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Abstract

Wireless broadcast allows widespread and easy information transfer. However, it may
expose the information to unintended receivers, which could include eavesdroppers. As a
solution, cryptography at the higher network levels has been used to encrypt and protect
data. Cryptography relies on the fact that the computational power of the adversary
is not enough to break the encryption. However, due to increasing computing power,
the adversary power also increases. To further strengthen the security and complement
the encryption, the concept of physical layer security has been introduced and surged
an enormous amount of research. Widely speaking, the research in physical layer secu-
rity can be divided into two directions: the information-theoretic and signal processing
paradigms. This thesis starts with an overview of the physical layer security literature

and continues with the contributions which are divided into the two following parts.

In the first part, we investigate the information-theoretic secrecy rate. In the first
scenario, we study the confidentiality of a bidirectional satellite network consisting of
two mobile users who exchange two messages via a multibeam satellite using the XOR
network coding protocol. We maximize the sum secrecy rate by designing the optimal
beamforming vector along with optimizing the return and forward link time allocation.
In the second scenario, we study the effect of interference on the secrecy rate. We
investigate the secrecy rate in a two-user interference network where one of the users,
namely user 1, requires to establish a confidential connection. User 1 wants to prevent
an unintended user of the network to decode its transmission. User 1 has to adjust its
transmission power such that its secrecy rate is maximized while the quality of service at
the destination of the other user, user 2, is satisfied. We obtain closed-form solutions for
optimal joint power control. In the third scenario, we study secrecy rate over power ratio,
namely “secrecy energy efficiency”. We design the optimal beamformer for a multiple-
input single-output system with and without considering the minimum required secrecy

rate at the destination.

In the second part, we follow the signal processing paradigm to improve the security.
We employ the directional modulation concept to enhance the security of a multi-user
multiple-input multiple-output communication system in the presence of a multi-antenna
eavesdropper. Enhancing the security is accomplished by increasing the symbol error
rate at the eavesdropper without the eavesdropper’s CSI. We show that when the eaves-
dropper has less antennas than the users, regardless of the received signal SNR, it cannot
recover any useful information; in addition, it has to go through extra noise enhancing
processes to estimate the symbols when it has more antennas than the users. Finally, we
summarize the conclusions and discuss the promising research directions in the physical

layer security.
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Chapter 1

Introduction

1.1 Motivation and Scope

Wireless communications allows information flow through broadcasting; however, unin-
tended receivers may also receive these information, with eavesdroppers amongst them.
One way to enhance the security is by applying encryption on the information before
transmission. Currently, security in communications is achieved at upper layers by
means of encryption such as the Advanced Encryption Standard (AES) [1, 2]. Nev-
ertheless, cryptography security is based on the assumption of limited computational
capability of the malicious nodes, and thus there exists the risk that a malicious node
can successfully break an encryption and get access to sensitive information [3]. As time
goes on, the increasing computational power of the computers increases the probability

of encryption interception.

In addition to the upper layer encryption techniques, recently, there has been significant
interest in securing wireless communications at the physical layer using an information-
theoretic approach. As a pioneer in information-theoretic physical layer security, Shan-
non mentioned that in order to have a perfectly secure communication, the length of
the key has to be at least equal to the length of the message [4]. Later, Wyner in-
troduced the concept of “secrecy rate” for discrete memoryless channels in his seminal
paper [5] which initiated a research direction for keyless secure communications. Wyner
noted that if the eavesdropper has a noisier channel than the legitimate receiver, we can
achieve a perfectly secure communication with encoding and decoding at the transmitter
and legitimate receiver, respectively. The main advantage of these approaches is that
the malicious nodes cannot get access to the protected information regardless of their
computational capabilities. The secrecy rate defines the bound for a perfectly secure

transmission and coding is being developed to achieve this bound. However, this area

1



Chapter 1. Introduction 2

is still in its infancy, and the research effort at the moment is inclined in implementing
practical codes [6-8]. Wyner’s idea was later extended to broadcast channels with con-
fidential messages [9], Gaussian [10], and fading channels [11-13]. We provide a detailed

overview of the information-theoretic research in Chapter 2.

The first part of this thesis focuses on the information-theoretic secrecy rate in both
satellite and terrestrial scenarios. In Chapter 3, we maximize the secrecy rate in a
bidirectional satellite communication network to facilitate fast and secure satellite com-
munications (SATCOM). SATCOM is becoming more and more integrated into com-
munication networks to complement the current terrestrial communication systems [14].
Satellite services have to support increasing demands for data transfer. Traditionally,
orthogonal resources either in frequency or time domain should be used to avoid inter-
ference between users. Bidirectional satellites where users exchange messages simulta-
neously can be one of the solutions to save the precious wireless resources. To realize
bidirectional satellite communications, we use network coding as an efficient protocol
to exchange information between two mobile satellite users. The basic principle is that
the received information from users are combined at the gateway (GW), and then the
mixed signal is simultaneously broadcast to the users using the same frequency. Be-
cause each user can subtract its own message, it can easily decode the message from
the other user. Network coding can greatly improve the system throughput. However,
the security it provides is largely unknown in SATCOM and is not yet compared with
the conventional scheme, which does not use network coding. Due to the broadcast
nature and immense area coverage, satellite communications systems, e.g., in military
and commercial applications, are vulnerable to security attacks such as eavesdropping.
We leverage the physical layer security approach to address the confidentiality issue in

bidirectional SATCOM using the principle of network coding.

In Chapter 4, the effect of interference on the secrecy rate was studied in wiretap in-
terference channels. Broadcasting information over the same frequency band in wireless
networks leads to interference among users. Even in the systems where the spatial
dimension is used to concentrate the signal towards the intended destination, the des-
tination may receive interfering signals from other transmitters operating in the same
frequency band. Also, due to the expansion and deployment of wireless services, the
spectrum is becoming scarce [15]. As one possible solution, devices can share the same
spectrum which results in interference and degradation of the signal quality. For in-
stance, IEEE standards such as WiFi, Zigbee and Bluetooth share the same frequency
band named the industrial, scientific and medical (ISM) band and they may interference
with each other [16]. Furthermore, the wireless medium leaves the information vulner-
able to unintended users who can potentially decode the message which was meant for

other users. By intelligently tuning the system parameters using physical layer security
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techniques, we can prevent the wiretappers from getting access to the information. Con-
sequently, a specific rate can be perfectly secured for the users to transmit their data, so
that the wiretapper is not able to decode the message. Potentially, the interference can
improve the secrecy rate by introducing extra interference at the eavesdropper. To find
a relation between the secrecy rate and energy efficiency, we study the secrecy energy
efficiency in Chapter 5. Energy-efficiency, high data rates and secure communications
are essential requirements of the future wireless networks. We consider a multiple-input
single-output (MISO) and a single-input single-output (SISO) scenario while a single-
antenna unintended receiver, which is part of the network, is listening. The secrecy rate
over the power ratio, named “secrecy enerqgy efficiency”, is maximized with and without
considering the minimum required secrecy spectral efficiency at the destination. For
comparison, we derive the optimal beamformer when the zero-forcing (ZF) technique
is used to null the signal at the eavesdropper with considering the minimum required
secrecy spectral efficiency. Furthermore, we study the trade-off between secrecy energy

efficiency and secrecy spectral efficiency.

The second part of this thesis focuses on enhancing the security through the signal pro-
cessing paradigm. In Chapter 6, we employ the directional modulation concept [17, 18]
to enhance the security for finite-alphabet signaling in a multi-user MIMO channel with-
out relaying on the information-theoretic secrecy rate. In the directional modulation,
the antenna weights are designed such that the desired data constellation is received only
in a specific direction, and is distorted in other directions. Although the Gaussian distri-
bution is optimal when the information-theoretic secrecy rate is the target, the Gaussian
distribution assumption for the signals is rarely satisfied in practical communication sys-
tems. There are digital communication systems which use finite-alphabet signals such
as M-PSK modulation which usually have a discrete uniform distribution [19]. Due to
the non-Gaussian distribution, finite-alphabet signals are not optimal in terms of the
developed secrecy rates in [5, 9-13]. Furthermore, although the physical layer security
concept introduced in [5] provides perfect secrecy with the proper coding scheme, it
also reduces the message transmission rate to the legitimate receiver. Primarily, the
secrecy rate requires perfect or statistical knowledge of the eavesdropper’s channel state
information (CSI) [5, 20-22], however, it may not be possible to acquire the perfect or
statistical CSI of a passive eavesdropper in practice. In addition, in the secrecy rate
approach, the transmission rate has to be lower than the achievable rate, which may
conflict with the increasing rate demands in wireless communications. In Chapter 6, we
study and design the optimal precoder for a directional modulation transmitter in order
to enhance the security in a quasi-static fading MIMO channel where a multi-antenna
eavesdropper is present. Here, enhancing the security means increasing the SER at the

eavesdropper. In directional modulation, users’ channels and symbols meant for the
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users are used to design the precoder. The precoder is designed to induce the symbols
on the receiver antennas rather than generating the symbols at the transmitter and

sending them, which is the case in the conventional transmit precoding [23, 24].

1.2 Thesis Organization

We mention the system model details of each chapter in this section. These explanations
are followed by our contributions. Chapters 3, 4, and 5 span the first part of the thesis
which is focused on the information-theoretic secrecy rate. The second part of the thesis
focuses on enhancing the wireless security via signal processing paradigm. This approach
is described in Chapter 6. Finally, Chapter 7 summarizes the main results of the thesis

and proposes future possible research directions.

1.2.1 Chapter 2: Physical Layer Security

In this chapter, we mention the state of the art in physical layer security by dividing
them into two major groups. The first group consists of the works which study the
security based on the information-theoretic secrecy rate. We mention the information-
theoretic secrecy rate literature in detail and classify them into direct link and cooper-
ative communications subcategories. For the direct link communications, we divide the
works into broadcast wiretap channels, broadcast channels with confidential messages,
multiple-access channels, interference channels, and the works which jointly study the
secrecy rate and energy efficiency. The cooperative works are divided into works which
study the secrecy rate in networks with untrusted relays and the works which consider

external eavesdropper.

The second group includes the works which improve the security through the signal
processing paradigm by increasing the symbol/bit error rate or signal to noise ratio at
the eavesdropper. We divide the literature of this group into two categories. The first
category enhances the security using conventional precoding, which only uses the CSI of
the legitimate link in the precoder design. The second category uses both the legitimate

CSI and the symbols to design the precoder.

1.2.2 Chapter 3: Security in Bidirectional Multibeam Satellites

We study network coding based bidirectional SATCOM in this chapter. We consider
a scenario where two mobile users exchange data via a transparent multibeam satellite

in the presence of two eavesdroppers. There is an eavesdropper present for each user
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who overhears the bidirectional communications. The users employ omnidirectional
antennas and the communication is prone to eavesdropping in both the return link!
(RL) and forward link? (FL). In the RL, two users send signals using two orthogonal
frequency channels; the signals collected by the satellite are passed to the GW, where
they are decoded, XOR-ed and then the produced stream is re-encoded. This combined
stream is multiplied by the beamforming vector which contains the designed weight of
each feed. The beamforming weights are designed to maximize the users’ sum secrecy
rate. Consequently, each element of the resultant vector is transmitted to the satellite
using the feeder link. Each element which includes both the feed weight and the data
signal is applied to the corresponding feed to adjust the beams for broadcasting to both
users simultaneously in the FL. The content of this chapter is published in [22].

1.2.2.1 Contributions

The contributions of this chapter are as follows:

1. XOR network coding is introduced into SATCOM to enable both efficient and

secure bidirectional data exchange.

2. The end-to-end sum secrecy rate is first derived, and then maximized by designing
the optimal beamforming vector and the RL and FL time allocation. The opti-
mization problem regarding the beamforming vector is solved using semi-definite

programming (SDP) along with 1-D search.

3. Comprehensive simulation results are provided to demonstrate the advantage of
the bidirectional scheme over the conventional scheme using realistic SATCOM

parameters.

1.2.3 Chapter 4: Power Control in Wiretap Interference Channels

In this chapter, the secrecy rate is investigated in a two-user wireless interference net-
work. Apart from the two users, one of the idle users (unintended user) in this network
is a potential eavesdropper. Both nodes transmit in a way so that the secrecy rate is
maximized for the first user (user 1), and the second user (user 2) maintains the quality
of service (QoS) at its intended destination. Only user 1 needs to establish a secure
connection and to keep its data secure. For example, in a network with ISM band users,

user 1 and user 2 can be WiFi and ZigBee transmitters. The ZigBee can be used to send

!The return link denotes the data transmission from the user to the gateway via the satellite.
2The forward link denotes the data transmission from the gateway to the user via the satellite.
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measurement data, which is one of its applications, so its data may not be necessarily
important to the potential eavesdropper who is interested in WiFi messages. We study
the effect of interference from user 2 on the secrecy rate of user 1 in two scenarios,
namely altruistic and egoistic scenarios. In the altruistic scenario, we jointly optimize
the transmission powers of both users in order to maximize the secrecy rate of user 1,
while maintaining the QoS at user 2’s destination equal or above a specific threshold.
The incentives for user 2 to cooperate are twofold: 1) when positive secrecy rate cannot
be granted for user 1, it can enjoy an interference-free transmission, 2) user 1 adjusts
its transmission power to maintain the QoS of user 2’s destination equal or above the
threshold. In the egoistic scenario, the users’ powers are still jointly optimized. How-
ever, user 2 is selfish and only tries to maintain the minimum QoS at the corresponding

destination. The content of this chapter is published in [21].

1.2.3.1 Contributions

The contributions of this chapter are as follows:

1. It is shown that by appropriate control of user 1’s power, we can make sure that
the eavesdropper cannot decode the signal of user 2, and thus cannot employ

successive interference cancellation (SIC).

2. It is shown that the transmitted power from user 2 has a crucial role in achieving
a positive secrecy rate for user 1. According to the channel conditions, we define
the proper power transmission for user 2 to maintain a positive secrecy rate for

user 1

3. Closed-form expressions are developed to implement joint optimal power control

for both users in both altruistic and egoistic scenarios.

4. Finally, a new metric called “secrecy energy efficiency” is defined, which is the
secrecy rate over the consumed power ratio. Using the new metric, it is shown
that the interference channel can outperform the single-user channel for specific

values of QoS requirements.

1.2.4 Chapter 5: Secrecy Energy Efficiency Optimization for MISO

and SISO Communication Networks

In this chapter, we consider a multiple-input single-output (MISO) and a single-input
single-output (SISO) scenario while a single-antenna unintended receiver, which is part

of the network, is listening. The secrecy rate over the power ratio, named “secrecy energy
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efficiency” and denoted by (, is maximized with and without considering the minimum
required secrecy spectral efficiency, denoted by 7, at the destination. For comparison,
we derive the optimal beamformer when zero-forcing (ZF) technique is used to null
the signal at the eavesdropper with considering the minimum required secrecy spectral
efficiency. Note that the ZF can only be used for the MISO scenario. Furthermore, the
trade-off between ( and secrecy spectral efficiency, denoted by 7, is studied. The content

of this chapter is published in [25].

1.2.4.1 Contributions

The contributions of this chapter are as follows:

1. A convex problem is formulated to derive the exact beamformer to maximize the

secrecy energy efficiency in a MISO wiretap channel.

2. An iterative algorithm is proposed for optimal power allocation in SISO wiretap

channel to maximize the secrecy energy efficiency.

3. The trade-off between the secrecy rate and energy efficiency is analyzed to figure

out the optimal operating point.

1.2.5 Chapter 6: Security Enhancing Directional Modulation via Symbol-

Level Precoding

In this chapter, the optimal precoder is designed for a directional modulation transmitter
to enhance the security in a quasi-static fading MIMO channel where a multi-antenna
eavesdropper is present. Here, enhancing the security means increasing the SER at
the eavesdropper. In directional modulation, users’ channels and symbols meant for the
users are used to design the precoder. The precoder is designed to induce the symbols on
the receiver antennas rather than generating the symbols at the transmitter and sending
them, which is the case in the conventional transmit precoding [23, 24]. In other words,
in the directional modulation, the modulation happens in the radio frequency (RF)
level while the arrays’ emitted signals pass through the wireless channel. This way,
we simultaneously communicate multiple interference-free symbols to multiple users.
Also, the precoder is designed such that the receivers antennas can directly recover the
symbols without CSI and equalization. Therefore, assuming the eavesdropper has a
different channel compared to the users, it receives scrambled symbols. In fact, the
channels between the transmitter and users act as secret keys [26] in the directional

modulation. Furthermore, since the precoder depends on the symbols, the eavesdropper
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cannot calculate it. In contrast to the information theoretic secrecy rate paradigm, the
directional modulation enhances the security by considering more practical assumptions.
Particularly, directional modulation does not require the eavesdropper’s CSI to enhance
the security, furthermore, it does not reduce the transmission rate and signals are allowed
to follow a non-Gaussian distribution. A part of the content of this chapter is published

in [27], and all of the content is submitted to [28].

1.2.5.1 Contributions

The contributions of this chapter are as follows:

1. The optimal symbol-level precoder is designed for a security enhancing directional
modulation transmitter in a MIMO fading channel to communicate with arbitrary
number of users and symbol streams. In addition, we derive the necessary condition
for the existence of the precoder. The directional modulation literature mostly
includes LoS analysis with one or limited number of users, and multi-user works

do not perform security enhancing optimization.

2. It is shown that when the eavesdropper has less antennas than the transmitter,
regardless of the SNR level, it cannot extract useful information from the received
signal and when it has more antennas than the transmitter, it has to estimate the
symbols by extra processes which enhance the noise. We minimize the transmission
power for the former case and maximize the SER at the eavesdropper for the latter
case to prevent successful decoding at the eavesdropper. This is done while keeping
the SNR of users’ received signals above a predefined threshold and thus the users’
rate demands are satisfied. The directional modulation literature do not analyze
the abilities of a multi-antenna eavesdropper and rely on the fact that it receives

scrambled symbols

3. It is shown that in conventional precoding, the eavesdropper needs to have more
antennas than the receiver to estimate the symbols since the eavesdropper can
calculate the precoder. In our design, the eavesdropper has to have more antennas
than the transmitter since the precoder depends on both the channels and symbols.
The transmitter, e.g., a base station, probably has more antennas than the receiver,
hence, it is more likely to preserve the security in directional modulation, specially

in a massive MIMO system.

