layers are deposited at a substrate temperature of 200° C
[126]. The band alignment at the ZnS,O1_,;/CusZnSnSey is investigated for the z = 0.33
composition (highlited in figure 3.14) with the technique described in chapter 2. This
method is based on the determination of the respective valence band positions of both
absorber and buffer materials with respect to the common Fermi level by UPS. The
correction for any band bending is done by determination of absorber core levels after
deposition of thin ZnS,O;_, films using XPS. Since oxidation of the surface results in
binding energies shifts, it is desirable to avoid any surface contamination. Hence, a
sample transfer from the sputter- to the analytical chamber is possible without leaving
the UHV-environment in the so called CISSY apparatus (figure 3.15). The =z = 0.33
composition buffer layers are performed with the CISSY sputter machine, whereas the
x = 0.25 and « = 0.40 composition buffer layers are sputtered with a traditional sputter
machine [126] without an additional analytical chamber. Additionally, the absorbers
are etched by 10wt% or 5wt% with KCN or NaCN up to 5 minutes before entering
the sputter machines. The InsSs layers were deposited by physical vapour deposition,
more specifically by thermal evaporation and the absorbers also etched before deposition.
Finally the solar cell finishing is done with a standard window layer (i-ZnO and n™-ZnO)

for the InyS3 buffer layers. As discussed in section, the need of a i-ZnO buffer layer is



Composition and Interface Study 69

Electron Spectrometer

Sputter Chamber

UV Source lon Gun
Analysis ) 7. Preparation Manipulator
Xeray \ Chamber H 4 Chamber
Source - i ]
1 « Sample | |

& I\
Electron
ol Load Lock .. Glove Box

X-ray Spectrometer

Magnetic
Transfer
System I

FIGURE 3.15: Schematic view of the CISSY apparatus in Helmholtz-Zentrum Berlin
(HZB) adapted from [68].

questionable. In the solar cells with Zn(S,0) based buffer layers lies a further advantage:
the combination of the classic buffer layer with the i-Zno layer resulting in a less total
amount of layers. Thus, for solar cell finishing for Zn(S,0) based solar cells, only a doped

n"-ZnO layer need to be deposited before contacting.

3.4.3 Results and discussion
Zn(S,0) buffer layers

The solar cell parameters for the ZnS,0;_,/CusZnSnSey cells with different x contents
and reference CdS/CuzZnSnSey cells are listed in table 3.7. The CdS based cells have
efficiencies about 3% in average. For room temperature deposition the Zn(S,0) based
cells with composition of x = 0.25 are at least at the same efficiency than the reference
CdS cells. Comparing sample Ag to By, the Voo decreased compared to the CdS and the
current increased slightly. Furthermore, the FF increased for the Zn(S,0) buffer solar cell.
For x > 0.25 the solar cells efficiency strongly decreased. In terms of band alignment,
these first results would indicate that the barrier increased already for 0.25 < x < 0.33
to the value at which the current is blocked. Figure 3.16 shows the IV curves for selected
solar cells which parameters are listen in table 3.7. A kink in the JV curve for z = 0.4 can
be seen in this figure corroborating that the barrier has already reached a critical value
for this  content. For CIGSe this value is calculated to be at 0.5 eV for a E; = 1.15 eV
band gap [68] and for CZTSe a value of 0.4 eV was determined in chapter 2. However,
for a 200° C substrate temperature and a x = 0.33 ratio, the solar cell efficiencies

increased more. Sample A4 and C4 can be compared directly as they are grown together
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as precursors and annealed in the same run. The efficiency increased from n = 2.8% to
n = 5.1%. Again, Voo decreased a little but is counter-balanced by a almost 10mA/cm?
jump in the current density and a major increase in FF. This is an indication of a barrier
reduction since Jg¢ increase a lot. Table 3.8 shows the diode parameters for these solar
cells. From the values of Jy and A it appears that CZTSe with Zn(S,0) form a better

diode than with CdS. The recombination and the shunt are less important in the Cy.

| Samples | = [ n[%] | Voc [mV] ]| Jsc [mA/cm?] | FF [%] |
Ay CdS 2.1 272 21.3 36
Ao CdSs 3.4 294 29.6 39
Aj CdsSs 3.1 344 25.5 35
Ay CdsSs 2.8 268 28.7 36
By 0.25 3.5 266 28.1 47
Ba 0.25 3.4 257 31.0 42
Cy at RT° | 0.33 0.3 61 20.6 26
Cq at RT° | 0.33 0.1 26 13.4 25
Cs at 200°C' | 0.33 3.7 262 33.2 42
Cy4 at 200°C | 0.33 5.1 279 38.1 48
D 0.40 0.5 138 16.0 24
Dy 0.40 1.4 251 24.0 24

TABLE 3.7: Solar cell parameters for solar cells with different x content in the
7ZnS,01_, based kesterite solar cells.
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FIGURE 3.16: IV curves for (a) a CdS reference solar cell and (b) the same pro-
cessed absorber with a ZnS,0_, buffer layer and (b) selected solar cells with different
7nS,01_, buffer layers

Figure 3.17 shows the external quantum efficiency measurements for most of the samples
listed in 3.7. The reference cells (orange and red curves) show poor collection, especially

in the long wavelength range. The EQE curves of the Zn(S,0) based solar cells show
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| Samples [ = [ A | Jo-10"2 [mA/em?| | Rg [Qcm?| | Ggp [mS/cm?] ||
Ay CdS ) 99 0.3 56
B, 0.25 || 2.1 6.8 0.5 24
Cy at 200°C' | 0.33 || 1.8 2.8 0.5 18

TABLE 3.8: Diode parameters under illumination for selected solar cells with different
x content in the ZnS,O;_, based kesterite solar cells.

better collection properties and as expected from the JV parameters, C4 shows a quit
high EQE maximum of 0.9. However, in contrast to the CdS based cells, some of the
Zn(S,0) based cells show carrier losses in the short wavelength region (400 — 600 nm).
This feature is noticed especially in samples B; and Dy and to some degree in samples

By and Cg. This effect can be attributed to an inverted surface which can be achieved
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FIGURE 3.17: External Quantum Efficiency measurements for samples with parameters
given in table 3.7.