4. The power and SNR minimization precoder design problems are simplified into a
linearly-constrained quadratic programming problem. For faster design, we intro-

duce new auxiliary variable to transform the constraint into equality and propose
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two different algorithms to solve the design problems. In the first algorithm, we
use a penalty method to get an unconstrained problem and solve it by proposing
using an iterative algorithm. Also, we prove that the algorithm converges to the
optimal point. In the second one, we use the constraint to get a non-negative least
squares design problem. For the latter, there are already fast techniques to solve

the problem.

1.3 Publications

The author has published his PhD research in the IFEFE journals and international
conferences. The publications are listed below with the acronyms “J” and “C” defining

the journal and conference publications, respectively.

1.3.1 Journals

e J1: A. Kalantari, S. Maleki, G. Zheng, S. Chatzinotas, and B. Ottersten, “Joint
power control in wiretap interference channels”, IEEE Trans. Wireless Commun.,

vol. 14, no. 7, pp. 3810-3823, Jul. 2015.

e J2: A. Kalantari, G. Zheng, Z. Gao, Z. Han, and B. Ottersten, “Secrecy analysis
on network coding in bidirectional multibeam satellite communications”, IFEFE
Trans. Inf. Forensics Security, vol. 10, no. 9, pp. 1862-1874, Sep. 2015.

e J3: A. Kalantari, M. Soltanalian, S. Maleki, S. Chatzinotas, and B. Ottersten, “Se-
curity enhancing directional modulation via symbol-level precoding”, submitted to

IEEE Journal of Selected Topics in Signal Processing.

1.3.2 Conferences

e C1: Sina Maleki, Ashkan Kalantari, Symeon Chatzinotas, Bjorn Ottersten, “Power
Allocation for Energy-Constrained Cognitive Radios in the Presence of an Eaves-
dropper,” IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), Florence, Italy, May 2014.

e C2: A. Kalantari, S. Maleki, G. Zheng, S. Chatzinotas, and B. Ottersten, “Fea-
sibility of positive secrecy rate in wiretap interference channels”, in IEEE Global
Conf. on Signal and Inf. Proces. (GlobalSIP), Atlanta, GA, Dec. 2014, pp.
1190-1194.
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e (C3: A. Kalantari, S. Maleki, G. Zheng, S. Chatzinotas, and B. Ottersten, “Secrecy
energy efficiency optimization for MISO and SISO communication networks”, in
IEEE Int. Workshop on Signal Proces. Advances in Wireless Commun. (SPAWC),
Stockholm, Sweden, Jun. 2015, pp. 21-25.

e C4: A. Kalantari, M. Soltanalian, S. Maleki, S. Chatzinotas, and B. Ottersten,
“Secure M-PSK communication via directional modulation”, in IEEFE Int. Conf.
on Acoustics, Speech and Signal Proces. (ICASSP), Shanghai, China, Mar. 2016
(to appear).

e Ch: A. Kalantari, S. Maleki, S. Chatzinotas, and B. Ottersten, “Frequency of ar-
rival based interference localization using a single satellite”, submitted to 8" Ad-
vanced Satellite Multimedia Systems Conference, 14" Signal Processing for Space

Communications Workshop, Palma de Mollorca, Spain, Sep. 2016.

To keep the consistency of the thesis, the following publications are not included in the

thesis:

e Sina Maleki, Ashkan Kalantari, Symeon Chatzinotas, Bjorn Ottersten, “Power Al-
location for Energy-Constrained Cognitive Radios in the Presence of an Eavesdrop-

per,” IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Florence, Italy, May 2014.

e Ashkan Kalantari, Sina Maleki, Gan Zheng, Symeon Chatzinotas, Bjorn Ottersten,
“Feasibility of Positive Secrecy Rate in Wiretap Interference Channels,” [EEFE
Global Conference on Signal and Information Processing (GlobalSIP), Atlanta,
GA, Dec. 2014.

e A. Kalantari, S. Maleki, S. Chatzinotas, and B. Ottersten, “Frequency of arrival
based interference localization using a single satellite”, submitted to 8" Advanced
Satellite Multimedia Systems Conference, 14" Signal Processing for Space Com-
munications Workshop, Palma de Mollorca, Spain, Sep. 2016.



Chapter 2

Physical Layer Security

In this chapter, we review the physical layer security literature which relates to this
thesis. Broadly speaking, we divide the related literature into two parts. For the first
part, we mention the works which use the information-theoretic secrecy rate as a metric
for establishing the security. In this part, we firstly elaborate on the secrecy rate concept
and then classify the related literature into direct link and cooperative wireless networks.
To go further into the literature depth, we discuss and classify each group into subgroups.
For the second part, we review the works which rely on the signal processing paradigm
to improve the security of wireless communication systems. A summary of the literature
review of this chapter is given in Table 2.1. For a detailed review of the physical layer
security state of the art, we refer the interested readers to [29]. Here, we use the word

“unintended receiver” to refer to the eavesdropper.

2.1 Information-Theoretic Secrecy Rate Paradigm for Se-

curity

In his fundamental work [4], Shannon mentions the conditions for having perfect secrecy
using a secret key. He shows that in order to have a perfectly secure transmission,
the length of the secret key needs to be at least equal to the length of the message.
Later, Wyner introduced the secrecy rate for the keyless secure transmission paradigm
in his seminal paper [5]. Wyner considered a discrete memoryless channels and showed
that it is possible to design a pair of encoder-decoder to establish a perfectly secure
transmission when the eavesdropper has noisier channel than the legitimate receiver.
The introduction of the keyless information-theoretic secrecy rate by Wyner opened up
many research areas. In the following, we overview the works built upon the information-

theoretic secrecy rate. Apart from the secrecy rate, another metric to measure the

11
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TABLE 2.1: Classification of physical layer security literature

Category ‘ Related research

Secrecy in wiretap broadcast channels: | [5, 10-12, 30-34]
single-antenna nodes

Secrecy in wiretap broadcast channels: | [35-68]
multiple-antenna nodes
Secrecy in broadcast channels with confi- | [9, 69-87]
dential messages

Secrecy in multiple-access channels [20, 70, 88-93]
Secrecy in interference channels [21, 94-112]
Energy efficiency and secrecy rate [25, 113-118]
Cooperative communication and secrecy | [119-126]

rate: untrusted relay

Cooperative communication with external | [22, 127-150, 150, 151]
eavesdropper

Signal processing paradigm for security: | [152-157]
conventional precoding
Signal processing paradigm for security: | [17, 18, 23, 27, 28, 158-176]
directional modulation via symbol-level
precoding

physical layer security is the secrecy outage probability, which measures the probability

that the secrecy rate goes below a predefined threshold rate.

2.1.1 Secrecy Rate in Non-cooperative Links

Since the introduction of the information-theoretic secrecy rate by Wyner for discrete
memoryless channels, this concept has been extended to different types of direct link
wireless networks. In this part, we categorize these works based on the wireless channel

type and mention the related literature.

2.1.1.1 Secrecy in wiretap broadcast channels

In wiretap broadcast channels, the aim is to keep the message secret from external
unintended receivers or eavesdroppers. A generalized wiretap broadcast channel is shown
in Fig. 2.1. Here, we categorize the literature into single-antenna and multiple-antenna

works.

e Wiretap broadcast channel with single-antenna nodes: Inspired by Wyner,
[30] shows that for a noiseless legitimate channel and a binary symmetric channel,
it is possible to establish a secure transmission at the rate of the legitimate link.

To further push the limits, [10] extends Wyner’s secrecy rate to Gaussian wiretap
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FI1GURE 2.1: Broadcast MIMO communications over wiretap fading channels.

channels. The authors of [31] extend [10] by considering a Gaussian interference
known at the encoder and propose the coding strategy to achieve the perfect se-
crecy rate. The authors of [12] analyze the secrecy rate when the main channel
is additive white Gaussian noise (AWGN) and the wiretap channel is Rayleigh
fading. They show that under artificial noise injection, positive secrecy rate is
achievable even when the average channel gain of the legitimate receiver is worse
than the eavesdropper. To analyze the secrecy rate in more general channels,
the authors of [32] derive a closed-form expression for the secrecy capacity and
an upper bound for the secrecy outage probability of a-u fading wiretap chan-
nels. By taking into account more practical assumptions, the works in [11, 33]
study the secrecy rate by assuming the absence of the eavesdropper’s CSI. The
work of [11] studies strategies to achieve the secrecy rate over fading channels by
assuming both the availability and the absence of the eavesdropper’s CSI at the
transmitter. Assuming long coherence intervals for the eavesdropper’s channel, the
authors propose a on/off power allocation which gets close to optimal performance
for asymptotically infinity SNR. Compound® wireless channels for the legitimate
receiver and the eavesdropper are studied in [33]. It is shown that without the
eavesdropper CSI knowledge at the transmitter and assuming limited states for it,
it is possible to guarantee perfect secrecy. The work of [34] determines the sensing
threshold, sensing time, and the transmission power to maximize the secrecy rate

of a cognitive radio using the statistical CSI of the eavesdropper.

e Wiretap broadcast channel with multiple-antenna nodes: The work of [35]

!The compound channel models transmission over a channel that may take a number of states and
reliable communication needs to be guaranteed regardless of which state occurs.
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initiated the extension of Wyner’s secrecy rate to multiple-antenna wiretap chan-
nel. In [35], space-time codes are used to initiate secure transmission in a multiple-
input multiple-output multiple-antenna eavesdropper (MIMOME) Rayleigh fading
channel. The secrecy rate for single-input multiple-output multiple-antenna eaves-
dropper (SIMOME) slow fading channel is derived in [36] and it is shown that
reception diversity improves the secrecy rate. The authors of [37] derive the opti-
mal transmit covariance matrix for a multiple-input single-output single-antenna
eavesdropper (MISOSE) channel where they consider AWGN legitimate channel
and Rayleigh fading and AWGN channels for the eavesdropper. The effect of
beamforming on the secrecy rate is investigated in [38]. The authors determine the
secrecy capacity of Gaussian MIMO wiretap channel with two antenna legitimate
nodes and a single-antenna eavesdropper and show that applying beamforming on
Gaussian signaling is the optimal strategy. The work of [39] derives the secrecy
rate in terms of generalized eigenvalues for a multiple-input multiple-output single-
antenna eavesdropper (MIMOSE) Rayleigh fading channels. The secrecy rate is
extended to multi-user scheduling scenario in [47]. The authors derive the achiev-
able secrecy sum-rate in a multi-user scenario where each user is wiretapped by
multiple eavesdroppers. In a new paradigm, [49] calculates the optimal jamming
covariance matrix for a full-duplex receiver in a SIMOME wiretap channel where
the receiver can both receive the signal and jamm the eavesdropper at the same
time. The advantage in [49] compared to cooperative jamming scenarios is the
“self-protection” ability at the receiver, which is that the destination can remove

the jamming from the received signal since it knowns the jamming pattern.

The secrecy rate of MIMOME network is studied in [40-42, 44, 45, 48]. To further
study the MIMOME channel, [41] derives the exact secrecy capacity of a MIMOME
AWGN wiretap channel. The analyzes of [39] are extended to include a multiple-
antenna eavesdropper in [40] and the authors derive the optimal covariance matrix
for Gaussian distributed inputs. The work of [42] characterizes the secrecy rate of
a MIMOME wiretap channel by considering a more general transmit covariance
matrix compared to [40, 41]. The achievable secrecy rate is studied while jointly
minimizing the power received by the eavesdropper and maximizing the power
received by the desired terminal. The precoding at the transmitter to maximize the
secrecy rate in a MIMOME channel is studied for space shift keying transmission
in [45]. Not all the research in the physical layer security is built from scratch,
the cognitive communications has shown to be useful in the information-theoretic
secrecy rate research. For example, a new relationship between the wiretap channel
and the cognitive radio channel is set up in [48]. The authors derive the optimal

covariance matrix of Gaussian input signal which maximizes the secrecy rate and
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calculate the achievable rates in MIMOSE and MIMOME wiretap channels. The
work of [44] designs the transmit precoding in a MIMOME channel.

The works of [43, 46] study the secrecy outage probability. To perform secrecy
rate analysis on other channel types, [43] studies the secrecy outage probability
over MISOME generalized K-fading channels. The frequency domain analysis is
employed in [46] to derive a unified communication-theoretic approach in order to
analyze the probability of nonzero secrecy capacity, the secrecy outage probability,

and the secrecy capacity over MIMO fading channels.

The security of the systems with finite-alphabet inputs is considered in [50, 51].
The authors in [50] study the information-theoretic secrecy rate for a multiple-
antenna transmitter, receiver, and eavesdropper when finite-alphabet signal is
used. The authors assume that the eavesdropper CSI is available at the trans-
mitter. An external helper generating interference in the form of fine-alphabet
signal is considered in [51]. Information-theoretic secrecy rate expressions are de-
rived by approximating the beneficial interference distribution as sum of Gaussian

distributions and assuming the availability of the eavesdropper’s CSI.

As a way to exploit the diversity and reduce the amount of radio frequency
(RF) chains, antenna selection at the transmitter/receiver can be employed. The
physical layer security research also incorporates antenna selection to reduce the
transceiver complexity while improving the security. The work of [52] derives the
secrecy outage probability in a MISOME channel using transmitter antenna selec-
tion. As an extension of [52], the authors of [53] derive a closed-form expression
for the secrecy outage probability when transmit antenna selection is used in a MI-
MOME wiretap channel to maximize the SNR at the receiver. In [54], the authors
perform transmit antenna section to improve the secrecy outage probability in
MIMO wiretap channel with multiple multiple-antenna eavesdroppers. The work
of [55] considers optimal and suboptimal antenna selection at the transmitter in
a MIMOME wiretap channel. The authors maximize the secrecy rate and derive

the secrecy diversity order.

The usage of artificial noise to enhance the secrecy rate is studied in [56-62].
The work of [56] considers a MIMOME channel where it proposes using external
helpers to jamm the eavesdropper. This work derives the noise covariance matrix
to improve the secrecy rate. The authors of [57] calculate the optimum power
allocation strategy between the transmitted information and artificial noise to
guarantee a specific secrecy outage probability. The authors of [58] extend [57]
by defining a “Protected Zone” around the transmitter and study it by statistical
modeling. The work of [59] analyzes the secrecy rate in a slow flat fading MISO

wiretap channel where multiple eavesdroppers are present. The authors jointly
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optimize the transmit and artificial noise covariance matrices. The work of [60]
considers a MISOSE wiretap channel in fast fading channels. The optimal transmit
and artificial noise matrices to maximize the secrecy rate are designed using perfect
CSI of the legitimate link and the statistics CSI of the eavesdropper. The power
splitting between the data and artificial noise transmission is proposed in [61]
to prevent the energy collector nodes to intercept the message. Secrecy rate is
extended to green wireless communications in [62], where the authors consider a
two-phase communication procedure. In the first phase, the source sends power
to the jammer through wireless channel. Then, the source communicates with
the destination in the second phase while the jammer creates interference at the
eavesdropper. The authors maximize the average rate and minimize the secrecy

outage probability.

To move toward practical scenarios and considering system errors, the physical
layer security research society has tried to study the effect of imperfect and partial
CSI on the secrecy rate. The authors of [63] minimize the secrecy outage proba-
bility in a MISOSE flat fading wiretap channel where perfect CSI of the legitimate
and partial CSI of the wiretap channel is considered. To further improve the se-
crecy, artificial noise is injected in the null direction of the legitimate receiver. The
authors of [64] follow a robust design approach along with Taylor series approxima-
tion to minimize the power and secrecy rate maximization over MIMOME wiretap
channel using imperfect global CSI. Robust design of transmit and receiver filters
over a MIMOME wiretap channel is studied in [65]. Considering the imperfect
CSIs of the legitimate link and the eavesdropper, the authors minimize the mean
square error (MSE) at the legitimate receiver, whereas keeping the MSE at the
eavesdropper above a threshold. The secrecy rate of a MISO transceiver in the
presence of multiple single-antenna eavesdroppers is studied in [66]. The secrecy
rate constrained to secrecy rate outage probability and power is maximized by
designing a robust beamformer using the imperfect CSI of the eavesdroppers. The
secrecy rate in a MIMOME channel is analyzed in [67] using the distribution of the
eavesdropper’s channel at the transmitter and the effect of the channel estimate
feedback. Stochastic geometry is used in [68] to minimize the secrecy outage prob-
ability in a MISO wiretap channel in the presence of multiple randomly located
single-antenna eavesdroppers. The authors maximize the throughput constrained
to outage of the legitimate link by designing the transmit beamformer with the
eavesdropper’s channel state distribution while the quantization error is consid-

ered.
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2.1.1.2 Secrecy in broadcast channels with confidential messages

In broadcast channels with confidential messages, the goal is to keep the message of
each user secret from the other users, and a common message is usually transmitted to
the users. As a pioneer, the work of [9] considers a two-user network where a secret
message is transmitted to the first user and a common message to both of the users.
The secret and common messages are transmitted using different rates over discrete
memoryless channels. Works [69, 70] study a similar scenario as in [9] for Gaussian and
fading channels, respectively. The authors of [70] minimize the secrecy outage probabil-
ity using optimal power allocations and derive the secrecy capacity region. Broadcast
channels with one-sided interference are studied in [71, 72]. In [71], an easier way is
proposed to derive an outer bound for secrecy capacity region of a two-user one-sided
interference channel where the message of one user needs to be kept confidential while
message of other user is assumed to be alway transmitted securely. In [72], a two-user
network with one-sided interference where each destination is a potential eavesdropper
for the other one is studied. Using game theory, it is concluded that depending on the
objective of each pair, the equilibrium can include or exclude the self-jamming strat-
egy. The work of [69] characterizes the capacity region of the broadcast channel with
confidential messages by decomposing the legitimate receiver into two virtual receivers.
The authors of [73] derive the inner and outer bounds of the secrecy capacity region
for a memoryless interference MIMO broadcast channels where artificial noise is used to
enhance the secrecy of the private message. To further generalize the scenario, [74, 75]
consider transmitting two private messages to the users. The authors of [74] derive
the secrecy rate region for a two-user MIMO network where the transmitter wants to
transmit private message to each of the receivers. The work of [75] derives the secrecy
capacity for a two-user MIMO channel where each user should receive a private mes-
sage and both users need to receiver a common message. Later, [76] extended [73] to
the case where both users transmit artificial noise along with data. Outer bounds on
sum secrecy rate of a two-user Gaussian interference channel are studied in [77] where
message confidentiality is important for users. Secrecy capacity region for a two-user
MIMO Gaussian interference channel is investigated in [78] where each receiver is a po-
tential eavesdropper. The authors show that larger secrecy rate region can be achieved
when one or both destinations are considered as eavesdropper. The work in [177] an-
alyzes a two-user interference channel with one-sided noisy feedback where a common
message is sent to users and a confidential message to both users. The authors derive
the rate-equivocation region when the message of one user needs to be kept secret. As
a generalization, [79-81] consider sending a private message to each of the users in a
multi-user network. A multi-user interference channel where only one user as a potential

eavesdropper receives interference is considered in [81]. The sum secrecy rate is derived
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using nested lattice codes. The work of [79] derives he optimal precoder to maximize
the sum secrecy rate in a large multi-user MIMO channel. The authors of [82] derive
closed-form optimal beamformers for two MIMO transmitters where each of them wants
to communicate a private message with its own receiver. The work of [83] studies the
secrecy rate competition. The authors study the rank of the optimal input covariance
matrix that achieves the secrecy capacity in a Gaussian interference channel with two
MISO links where each transmitter tries to maximize its own secrecy rate compared to
the secrecy rate of the other transmitter. The authors of [84] analyze a two-user MISO
Gaussian interference channel where each destination is a potential eavesdropper. Game
theory is used to tackle the scenario where each user tries to maximize the difference
between its secrecy rate and the secrecy rate of the other user. Beamformers under
full and limited channel CSI are designed at each transmitter to achieve this goal. A
two-user MISO interference channel is considered in [85] where each users may decode
the message of the other user. The beamforming is performed to jointly optimize the se-
crecy rates of the users. The broadcast channels with confidential messages is extended
to multi-user case in [86]. The authors consider a communication network comprised
of multiple-antenna base stations and single-antenna users. The total transmit power
is minimized while the signal-to-interference plus noise ratio and equivocation rate for
each user is satisfied. The extension of broadcast channel with confidential messages to
finite-alphabet input is considered in [87]. The authors maximize the secrecy rate in
a two-user channel where the transmitter sends a common message to both users and

private message to each of them.

2.1.1.3 Secrecy in wiretap multiple-access channels

As a natural extension, the Wyner wiretap channel was also extended to multiple access
(MAC) channel with external eavesdroppers, which can be seen in Fig. 2.2. As the first
work, [88] considers a MAC channel with an external eavesdropper where the authors
derive the outer bounds for the secrecy rate region and the power allocation to maximize
the secrecy sum rate. The upper bound for the secrecy sum rate of the MAC channel
is derived in [89]. In another scenario, [70] considers a two-user MAC channel where
each user is a potential eavesdropper for other users. The authors derive the rate-
equivocation pair for each user. The secrecy analysis of MAC channel is extended to
two-way communications in [20]. The authors consider two-way MAC channel where an
eavesdropper wiretaps the communication between two users. The work of [90] derives
the secrecy capacity region for a two-user MAC channel where both users transmit a
common message to the destination while one of them has a private message to transmit.

As a new approach, [91] uses uplink training to hide the CSI from eavesdroppers and
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FI1GURE 2.2: A MIMO multiple access channel over wiretap fading channels.

designs codes to create high decoding error at the eavesdropper. The security analysis
of a two-user MAC channel is extended to multiple-antenna nodes in [92] where an
external eavesdropper wiretaps the channel. The work of [93] characterizes the secrecy
rate region for discrete and Gaussian memoryless channels for a two-user MAC channel
in the presence of an external eavesdropper where individual secrecy rate constraints are

considered.

2.1.1.4 Secrecy in wiretap interference channels

Wireless transmission in the same frequency band causes interference at the receivers.
Physical layer security researchers have tried to study the interference effect on the se-
crecy rate and calculate the secrecy rate in the presence of interference. Secrecy rate
in a two-user interference channel is studied by [94-97]. The authors of [94] investigate
the secrecy rate in a two-user interference channel with an external eavesdropper. They
show that the structured transmission results in a better secrecy rate compared to ran-
domly generated Gaussian codebooks. The authors of [95] study the secrecy capacity
region for a two-user interference channel in the presence of an external eavesdropper.
The users jointly design randomized codebooks and inject noise along with data trans-
mission to improve the secrecy rate. The work of [96] considers a user who gets helping
interference in order to increase its confidentiality against an eavesdropper. The achiev-
able secrecy rate for both discrete memoryless and Gaussian channels is derived. The
possibility of secure transmission in a multi-user interference channel using interference
alignment and secrecy precoding is investigated in [98]. A two-user symmetric linear

deterministic interference channel is investigated in [99]. The achievable secrecy rate is
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investigated when interference cancellation, cooperation, time sharing, and transmission
of random bits are used. It is shown that sharing random bits achieves a better secrecy
rate compared to sharing data bits. The authors in [100] consider a wireless network
comprised of users, eavesdroppers and interfering nodes. It is shown that interference
can improve secrecy rate. A transceiver pair is studied in [101] where they try to increase
the secrecy rate using an external interferer when a passive eavesdropper is present. The
authors of [102] consider a user and an eavesdropper where known interference which
only degrades the decoding ability at the eavesdropper is used to enhance the secrecy
capacity. The secrecy capacity and secrecy outage capacity when closest interfering node
and multiple interfering nodes are separately employed to prevent eavesdropping is stud-
ied in [103]. It is demonstrated that multiple interferes method is superior to the closet
interfering method. The exact secure degrees of freedom for different types of Gaussian
wiretap channels are discussed in [104] where cooperative jamming from helpers is used.
A scenario in [105] considers two sources where each of them communicates with its own
destination and each of them is wiretapped by a specific eavesdropper. The authors

investigate the effect of interference caused by sources transmission on the secrecy rate.

As an application of interference channels, the effect of interference on the secrecy rate
is also investigated in cognitive radio systems. In cognitive radios, secondary user trans-
mits in the primary user’s operating frequency band when it is not in use. Stochastic
geometry is used in [106] to analyze physical layer secrecy in a multiple node cognitive
radio network where an eavesdropper is present. The secrecy outage probability and the
secrecy rate of the primary user is derived while secondary user produces interference.
The equivocation-rate for a cognitive interference network is analyzed in [107] where
the primary receiver is a potential eavesdropper and should not decode the secondary
message. The authors of [108] maximize the secrecy rate for a multiple-antenna sec-
ondary user in the presence of an external eavesdropper while considering the QoS at
the primary receiver. In [109], a cognitive radio network with single-antenna nodes is
considered. The secondary user causes interference to both primary destination and
eavesdropper. The primary user is interested in maintaining secrecy rate while the sec-
ondary is aiming to increase its transmission rate. The achievable pair rate for both
users is derived and then the interaction is modeled as a game. Similar problems to
maximize the secrecy rate through beamforming design in cognitive radio are studied

in [110-112].

Our contributions in [21, 97] fall into the categories of secrecy in interference channel.
We consider a two-user interference channel with an external eavesdropper in [21] where
one user tries to maximize its secrecy rate while the other user is interested in keeping the
QoS at its destination. We derive closed-form expressions for the optimal power control

of the users to maximize the secrecy rate and preserving the QoS while preventing
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the SIC at the eavesdropper. Depending on the channel conditions, bounds on the
transmission power of the interfering user are derived such that a positive secrecy rate

is sustained for the other user.

2.1.1.5 Secrecy rate and energy efficiency

While security is a concern, power consumption is also another important issue in wire-
less communications since some wireless devices rely on limited battery power. Recently,
researchers have shown interest to jointly optimize the secrecy rate and the power con-
sumption. In [113], sum secrecy outage probability over the consumed power is studied
where multiple layer optimization is used. The optimal power allocation is carried out
for each user on a specific subcarrier in a scalar manner in a MISO channel. The work
of [114] uses switched beamforming to maximize the secrecy outage probability over the
consumed power ratio, while delay and power constraints are considered. The optimal
beamformer a wiretap channel with multiple-antenna nodes is designed in [115] using
first-order Taylor series expansion and Hadamard inequality are used to maximize se-
crecy rate over power ratio. The work of [116] maximizes the secrecy energy efficiency
in a cooperative network with multiple decode-and-forward (DF) relays. The secrecy
energy efficiency is extended to cooperative networks in [117, 118]. Power consumption
for a fixed secrecy rate is minimized in [117] for an AF rely network. The work of [118]
maximizes the secrecy outage probability over the consumed power subject to power

limit for a large scale AF relay network.

Our contribution in [25] falls into the secrecy rate and energy efficiency category. The
work of [25] derives the exact solution for the optimal beamformer which maximizes the
secrecy rate over power, denoted by “secrecy emergy efficiency”, for a MISO channel
wiretapped by a single-antenna eavesdropper. In addition, we propose an efficient itera-
tive algorithm to calculate the closed-form expression for maximizing the secrecy energy

efficiency in a SISO channel where a single-antenna eavesdropper is present.

2.1.2 Cooperative Communication and Secrecy Rate

Relay-aided cooperative communications helps improving the transmission coverage
without increasing the transmission power. Keeping a sufficiently low transmission power
prevents interference in other adjacent wireless networks. Furthermore, reducing the in-
terference improves the overall capacity [178]. While cooperative networks improve the
communications, similar to direct link communications, the security is sill an issue since
the information can be wiretapped by unintended receivers and the encryption can be

compromised. A typical wiretap relay channel in the presence of a helper is shown in
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FIGURE 2.3: A cooperative relay link over wiretap fading channels in the presence of
a helper.

Fig. 2.3. In this part, we review the physical layer security literature in the cooperative
communications networks. We divide the literature into two parts. In the first part,
we review the works where the unintended node is the relay, which is regarded as the
“untrusted relay” in the literature. In the second part, we mention the research which

consider scenarios where external eavesdroppers wiretap the cooperative network.

2.1.2.1 Untrusted relay

Analyzing the security for untrusted relays in a cooperative network is a more practi-
cal scenario. This is due to the fact that the relay node is part of the network and is
used to complete the transmission process; hence, its perfect of partial CSI is probably
available at the transmitter. As one of the first works, [119] studies the security perfor-
mance of a cooperative network by considering different malicious behaviors from the
DF relays and proposing a trust-assisted communication protocol. The Wyner’s secrecy
rate is developed to the untrusted relay channel in [120] where achievable secrecy rate
is derived for the relay channel. The source and untrusted AF relay beamformers are
jointly designed in [121] to maximize the secrecy rate. The work of [121] is extended to
a two-way network with an untrusted AF relay in [122] where the beamformer of the
two sources and the relay are jointly designed to maximize the secrecy rate. The se-
crecy outage probability for a single-antenna and multiple-antenna AF untrusted relay
is studied in [123]. Furthermore, as the first work, the authors investigate the effect
of antenna selection at the relay on the secrecy outage probability. The work of [124]
introduces the destination-based jamming to handle single or multiple untrusted AF
relays. To evaluate the security, the authors derive the achievable secrecy rates. In a

novel approach, [125] applies beamforming at the transmitter so that the untrusted relay
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only receives the real valued part of the signal, whereas the receiver gets both the real
valued and imaginary valued parts of the signal. To perform a global optimization over
the cooperative network, [126] designs the precoder for the source, relay and destina-
tion. The authors consider a cooperative network with multiple-antenna nodes where
the relay is a potential eavesdropper. The precoding is applied at the source and relay
for message transmission and at the destination to jamm the relay such that the secrecy

rate 1s maximized.

2.1.2.2 Cooperative communication with external eavesdropper

As a extension to secrecy in broadcast wiretap channels, Wyner’s secrecy rate can be
analyzed in cooperative communications where the source/relay is being intercepted by
one or multiple eavesdroppers. Wyner’s secrecy rate concept was first extended to coop-
erative networks with external eavesdropper in [127]. The achievable rate-equivocation
region of the network is characterized when the relay transmits artificial noise. The
average secrecy outage probability is optimized in [128] for a cellular network with
multiple-antenna base station, relays, and eavesdropper where multiple single-antenna
users communicate with the base station. The work of [129] considers a cooperative
network consisting of multiple relays which are wiretapped by multiple eavesdroppers.
The relay weights are designed under total and individual power constraints to maxi-
mize the secrecy rate or null the information at the eavesdroppers. Upper and lower
bounds for the secrecy capacity of a diamond wiretap channel is derived in [130] where a
source communicates with a destination through two relays in the presence of an eaves-
dropper. As an application of full-duplex radios, [131] considers single-antenna source,
destinations, and eavesdroppers where they communicate through a multiple-antenna
full-duplex relay. The beamforming at the relay is designed to cancel self-interference
and satisfying different SINRs at the destination and eavesdroppers. Works [132, 133]
incorporate large arrays in cooperative networks and study the secrecy rate. A large
array MIMO relay is studied in [132] where it is powered by the signal from the source
and can freely change its location to improve the secrecy. The secrecy outage proba-
bility is derived for both AF and DF relaying protocols. A cooperative network with
single-antenna source and destination along with a large array relay is studied in [133].
The authors study the secrecy of AF and DF protocols at the relay in the presence of a
single-antenna eavesdropper. To move toward more practical scenarios, [134, 135] study
the robust design when the eavesdroppers’ imperfect CSI is available. The work of [134]
follows robust design to calculate the relay weights using the eavesdropper’s imperfect
CSI for a multiple relay cooperative network with single-antenna nodes in the presence

of a single-antenna eavesdropper. The work of [135] proposes a robust beamforming
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design for a multiple-antenna relay using eavesdropper’s imperfect CSI to maximize the
secrecy rate. The secrecy analysis when the satellite works as a relay is studied in [22].
In this work, two users exchange messages using XOR network coding protocol while
each of them is being wiretapped by a specific eavesdropper. The authors derive the

satellite antenna weights to maximize the sun secrecy rate.

The effect of jamming and artificial noise in the secrecy of cooperative communications
is studied in [136-142]. The maximum number of eavesdropper for maintaining a secure
communication in a multiple relay cooperative network is studied in [136] where a set of
relay nodes are selected to transmit artificial noise in order to improve the secrecy rate.
The work of [137] studies the achievable secrecy rate in the cases where the relay performs
jamming or artificial noise generation from a known codebook to improve the secrecy
rate. A similar scenario as [127] is considered in [138] where the relay improves the
secrecy by jamming the eavesdropper. The authors derive the optimal power allocation
for the source and relay to maximize the secrecy rate. Cooperative jamming along with
interference aliment are used in [139] to improve the secrecy rate in a cooperative network
with multiple antenna nodes where the communication is wiretapped by a multiple-
antenna eavesdropper. Multiple scenarios where multiple relays perform AF, DF, or
jamming are considered in [179]. The authors derive the relay weights to maximize
the secrecy rate in the presence of one or more single-antenna eavesdroppers. The work
of [140] designs linear precoding and proposes using inactive DF relays of the cooperative
network as jammers to improve the secrecy where a multiple-antenna eavesdropper can
intercept the transmission in both hops. Similar as in [140], [141] considers cooperative
jamming by inactive nodes of a cooperative network consisting of multiple single-antenna
DF relays and single-antenna source and destination to counteract a single-antenna
eavesdropper. The authors propose optimal relay section and optimal power allocation
for signal transmission and jamming to improve the secrecy rate. As a usage of full-
duplex radios, a cooperative network including a full-duplex relay with the jamming

ability is considered in [142] to counteract a single-antenna eavesdropper.

As the relay selection can be used to improve the rate, it can be used to improve the
secrecy rate. Relay selection in cooperative networks to improve the secrecy is employed
in [143-148]. The authors of [143] propose relay selection and cooperative beamform-
ing to improve the secrecy. Optimal AF and DF relay selection is investigated in [144]
for a cooperative network with single-antenna nodes in the presence of single-antenna
eavesdropper. It is shown that the probability of interception for the proposed scheme
outperforms the conventional approach. Opportunistic relay selection in a cooperative
network with single-antenna nodes is employed in [145] to lower the probability of inter-

ception at the eavesdropper and outage probability at the destination. Relay selection
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between multiple DF relays is carried out in [146] and the resulting secrecy rate is de-
rived. The authors in [147] consider a cooperative network consisting of multiple DF
relays and destinations. The relays perform collaborative beamforming to send the mes-
sage to the destination with the strongest link to the relays to maximize the secrecy
rate. The work of [148] considers a cooperative network with multiple AF relays and
users. The selected user jamms the transmission from source to relay and subtracts the

jamming after receiving the signal from the relay in order to improve the secrecy rate.