despite a favourable band alignment by highly doped buffer layer, by charges at the
interface or by Fermi level pinning, according to the simulations in [72]. As the buffer
layers prepared similarly in the work of D.Kieven [68] for CIGSe do not show the same
EQE shapes the third possible reason (Fermi level pinning) is considered to be more likely
the reason for the carrier losses in the samples described here. An other assumption is

supported by simulations performed by R.Klenk [126] considering a low n-doped layer
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with a bandgap of 1.9 eV of 100 nm thick, located at the interface. For the simulations
following parameters are used: CdS with E; = 2.42 eV and an electron affinity (x) of
x = 4.7 ev, Zn(S,0)with E; = 2.7 eV and x = 4.15 ev, CZTSe with E; = 0.96 €V and
X = 4.5 evand OVC with E; = 1.9 eV and x = 4.4 ev. The different band alignments
resulting from the simulations alone are sufficient to influence the band bending at the
CZTSe/n-layer interface in such a manner that the Fermi level is located below E,/2 with
the consequence of carrier losses (holes) within the n-layer phase and the Zn(S,0) buffer
layer. The band alignment in the CdS based cells is such that the Fermi level is located
below E,;/2 resulting in photo electron losses clearly visible in the EQE shapes. However,
a deep broad defect distribution [127] has recently been identified in CZTSe prepared
via the CAPRI process [127]. Furthermore, the evidence of an order-disorder transition
in CZTSe at a critical temperature of 200° C [125] likely to be responsible for band gap
variations in the EQE measurements has been published. The band gap of the disorder
and ordered CZTSe vary over a range of 0.1 —0.2 eV around 0.9 eV but are very unlikely
to have a band gap of 1.9 eV. Schwarz et al. reported on novel phases, CusZnsSnSeg
and CuzZngSnSeg discovered by Atome probe Tomography (APT) measurements and of
calculated band gaps of E; = 1.1 eV [128], present in samples processed very similarly to
the absorber discussed in this section. Moreover, in the previous section the presence of
a detrimental secondary phase located on the surface is discussed. Hence, various kind
of distorted structures are present in CZTSe material and on its surface, making the
reason for carrier loss very unclear. As a consequence, the solar cell device design is even
more complicated than expected but higher efficiencies compared to the corresponding
reference cells can be achieved with Zn(S,0) buffer layers which is very promising for

future work.

Band-alignment at the ZnS; 330067/Cu2ZnSnSe, junction

The band alignment is determined (see chapter 2) for the ZnSp 330067 buffer layer case
and the corresponding solar cell has the highest efficiency of n = 5.1%. The measured
valence band offset is of AE, = 2.3 —-0.4 = 1.9 ¢V. The value is determined via the UPS
spectra shown in figure 3.18. This value is corrected by a total value of AFcp = 0.6 eV
due to the band bending determined by XPS measurements of the core levels. Hence the
total valence band offset is of AF, = 1.3 eV represented in a flat band schematic in figure
3.19. To determine the conduction band offset, the band gap of the absorber and of the
buffer layer is needed. To calculate the band gap of the ZnS( 330067 layer, equation
E,(ZnS;01-y) = xE¢(ZnS) + (1 — ) E4(ZnO) — b(1 — x)z [18] is considered, with the
bowing parameter of value b = 3.1 eV in this case [68]. This gives a value of £, = 2.8

eV. The determination of the band gap of CZTSe is more complicated and a linear
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F1GURE 3.18: UPS measurements of the valence band from the CZTSe absorber and
from different sputtering times of Zn(S,0) until complete buffer layer formation.

extrapolation of the corresponding EQE curve gives a result of Ey; = 0.86 eV whereas
the band gap value extracted from the inflexion point in the same EQE measurements
give a result of Ejo = 0.96 eV. However, the surface band gap is larger than the bulk
band gap, and an enlargement of 0.4 eV have been observed for KCN etched sulphide
kesterites. Hence en enlargement of 0.3 eV has been assumed for selenium kesterites.
Thus, considering AE, = 1.3 eV, E,(Zn(S,0) = 2.8 eV, E,(CZTSe) = 1.2 ¢V, the
conduction band offset results in a spike of AE,. = 0.3 eV. Depending on the band gap
of CZTSe, i.e. the bulk band gap or the surface band gap, the spike would be higher (of
0.6 €V) by considering the bulk band gap. This is not observed in the solar cells since
at a spike of such hight the current should be blocked (see chapter 2). The AE, = 0.3
eV suggests that the cells are not currently limited by the interface. Moreover, the value
of AFE, for the ZnSg 330067 layer is similar to the calculated AE,. mentioned previously
for the classic CdS/CZTSe situation. This is encouraging for future work since the band
alignment can be obtained similarly and tuned if needed. Nevertheless if a secondary
phase is present at the interface with a a band gap of 1.9 eV the conduction band offset
would not be longer a spike but a cliff with a value of AE. = —0.4 eV. However this
value seem to be extreme and it is more likely that a phase is present at the interface
responsible for carrier loss with a smaller band gap which will result in a smaller spike or
an almost band alignment (for E; = 1.1 eV AE. = 0.1 eV.) Hence, further experiments

are needed to be able to give a final conclusion.

Comparison of InyS3, Zn(S,0) and CdS buffer layers.

InyS3 as buffer layer is very briefly investigated and the comparison to Zn(S,0) and

CdS are listed in table 3.9. It appears that the InsSs gives better solar cell results in
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FiGure 3.19: Flat band diagram representing the band alignment at the
ZnS(.330¢.67/CuzZnSnSe, junction as determined by XPS and UPS measurements at
CISSY [126].

terms of efficiency compared to the traditional CdS but less good than the ZnSg 330067
buffer. The quantum efficiency measurements are plotted in figure 3.20. The EQE

[ Buffers [ [%] | Voc [mV] [ Jsc [mA/em?®] [ FF [%] |

Cds 3.4 294 29.6 39
ZHSo,3300,67 5.1 279 38.1 48
InySs 4.4 270 25.8 46

TABLE 3.9: Solar cell parameters for the best solar cell respectively with the 3 different
buffer layers.

shape for the InaS3 doesn’t show the carrier loss in the short wavelength region like
for some samples with a Zn(S,0) buffer layer. This suggests that a secondary phase is
created while depositing the Zn(S,0) buffer layer. This assumption is reasonable since
the distorted structures found in [128] and the disorder-order transition occurring at
200° C (substrate temperature) involve Zn. Zn diffusion could occur during the buffer
layer deposition. However, alternative buffer layers seem to be a good option for further

investigations.