A part from two-hop cooperative networks, the secrecy rate in multi-hop networks is
studied in [149, 150, 150, 151]. A multi-hop cooperative network with full-duplex DF
relays is considered in [149] where a single-antenna eavesdropper wiretaps each hop. The
secrecy rate is evaluated when the relay receives the message and jamms the eavesdropper
at the same time. As another study in multi-hop relays, [150] performs security analysis
of a multi-hop DF relay network where the eavesdropper can wiretap all the hops.
The authors perform optimal power allocation/beamforming for single/multiple antenna
relay nodes to improve the secrecy rate. The work of [151] considers a cooperative
network with multiple AF relays with single-antennas nodes which is wiretapped by a
single-antenna eavesdropper. The authors derive the secrecy outage probability using
the CSI feedback.

Our contribution in [22] falls into the category of Cooperative communication with
external eavesdropper. The secrecy analysis when the satellite works as a relay is studied
n [22]. In this work, two users exchange messages using XOR network coding protocol
while each of them is being wiretapped by a specific eavesdropper. The authors derive

the satellite antenna weights to maximize the sun secrecy rate.

2.2 Signal Processing Paradigm for Security

In the information-theoretic secrecy rate, the perfect, imperfect, or statistical CSI knowl-
edge of the eavesdropper or specific assumptions on the eavesdropper’s CSI are required
at the transmitter. The transmitter uses these information to design the system pa-
rameters in order to maximize the secrecy rate. Moreover, when using the secrecy rate,
the secrecy rate is lower than the achievable rate of the channel. As an alternative, a
signal processing approach can be followed at the transmitter to improve the security.
Here, we divide these signal processing-based works into two groups. The first group
enhances the security by designing the precoding using the legitimate CSI. The second
group enhances the security by designing the precoding using both the legitimate CSI
and the symbols, which is referred to as “directional modulation”. In the following, we

mention these two groups.
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2.2.1 Conventional precoding

As the first work, [152] mentions the concept of enhancing the security using artificial
noise, which deviates from the information-theoretic secrecy rate concept introduced by
Wyner [5]. This approach relys on the signal processing at the transmitter to design
the artificial noise in the null space of the legitimate receiver. One major advantage of
this technique is that the eavesdropper’s CSI is not required for the system design. In a
similar approach, the work of [153] designs a Robust beamformer in a MIMOME wiretap
channel. The beamformer is designed to maximize the jamming power, which is in the
null direction of the legitimate receiver, and sustains a predefined SINR at the legitimate
receiver without the eavesdropper’s CSI and imperfect CSI of the legitimate link. The
authors of [154] use the artificial noise in the null space of the legitimate channel to
prevent decoding at the eavesdropper over a MIMOME channel. The perfect secrecy is
achieved when the number of antennas of the legitimate receiver goes to infinity. Linear
precoding to transmit data and artificial noise is studied in [155] to improve the security
in a multi-cell environment without eavesdropper’s CSI where the number of antennas

and users increase asymptotically.

Although the Gaussian distribution is optimal when secrecy rate is the target, the Gaus-
sian distribution assumption for the signals cannot be always satisfied in practical com-
munication systems. There are digital communication systems which use finite-alphabet
signals such as M-PSK modulation which usually have a discrete uniform distribu-
tion [19]. Due to having a non-Gaussian distribution, finite-alphabet signals are not
optimal in terms of the developed secrecy rates in [5, 9-13]. Furthermore, although the
physical layer security concept introduced in [5] provides perfect secrecy, i.e., zero bit
leakage, it also reduces the message transmission rate to the legitimate receiver. There
have been research interests in investigating the security issues when finite-alphabet sig-
nal is used in a communication system [156, 157]. The authors in [156] devote some
of the available power in order to add a randomly scaled version of the finite-alphabet
data to itself to create induced fading without optimal beamforming and preserving the
phase of the symbol at the receiver. This way, the channel seen by the eavesdropper will
be different. If the added random part rotates the M-PSK constellation enough, the
eavesdropper decodes the wrong symbol. In [157], suboptimal random beamforming is
used to assure the security without requiring the eavesdropper channel state information

(CSI) when finite-alphabet signal is used.
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2.2.2 Directional modulation via symbol-level precoding

Recently, there has been growing research interest on directional modulation technology
and its security enhancing ability for finite-alphabet input signals. As a pioneer, [17]
implements a directional modulation transmitter using a parasitic antenna. This system
creates the desired amplitude and phase in a specific direction by varying the length of
the reflector antennas for each symbol while scrambling the symbols in other directions.
The authors of [18] suggest using a phased array at the transmitter and employ a genetic
algorithm to derive the phase values of a phased array in order to create symbols in a
specific direction. The directional modulation concept is later extended to directionally
modulate symbols to more than one destination. In [158], the singular value decomposi-
tion (SVD) is used to directionally modulate symbols in a two user system. The authors
of [159] derive the array weights to create two orthogonal far field patterns to direction-
ally modulate two symbols to two different locations and [160] uses least-norm to derive
the array weights and directionally modulate symbols towards multiple destinations in

a multi-user multiple-input multiple-output (MIMO) system.

Array switching at the symbol rate is used in [161, 162, 176] to induce the desired symbols
without using actively driven elements, phase shifter and amplifier, in the RF chain. The
work of [161] uses an antenna array with a specific fixed delay in each RF chain to create
the desired symbols by properly switching the antennas. The authors in [162] use an
array where each element can switch to broadside pattern?, endfire pattern®, or off status
to create the desired symbols in a specific direction. Switched phased array to enhance

the security is proposed in [176].

In the second group, a parasitic antenna is used to create the desired amplitude and
phase in the far field by near field interactions between a driven antenna element and
multiple reflectors [17, 163, 164]. In [17, 163], transistor switches or varactor diodes are
used to change the reflector length or its capacitive load, respectively, when the channel
is line of sight (LoS). This approach creates a specific symbol in the far field of the an-
tenna towards the desired direction while randomizes the symbols in other directions due
to the antenna pattern change. In connection with [17], [164] studies the far field area
coverage of a parasitic antenna and shows that it is a convex region. The first group em-
ploys amplifiers and/or phases shifters to create an array with actively driven antennas
to directionally modulate the data [18, 27, 28, 158-160, 165-175], where [27, 158, 174]
consider fading channels. The authors of [18] use a genetic algorithm to derive the phase
values of a phased array and create symbols in a specific direction. The technique of [18]

is implemented in [165] using a four element microstrip patch array where symbols are

2Maximum radiation of an array directed normal to the axis of the array.
3 Additional maxima radiation directed along the axis.
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directionally modulated for @-PSK modulation. The authors of [166] propose an iter-
ative nonlinear optimization approach to design the array weights which minimizes the
distance between the desired and the directly modulated symbols in a specific direction.
In [167], baseband in-phase and quadrature-phase signals are separately used to excite
two different antennas so that symbols are correctly transmitted only in a specific di-
rection and scrambled in other directions. In another paradigm, [168] uses random and
optimized codebook selection, where the optimized selection suppresses large antenna
side lobes, in order to improve the security in a millimeter-wave large uniform linear an-
tenna array system. The authors of [169] derive optimal array weights to get a specific
bit error rate (BER) for @-PSK modulation in the desired and undesired directions.
The work of [170] uses the Fourier transform to create the optimal constellation pattern
for @-PSK directional modulation, while [171] uses the Fourier transforms along with
an iterative approach for Q-PSK directional modulation and constraining the far field
radiation patterns. The Fourier transform is used in [170, 171] to create the optimal
constellation pattern for @-PSK directional modulation. In [158, 172-174] directional
modulation is employed along with noise injection. The authors of [172, 173] utilize an
orthogonal vector approach to derive the array weights in order to directly modulate
the data and inject the artificial noise in the direction of the eavesdropper. The work
of [172] is extended to retroactive arrays® in [174] for a multi-path environment. An
algorithm including exhaustive search is used in [175] to adjust two-bit phase shifters
for directly modulating information. Since the location of the eavesdropper is unknown,
the transmitting angle of the interference is changed randomly. The directional mod-
ulation literature do not analyze the abilities of a multiple-antenna eavesdropper and
rely on the fact that it receives scrambled symbols. In addition, the works of [158, 173]
also transmit interference to degrade the signal quality at the eavesdropper. However,
depending on the eavesdropper’s number of antennas, it can remove the interference and
estimate the symbols. They show that compared to the conventional zero-forcing (ZF)

at the transmitter [23], directional modulation is more secure.

On top of the works in the directional modulation literature where antennas excita-
tion weight change on a symbol basis, the symbol-level precoding to create constructive
interference between the transmitted symbols has been developed in [180-183] by focus-
ing on the digital processing of the signal before being fed to the antenna array. The
main difference between directional modulation and the digital symbol-level precoding
for constructive interference is that the former focuses on applying array weights in

the analog domain such that the received signals on the receiving antennas have the

4A retroactive antenna can retransmit a reference signal back along the path which it was incident
despite the presence of spatial and/or temporal variations in the propagation path.
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desired amplitude and phase, whereas the latter uses symbol-level precoding for digi-
tal signal design at the transmitter to create constructive interference at the receiver.
Furthermore, directional modulation was originally motivated by physical layer security,

whereas symbol-level precoding by energy efficiency.

Our contributions in [27, 28] fall into the the category of directional modulation via
symbol-level precoding. In [27, 28], we design the array weights of a directional mod-
ulation transmitter in a single-user MIMO system to minimize the power consumption
while keeping the signal-to-noise ratio (SNR) of each received signal above a specific

level.

2.3 Conclusion

In this chapter, we reviewed the physical layer security literature by dividing it into
the works based on the keyless information-theoretic secrecy rate and signal processing
paradigms in Sections 2.1 and 2.2. The signal processing paradigm handles one of the
most important shortcomings of the keyless information-theoretic secrecy rate, which is
the requirement of the eavesdropper CSI at the transmitter, which may not be possible

to acquire in practice.

We divided the information-theoretic research into non-cooperative and cooperative cat-
egories in Sections 2.1.1 and 2.1.2. We further divided the secrecy rate analysis of the
non-cooperative category into: 1) wiretap broadcast channels, 2) broadcast with confi-
dential messages, 3) wiretap multiple access channels, and 4) secrecy rate and energy
efficiency. We divided the literature of the cooperative part into: 1) Untrusted relay, and
2) cooperative communication with external eavesdropper. The information-theoretic
secrecy rate literature considers the secrecy rate and the secrecy outage probability as
the security metric. These metrics along with the perfect, imperfect or partial CSI of
the legitimate and wiretap CSIs are used to design the transmitter, receiver, and/or the

relay, e.g., deriving the precoding at the transmitter.

The signal processing paradigm works were divided into two major categories: 1) con-
ventional precoding in Section 2.2.1, and 2) directional modulation via symbol-level
precoding in Section 2.2.2. In the conventional precoding literature, the transmitter is
designed only using the legitimate CSI knowledge. On the other hand, in the direc-
tional modulation via symbol-level precoding, the transmitter is designed using both
the symbols and the legitimate CSI. The directional modulation shows to outperform

the conventional precoding in terms of the imposed BER at the eavesdropper.






Chapter 3

Security in Bidirectional

Multi-beam Satellites

Network coding is an efficient means to improve the spectrum efficiency of satellite com-
munications. However, its resilience to eavesdropping attacks is not well understood.
This chapter studies the confidentiality issue in a bidirectional satellite network consist-
ing of two mobile users who want to exchange message via a multibeam satellite using
the XOR network coding protocol. We aim to maximize the sum secrecy rate by de-
signing the optimal beamforming vector along with optimizing the return and forward
link time allocation. The problem is non-convex, and we find its optimal solution using
semidefinite programming together with a 1-D search. For comparison, we also solve
the sum secrecy rate maximization problem for a conventional reference scheme without
using network coding. Simulation results using realistic system parameters demonstrate
that the bidirectional scheme using network coding provides considerably higher secrecy
rate compared to that of the conventional scheme. The contributions of this chapter are
published in [22].

3.1 Introduction

Satellite communications (SATCOM) is getting more and more integrated into communi-
cation networks to compliment the current terrestrial communication systems. Satellite
services have to support increasing demands for data transfer. To realize bidirectional
satellite communications, traditionally orthogonal resources either in frequency or time
domain should be used to avoid interference between users. To save the precious wireless
resources, network coding has been used in this work as an efficient protocol to exchange

information between two mobile satellite users. The basic principle is that the received
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information from users are combined on the satellite or gateway (GW), and then the
mixed signal is broadcast to users at the same time and using the same frequency. Be-
cause each user can subtract its own message, it can easily decode the message from the

other user.

However, due to the broadcast nature and immense area coverage, satellite commu-
nications systems, e.g., in military and commercial applications, are vulnerable to se-
curity attacks such as eavesdropping. Currently, security in SATCOM is achieved at
upper layers by means of encryption such as the Advanced Encryption Standard [1, 2].
Nevertheless, traditional security is based on the assumption of limited computational
capability of the malicious nodes, and thus there exists the risk that a malicious node
can successfully break an encryption, and get access to sensitive satellite data [3]. In
contrast to the upper layer encryption techniques, recently there has been significant
interest in securing wireless communications at the physical layer using an information-
theoretic approach named “secrecy rate” [5]. The main advantage of this approach is
that the malicious nodes cannot even get access to protected information regardless of

their computational capabilities.

While network coding can greatly improve the system throughput, whether it is more
secure than the conventional scheme, which does not use network coding, is largely
unknown in SATCOM. In this work, we will leverage the physical layer security approach
to address the confidentiality issue in bidirectional SATCOM using the principle of
network coding. Below, we provide an overview on the applications of network coding

to SATCOM and the related work in the physical layer security literature.

3.1.1 Literature Review

3.1.1.1 Network coding related works

Network coding technique, first introduced in [184], can considerably reduce delay, pro-
cessing complexity and power consumption, and can significantly increase the data rate
and robustness [185]. In the popular XOR network coding scheme, the received signals
at an intermediate node are first decoded into bit streams, and then XOR is applied on
the bit streams to combine them. The processed bits are re-encoded and then broadcast.
Utilization of network coding has been studied in both terrestrial and satellite networks.
The authors in [186] apply superposition coding and XOR network coding to a bidi-
rectional terrestrial relay network. A multi-group multi-way terrestrial relay network is
considered in [187] where superposition coding and XOR network coding are investigated

and compared to each other. Network coding can also considerably improve the spectral
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efficiency in bidirectional SATCOM in which two mobile users exchange information via
the satellite. The work in [188] compares the amplify-and-forward (AF) method with
the XOR network coding scheme in a satellite scenario. A joint delay and packet drop
rate control protocol without the knowledge of lost packets for mobile satellite using
network coding is studied in [189]. In [190], buffers are designed for satellites when the
network coding scheme is employed. Random linear network coding is used in [191] to
minimize the packet delivery time. Satellite beam switching for mobile users is tackled
in [192] where the network coding scheme increases the robustness in delivery of the
packets when mobile terminals move from beam to beam. The XOR network coding

protocol is demonstrated in a satellite test bed in [193].

3.1.1.2 Physical layer security related works

Wyner in [5] first showed that secure transmission is possible for the legitimate user given
the eavesdropper receives noisier data compared to the legitimate receiver. Inspired by
Wyner’s work, [10] extended the idea of physical layer secrecy rate from the discrete
memoryless wiretap channel to Gaussian wiretap channel. The Wyner’s wiretap channel
was generalized in [9] to the broadcast channel. After the seminal works done in [5, 9, 10],
there have been substantial amount of works in physical layer secrecy. Here, we only
review those most relevant to network coding and bidirectional communications. The
authors in [194] consider a relay utilizing the XOR network coding protocol where joint
relay and jammer selection is done to enhance the secrecy rate. A bidirectional AF relay
network with multiple-antenna nodes is considered in [195] where the relay beamforming
vector is designed by the waterfilling method to improve the secrecy rate. The authors
in [196] consider random relay selection in a bidirectional network in which the relay
performs both data transmission and jamming the eavesdropper at the same time to
increase the secrecy. The work in [139] performs selection over AF relays and jammers
in a bidirectional network for the single-antenna case, and precoding in the multiple-
antenna case to enhance the secrecy. To maximize the secrecy in a bidirectional network,
the authors in [197] consider the location and distribution of nodes while joint relay and
jammer selection is performed. Distributed beamforming along with artificial noise
and beamforming is studied in [198] for a bidirectional AF relay network. The work
in [199] designs the distributed beamforming weights for a bidirectional network where
one intermediate node acts as a jammer. In contrast to the terrestrial literature, there are
very few works in physical layer security for SATCOM. The problem of minimizing the
transmit power on a multibeam satellite while satisfying a minimum per user secrecy rate
is studied in [200]. Iterative algorithms are used to joint optimize the transmission power

and the beamforming vector by perfectly nulling the received signal at the eavesdropper.
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Both optimal and suboptimal solutions are developed in [201] where the use of artificial

noise is also studied.

Despite the physical layer security and network coding works in the terrestrial and
SATCOM scenarios, some unaddressed issue are left. In [186], only downlink bottlenecks
are considered when designing the beamforming weights for the XOR network coding
case. The uplink bottlenecks also need to be considered when optimizing the uplink-
downlink time allocation. In [187], the authors consider the decoding-re-encoding and
designing the beamforming vector separately. The works in [196, 197] consider single-
antenna relay where the AF protocol is used in a bidirectional network. The authors
in [195, 198, 199] use the analog network coding protocol in a two-way relay network to
facilitate secure information exchange between two users. Furthermore, the mentioned
terrestrial works in physical layer security for bidirectional communications assume one
eavesdropper in the environment. The works in [200, 201] design the beamforming

weights for unidirectional service for fixed users in the forward link (FL).

3.1.2 Our Contribution

In this work, we study the network coding based bidirectional SATCOM in which two
mobile users exchange data via a transparent multibeam satellite in the presence of
two eavesdroppers. There is an eavesdropper present for each user who overhears the
bidirectional communications. The users employ omnidirectional antennas and the com-
munication is prone to eavesdropping in both the return link (RL) and FL. In the RL,
two users send signals using two orthogonal frequency channels; the signals collected
by the satellite are passed to the GW, where they are decoded, XOR-ed and then the
produced stream is re-encoded. This combined stream is multiplied by the beamforming
vector which contains the designed weight of each feed. Consequently, each element of
the resultant vector is transmitted to the satellite using the feeder link. Each element
which includes both the feed weight and the data signal is applied to the corresponding
feed to adjust the beams for broadcasting to both users simultaneously in the FL. This
scheme is more power-efficient than the conventional method where network coding in
not utilized and the power is splitted into two data streams. This benefit is extremely

vital for SATCOM because of the limited on-board power.

Our main contributions in this work are summarized below to differentiate it from the

prior work:

1. XOR network coding is incorporated into SATCOM in to enable both efficient and

secure bidirectional data exchange.
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2. The end-to-end sum secrecy rate is first derived, and then maximized by designing
the optimal beamforming vector and the RL and FL time allocation. The opti-
mization problem regarding the beamforming vector is solved using semi-definite

programming (SDP) along with 1-D search.

3. Extensive simulation results are presented to demonstrate the advantage of the
bidirectional scheme over the conventional scheme using realistic SATCOM pa-

rameters.

3.2 System Model

Consider a satellite communication system comprised of two users denoted by U; and
U, who exchange information with each other, one multibeam transparent satellite de-
noted by S, one GW, two eavesdroppers denoted by Ey and Es as depicted in Fig. 4.1.
Users are located in different beams of the satellite, and they transmit the RL signals
using different frequency channels simultaneously. We assume that each user and each
eavesdropper is equipped with a single omni-directional antenna. Because of the long
distance between the users, there is no direct link between them; furthermore, eaves-
droppers cannot cooperate and F; can only overhear U; for i = 1,2. Contemporary
orbiting satellites such as ICO, SkyTerra, and Thuraya have limited power, here de-
fined as Pg, and some of them do not have the on-board processing ability to decode
the received messages or perform on-board beamforming, so they have to forward the
received signal to the GW to get it processed [202-204]. Using the GW to process the
signal and designing the feed weights is referred to as the ground-based beamforming
technique. The ground-based beamforming technique is perceived as the most conve-
nient and economical approach [204]. In this chapter, we consider a commercial satellite

without digital processing ability and follow the ground-based beamforming paradigm.

In our satellite network model, we assume that the eavesdropper is a regular user which
is part of the network. However, it is considered as an unintended user, potential eaves-
dropper, which the information needs to be kept secret from it. Due to the fact that
the eavesdropper is part of the network, it is possible to estimate the channels to it.
Hence, similar to the works [20, 42, 179, 205, 206], we assume that the eavesdropper’s
channel state information (CSI) is known. Based on the mentioned assumption, we as-
sume that the users and eavesdropper know all the CSIs. Further, all communication
channels are known and fixed during the period of communication. It is worth men-
tioning that in the secrecy rate analysis of XOR network coding, only the CSI of the
eavesdroppers in the RL is required. Although we assume the availability of the eaves-

dropper’s CSI, there are methods such as null-space artificial noise transmission [207],
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random beamforming [51, 157, 208], or effective channel coding design to strengthen
the cryptography [209] in order to sustain secrecy without having the knowledge of the
eavesdropper’s CSI. Another alternative can be using the statistical knowledge of the
eavesdropper’s CSI in order to improve the secrecy [210-213]. Also, the interference
alignment technique can be used along with statistical knowledge of the eavesdropper’s
CSI to enhance the secrecy [95]. In the situations when the geographical area of the
eavesdropper is known, the worst-case scenario can be considered. In this scenario, the
best CSI from the user to the eavesdropper’s area is considered for the design. One pos-
sible example for the worst-case scenario can be when the occupied zone by the enemy

is known. This example can be one of the applications of this chapter.

To acquire the RL channel state information (CSI) at the GW, the users send the pilot
signals along with the data toward the satellite. For the FL CSI, the GW sends pilots
to the users. Afterwards, the estimated CSI by the users is sent back to the GW.
Therefore, getting the FL CSI takes more time compared to the RL CSI [214]. The
GWs are equipped with advanced transceivers and antennas and because of this reason,
the communication link between the GW and the satellite (feeder link) is modeled as
an ideal link. Hence, similar to the works [203, 215-218] which are carried out in the
satellite communications literature, we assume that the channel between the satellite

and the GW, which is referred to as the feeder link, is ideal with abundant bandwidth.

The complete communication phases of the network coding based scheme are summa-
rized in Table 3.1. The conventional scheme without using network coding is also in-
cluded for comparison and details are given in Section 3.2.2. The first two phases for the
RL are the same for both schemes while the main difference lies in the FL transmission.
In the conventional scheme, signals are sent in different time slots for each user in the
FL, so this scheme has less available transmission time for each user. In the bidirectional
scheme, signal streams are combined, and then sent in the FL using the XOR network
coding protocol, therefore, the spectral efficiency is significantly improved compared to

the conventional scheme.

3.2.1 Network coding based bidirectional SATCOM

3.2.1.1 Signal model

In this case, the whole communication takes place in four phases. In Phase I, both users

transmit signals using different frequencies simultaneously. The signals received at the
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FIGURE 3.1: Bidirectional satellite communication network.

satellite and the eavesdroppers are

ys; = /Po,hy, s 51+ ng,, (3
¥s, = \/Pu,hu, s 52 + ng,, (3.
Yyt = /Py, hu, 5 51+ 1B, (3
Yk = \/Pu,hu, 5,52 + 1k, (3

where Py, is the transmitted power by the users for i = 1,2, h and h represent the user-
eavesdropper and user-satellite channels, respectively, and the corresponding source and
destination are denoted by the subscript. The channel for the satellite is a Ng x 1 vector
where Ng is the number of the satellite feeds. Additive white Gaussian noises (AWGN)
are denoted by n and n with n ~ CN(0,0?) and n ~ CN (0, 02 Iy« ), Tespectively. We
consider the noise power for users, satellite and eavesdroppers as KT B, where K is the
Boltzman’s constant which is —226.8 dBW/K/Hz, T is the on-board temperature and
B is the carrier bandwidth. We assume that s; and s9 are independent and identically
distributed (i.i.d.) Gaussian random source signals with zero mean and unit variance.
For convenience, we use the noise variance, o2, instead of KT'B and omit the bandwidth,
B, in the rate expressions throughout the chapter. Note that we consider different
temperatures for ground nodes and the satellite. The satellite forwards the received
signal to the GW using the feeder link in Phase IT and thanks to the ideal link between
the satellite and the GW, the same signals as (3.1) and (3.2) are present at the GW to

be processed.

At the GW, the received signal is filtered and users’ data are separated and decoded
into two bit streams denoted by z; and xo, respectively. The GW applies the bit-wise
XOR algebraic operation to the decoded bit streams of the users to get the combined



Chapter 3. Security in Bidirectional Multi-beam Satellites 38
TABLE 3.1: Communication stages for the XOR network coding and the conventional
schemes.

Conventional  reference | XOR  network coding

scheme scheme
Phase I: U; and U, simultaneously send their signals,
s1 and so, to the satellite while they are overheard
by E; and F», respectively.
Phase II: The satellite passes the received signal to
the GW for processing. At the GW, the users’ signals
are separately decoded.
Phase III: The intended Phase III: The GW ap-
signal for Uj, decoded plies XOR operation on
S9, is re-encoded at the the decoded streams from
GW and the correspond- s; and so to create a
ing feed weights are de- merged stream of bits and
signed. Then, the feed the feed weights are de-
weights multiplied by the signed. Then, the feed
data signal are sent to the weights multiplied by the
satellite. data signal are sent to the
Phase IV: The satellite | satellite.
passes the re-encoded sig-
nal through the corre-
sponding beam to U;
while FEj is listening to it.
Phase V: The intended Phase IV: The satellite
signal for Us, decoded broadcasts the merged
s1, is re-encoded at the stream toward the users
GW and the correspond- through the correspond-
ing feed weights are de- ing beams which is wire-
signed. Then, the feed tapped by both F; and
weights multiplied by the FEs.
data signal are sent back
to the satellite.
Phase VI: The satellite
passes the re-encoded sig-
nal through the corre-
sponding beam to Us
while Ej is listening to it.

stream

rTaw = T1 D x2. (3.5)

Note that before applying the XOR network coding, the GW uses zero-padding to add
zeros to the shorter bit stream in order to make equal length bit streams out of the
two different bit streams sent by the users [219, 220]. In Phase III, zgw is encoded
into sgw with unit power, and then multiplied by the beamforming vector, w. Using
the ideal feeder link, each element, w;sgw (t), of the produced vector, wsgw, at the
GW which both includes the feed weight, w;, and the data signal, sgw, is transmitted
from the GW to the satellite. Since the codebook used at the GW to encode xgw can
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be different in the XOR network coding scheme, the RL and FL transmission times
are generally different for the XOR network coding. This enables optimum RL and
FL time allocation for the XOR network coding. The received signal by satellite is
denoted as sg = Hgw,swsgw. The model s = How,swsgw encapsulates the process
of transmitting each element of the vector wsgy from the GW to the satellite. Since
the feeder link is considered to be ideal, Hgw,s is a Ng X Ng identity matrix. Finally,
in Phase IV, each feed weight designed at the GW, which includes the data signal, is
applied to the corresponding feed at the satellite. Hence, the beams are adjusted and

the signal sg is broadcast through the antennas. The received signals at two users are,

respectively,
FL
yUl XOR — thlsg =+ ny, , (3.6)
FL
Y, YO = h§ 1,85 + nu,. (3.7)

Similarly, the received signals at the eavesdroppers in Phase IV are, respectively,

yngOR h£7E155 +ng,, (3.8)
yngOR = h:‘g,Esz +ng,. (3.9)

In the following, we shall define the sum secrecy rate. We first introduce the users’ rates

and eavesdroppers’ channel capacities.

3.2.1.2 Users’ RL rates

Consider t; and ty for the RL (Phase I) and FL (Phase IV) transmission time, re-
spectively. In Phase I, we can characterize the RL rates (R R ) by the following
equations [221, Chapter 5]:

2
R < Il =t log (1 + W) (3.10)
Os
Py,|lhy, . |7
RAL < IBL = t)1og (1 + W) , (3.11)
Os

where I denotes channel capacity or the maximum supported rate and R is the maximum

achievable rate.
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3.2.1.3 Users’ FL rates

After receiving the FL signal, users decode sg. As each user knows its own transmitted
bits, it can use the XOR operation to retrieve the intended bits. Subsequently, using (3.6)
and (3.7), the FL rates can be expressed as

RFExon — min { gfibxor, hkxont, (3.12)

|h:§U wl?
151LXOR = lalog (1 + 7 21 )

ot
|h:§U wl?

I{};LXOR =tolog 1+ —5—|.
o,

(3.13)
(3.14)

Since the data for both users have gone through a bit-wise XOR operation at the GW
and a combined signal is broadcast, the GW has to adjust the combined signal’s data
rate to match both users’ channel capacities. This rate should be equal to the minimum
FL channel rate between the satellite and the users in Phase IV before sending sg to

the satellite.

3.2.1.4 Eavesdroppers’ channel capacities

Using (3.3) and (3.8), the channel capacity from U; to Ej, Igf, and from satellite to

FL .
En, Iy, XOR " can be expressed, respectively, as

Pu, |hoy 5 |2
IR =tlog [ 1+ Poilhos. QUl’El‘ : (3.15)
o578
hl . w|?
[5Lx0r — tylog (1 + |S’”;1|> . (3.16)
o578

The channel capacities for Es can be derived in a similar way.

3.2.1.5 Secrecy rate definition

First, we derive the secrecy rate for the RLs and FLs, and then the end-to-end secrecy
rate. In [13], the result of [5] is extended to fading channels with multiple-antenna
transmitter, receiver, and eavesdropper. Using the special case of the result in [13] for
single-antenna transmitter, multiple-antenna receiver, and single-antenna eavesdropper

along with employing (3.10) and (3.15), the secrecy rate for the RL of U; is calculated
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as

SR{L = 1t — 1R, (3.17)
where the notation “SR” means “secrecy rate”. To calculate the secrecy rate in the
FL, first, we derive the information that E; can recover during the RL transmission in

Lemma 3.1.

Lemma 3.1. Independent of getting a positive or zero secrecy rate defined for the RL
of Up in (3.17), E1 cannot recover any bits from Us transmitted message using the FL

transmission.

Proof. To recover bits from Us, E7 has to apply XOR operation between the bits recov-
ered from U7 in the RL transmission and the bits derived from the satellite broadcast
in the FL transmission. Hence, the information detected by Ej in the FL depends on
the bits recovered from Uj in the RL transmission. The recovered bits from Uj in the
RL depend on the sign of the secrecy rate defined in (3.17). The sign of the RL secrecy
rate in (3.17) has the following possibilities:

1. If I {ZL -1 gf > 0, then U; can establish a perfectly secured connection so that the
eavesdropper cannot get any bits from U in the RL [13]. Hence, E; does not have
the bits transmitted by U; in the RL and it cannot recover any bits from Us using

the FL transmission.

2. If I ﬁlL -1 gf < 0, then the secrecy rate is zero. Therefore, U; cannot establish a
secure connection in the RL. In this case, U; remains silent during the correspond-
ing time slot. In this time slot, GW generates random bits instead of the bits from
Uy and applies XOR between them and the bits from U,. As a result, £ cannot

recover any bits from Us using the FL transmission.

Note that since the RL time, ¢1, is always positive and all the channels are known, the

sign of the expression [ IIJ%IL -1 glL is known prior to the beamformer design. O

A similar argument as in Lemma 3.1 can be applied to Fs. Consequently, using

Lemma 3.1, the secrecy rate for the FL is given in Lemma 3.2.
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Lemma 3.2. Assume that there exists at least one RL with a positive secrecy rate.

Then, the secrecy rate in the FL is given as below:

min { I} x0m, 1fbxord SREE > o,
SR{L >0,

FLxor RL __

SRFLXOR — IUl SRzlL - 0’ (318)
SRy >0,
FL

[ Lxon SREL > 0,
SR{L =0.

Proof. Excluding the case that both RLs have zero secrecy rate, i.e., the total secrecy
rate is zero, the secrecy rate for the FL transmission for different signs of the secrecy

rate in the RL is given as follows:

1. If SR@IL > 0 and SR%L > 0, then according to Lemma 3.1, Fy and Fy cannot wire-
tap any bits from Us and Uy, respectively, using the FL transmission. Therefore,

using (3.12), the secrecy rate in the FL is min {IglLXOR, I(}};LXOR}.

2. If SR[]%L > 0 and SR[%L = 0, then according to Lemma 3.1, E; cannot wiretap
any bits from Uy using the FL transmission. Further, since the RL of Us is not
secure, Us does not transmit and Fy does not get any bits from Us. Hence, Fo
cannot recover bits from U; using the FL transmission. Since U; is not expected

to receive any message because of SREQL =0, the FL secrecy rate is I 52LXOR.

3. If SR&L = 0 and SR[I}ZL > 0, similar to the procedure as in Case 2, the secrecy

rate in the FL is IglLXOR.

According to the results in Cases 1, 2, and 3, the secrecy rate of the FL is derived as

in (3.18). O

According to Lemma 3.2, when the XOR protocol is used, the FLs are totally secured.
Note that for the Cases 2 and 3, the GW creates random bits instead of the message
from the user with insecure link, i.e., zero secrecy rate in the RL. Then, the GW applies
XOR between the received message from the user which has a positive secrecy rate in
the RL and the randomly generated bits. This way, the eavesdropper still receives a

combined message when the secrecy rate is zero in one of the RLs.

To derive the end-to-end secrecy rate for Uy, we invoke Theorem 1 in [222], which states

that, when decoding and re-encoding is performed by an intermediate node, the secrecy
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rate of each hop needs to be taken into account as a bottleneck to derive the end-to-end
secrecy rate. Since decoding and re-encoding is performed at the GW, the result of
Theorem 1 in [222] can be applied. Consequently, using the mentioned theorem and
the secrecy rate derived in (3.17) and the result of Lemma 3.2 in (3.18), the end-to-end
secrecy rate for U; is calculated by

SRECF = wmin { SREL, SR~0m | (3.19)

The end-to-end secrecy rate for Us can be derived in a similar way. The sum end-to-end

secrecy rate is expressed as

SR¥OF = SRYOR + SRR, (3.20)

3.2.2 Conventional SATCOM

A conventional scheme without using network coding is described here as a performance

benchmark.

3.2.2.1 Signal model

As shown in Table 3.1, the Phases I and II are the same for the conventional and the
XOR network coding schemes, which result in the same signal model for both schemes.
In Phases III and V, the GW sends back each element of the processed so and s; to
the satellite, respectively, using the ideal feeder link where s; and s9 are Ng x 1 vectors
containing both the feed weights and the users’ data signals. s; and s are defined as
s1 = w151 and so = WSy, where §7 and $o are the decoded and re-encoded versions of
the data signals received from U; and Uy at the GW with unit power, and w; and wo
are beamforming vectors to be designed at the GW. Note that since different Gaussian
codebooks are used at the GW to re-encode the signals for U; and Us, the generated
signals at the GW are different from those received from the users. Therefore, generated

signals at the GW are shown by §; and $,.

The satellite applies each component of the vector so, containing the feed weight multi-
plied by the data signal, to the corresponding feed. Then, the beam is adjusted and $o

is sent toward U; in Phase IV, and the received signals at U; and E; are, respectively,

yﬁ’f&m = hiy,s2 +nu,, (3.21)

ygfoon — hg,EISQ +ng,. (3.22)
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Similarly, at the end of Phase VI, the received signals at Us and Es, are, respectively,

ygzLCJon = hg,Uzsl —|— TLU2’ (323)
ygzLoon — h£7E281 +ng,. (3.24)

The beamformer weights in the conventional scheme are exclusively designed at the
GW for each user. Hence, when data is being transmitted for Uy, the satellite’s main
lobe is focused toward U;. Since E» is outside the beam directed toward U; and the
beamformers are designed to maximize the signal strength toward Uy, Eo receives the
signal from side lobes. As a result, the signal received by Fj5 is weak. Similar conditions
hold for F¢ when transmitting to Us. To make the derivation tractable, we neglect these
weak signals received by Fo and E7 in Phases IV and VI, respectively. As a result, the

sum secrecy rate derived for the conventional scheme shall be an upper-bound.