3.4.4 summary and outlook

In Summary, the possibility of using alternative buffers with some success to a certain
extend was showed in the previous sections. Moreover the band alignment at the CZTSe

doesn’t seem so far to be the limiting factor in classic CdS/CZTSe cells. In addition it is



Composition and Interface Study

75

Current density [mNcmz]

100

50

| ——Cds-A, dark

+—— In,Se, dark

F----Zn(S,0)-C, dark

——CdS -A, ill
b In2893 ill

——2Zn(8,0)-C, |l

1.0 T T T T T T T

0.8

0.6

0.4

0.2

—

———In283
Zn80.3300.66

——CdS

' 02
Voltage [V]

(a)

0.0
0.6

400 600 800
Wavelength [nm]

(b)

1000

1200 1400

FIGURE 3.20: Comparison of (a) current-voltage measurements and (b) external quan-
tum measurements of CdS, InyS3 and ZnSg 3300 ¢7 buffer layers.

shown that the band alignment at the interface with Zn(S,0) buffer layers can at least

achieve the same value of conduction band offset as the traditional CdS cells.

Thus a

similarly favourable band alignment can be achieved for alternative buffer layers. InsSs is

shown to be suitable for our CZTSe cells and the solar cells doesn’t show carrier losses in

the buffer layer. Nevertheless, Zn(S,0) showed higher efficiencies and in order to achieve

truly non toxic and abundant solar cells, should be studied extensively in the future.



Chapter 4

Solar cells grown under Cu-excess

4.1 Introduction

In the field of CZTSSe manufacturing, examples of truly single stage processes are rare [1].
However, a modified co-evaporation process at lower temperature followed by an in situ
annealing gave a device with 9.15 % efficiency [15]. The advantage of this process lies in
the fact that no further annealing step is needed and the absorbers can be prepared in one
row. Similar to Cu(In,Ga)Seg, these CZTSe absorbers are grown with an intermediate
Cu-rich (Cu/(Zn+Sn)>1) step, i.e. during the high temperature growth process the
absorber composition has an excess of Cu during a limited time interval. The final
absorber composition is Cu-poor (Cu/(Zn+Sn)<1). A similar Cu-rich growth step in
Cu(In,Ga)Se2 is beneficial for the solar cells: it leads to larger grains and it reduces
the recombination activity [15],[129]. Pursuing the idea even further, some groups study
Cu-rich absorbers: V.Depré durand et al. showed better properties for Cu-rich absorbers
[130] and HZB investigates Cu-rich absorbers for CZTSSe material. Hence this part of
the manuscript is dedicated to report the work on solar cells grown under Cu-excess.
The chapter is divided in two sections, the first one describes the production route used
to study the solar cells whereas the second part focuses on the effect of the Cu-excess

during growth.

4.2 Cu-rich step improves solar cells

The benefits of using a Cu-rich step in CIGSe and in CZTSSe are discussed in the
previous section. In this part of the thesis a new process including such a beneficial
Cu-rich step is developed. The work described here is already published [131], and thus

the same figures are used and cited accordingly. The kesterite absorbers are prepared by

76



Solar cells grown under Cu-excess 77

a precursor-annealing-process which allows a very easy approach to include the Cu-rich
step by using Cu-rich precursors. This Cu-rich precursors are produced via the same
co-evaporation method as described in the previous chapters. However it is already
mentioned there that the Cu-rich precursors without any additional treatment did not

result in working solar cells. The reason for this is explained in the following.

4.2.1 Composition and secondary phases

Fig. 4.1 shows the compositions of absorbers grown under Cu-rich conditions, as deter-
mined by EDX.Both precursors and annealed samples are plotted in the phase diagram
adapted from Dudchak et al[14|. To plot the compositions in the phase diagram, Se is
assumed to be stoichiometric. The precursors (black circles) are in fact Cu-rich. After
annealing (grey circles) of these precursors, the composition shifts from the Cu-rich to
the Cu-poor side and ends up in the region of the phase diagram (Cu-poor and Zn-rich
(Zn/Sn>1)) where the best solar cell efficiencies have been reported [96],[97]. This shift
is due to addition of Sn during the annealing as discussed in the previous chapter. Thus,

although the precursor is Cu-rich the annealed absorber is Cu-poor.

However, no working solar cells can be made from absorbers prepared by annealing un-
treated Cu-rich precursors; as mentioned earlier their power conversion efficiency is zero.
The reason can be understood when considering the nature of the Cu-rich precursors and
the annealing process. It is well known from Cu-rich Cu(In,Ga)Se that a Cuy g2Se phase
is formed at the surface, which can be removed by a cyanide etch[132]. Similarly, a Cu,Se
phase has been observed during the Cu-rich step in kesterites [15]. If a Cuj goSe phase
also forms on the surface of the Cu-rich precursor, the Cu selenide will be transformed
into a Cu-Sn-Se phase during the Sn rich annealing step. It is shown in 3 that a Cu-
Sn-Se phase at the surface of the absorber is detrimental to the solar cell[133]. Fig. 4.2
compares the secondary ion mass spectrometry (SIMS) profiles of a standard Cu-poor
precursor and a Cu-rich precursor. Cu is enriched at the Cu-rich precursor surface ,
whereas no Cu enrichment is detected in the Cu-poor precursor. This is a hint to a Cu

selenide secondary phase located at the surface of the precursor.

To specify the nature of this Cu selenide phase further analysis is needed. Although
X-ray diffraction (XRD) should be used with caution regarding the discrimination of
secondary phases in kesterite compounds [52] Cu selenides can be determined via this
technique. The XRD pattern of a Cu-rich precursor in Fig. 4.3 shows the reflections of
Cuy goSe, indicating that the Cu enrichment at the surface is due to a Cu selenide phase,

very similar to the case of Cu(In,Ga)Ses.
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FIGURE 4.1: Sample compositions plotted in the phase diagram adapted from[14] as

precursor without any surface treatment (black circles), precursors after KCN etching

(red circles), after annealing without KCN etching (grey circles) and after annealing
with KCN etching of the precursors before the annealing (blue circles)

4.2.2 CAPRI process

Since it is likely that the detrimental phase has its origin in the Cuy goSe phase on the
surface of the precursor, the Cu-selenide phase needs to be removed after the growth and
before the annealing. It is well known that cyanides, such as KCN, are able to remove
any CuxSe phase [132] and thus the precursors are etched for 1 minute in 10 wt% KCN
solution before annealing. This is the crucial point of the so called CAPRI process, from
" Cyanide Absorber etching PRIor to annealing". To illustrate the effect of the KCN
etching on this samples XRD patterns of a Cu-rich precursor before and after etching
are shown in Fig. 4.4, clearly indicating that the Cuj goSe phase is eliminated by the
etching process. The shoulders due to Cuj goSe reflexions are removed. The composition
changes during the etching and annealing steps are shown on Fig. 4.1 by the red and
blue dots. The first important observation is that the compositions shift from Cu-rich
to Cu-poor directly after KCN etching, due to the removal of the Cu selenide layer. The
numerical values can be found in the section about the solar cells (section) in table4.4.