3.2.2.2 Users’ rates

The RL rates for the conventional SATCOM are the same as the XOR network coding
scheme in (3.10) and (3.11). Using (3.21) and (3.23), the FL rates to U; and Uy after

self-interference cancellation can be derived, respectively, as

2
5w
Ifbeer = tylogy | 14+ 15— |, (3.25)
O'U1
2
B,
IgQLCDTL — t3 10g2 1 + % (326)
O'U2

In order to make the conventional method comparable to the bidirectional one, we
assume that the total available transmission time for both the network coding and the
conventional schemes are the same. In other words, the RL time for the users is ¢; and

the FL for U; and Us are to and t3 = 1 — t1 — to, respectively.

3.2.2.3 Eavesdroppers’ channel capacities

The RL capacities for F; and E5 in the conventional SATCOM are the same as the ones
derived for the XOR network coding scheme. Using (3.22) and (3.24), the FL capacity

from the satellite toward Fq and F» to overhear the signals sent in Phases IV and VI,
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respectively, are

2
5 5|
Ipkeer = tylogy | 1+ : (3.27)
o,
2
|
Ipkoon =tslogy | 1+ 15— |. (3.28)
O'E2

3.2.2.4 Secrecy rate definition

The RL secrecy rate for Uy and Us are the same as the XOR network coding scheme
in Section 3.2.1.5. In the conventional scheme, the messages that F; receives in the RL
and FL are different and can be decoded independently. Hence, the FL secrecy rate for
Ui can be defined using (3.25), (3.27) and the result from [13] as

SR{Feom = pfileon — ko, (3.29)

Utilizing (3.17), (3.29), and Theorem 1 in [222], the end-to-end secrecy rate for U is

derived as
SRG" = min { SREF, SR} (3.30)

The end-to-end secrecy rate for U, can be defined in a similar way. Like in Section 3.2.1.5,

the sum secrecy rate is

SRE" = SRG™ + SRE". (3.31)

3.3 Problem Formulation and the Proposed Solution

In this section, we study the problem of maximizing the sum secrecy rate by optimizing
the precoding vectors at the GW to shape the satellite beams along with the RL and
FL time allocation, given the maximum available power Pg at the satellite. We consider
both the XOR network coding and the conventional schemes. For the XOR network
coding, we just solve the optimal beamformer design for the secrecy rate derived from
the first case of the FL secrecy rate in (3.18). The solutions for the optimal beamformer

design for the other two cases of (3.18) are similar to the first case of (3.18).
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3.3.1 Network coding for bidirectional SATCOM

Using the sum secrecy rate defined in (3.20), the optimization problem for the XOR
network coding scheme is defined as

: RL _ yRL __: FLxor 7FLx0OR
“III,]t-?,}tCQ mm{IU1 I, min {IUl ,IU2 }}

+ min {ILIZL — I,{}j, min {IIZLXOR, IgQLXOR}}
s.t. t1+ta =1,
[w|* < Ps. (3.32)

To transform (3.32) into a standard convex form, we apply the following procedures.
First, we assume that t; and to are fixed and study the beamforming design. After
designing the optimal beamformer, the optimal time allocation is found by performing
1-D search of ¢; over the range (0,1). Second, after considering a fixed transmission
time for the RL and FL, the RL secrecy rate expressions in (3.32) are fixed and can be
dropped without loss of generality. Hence, (3.32) boils down into

max min {IgLXOR, IgLXOR}
W 1 2

st. |w|?® < Ps. (3.33)

Next, we introduce the auxiliary variable u to remove the “min” operators. Then, (3.33)

yields

max u
w,u>0

s, |Jw[* < Ps,
ot (2% —1) < &y, w|’,
% (23 . 1) < WGy, wl. (3.34)
The last two constraints in (3.34) are not convex. By introducing W = ww!, we

rewrite (3.34) as

max u
W=0,u>0

s.t. tr (W) < P,

U

o2, (2 i 1) < tr (WA),
(

U

2 (28 — 1) < tr (WB), (3.35)

O'U2
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where A = hg’Ulhg’U1 and B = h*S,Uth,UQ' The rank constraint, rank (W) = 1,
in (3.35) is dropped. The optimal beamforming weight in (3.35) is designed for the FL
transmission. However, since the RL secrecy rates, which can be bottlenecks for the
total end-to-end secrecy rate, are not considered in (3.35), extra unnecessary power at

the satellite may be utilized. To fix this, one last constraint is added to (3.35) to get

max u
W=0,u>0

s.t. tr (W) < Pg,

u
to

012] (2% — 1) < tr (WA),
(2

ot 1) < tr (WB),

u < max {IffF — IfE I — TR (3.36)

Problem (3.36) is recognized as a SDP problem, thus convex and can be efficiently
solved. According to Theorem 2.2 in [223], when there are three constraints on the
matrix variable of a SDP problem such as (3.36), existence of a rank-1 optimal solution
for Ng > 2 is guaranteed. Hence, if the solution to (3.36) happens not to be rank-
one, we can use Theorem 2.2 in [223] to recover the rank-one optimal solution out of a

non-rank-1 solution. According to [224], the complexity of problem (3.36) is

3
O | (3+N3) (W) : (3.37)

Solving (3.36) is accompanied along with a 1-D exhaustive search over the time variable
t. We assume that the time variable is divided into m bins between 0 and 1. The overall
computational complexity for designing the beamformer for the XOR network coding
scheme is m times the complexity mentioned in (3.37). This is typically affordable since

the optimization is performed at the GW on the ground.

3.3.2 Conventional SATCOM

According to the secrecy rate defined in (3.31), the optimization problem for the con-

ventional scheme is

max  min {I{} — IBE IFLCO" IgLCO" }
W1, W2,l1,t2 ! 2

+ mln {Il]]% IE2 7IFLCon IglLC’on}

st [lwa]? + [[wa]? < Ps. (3.38)
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Assume that the power split between the beamforming vectors wy and wo is SPg and
(1 — B) Ps where f3 is a given parameter with 0 < 8 < 1. Using the parameter (3, the
beamforming vectors w; and wq in the power constraint of (3.38) can be separated.

Hence, (3.38) can be rewritten as

: RL FLCon FLCon
max min { I — 1BL Iy, -1 }
wW1,W2,t1,t2 { U1 Evo 2
+ min {I]U% IE2 7 IFLC’on Igll/Con}

st [wi]|* < 8P,

[wa* < (1 - B) Ps. (3.39)

The problem (3.39) can be expanded as

2 2
. oF UU + [h 1, wi
max min {SR{}f, tolog ( 5 2 2

Wi, wa,t1,t2 0l O, + G g, w2

2 o2 + |h Wo 2
+ min SRgQL,tg log 2 Ul ‘hS U1 ’2
ot 0, + | SE1W2’

s.t. HW1”2 < /BPS’

[wa|* < (1= B) Ps. (3.40)

Before further simplifying (3.40), we first mention the following theorem.

Theorem 3.3. If the achievable secrecy rate is strictly greater than zero, the power

constraints in (3.40) are active at the optimal point w} and w3, i.e., |w1||* = BPs and
2

[[wal|* = (1 —8) Ps.

Proof. The proof is given in Appendix A. O

Using Theorem 3.3, we can show that the constraints in (3.40) are active which enables

us to write (3.40) as
2 H
op, wi Ugw
max  min < IfY — I ¢ log ]252 ;1721
W1,W2,t1,t2 o, Wi Eow,

2 H
. op, Wy Urway
+ min {1{}3 B l0g (Uzl WQHEM> }
U; 2

st |wi]|? = BPs,
lwal[* = (1= B) Ps, (3.41)
2
where Uy £ 70y Thy, hG, Us 2 e by T, By 2 T Tk p b By 2

2
;%I + h§7E2hS7E2. The benefit of (3.41) is that given 8, wy and ws can be optimized
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separately. To be specific, the optimal w; and wy corresponds to the eigenvectors asso-
ciated with the maximum eigenvalues of matrices C = LflUlLIH and D = Ly lUQLg H
where E; = L1L{{ and Eo, = LQL%J , respectively. As a result, (3.41) can be simplified

into

2
o
max min {IglL — Iﬁf,tz log (fZAmaX (C)) }

sict
0_2

+min{ IFE — TBE t310g [ 22 Amax (D) | ¢ - (3.42)
g
Uy

Note that the constraints of (3.41) are dropped in (3.42) due to the homogeneity of the
objective function. To solve (3.42), we introduce auxiliary variables as u; and uy to

remove the “min” operators as

max ul + ug
t1,t2,u1,u2

s.t. w1 < thc, (3.43a)
of
ul < t2 10g T;Amax (C) 5 (343b)
Uz
u9 S tld, (3.43C)
of
(%) < t3 log T;Amax (D) y (343d)
Uy
uy, up 2> 0, (3.43e)
0<t1 <1,0<ty <1, (3.43f)
where
1 i PUl”i-l;]l,Sllz 1 PUQHLI;JQ SII
c = log K , d = log K (3.44)

<1+%@?f5w12> (HW)’
1 2

and t3 =1 — t; — tg. Clearly, it is a linear programming problem and can be optimally

solved. After that, we use 1-D search to find the optimal power allocation parameter

pr.

3.4 Simulation Results

In this section, we present numerical results to evaluate the secrecy rate of the XOR
network coding based SATCOM protocol and compare it with the conventional scheme.

We consider both i) equal RL and FL time allocation (ETA), and ii) optimized time
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allocation between the RL and the FL (OTA). We use labels “XOR-ETA” and “XOR-

OTA” to denote equal time allocation and optimal time allocation policies, respectively.

In our simulations, B denotes the carrier bandwidth, 41.67 kHz, for both RL and FL
transmissions. Since there is a main direct link from the satellite to the users as well as
some diffuse components, the channel from the satellite to the users can be modeled as
Rician [225]. The K-factor for the FL is determined by the multipath average scattered
power and random log-normal variable using the values provided by [225]. Due to the
“scintillation” effect [226], we have multipath in the RL. Moreover, there exists a direct
link like the FL case. Therefore, the RL can be considered to follow Rician distribution
with a higher K-factor which is assumed to be 15 dB. The rest of the link parameters
are summarized in Table 3.2 [227]. The satellite’s FL transmission power in Table 3.2
shows the carrier power used in the following transmissions: 1) the broadcast in Phase
IV of the XOR scheme or, 2) the transmissions in Phases IV and V of the conventional
reference scheme. If the satellite’s FL transmission power is not a variable in a simulation

scenario, its value provided by Table 3.2 is used.

The ground channels between the users and the eavesdroppers are assumed to follow a

Rayleigh distribution with the pathloss calculated by

L = 10log [(T)del , (3.45)

where v is the pathloss exponent which we assume to be v = 3.7. The maximum Doppler

shift is calculated using the following relation as

v vfe
= _ = 3.46
fDmam 2 ¢’ ( )

where v is the user’s speed, f. is the maximum frequency used and c is the light speed.

Since the carrier bandwidth is 41.67 kHz, we assume that the RL operating bandwidth is
1616—1616.04167 MHz for Uy, 1616.04367—1616.08534 MHz for Us and the FL operating
bandwidth is 1616 — 1616.04167 MHz which is common between the users. Each user is
supposed to move in a random direction with a 10 m/s speed. If not explicitly mentioned,

each eavesdropper’s distance to the user is randomly changed between 2 to 2.5 km.

We first show the average sum secrecy rate in Fig. 3.2 when the number of feeds used
on the satellite varies from 3 to 10. As we can see, the XOR network coding scheme
can achieve over 54% higher average sum secrecy rate than the conventional one. It can
be observed that optimizing the RL and FL communication times improves the average
sum secrecy rate for both schemes considerably, especially for the conventional scheme

in higher number of feeds. The effect of time allocation is further illustrated in
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TABLE 3.2: Link budget and parameters

Parameter Value
Satellite orbit type LEO
Operating band (1~2 GHz) L-band
RL and FL frequency band, MHz 1616-1626.5
Beams on the Earth 48
Number of antenna arrays 318
Frequency reuse factor (FRF) 12
Number of carriers per beam 20
Carrier bandwidth, B., kHz 41.67
Guard bandwidth, kHz 2
Satellite’s antenna gain per beam, dBi 24.3
Total power at the satellite, dABW 31.46
Satellite noise temperature, K 290
Terminal noise temperature, K 321
Satellite’s FL transmission power, dBW | 7.65
Mobile device radiation power, dBW 0
Mobile device antenna gain, dBi 3.5
Return and forward link pathloss, dB 151
Doppler shift due to satellite velocity, Hz | 270
Envelope mean of the direct wave, mg 0.787
The variance of the direct wave, o2 0.0671
The power of the diffuse component 0.0456

- 8-XOR-OTA
- ©-XOR-ETA
- A-Con-OTA

—v—Con-ETA

Average secrecy rate (bps)

3 4 5 6 7 8 9 10
Feeds of the satellite, N S

FIGURE 3.2: Average sum secrecy rate versus different number of feeds on the satellite
for the XOR network coding and conventional schemes.
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FIGURE 3.3: Average sum secrecy rate versus the RL time allocation ¢; in the XOR
network coding scheme.
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FIGURE 3.4: Average sum secrecy rate versus different RL, t;, and FL, t; and t3 =
1 —t; — to, time allocation in the conventional scheme.

Figs. 3.3 and 3.4 for the XOR network coding and the conventional schemes, respectively.
It is observed in Fig. 3.3 that for different number of feeds, the average sum secrecy rate
first increases, and then then decreases with the RL time allocation ¢;. Here, more
time is allocated to the RL transmission which means that the FL transmission rate is
a bottleneck for the end-to-end rate. The time split between the RL and FL depends
on the number of feeds at the satellite. As the number of feeds increases, the time
devoted to the FL transmission increases. This shows that the FL acts as a bottleneck
for the end-to-end communications. The change in the RL and FL time allocation

makes the channel secrecy rates closer to each other so that the overall average secrecy
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FIGURE 3.6: Average sum secrecy rate versus RL time allocation for different satellite’s
forward link transmission powers.

rate increases. The optimal time allocation for one RL slot and two FL slots in the

conventional scheme can be seen in Fig. 3.4.

The effect of the satellite’s FL transmission power on the average secrecy rate is investi-

gated in Figs. 3.5 and 3.6. In Fig. 3.5, we see that the average secrecy rate for the equal

time allocation approach in both schemes starts to saturate as the available power for the

FL transmission increases. This can be explained by the fact that as the available power

increases, the RL becomes a bottleneck for the end-to-end secrecy rate and hinders the

overall improvement. On the other hand, while performing optimal time allocation over

RL and FL, the average secrecy rate keeps growing for both the conventional and the
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FIGURE 3.7: Average sum secrecy rate versus the distance between the user and the
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FIGURE 3.8: Average sum secrecy rate versus different RL and FL time allocation in
XOR network coding scheme for different distances between the user and eavesdropper.

XOR network coding schemes. It is seen in Fig. 3.6 that by increasing the power at the
satellite, more time is allocated to the RL transmission in order to balance the RL and
FL secrecy rates and sustaining the secrecy rate growth. However, after increasing the
satellite’s power beyond a specific point, the effect of the optimal time allocation fades
out, and the average secrecy rate in the optimal time allocation scheme also saturates
due to RL being a bottleneck. This fact can be observed in Fig. 3.6. As the power of the
FL transmission increases, less time is exchanged between the RL and FL transmission
and the average secrecy rate saturates. The effect of the distance between each user

and the corresponding eavesdropper is investigated in Figs. 3.7 and 3.8. As is seen in
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Fig. 3.7, the average secrecy rate for equal time allocation in both schemes saturates as
the distance between the user and eavesdropper increases. This is because increasing
the distance to the eavesdropper improves the secrecy rate in the RL, leaving the FL
as a performance bottleneck. When the time allocation is optimized, the average se-
crecy rate shows notable gain in both schemes. However, after a specific distance, the
secrecy rate for the optimal power allocation also saturates. Increasing the distance to
the eavesdropper increases the secrecy rate for the RL, but this increment is going to
be quite small at some point and consequently vanishes. Consequently, as the distance
increases, less time exchange is required between the RL and FL transmission. This fact
can be seen in Fig. 3.8. Due to this limit in the RL secrecy rate, the secrecy rate can be
improved using optimal time allocation up to a limited distance. Furthermore, as it is
observed in Fig. 3.7, the average sum secrecy rate of the XOR network coding saturates
in a much longer distance compared to the conventional scheme. Interestingly, when the
user and the eavesdropper are close, the conventional scheme using the optimal time al-
location outperforms the XOR network coding scheme using equal time allocation. This
originates from the fact that there are more degrees of freedom in terms of optimal time
allocation in the conventional scheme compared to the XOR network coding scheme.

Hence, when it comes to picking up a secure protocol, distance plays an important role.

The results in Fig. 3.8 illustrate that as the distance between the user and the eaves-
dropper decreases, more time is allocated to the RL transmission of the XOR network
coding scheme in order to balance the secrecy rates in RL and FL. It is observed that
as the distance to the eavesdropper increases, less change is required in the RL and FL
times. This is due to the fact that as the distance increases, the improvement rate in
the secrecy rate of the RL is reduced and less regulation is required in the transmission

times.

3.5 Conclusion

In this chapter, we studied the sum secrecy rate of SATCOM network where XOR
network coding is used for bidirectional information transmission. We designed the
satellite’s antenna beamforming weights at the GW and transmit them to the satellite
via an ideal feeder link. The beamforming weights as well as the RL and FL time
allocations were designed to maximize the sum secrecy rate of the users. We also designed
the beamformer as well as the optimal time allocation for RL and FL to maximize the
sum secrecy rate for the one way conventional SATCOM scheme. Simulations showed
that the sum secrecy rate of the network coded SATCOM is considerably more than the

conventional SATCOM in most of the scenarios, especially when the legitimate users and



Chapter 3. Security in Bidirectional Multi-beam Satellites 56

the eavesdroppers are not close. We observed that increasing the satellite’s transmission
power will saturate the sum secrecy rate for equal RL and FL time allocation, whereas

it increases the sum secrecy rate of the optimal time allocation.



Chapter 4

Power Control in Wiretap

Interference Channels

Interference in wireless networks degrades the signal quality at the terminals. However,
it can potentially enhance the secrecy rate. This chapter investigates the secrecy rate
in a two-user interference network where one of the users, namely user 1, requires to
establish a confidential connection. User 1 wants to prevent an unintended user of the
network to decode its transmission. User 1 has to transmit such that its secrecy rate
is maximized while the quality of service at the destination of the other user, user 2, is
satisfied, and both user’s power limits are taken into account. We consider two scenarios:
1) user 2 changes its power in favor of user 1, an altruistic scenario, 2) user 2 is selfish
and only aims to maintain the minimum quality of service at its destination, an egoistic
scenario. It is shown that there is a threshold for user 2’s transmission power that only
below or above which, depending on the channel qualities, user 1 can achieve a positive
secrecy rate. Closed-form solutions are obtained in order to perform joint optimal power
control. Further, a new metric called secrecy energy efficiency is introduced. We show
that in general, the secrecy energy efficiency of user 1 in an interference channel scenario
is higher than that of an interference-free channel. The contributions of this chapter are
published in [21].

4.1 Introduction

Broadcasting information over the same frequency band in wireless networks leads to
interference among users. Even in the systems where the spatial dimension is used to
concentrate the signal towards the intended destination, the destination may receive in-

terfering signals from other transmitters operating in the same frequency band. Also, due

o7
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to the expansion and deployment of wireless services, the spectrum is getting scarce [15].
As one possible solution, devices can share the same spectrum which results in interfer-
ence and degradation of the signal quality. For instance, IEEE standards such as WiFi,
Zigbee and Bluetooth share the same frequency band named the industrial, scientific
and medical (ISM) band and they may interference with each other [16]. Furthermore,
the wireless medium leaves the information vulnerable to unintended users who can po-
tentially decode the message which was meant for other users. Throughout this chapter,
the words “wiretapper”, or “eavesdropper” refer to the unintended users. While there
are higher layer cryptography techniques to secure the data, it is yet possible that a
malicious agent breaks into the encryption and gets access to the data [3]. By intel-
ligently tuning the system parameters using physical layer security techniques, we can
prevent the wiretappers from getting access to the information and this way, and further
improve the system security along other techniques. Consequently, a specific rate can
be perfectly secured for the users to transmit their data, so that the wiretapper is not
able to decode the message. There are efficient coding schemes which can achieve this
rate. However, this area is still in its infancy, and the research effort at the moment is

inclined in implementing practical codes [6].

Potentially, the interference can improve the secrecy rate by introducing extra interfer-
ence at the eavesdropper. The possibility of secure transmission in a multi-user interfer-
ence channel using interference alignment and secrecy pre-coding is investigated in [98].
The authors of [94] investigate the secrecy rate in a two-user interference channel with
an external eavesdropper. They show structured transmission results in a better secrecy
rate compared to randomly generated Gaussian codebooks. The authors of [95] study
the secrecy capacity region for a two-user interference channel in the presence of an
external eavesdropper. The users jointly design randomized codebooks and inject noise
along with data transmission to improve the secrecy rate. The authors of [96] consider
a user who gets helping interference in order to increase its confidentiality against an
eavesdropper. The achievable secrecy rate for both discrete memoryless and Gaussian
channels is derived. A two-user interference network with an unintended user is consid-
ered in [97]. Depending on the channel conditions, bounds on the transmission power of
the interfering user is derived such that a positive secrecy rate is sustained for the other

user.

As an example of the interference channel, the effect of interference on the secrecy
rate is also investigated in cognitive radio systems. In cognitive radios, secondary user
transmits in the primary user’s operating frequency band when it is not in use. Stochastic
geometry is used in [106] to analyze physical layer secrecy in a multiple node cognitive
radio network where an eavesdropper is present. The secrecy outage probability and the

secrecy rate of the primary user is derived while secondary user produces interference.
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The authors of [108] maximize the secrecy rate for a multiple-antenna secondary user
in the presence of an external eavesdropper while considering the quality of service
(QoS) at the primary receiver. Similar problems to maximize the secrecy rate through

beamforming design in cognitive radio are studied in [110-112].

4.1.1 Contributions and main results

In this work, we investigate the secrecy rate in a two-user wireless interference network.
Apart from the two users, one of the idle users (unintended user) in this network is
a potential eavesdropper. Both nodes transmit in a way so that the secrecy rate is
maximized for the first user (user 1), and the second user (user 2) maintains the QoS
at its intended destination. Only user 1 needs to establish a secure connection and to
keep its data secure. For example, in a network with ISM band users, user 1 and user
2 can be WiFi and ZigBee transmitters. The ZigBee can be used to send measurement
data, which is one of its applications, so its data may not be necessarily important to

the potential eavesdropper who is interested in WiFi messages.

The effect of interference from user 2 on the secrecy rate of user 1 is studied in two
scenarios, namely altruistic and egoistic scenarios. In the altruistic scenario, we jointly
optimize the transmission powers of both users in order to maximize the secrecy rate
of user 1, while maintaining the QoS at user 2’s destination equal or above a specific
threshold. The incentives for user 2 to cooperate are twofold: 1) when positive secrecy
rate cannot be granted for user 1, it can enjoy an interference-free transmission, 2) user
1 adjusts its transmission power to maintain the QoS of user 2’s destination equal or
above the threshold. In the egoistic scenario, the users’ powers are still jointly opti-
mized. However, user 2 is selfish and only tries to maintain the minimum QoS at the
corresponding destination. The contributions of our work are as follows. It is shown that
by appropriate control of user 1’s power, we can make sure that the eavesdropper cannot
decode the signal of user 2, and thus cannot employ successive interference cancellation
(SIC). Also, it is shown that the transmitted power from user 2 has a crucial role in
achieving a positive secrecy rate for user 1. According to the channel conditions, we
define the proper power transmission for user 2 to maintain a positive secrecy rate for
user 1. We develop closed-form expressions to implement joint optimal power control
for both users in both altruistic and egoistic scenarios. Finally, a new metric called
“secrecy energy efficiency” is defined, which is the secrecy rate over the consumed power
ratio. Using the new metric, it is shown that the interference channel can outperform

the single-user channel for specific values of QoS requirements.
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4.1.2 Related Work

Inner and outer bounds for the secrecy capacity regions in a two-user interference chan-
nel with destinations as eavesdroppers are investigated in [73]. They showed that the
secrecy capacity can be enhanced when one user transmits signal with artificial noise.
Later, [73] was extended to the case when both users transmit artificial noise along with
data in [76]. As a result, they achieve a larger secrecy rate region when one or both
destinations are considered as eavesdropper. In [71], an outer bound for secrecy capac-
ity region is calculated for a two-user one-sided interference channel. Outer bounds on
sum rate of a two-user Gaussian interference channel are studied in [77] where message
confidentiality is important for users. Secrecy capacity region for a two-user MIMO
Gaussian interference channel is investigated in [78] where each receiver is a potential
eavesdropper. A two-user symmetric linear deterministic interference channel is investi-
gated in [99]. The achievable secrecy rate is investigated when interference cancelation,
cooperation, time sharing, and transmission of random bits are used. It is shown that
sharing random bits achieves a better secrecy rate compared to sharing data bits. A
two-user MISO interference channel is considered in [85] where beamforming is per-
formed to maintain fair secrecy rate. The work in [177] analyzes a two-user interference
channel with one-sided noisy feedback. Rate-equivocation region is derived when the
second user’s message needs to be kept secret. The secrecy rate constrained to secrecy
rate outage probability and power is maximized by designing robust beamformer in [66]

where a transceiver pair and multiple eavesdroppers constitute a network.

A multiple-user interference channel where only one user as a potential eavesdropper
receives interference is considered in [81]. The sum secrecy rate is derived using nested
lattice codes. The authors in [100] consider a wireless network comprised of users,
eavesdroppers and interfering nodes. It is shown that interference can improve secrecy
rate. A communication network comprised of multiple-antenna base stations and single-
antenna users is considered in [86]. The total transmit power is minimized while the

signal-to-interference plus noise ratio and equivocation rate for each user is satisfied.

In [72], a two-user network with one-sided-interference where each destination is a po-
tential eavesdropper for the other one is studied. Using game theory, it is concluded
that depending on the objective of each pair, the equilibrium can include or exclude the
self-jamming strategy. The authors of [84] analyze a two-user MISO Gaussian interfer-
ence channel where each destination is a potential eavesdropper. Game theory is used to
tackle the scenario where each user tries to maximize the difference between its secrecy
rate and the secrecy rate of the other user. Beamformers under full and limited channel

information are designed at each transmitter to achieve this goal.
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A transceiver pair is studied in [101] where they try to increase the secrecy rate using an
external interferer when a passive eavesdropper is present. The authors of [102] consider
a user and an eavesdropper where known interference which only degrades the decoding
ability at the eavesdropper is used to enhance the secrecy capacity. The secrecy capacity
and secrecy outage capacity when closest interfering node and multiple interfering nodes
are separately employed to prevent eavesdropping is studied in [103]. It is demonstrated
that multiple interferes method is superior to the closet interfering method. The exact
secure degrees of freedom for different types of Gaussian wiretap channels are discussed

in [104] where cooperative jamming from helpers is used.

The equivocation-rate for a cognitive interference network is considered in [107] where
the primary receiver is a potential eavesdropper and should not decode the secondary
message. A MISO transceiver along with multiple single-antenna eavesdroppers are
considered in [48]. The relationship of the mentioned network with interference cognitive
radio network is used to design the transmit covariance matrix. In [109], the secondary
user causes interferes to both primary destination and eavesdropper. Primary user tries
to maintain its secrecy rate while the secondary aims to increase its rate. The achievable

pair rate for both users is derived.

4.2 System model

4.2.1 Signal Model

We consider a wireless interference network consisting of two users denoted by U; and
Us, two destinations denoted by D; and D, and one user as the eavesdropper denoted
by E. FE is assumed to be passive during U; and Us transmission and active outside
the mentioned period. All nodes employ one antenna for data communication. We
denote by x1 and xo, the messages which are sent over the same frequency band from
Uy and Uy to D1 and Do, respectively. Sharing the same frequency band by the users
leads to cross-interference. While the users send data, their signals are wiretapped by
the eavesdropper, F. The network setup is depicted in Fig. 4.1. Here, we consider a
scenario where F is only interested in the data sent by one of the users, namely U;. As

a result, xs is considered as an interfering signal at both D; and FE.

There are two ways in order to carry out the joint power allocation: 1) users send
their channel information to a fusion center. At the fusion center, the optimal power
values are calculated and sent back to the users separately, 2) one of the users sends
its channel information to the other user who calculates the optimal power values and

sends the optimal power value to the corresponding user. It can be seen that the first
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approach consumes more time and number of transmissions compared to the second
one. Since U; is interested in sustaining a positive secrecy rate, it is fair if this user
pays the computational cost. Hence, we assume that Uy sends the channels data to U;
and then U; calculates the optimal power values and sends back the related optimal
power value to Us. To perform channel estimation in the network, one approach is that
the destinations, including the unintended user, send pilots and the transmitters are
then able to estimate the required CSIs. After estimating the channels, Uy forwards the
required CSIs to U;. Uy is then responsible to perform the power control and inform Us
of the optimal power that it can transmit. Note that in practice, it is often optimistic to
have such a model, as the eavesdroppers are often totally passive. But here, we assume
that the eavesdropper is momentarily active, and thus its channel can be estimated and
remains unchanged for the optimal power control usage. One practical example of such a
scenario is when the eavesdropper is a known user in a network such that U;’s messages

should be kept confidential from it.

The received signals at D1 and Do are as follows

yp, = vV Pihu, . p,x1 + / Pohuy D, %2 + npy (4.1)
YD, = V Pohuy Dy + \/ Pihy, p, %1 + 1Dy, (4.2)

where P and P» are the power of the transmitted signals by Uy and Us, and hy;,, D;
is the channel gain from each user to the corresponding destination for ¢ = 1,2 and
j = 1,2. The transmission signal from the i-th user, and the additive white Gaussian
noise at the i-th destination are shown by +/Px; and np, for i = 1,2, respectively.
The random variables x; and np, are independent and identically distributed (i.i.d.)
with x; ~ CN(0,1) and np, ~ CN(0,02), respectively, where CA" denotes the complex
normal random variable. In practice, some signals follow Gaussian distribution such
as the amplitude of sample distributions of OFDM signal [228]. Using a Gaussian
distributed signal may not always be optimal, however, our focus is on maximizing the
secrecy rate by designing joint optimal power allocation in a specific system model. The

wiretapped signal at E is

ye =/ Pihy, gx1 + / Pohy, gro + nE, (4.3)

where hy, g is the channel coefficient from the i-th user to the eavesdropper for i =
1,2, and ng is the additive white Gaussian noise at the eavesdropper with the same
distribution as np,. The additive white Gaussian noise at different receivers are assumed

to be mutually independent.
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FIGURE 4.1: Two-user wireless interference network.

4.2.2 Secrecy rate of U;

In order to calculate the secrecy rate of U;, we need to first find the rate of U; without
considering the secrecy, and then the rate in which the eavesdropper wiretaps U;. In this
chapter, we assume that U; and Us do not employ SIC. Therefore, using (4.1) and (4.2),

the rates for each user to the corresponding destination can be calculated as

Pilhu, py |°
Iy,_p, =1o 1+ Ll , 4.4
Ui—Dy g2 ( P2|hU27D1 ‘2 + 0'% ( )

Pylhu,,p,)?
I, _p, = lo 1+ : . 4.5
Uz—D2 g2 ( P1|hU17D2 ‘2 + O'% ( )

The eavesdropper simultaneously receives signals from U; and Us which are transmitting
in the same frequency band. Hence, the channel from users towards the eavesdropper can
be modeled by a multiple-access channel. Assume that the transmission powers of U and
U, in a specific time slot are P; and P». Then, considering that users employ Gaussian
codebooks and the eavesdropper tends to achieve the maximum wiretapping rate from
Ui, the rate pairs achieved at the eavesdropper are shown in Fig. 4.2 [229] which lie on
the line from point “A” to point “D”. To wiretap U; with the maximum achievable
rate, the eavesdropper can employ the SIC method [221]. Using SIC, the eavesdropper
first decodes the signal from Us while considering U;’s signal as interference. Then,
considering the fact that the signal from Us is decoded and known, eavesdropper deducts
Uy’s signal from the received signal and gets an interference-free signal from U;. In
this approach, the rate pairs on the line “CD” are achieved at the eavesdropper if the
transmission rate of Us, defined by Ro, is lower than the decode-able rate defined at
point “G”. To prevent the eavesdropper from achieving the maximal wiretapping rate,
Us’s transmission rate needs to be higher than the decode-able rate at point “G”. Since
users do not coordinate in order to implement time-sharing or rate-splitting, U;’s signal

cannot be decoded with the rates which are on the line “DE”, and thus it needs to
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FIGURE 4.2: Maximum achievable rate pairs of a two-user multiple-access fading chan-
nel.

decode U considering Us as the interference with a rate equal to the rate at point “£”.
Therefore, to disable the eavesdropper from performing SIC (i.e., achieving rate at point

“D”), the following condition needs to hold:

Pk 2
Ry =logy | 1+ 2 Uz,gz‘ 5
P1|hU1,D2| +o;

Polhy, |?
> logy [ 1+ 2 U2’2E 5 - (4.6)
P1|hU17E| + o035

In (4.6), the left-hand side is the actual transmission rate of Us which is equal to the

decode-able rate at its destination, Dy . If condition (4.6) is satisfied, the eavesdropper
has to decode U;’s signal by considering Us’s signal as interference. Interestingly, satis-
fying condition (4.2) just needs U to adjust its transmission power and is independent

from P5. The condition on P; to satisfy (4.6) is derived as:

A//
P> 5 if A" >0,B" >0, (4.7g)
P >0 if A’ <0,B">0, (4.7h)
A//
P < Vi if A" <0,B" <0, (4.71)
Py <0 (not feasible) if A" >0,B" <0, (4.75)
where A" = o <\hU2,E|2 - |hU2,D2|2> and B” = |y, p,*|hoy,sl° = |hoy, 0, oy, 61

As we can see, the channel conditions define whether U; can block the eavesdropper

by adjusting its power. For the Cases 4.7g, 4.7h, and 4.7i, the instantaneous wiretap
2
Pilh
1] >, and thus the

Pz‘hUQ,EIQ-i-U%

rate from U; toward E is obtained by Iy, g = logy <1 +
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secrecy rate of Uj in this case is as follows

Csy, =I —Iyy—p =log, [ 1+ Pl .|
e M S L
Pi|hy, 5
—logy | 1+ 1 U1’2E’ Y (4.8)
PQ’hUz,E| + o5

For Case 4.7j, no power from Uj is capable of preventing the eavesdropper from apply-

ing the SIC technique and deriving an interference-free version of U;’s signal and thus

2
Pl’hUlvE‘

Iy, g = logy (1 + 02). This results in the following secrecy rate

P1|hU1,D1|2
Pylhu,,p, |* + 02

Pi|hy, Bl
~ logy <1 $ L) (4.9)

n

CSUl :IUl—Dl — IUl—E = log2 <1 +

In the next two sections, we formulate and solve the underlying problems so as to find

the optimal P; and Ps.