The second important observation is that the compositions of the etched precursors are
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FIGURE 4.4: XRD diffractogram showing Cu-rich precursors (the same as 4.3) before
and after etching for a range between 25° and 55° (a) and a smaller range from 40° to
50° (b).

in the range from which the best solar cells are produced and they do not shift any more
after annealing (see phase diagram in fig. 4.1 and table4.4). Thus, the Cu-rich precursors

lead to Cu-poor absorbers after annealing, independent of the treatment of the precursor.

4.2.3 Detrimental Cu-Sn-Se phase

After annealing, absorbers obtained from Cu-poor precursors yield solar cells with effi-
ciencies around 4 as exposed in Chapterl [133] whereas absorbers from Cu-rich precursor
do not yield working solar cells at all as explained in the previous sections. Moreover in
chapterl two different kind of SIMS profiles are shown and traced back to the presence of
ZnSe and a Cu-Sn-Se phase respectively. Although the presence of Cu Selenide phase on
top of the precursor is proven, it is necessary to have a closer look at this detrimental Cu-
Sn-Se phase. Fig. 4.5 shows SIMS profiles of the elements of kesterites in the absorbers
obtained from cu-rich precursors with and without capri treatment. It is clear that the
profiles do not show a significant difference in composition at the surface altough the
Cu and Sn profiles from the capri processed sample are flatter at the surface tending to
believe that the disrupt surface in this sample is thinner in comparison to the not capri
processed sample. Morover the SIMS profiles would indicate a Cu-Sn-Se phase signature
for both samples which seem to be contradictory with the development in chapterl. Nev-
ertheless from this measurements one can conclude that the Cu-Sn related phase seems
to be thinner in the capri processed sample. However we showed in the previous section
that the composition differences are very surface related since the final bulk composition
is independent from the process. Hence detecting this difference in surface composition

by SIMS is difficult since the surface layer might be very thinmand SIMS data can be
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FIGURE 4.5: SIMS profiles from (a) an capri processed absorber and (b) an cu-rich
precursor annealed (not capri processed)

influenced by matrix effects, surface roughness or oxide layers. Therefore, complemen-
tary atom probe tomography (APT) is performed on our samples due to a collaboration
with the MPI Diisseldorf [134]. Different behavior are observed for the differently pre-
pared samples during the APT experiments [131]. While the samples made from Cu-poor
precursors showed high stability, APT tips extracted from the absorbers from Cu-rich
precursors fractured almost instantaneously at the beginning of the experiments. In one
APT measurement it was possible to detect the Cu-rich phase on the surface of the
annealed Cu-rich precursor. They measured a composition of Cu (34+2), Sn (12+1),
Se (51+£1), Zn (4+£0.5) for this phase, i.e. it is a Cu-Sn-Se phase which contains some
Zn. We conclude that this layer represents the detrimental phase. We note here that
because of the small probed volume the detected composition determination is associated
with a relatively large statistical error. Furthermore this layer is extremely thin which
explains that it can hardly be observed by SIMS measurements and emphasises that this

Cu-Sn-Se phase with very low Zn content is an extremely detrimental layer.

4.2.4 Solar cells from the CAPRI process

Solar cells prepared by the CAPRI process exhibit an efficiency which is considerably
higher than the efficiency of solar cells obtained from directly Cu-poor and Zn-rich grown
precursors. The power conversion efficiency of our best solar cell grown as precursor
under Cu-poor conditions without additional surface treatment as exposed in chapterl
did not exceed 4.6% [133]. The question arises if the improvement is due to the Cu-
rich nature of the precursors in the CAPRI process or simply due to the etching of the
precursors. Etching has been shown to be beneficial for finished chalcogenide absorbers,

due to, for instance, cleaning the surface or increasing the interface band gap [103], [117].
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Therefore, some Cu-poor precursors were processed the same way as the Cu-rich ones,
by KCN etching prior to annealing. Table 4.1 lists the solar cell parameters for solar
cells made from Cu-rich precursors treated by KCN prior to annealing (CAPRI), table4.2
from a Cu-poor precursors etched by KCN prior to annealing and table4.3 from the same
Cu-poor precursors without KCN etching prior to annealing. Although the processing is
the same, when etching Cu-poor precursors prior to annealing, we would like to reserve
the label CAPRI for Cu-rich precursors, since only they result in superior efficiencies, as

discussed in the following.

| Samples [ I T Im IV V VI
n %] 56 59 60 61 60 6.1

Voc [mV] 355 348 348 353 345 341

Jsc [mA/em?] [/ 27.3 31.2 30.1 332 317 316
FF [%] 58 54 57 52 55 57

Rg [Qcm?] 0.47 034 0.33 047 048 0.78
Ggp [mS/cm?] 44 79 51 54 60 29

A 2.08 232 206 2.68 218 1.85

Jo [107°mA/em?] || 3.3 85 43 21 73 1.2

TABLE 4.1: Solar cells parameters under illumination for capri processed absorbers
(Cu-rich precursors)

’ Samples H A4 B; C;
n %] 52 3.7 55

Voc [mV] 329 347 338

Jsc [mA/ecm?] || 29.0 21.1 30.7
FF %] 55 51 53

Rg [Qcm?| 0.38 0.35 0.72
Ggp [mS/cm?] 8.7 134 55

A 2.04 1.78 2.26

Jo [107?>mA /em?] || 53 1.9 9.2

TABLE 4.2: Solar cells parameters under illumination for Cu-poor precurors processed
the capri way

’ Samples H A, By G
n %) 29 38 34

Voo [mV] 267 323 261

Jsc [mA /em?| 25.8 242 24.0
FF %] 42 49 49

Rs [Qcm?| 0.42 0.65 0.43
Ggp [mS/em?] || 27.2 104 17.7

A 2.62 225 2.71

Jo [1072mA/em?] || 42 10 65

TABLE 4.3: Solar cells parameters under illumination for the same Cu-poor precursors
without capri surface treatment
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Comparing the Cu-poor precursors with and without etching (tab4.3 and tab4.2, it is
seen that etching of the precursors, in fact, does improve the solar cells by improving all
photovoltaic parameters. Particularly the fill factor (FF) and the open circuit voltage
(Voe) of solar cells made from etched precursors are improved compared to unetched Cu-
poor precursors, which is consistent with the decrease of the reverse saturation current Jg
and of the diode factor A. Additionally, the series resistance Rgs and shunt conductance
Ggp, decrease somewhat, contributing to an enhanced FF. The short circuit current (Jg¢)
increases slightly on average (about 10 relative), but much less than the open circuit
voltage, which increases about 20 relative on average. The increase in Voo and the
almost unchanged Jg¢ indicate that the diode itself is improved by the etching process.
We can only speculate that etching leads to a less defective interface with the CdS buffer
or to improved properties of the space charge region. It can be concluded from this

comparison, that etching before the annealing also improves Cu-poor precursors.

Still, Cu-rich precursors after the CAPRI process do give better solar cells than Cu-poor
precursors after the CAPRI process, as seen in the corresponding tables. Comparing the
solar cell parameters from Cu-rich and Cu-poor precursors, both etched before annealing,
the main advantage of cells made from Cu-rich precursors is a significant increase in short
circuit current Jgo. Open circuit voltage Voo and fill factor FF also increase somewhat,
but diode factor A, saturation current Jy, parasitic resistances and conductances do
not change significantly. This observation indicates that the electronic properties of the
diode do not change much by using Cu-rich precursors, but the collection properties are
considerably improved. This observation can be explained by better transport properties

of absorbers made from Cu-rich precursors.

Figure4.6(a) shows normalised quantum efficiency spectra (EQE) comparing several so-
lar cells made from Cu-rich (red and black line) and Cu-poor (blue line) precursors,
all etched before annealing. Although the solar cells show slightly different band gaps,
which is attributed to different crystal modifications of the Cu2ZnSnSe4 [8], [135], the
main observation is that the current is improved for the Cu-rich precursor in agree-
ment with the observed short circuit currents. The improvement is mostly in the long-
wavelength region, indicating a better collection near the back of the absorber and thus
improved transport properties. A similar behavior is observed in chalcopyrite absorbers
(Cu(InGa)Ses), where etched Cu-rich absorbers exhibit better transport properties than
Cu-poor ones [136].

Solar cells prepared by the CAPRI process from Cu-rich precursors have been analyzed
using temperature dependent J-V measurements to study their dominant recombination
path [101]. Figure4.6(b) shows a comparison of the temperature dependence of the open

circuit voltage of a solar cell made from a Cu-poor and a Cu-rich precursor, both etched
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FIGURE 4.6: (a)Normalized external quantum efficiency curves for solar cell from Cu-
rich and Cu-poor precursors. (b) Temperature dependant current-voltage measure-
ments for Cu-poor and Cu-rich based solar cells. (¢) Photoluminescense measurements
for different depth in the absorbers. (d) Atome probe tomographie reconstracted com-
positional picture. (e) Composition profiles from APT measurements.

before annealing. Since in both cases the open circuit voltage extrapolates to the band
gap as determined by the quantum efficiency spectra (red and blue curve Figure4.6), it
is save to conclude that these solar cells are not dominated by interface recombination.
Nevertheless, they show a rather high reverse saturation current Jy (Table4.1)indicating
a strong recombination channel which limits the efficiency of these solar cells. These
limitations are also obvious from the open circuit voltages, which are, although improved,
still about 650 mV below the band gap value. Therefore, the absorbers prepared from

etched Cu-rich precursors are studied in detail.

Room temperature confocal micro photoluminescence (micro PL) spectra are measured
at different depths of the absorber (Figure4.6(c), all curves, besides the black one).
Micro PL was measured at the surface after a 15s etch in bromine methanol solution
(grey curve in Figure4.6(c), labelled 15s) and in sputter craters with different depths,
which are described by the different sputter times (labelled 150 to 2500 s). The deepest
sputter crater after 2500 s is close to the back of the absorber, where the absorber/Mo

interface appears at about 3200 s. Most spectra show one or several emissions in the
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energy range between 0.9 and 1.0 eV. These are attributed to band-band recombination
of several crystal modifications with slightly different band gaps, most likely stannite
and kesterite phases [8], [135]. An additional transition is observed at 1.25 eV. This
transition has been previously attributed to a defect related transition in ZnSe, due to
resonant defect excitation [137], [138]. This ZnSe emission increases towards the back
of the absorber. ZnSe has been previously related with the series resistance of the solar
cells [101], however, using micro PL we are not able to determine the exact location of
ZnSe. Taking into account the excitation profile and additional carrier diffusion, the
micro PL spectra shown in Figure4.6(c) do not prove that ZnSe is present directly at
the surface. However, they show that ZnSe is distributed across the absorber, with an

increasing fraction towards the back contact.

To further elucidate the distribution of ZnSe, thanks to our collaboration with the MPI
Diisseldorf we have APT measurements on both absorbers based on a Cu-rich [134] and
Cu-poor precursor. Figure4.6(d) shows an APT map of an absorber based on a Cu-rich
precursor after the CAPRI process. The analysed volume is located less than 200 nm
away from the absorber surface. The absorber shows interconnected ZnSe regions of
about 10 nm in size near the surface, extending further into the absorber. A compo-
sitional line profile across the interface between a Cus2ZnSnSeq and a ZnSe region is
shown in Figure4.6(e). The profile indicates that practically no Cu and Sn are present in
the ZnSe region and that the Cuy2ZnSnSey is very Cu-poor. This nanometer-sized net-
work explains why ZnSe is detected throughout the whole absorber by micro PL. They
can also explain why the series resistance is higher with more Zn at the surface [101]
because the current path between the ZnSe particles is limited in space and could also
be subject to band bending. The micro PL spectra in Figure4.6(d) indicate increasing
ZnSe luminescence towards the back of the absorber. APT measurements near the back
of the absorber also reveal a network of ZnSe inclusions. In fact, such ZnSe inclusions
are not only observed in absorbers prepared by the CAPRI process but also in the ab-
sorber prepared by annealing an unetched Cu-poor precursor [134]. Table4.4 show the
numerical values of the compositions of the solar cells discussed here, and looking at the
Zn/Sn ratio, it is clear that the absorbers are nicely Zn-rich and explains that the excess

Zn with the exess Se during the growth form this ZnSe inclusions.

The strong recombination evident from the high saturation current can have a large
number of causes. However, it is reasonable to assume that the interface between
Cus2ZnSnSey and ZnSe contributes strongly to the recombination, since the interfacial
area is huge and is very likely related with different doping levels of the two materials.
That other causes can play a significant role as well, becomes clear when comparing
the micro PL spectra and the saturation currents of a large number of solar cells [35].

Cells exist which do not show the micro PL signature of ZnSe inclusions, but still have a
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Precursors Precursors Absorbers
after KCN etch
Zn/Sn Cu/(Zn+Sn) Zn/Sn Cu/(Zn+Sn) Zn/Sn Cu/(Zn+Sn)

I 1.44 1.70 1.46 0.78 1.40 0.77
1I 1.33 1.19 1.31 0.80 1.34 0.79
111 1.24 1.05 1.26 0.82 1.29 0.80
v 1.27 1.39 - - 1.22 0.82
Vv 1.29 1.51 1.30 0.82 1.26 0.80
VI 1.13 1.10 - - 1.18 0.85
Aq 1.20 0.86 1.19 0.86 1.16 0.84
B, 1.26 0.80 1.29 0.79 1.29 0.78
Cq 1.33 0.91 1.23 0.85 1.19 0.82
Ay 1.20 0.86 N.A. N.A. 1.25 0.82
Bs 1.26 0.80 N.A. N.A. 1.26 0.80
Co 1.33 0.91 N.A. N.A. 1.20 0.85

TABLE 4.4: Compositional ratios, as measured by EDX, for the solar cells listed in 4.3,
4.2 and 4.1

saturation current above 10~! mA /cm2. However, all cells with a low saturation current
(around 1072 mA /em2) show no ZnSe signal in micro PL measurements. Therefore, the
ZnSe inclusions are likely one cause among others for the high recombination. It can be
assumed that the ZnSe inclusions can be reduced by increasing the temperature during

the annealing process.

4.2.5 Capri process at higher temperature

Therefore, additional solar cells have been prepared by annealing etched Cu-rich precur-
sors with a slightly higher temperature by about 20°C. They result in an efficiency of
7.5%, 356 mV, Vp,60% FF, and 35.4 mA /cm2 Jgo. The Current-voltage measurements
and the external quantum efficiency are shown on Figure4.7. The higher temperature
leads mostly to additional improvements of the JSC, with small improvements of the
Voce and the FF. The QE spectrum compared to the other type of solar cells is shown
as the black curve in Figure4.6(a). It shows a slightly lower band gap than the two
absorbers annealed at lower temperatures, which improves the current. Additionally, the
spectrum shows the improved collection at long wavelength, typical of absorbers made
from Cu-rich precursors and indicative of better transport properties than in absorbers
made from Cu-poor precursors. However, it is interesting to note that this cell shows
a saturation current of only 1.5 1072 mA /ecm2. This is among the lowest saturation
currents wich was observed for Cus2ZnSnSe, solar cells in our lab during the time of
this work. The micro PL spectrum of this absorber after a short bromine methanol etch

is shown in Figure4.6(c) as the black line. There is no emission from ZnSe detectable.
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FIGURE 4.7: Solar cell measurements of a 7.5% efficiency solar cell (a) IV cures in the
dark and under illumination (b)External quantum efficiency measurement.

This supports our assumption that the ZnSe inclusions contribute to the recombination,
although there can be many other causes of the high recombination. Also, at these higher
temperatures we have compared Cu-poor and Cu-rich precursors, with the same results

as shown for the lower temperatures.

4.2.6 Summary

In Summary, in this first section a new improved precursor-annealing process for
CuyZnSnSey solar cells is developped, the so called CAPRI process, which includes an
intermediate beneficial Cu-rich step. The Cu-rich precursor show a Cuj goSe phase on
the surface which, if not removed in a CAPRI process, is the starting point of the for-
mation of a Cu-Sn-Se related detrimental secondary phase. This phase formation can be
suppressed by etching the Cuy goSe phase with KCN before annealing. Our best current
solar cell prepared by this process has reached 7.5% power conversion efficiency for a pure
selenide kesterite. Furthermore, the improved solar cell efficiency obtained with Cu-rich
precursors can be attributed to better current collection properties. Direct evidence of
nano-sized ZnSe domains in the absorbers, likely responsible for the strong recombination

in the bulk was given by atom probe tomography and Photoluminescence.

4.3 Cu-rich versus Cu-poor precursors

From the previous section it is shown that the Cu-rich precursors perform better than Cu-

poor ones. The formation of a detrimental phase can explain why without capri process
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FIGURE 4.8: SEM cross-sections from (a) an absorber from a Cu-rich precursor and
(b) an absorber from a Cu-poor precursor.

Cu-rich precursors do not work as solar cells after annealing but this doesn‘t give a picture
for the reason of the beneficial Cu-rich step. Since many people have observed larger
grains for absorbers including a Cu-rich step in their growth process, we have performed
SEM cross-section from absorbers from a Cu-rich precursor and from a Cu-poor precursor
(Figure4.8). The absorber from the Cu-rich precursor show larger grains this is particular
visible at the surface where the grains are larger in contrast to the absorber from the
Cu-poor precursor. Moreover the SIMS profiles in Figure4.5 showed a slight difference in
the composition profiles of Cu and Sn. Hence, one may assume that absorbers obtained
from the Cu-poor and from the Cu-rich precursor exhibit substantially different surface
compositions. Table4.5 shows XPS derived surface compositions in comparison to EDX
derived bulk compositions. From this measurements it is clear that the surface of the
absorbers are very Cu-poor and Se-poor even for the absorber which precursor was
grown under Cu-excess. To further investigate the surface X-ray diffraction is performed

in grazing incidence.

EDX-derived XPS derived
Bulk Composition Surface Composition
Capri Cu1_9Zn1,1SnSe3,g CuO,San,lsnSegb
Nayg
Cu-poor || Cuy.gZni2SnSey g Cug.9Zny.35nSes 3
Nag 4

TABLE 4.5: EDX and XPS compositions for Cu-rich and Cu-poor absorbers measured
by J.H.Alsmeier from HZB
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Peaks [112] [112] [112] [112]

27.18° 27.18° 27.18° 27.18°

179 Cu-poor | 179 Cu-poor annealed | 221 Cu-rich | 221 Cu-rich annealed

[112] 100% 100% 100% 100%
27.18°
[103] 0.77% 3.13% 2.99% 2.80%
28.34°
[202] 0.69% 3.07% 3.00% 2.33%
35.31°
[211] 0.92% 3.91% 4.30% 3.18%
0.92°

TABLE 4.6: Intensity ratios comparing the [103],[202] and [211] peaks to the main [112]
kesterite peak for Cu-rich and Cu-poor precursors before and after annealing.

4.3.1 X-ray diffraction-grazing incidence

Figure4.9 (a) and (b) shows XRD- diffractograms of respectively Cu-rich and Cu-poor
precursors. As already assumed the Cu-poor precursor does not show much Cuj gose
phase in comparison to the Cu-rich precursor. Moreover the Cu-rich precursor show
already almost all kesterite peaks whereas those peaks are not or hardly distinguishable
in the Cu-poor precursor. Since the intensities are only relative table4.6 lists the intensity
ratios from the small [103],[202] and [211] compared to the main [112] kesterite peak.
Furthermore to connect the different diffractogramms with solar cells XRD is performed
on absorbers from Cu-rich and Cu-poor precursors respectivly (Figure4.10). First one
can note that the best absorber presents much MoSes which shows that the absorber is
enough selenised compared to the other one. A good Selenitation of the absorber even
with the formation of a secondary phase like MoSes is preferable than a leak of Selenium.
However both precursor where grown in Selenium excess in the vacuum chamber, and
annealed with the same amount of Se and SnSe powder. The capri process thus seems
favourable to better incorporate the Selenium. After annealing the [103],[202] and [211]
peaks are visible even for the annealed Cu-poor precursor. The ratios are reported in
Table4.6. From this tale one can conclude that the ratios for all peaks from the Cu-rich
precursor are similar to the annealed ones and the ratio from the [211] is even the highest.
It is tempting to conclude that the crystal quality is better in the Cu-rich case and that
the precursor already shows the feature of an absorber, but unfortunatly the FWHM are
similarly bad from a pure crystallographic point of view. In addition we tried to produce
a solar cell from a Cu-rich precursor without annealing which did not result in a working
device. However the question arises if the absence of the [103],[202] and [211] in the

Cu-poor precursor is due to the still partially amorphous film or to different orientation.
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FIGURE 4.10: XRD diffractogramme showing (a) an absorber with 7.5 % efliciency
from a Cu-rich precursor and (b) a typical absorber with 4 % efficiency from a Cu-poor

precursor.
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FIGURE 4.11: XRD diffractogramme in #-26 configuration showing (a) Cu-rich and
Cu-poor precursors and(b) Cu-rich and Cu-poor absorbers.
Peaks [112] [112] [112] [112] CZTSe
27.18° 27.18° 27.18° 27.18° Powder
179 Cu-poor | 179 Cu-poor | 221 Cu-rich | 221 Cu-rich || 04-010-6295
annealed annealed
[112] 100% 100% 100% 100% 100%
27.18°
[220] /[204] 12.9% 71% 92.1% 62.7% 46.65%
45.15°
[312] 9.5% 11.6% 53.7% 27.8% 24.32%
53.46°

TABLE 4.7: Intensity ratios comparing the [220]/[204] and the [312] peaks to the main
[112] kesterite peak for Cu-rich and Cu-poor precursors before and after annealing,.

4.3.2 X-ray diffraction - #-20 configuration

To answer this, we performed X-ray diffraction measurements in a 6-20 configuration.

Figure4.11 and Table4.7 show the diffractogramms and the intensity ratios compared

to the [112] peak and to the powder. The Cu-poor precursor is highly [112] oriented

and after annealing even more whereas the Cu-rich precursor shows a strong [220]/[204]-

[312] dominance which is less after annealing. Thus Cu-rich and Cu-poor present a

different texture already in the precursor stage implying a different growth mechanism

already reported to be a reason for the beneficial Cu-rich step. The texture is difficult

to determine with XRD since from all the CZTSe peaks only 3 are intense enough to be

compared with each other without to much error.
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FIGURE 4.12: EBSD measurements from (a) Cu-poor precursor, (b) Cu-poor precursor,
(¢) Cu-poor precursor annealed and (d)Cu-rich precursor annealed.

4.3.3 Texture: EBSD measurements

Electron Backscatter Diffraction is a technique well suited to determine the texture.
Figure4.12 shows the EBSD measurements for a Cu-poor and a Cu-rich precursor before
and after annealing. The Cu-poor precursor is highly oriented and shows a clear 112
texture which is in agreement with the XRD measurements. After annealing the film
is still oriented but less than before, and the texture remains a 112 texture. From the
color map one can observe that the grain size increased. The Cu-rich precursor is less
oriented than the Cu-poor precursor but still a 001 texture appears. After annealing
the 001 texture remains even if less strong than before. Looking at the color maps after
annealing of the Cu-poor precursor some red grains appear already which are the grains
in a 001 texture. It seems thus that the 001 texture has a tendency to appear even for
the Cu-poor ones. We have observed better transport properties for solar cells based on
Cu-rich precursors and it is tempting to correlate the 001 texture to better transport

properties but for this further investigation is needed.
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Chapter 5

Summary

The principle aim of this thesis was twofold. The first focus was set on the identification of
the limiting factors in selenium based kesterite solar cells in regard to secondary phases
and the second focus was set to overcome their issues by adapting the experimental

procedures.

In order to identify the secondary phases in relation with the production routine used
in this thesis, the first result chapter (chapter 3) started with a composition study. The
samples were produced by a two stage process at a low deposition temperature followed
by an annealing in an Se and SnSe rich atmosphere, since this method is known to
overcome the Sn loss problem occurring at high deposition temperatures. It was shown
that after the annealing, the compositions of the samples when plotted in the iso-thermal
section of the pseudo ternary system established by Dudchak et al., shifted onto the
CusSnSes-ZnSe tie line. According to this result, the secondary phases that are present
in the CZTSe absorbers are the ternary CusSnSes and the ZnSe phases, depending on
the initial precursor composition. Indeed it was shown that the initial Cu rich samples
did shift on the CuySnSes side of the tie line. Moreover, SIMS analysis enabled to
identify two SIMS depth profile trends. The trend showing a Zn rich surface was linked
to 4% average solar cell efficiency and the trend suggesting a Cu-Sn-Se related phase was
related to non working devices. This result was explained by an extreme detrimental Cu-
Sn-Se related phase located at the surface. To remove this detrimental phase bromine
methanol etching was applied after the annealing. The solar cell analysis showed that
the etching resulted mainly in a Vpc improvement, explained by a lower band gap at
the interface assuming a CusSnSes phase. The ZnSe phase was removed by HCI etching
and solar cell analysis confirmed a better current of the solar cell after etching. Both
surface treatments improved the device in terms of efficiency by 1% and thus above 5%

efficiencies have been achieved with a maximum of 5.8% with bromine methanol etching.

94
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In the last part of the third chapter the question of the CdS buffer layer replacement is
addressed. It was shown that other buffer layers could lead to solar cells with efficiencies
in the range of CdS/CZTSe solar cells discussed above, i.e. about 5%. Moreover, it was
shown that for the CdS reference solar cells used in this part of the thesis the alternative
buffer layers in combination with kesterite performed better. Indeed, additionally to
Zn(S,0), IngSs was tested as buffer layer as well and gave a device with 4.4% efficiency.
Furthermore, the band-alignment for the ZnSg 3300 ¢7/CusZnSnSe, interface was deter-
mined by XPS. A valence band offset of AFE, = 0.5 ev was measured. Hence, a spike

like situation with a conduction band offset of AE. = 0.3 ¢V was drawn out.

In chapter 4 of this thesis, solar cells grown under Cu-excess are discussed. A modified
precursor-annealing process named CAPRI ( for Cyanide Absorber etching PRIor to
annealing) is presented. The precursors are grown under Cu-excess. It was shown that
such precursors develop a Cuj gSe phase at their surface. This explains why in chapter
3 high Cu-rich precursors did not result in working devices. Indeed, the Sn present in
the annealing graphite box is incorporated in the CujgSe phase to form a Cu-Sn-Se
related phase on top. Therefore, the Cuy gSe phase is removed by KCN etching in order
to at least partially inhibit the formation of the detrimental phase. It was shown that
after etching the compositions of the precursors shift in the region of the phase digram
where the best performing solar cells are obtained. Unlike the sample of chapter 3, the
compositions of the samples discussed in connexion with the capri process, do not shift
with the annealing and an average of 6% efficiency is achieved. Furthermore, it was
possible to identify a nano-sized ZnSe network in the whole depth of the absorber and
inferred as one possible reason for the high recombination current observed in the bulk
of the solar cells. Solar cells annealed with a higher temperature (about 20°) C, lead
to a maximum device efficiency of 7.5%. This is explained by a reduced ZnSe network,
resulting in lower recombination currents and slight increased Vpc. Furthermore, the

band gap of the material was smaller leading to increased short circuit current.

The external quantum measurements showed better collection in the long wavelength
region for solar cells grown under Cu-excess and processed the CAPRI way compared
to the solar cells discussed in chapter 3. It was shown by solar cell analysis that the
diode parameters do not deviate substantially to explain the better collection. This
further indicates better transport properties. Hence, the second part of chapter 4 com-
pares absorbers grown under Cu-excess and absorbers grown directly with the desired
stoichiometry. By SEM cross section it was possible to show larger grains for Cu-rich
grown samples as expected from literature. However, XRD analysis, retrieved an other
preferred orientation for Cu-rich grown samples than the expected (112) direction. Fur-
ther EBSD measurements indicated a different texture for Cu-rich grown and Cu-poor

grown samples. The Cu-poor grown samples exhibit a (112) texture whereas the Cu-rich
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exhibit a (001) texture. It is inferred that the (001) texture in combination with larger

grains leads to better transport properties in regard to grain boundaries.

In conclusion, this work focused on the surface of selenium based absorbers and on
solar cells grown under Cu-excess. Serious limitations regarding secondary phases where
investigated and in every case an experimental solution has been proposed. The device
efficiency was improved almost the double from 4% to 7.5%. The final outcome of this
work is two-fold. First surface treatments have been implemented and secondly a Cu-
rich step has been shown to be beneficial in regard to transport properties and should

be further investigated.

Outlook

Since the sustainable energy problematic should be the concern of each and everyone,
alternative materials must be further investigated. Kesterites have shown potential al-
though their complexity a more than challenging. Table 5.1 lists some selected devices
above 6% which where relevant at the end stage of this experimental work, taken from
[139]. Although, the by then record of 11.1% for mixed CZTSSe has been increased to

Institute Material Method T(C) 7 (%) Voc (mV) Jsc (mAJem?) FF (%)
Vacuum Stanford University CZTSSe Co-sputtering 580 93
IMEC CZTSe DC sputtering 460 92 416 376 58.7
NREL CZTse Co-evaporation 500 915 377 374 64.9
1BM CZTS Evaporation 570 8.4 661 19.5 65.8
Angst. Solar Center CZTS Co-sputtering 560 7.9 667 196 60.0
[[_Luxembourg University — CZT5e Co-evaporation 500 7.3 356 354 60.0 ]
Nagaoka Nat. Col [#35] Co-sputtering 580 6.8 610 179 62.0
Delaware University CZTse Co-evaporation 500 6.4 330 310 63.1
IREC CZTSe DC sputtering 525 6.0 364 286 57.5
Non-vacuum IBM CZTSSe Spin-coating solution+ particle 540 1.1 460 345 69.8
Purdue University CZTGeSSe Knife-coating: CZTGeS NPs 500 84 464 281 62.0
WA University CZTSSe Spin-coating: solution 83 440 311 60.0
UcCLA CZTsSe Spin-coating: solution 500 81 409 3225 61.0
25w CZTSSe Knife-coating: solution 540 75 404 295 62.8
IBM CZTS ED 550-590 73 567 220 58.1
IBM CZTse ED 585 7.0 369 324 588
Empa CZTsSe Spin-coating: solution 550 62 340 323 56.3

FI1GURE 5.1: Comparison of selected devices above 6% efficiencies taken from [139].

12.6% and the CZTSe record to 10.3%, much effort still needs to be done. In this context,
to continue the work pursued in this thesis, the seek for alternative buffer layers should
be continued, especially in regard to the Zn(S,0) buffer layer. For this, first the quality
of the absorbers should be improved by investigating the precursor growth and/or the

annealing conditions in order to remove the ZnSe network inclusions.
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