4.3 Problem Formulation: Altruistic Scenario

In this section, we maximize the secrecy rate of U; subject to the peak power limits of
the users as well as the quality of service (QoS) at Ds. If one of the cases 4.7g, 4.7h,

or 4.7i holds, using (4.8), the following secrecy rate optimization is solved:

(4.7g)
s. t. Pl SPmaxNPl 2 W, PQSPInaX27IU2—D2 267 (410)
(4.74)

where (8 is the minimum required data rate for Us and w = ]A;,—Z. In Case 4.7h, any P;
ensures that the eavesdropper cannot employ SIC. Therefore, no additional constraint
over Pj is necessary. For Case 4.7j, using (4.9), the following secrecy rate optimization

problem should be solved

max C
Py,Py Svz

s. t. Pl Spmaxla P2 Spmaxzy IUQ—DQ 25 (411)
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We first solve (4.10) and then (4.11). By inserting (4.8) into (4.10), we obtain

Pl‘hUlle |2

1 P2|hU2:D1’ +on
max log, 5
Py,P; 14 Pi|hy, 5|
S L EE1
Pl o[+
(4.7g)
s. t. Plgpmaxla P 2 w, P2§Pmaxz7
(4.71)
Pk 2
b |h,,D, |

>, (4.12)
Pilhy, p,|* + 02

where 7 is 2% — 1. Since log is a monotonic increasing function of its argument, we can

just maximize the argument and thus we rewrite (4.12) as

Pyi|h 2
L P
Po|huy.p, | 403
max 3
Py,Py 14 P1|hU1,§’
P2’hU2,E‘ +o2
(4.7g)
s. t. PlSPmaxla Pl 2 W, P2§Pmaxzv
(4.71)
Py|h 2
2lhus.Da| > 4. (4.13)

P1|hU1,D2|2 + 0121

Considering that the objective function is neither convex, nor concave, solving prob-
lem (4.13) is difficult. As a result, we shall adopt a two-step approach in order to
solve (4.13). First, we consider P, to be fixed and derive the optimal value for P;, and

then we replace the obtained P; in (4.13) and solve the optimization problem for P;.

4.3.1 Optimizing P, for a Given P,

For this case, (4.13) is reduced to

P1|hU1,D1’2

1+
PQ‘hUszl‘Q'H’%
max 3
Py Pi|hy, |
1
P2|hU2,E| +o2
(4.78) Pk 2 _~Ng2
St P < Pame, P 2w, oy < L2laDn| 1 (4.14)
(4.71) Yoy, D, |

In order to solve (4.14), first, we find the range of P, for which the objective function
in (4.14) is always positive, i.e., a positive secrecy rate can be achieved. In the following

theorem, we outline the related bounds on P, where the positive secrecy rate is obtained.
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Theorem 4.1. Assume an interference network similar to the one mentioned in Fig. 4.1
along with the assumptions on power limits and the QoS. In order to achieve a positive

secrecy rate, Py should satisfy the following bounds:

A
P> B if A>0,B>0, (4.15k)
P,>0 if A<0,B>0, (4.151)
A
P, < B if  A<0,B<O, (4.15m)

2 2 2 2 2 2
where A= 02 (|huy 5l = |hvy,0,|?) and B = hu, p, Plhug,sl” = [ho, ;P by . Fur-
ther, for A > 0, B < 0, irrespective of the value of Ps, no positive secrecy rate can be

obtained for Uy.
Proof. The proof is given in Appendix B. O

One immediate conclusion of Theorem 4.1 is given by the following corollary which can

be considered as the most important result of this chapter.

Corollary 4.2. In a wiretap interference channel as in Fig. 4.1, where the goal is to
obtain a positive secrecy rate for Uy, the possibility of achieving a positive secrecy rate
is independent from the value of Py, and depends on the value of Py and the conditions

of the channels.

Now that we have defined the required conditions for P» to achieve a positive secrecy
rate, we investigate the optimal value of P;, denoted by P} for a given P. If we take the
derivative of the objective function in (4.14) with respect to P;, we see that the conditions
on P» to have a monotonically increasing, referred to as Case 1, or decreasing, referred
to as Case 2, are the same as the conditions to have a positive or negative secrecy rate,

respectively. These conditions are summarized as follows

A A .
Py > 5 Py, < 5 if  A>0,B>0,
P,y =0, Py, >0 if  A>0,B<0,
PQ(I) > 0, PQ(Q) =0 if A<0,B>0,
A A .
Py, < B Py, > 5 if A<0,B<0, (4.16)

where Pg(l) refers to the required power in Case 1, P2(2) refers to the required power
in Case 2 and () denotes the empty set. According to Theorem 4.1, and the conditions

in (4.16), the global optimal values for P; in Cases 1 and 2 are defined as
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1. If the objective function in (4.10) is monotonically increasing, then

P =min< x 5
{ ’ V‘hULDQ‘

where y = Ppax, for Cases 4.7g and 4.7h, x = min { Pyax,,w} for Case 4.7i.

2. If the objective function in (4.10) is monotonically decreasing, then P} = 0. This
could also be concluded from the fact that when a positive secrecy rate cannot be

granted, U7 should be turned off.

4.3.2 Optimizing P, for a Given P,

We insert the P} obtained in Subsection 4.3.1 into (4.14), and try to obtain the optimal
value for P,. First, we decompose the optimal answer of P; in (4.17) into two different

answers as follows

7(x|hvy.p, [ +03)

X Py >

2 ’
Pl = > LhU2’D2l , (4.18)
Py |huy, Dy |02 P 'Y(X‘ U1.Ds | +U7l)
— 0 1 12< 2
v[huy, Dy | [Py, 0, |

Using Theorem 4.1 and according to the two resulting cases in (5.24), we can break (4.13)

into two problems in order to optimize Ps, respectively, as follows

PmaX1|hU1aD1 ’2

14+
P2‘hU2,D1‘2+0721
max 2
P2 Pmax1|hU1,E‘
1+ ——75—
P2‘hU2,E| +o3
2 2
Y <X’hU1,D2’ + Un)
s. t. PQSPmaxgy PQZ 2 :)\17
|htr, |
2 2 2
(4.15k) o, (\hUl,E| = [hvy, b, | )
P, = = 1, (4.19)

(4.15m) |hU1,D1|2|hU27E|2 - |hU2,D1|2|hU1,E|2
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and
(P2 |huy, Dy ‘2_70721) |hv, ., ‘2
7|hU1’D2|2<P2‘hU27D1|2+‘7721)
max = s
P (P2|hU2»D2’ _7”%)’hU1,E|
V‘hUl’D2|2<P2’hU27E|2+‘7721)
Y <X|hU1,D2|2 + 0'72L>
s.t. P < Pmax2, Py < 5 = A,
‘hU27D2’
o,
2 Z 7712 = )\27
|hU2,D2|
asg o (Jhosl® = oo, ) w0
2 Z =¥ .
(4.33m) [hon, 0 [P hwr, 51 = [ho, 0 PRy, 2] ’
(4.15k) (4.15k)
for A =2 0and B 2= 0. For the case A < 0 and B > 0 which is represented
(4.15m) (4.15m)

by (4.151), the last constraint in (4.19) and (4.20) is removed from the problem since
with any positive value for P», U; can have a positive secrecy rate. Also for A > 0 and
B < 0, the secrecy rate is simply zero since P; = 0. Furthermore, the numerator and
denumerator in (4.20) have the possibility to become less than unit and this leads to a
negative rate. The constraint in (4.20) which is placed one to the last, ensures that the

data and wiretap rates do not go below zero.

We discuss the feasibility conditions of (4.19) and (4.20) to derive the feasibility domain,

P2, in Proposition 4.3.

Proposition 4.3. The feasibility domain for the problems (4.19) and (4.20) denoted by
po s defined as follows

1. Problem (4.19): For case (4.15k), we should have max {1, sup @1} < Ppax, which
leads to pa = [max {A\1,sup ¢1}, Pmax,]. For case (4.15m), we should have min {inf 1, Pnax, } >
A1 which leads to pa = [A1, min {inf ¢1, Prnax, }]-

2. Problem (4.20): For case (4.15k), we should have max {sup 1, A2} < min {inf A1, Ppax, }
which leads to [max {sup @1, A2}, min {inf A1, Pnax, }|. For case (4.15m), we should
have min {inf @1, inf A1, Ppax, } > A2 which leads to po = [min {inf 1, inf A1, Pyax, } , A2

Proof. The proof is straightforward, thus was omitted. O

If both (4.19) and (4.20) are feasible at the same time, we select the Pjy and the corre-
sponding secrecy rate from the problem which results in a higher secrecy rate. Here, we

provide a generic closed-form solution depending on the channels’ conditions in Theo-
rems 4.4 and 4.5 for (4.19) and (4.20), respectively.
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Theorem 4.4. Assume a = Puax,|hv,.p,%, b = |hu,.p,|°

, C = PmaX1|hU1,E

Q,d:

\h 5>, C =b—d, D =b(c+o2) —d(a+o2), E = —BPpay, = bc—ad, F =

APmazl

cdo? —a(b(c+o2)—cd), G = b = ¢ —a, a = min (inf 91, Puax,), and § =

max {A1,sup @1 }. Also, suppose that (4.19) is feasible. Then, (4.19) is solved as follows:

1. IfCD <0

(a) If A< 0 and E >0

Py =«
(b) If E <O
A>0
Py = P
A A<O
2. IfCD >0

(a) IfA<0, E>0and F <0

Py =arg max C;
Py, P2e{)1,a}

(b) IfE<0and F >0
Pye Py € pa

Py P2€{187Pmax2}

Py Poe{A1,Pmaxy }

(¢) IfE>0,F>0and G<0

arg max Cs Py €py

pr_J P Pae{Pyc 1,0}
S =

arg max C Py & po

P2 PQE{Alaa}

(d) If E<0,F<0andG>0

arg max Cs Py €po

Pék — Py PZG{PZCaﬂapma)Q}

arg max Cs Py ¢ po

Py P2€{B,Prax, }

arg max Cs A>0,Pc ¢ po

arg max Cs A<0,Pyc ¢ po

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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(e) IfE<0, F<0and G <O

Pr =X\ (4.27)

where Cy is the objective function in (4.19), Pyo = W, and A = 4abcdC Do?.

Proof. The proof is given in Appendix C. O

Theorem 4.5. Assume e = |hy, p,|° B

?i=
)

» = 1hw,p,)? 9 = by 0, I°, h = |hu, D,
|hU17E|2, j= |hU27E|2, H = h—j, § = min (inf \1, Phax,), £ = min {inf A\, inf 1, Prax, |,
p=max {sup i, Ao}, I = —fi+ ghy — (hi+gj)y+e(f+j7),

J = —gh*iy (f +j7) + e (f2i (=h+j) + fg5%y + ghj*¥?),

K = —gi(f+jv) +e(fg+ ghy — hiy +ij),

L= —ghi(f+jvy) +e(fhi+ fgj — fij + ghjv).

Also, suppose that (4.20) is feasible. Then, (4.20) can be solved as follows

1. IfHI <0
(a) If J >0
6 A>0,B>0
Py=<§ A<0,B>0 (4.28)
k A<0,B<0
(b) If J < 0
v A>0,B>0
Py=<) A<0,B>0 (4.29)
A A<0,B<O
2. IfHI >0

(a) If J >0 and K <0

arg max Cs A>0,B>0
Py P2€{IU‘75}

P;=<arg max Oy A<0,B>0 (4.30)
Py Pae{)2,6}

arg max C; A<0,B<0
Py Pae{)a,x}
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(b) If J <0 and K >0

;

Py Pyc € p2
arg max Cs A>0,B>0,Py ¢ pa
* Pa Py e{lu‘r‘s}
Py = (4.31)

arg max Cy A<0,B>0,P
PQg Pye{X2,6} y 20 ¢ b2

arg max (Cy A<0,B<O0,P
L PQg Pye{Aa,x} s 2¢ ¢p2

(¢c) If J>0, K>0and L <0 orJ <0, K<0andL >0

arg max Cy A>0,B>0,Pyx €po
Py P2e{Pxc,p,6}

arg max Cs A<0,B>0,Py € ps
Py P2e{Pxc,A2,0}

arg max Cs A<0,B<0,Py € ps

P — Py, Pae{Pyc ok} (4.32)
arg max Cj A>0,B>0,Pc ¢ p2
Py PQE{Nv(S}
arg max Cj A<0,B>0,P ¢ po

Py, P2e{)2,6}

arg max Cj A<0,B<0,P0 ¢ po
\ P2 P2€{X2,x}

(d) If J>0, K>0and L >0

b A>0,B>0
P;=<S§ A<0,B>0 (4.33)
Kk A<0,B<0

(e) If J <0, K<0and L <0

uw A>0,B>0
Pi=¢X A<0,B>0 (4.34)
X2 A<0,B<0

where Cy is the objective function in (4.20) and Poc = w, and A = 4egiHI(Ug)4’y (f+hy)(f+77).

Proof. The proof can be obtained in the similar way to that of Theorem 4.4. O

For problem (4.11), the optimal solution of P is as (4.17) when x = Ppax,. The closed-

form solution for the P» is given in the following theorem.
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Theorem 4.6. Assume a = ’hUl,D1’2; b = |hU2 D2| , C = VLU1 DQ‘Q d = |hU2,D1| ,
e = |hu,e?, A=0bla—e)o+d(—eyo + ¢yo), B = 2bde(ayo — cyo), C = —bceyo? +
a2 (|h —|n Prnaxy | o2
CL(bC’)/O'2 + d’ya(—e’ya + C")/O')), 1/} — (| U1»D12| | U1’E| ) 1 ( 1| U1,D22‘ >,
|hU17E’ ‘hU2vD1| |hU2’D2|
Ao = ﬁ, and ¢ = min (Pypax,,inf ¢, inf \1). Then, optimal Py is given as follows:
Us, Do
1. IfA<O0
Py=X (4.35)
2. IfA>0
(a) If C >0 or B>0and C <0
Poc Poc € p2
Py = O, P d (4.36)
arg max
P2g Pae{Xo, 9} 20 ¥ P
(b) If B<0 and C <0
Py =arg max Cj (4.37)

Py, Pae{\2,9}

where Cy is the secrecy rate, Poo = 7323/5, A = 4Aabedey(dyo + bo), D = —bde(ab +
cdy), and ps is the feasibility domain of the problem.

Proof. The proof is similar to that of Theorem 4.4, thus was omitted. O

4.4 Problem Formulation: Egoistic Scenario

In this section, we develop closed-form solutions for the case when Us is selfish from the
view point of U;’s secrecy rate, and adjusts its transmission power just to meet its QoS,
i.e., SINR=~. Later, we compare this case with respect to the altruistic scenario. If one
of the Cases 4.7g, 4.7h, or 4.7i holds and U, is selfish, (4.14) can be written as

P ‘hUlaDl ‘2
P2|hU21D1 |2+Ur2l
max 3
Py,Py Pi|hy, |
14+ —5—
PQ‘hUg,E’ +o2
(4.7¢) P2|hU27D2 |2

s.t.PlgP X,Pl = w,PQSP X9 =7. (438)
T 5 " Py, | + 02

1+
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In Case 4.7h, any P; ensures that the eavesdropper cannot employ SIC, so no additional

constraint over P; is necessary. For Case 4.7j, the problem is solved as follows

P1 ‘hUlle ‘2
P2|hU2vD1|2+Ur21
max

P1,P> 1+ P1|hU1)E|2

1+

oh

Pylhy,,p, |

s.t. Pl < Pmax17 P2 < Pmaxza
— 2
P1|hU1,D2| +U721

=". (4.39)

We first solve (4.38) and then (4.39). Using the last constraint in (4.38), we can directly
(Pl‘hUl,D2|2+U%,>

|hU27D2|2
value. Consequently, we can rewrite (4.38) as

derive the solution for P, as P, =~y and replace it with the corresponding

Pl|hUl»D1|2
2
(Pl,hUl,Dz‘ +"%)
|hU27D2|2
2
P 14 P1|2hU1,E|
<Pl|hU1,D2’ +G%>

|hU2,D2 ‘2

1+

2
’hU2,D1’ +on

2
|hU2,E‘ +o2

2

(4.7g) Praxs |ht, Do > =0l (4.40)

S't'PISPmaXUPl 2W7P1§ P
(4.71) Y|huy,Ds|

Since the minimum value for the secrecy rate is zero, the objective function in (4.40)
should be greater or equal to one. Proposition 4.7 gives the required condition on P
in order to have a positive secrecy rate. According to the channel conditions, these
constraints should be added to (4.40).

Proposition 4.7. In order for the objective function in (4.40) to result in a non-negative

secrecy rate, Py should have the following bounds:

P> o if  A'>0,B">0, (4.41n)

P >0 if  A'<0,B' >0, (4.410)
Al

P < o if A <0,B' <0, (4.41p)

where A’ = (1+c¢)d—b(1+e))o2, B' = a(be—cd). Also, for the case A" > 0 and
B’ <0, irrespective of the value for Py, no positive secrecy rate is possible for Uy. The

values for b, ¢, d and e are defined in Theorem .8.

Proof. The proof is similar to that of Theorem 4.1, thus was omitted. O
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According to Proposition 4.7, we can rewrite (4.40) as

P1|hU1vD1 |2

A O
KRl )
max V2:02 3
O
Py |h +o
2,03
S. t. PlSPmaXp Pl 2 w, Pl < 7/:(’03’
(4.7 (4.31p)
P 2 9
P < max2|hU2,D2| T0n = \3. (4.42)

7|hU1,D2‘2

Assuming that (4.42) is feasible, we give a closed-form solution for (4.42) in Theorem 4.8.

. h 2
Theorem 4.8. Assuming a = \hUl,D2]2, b= |hU17D1|2, c = 7%, d = \hU17E|2,

) ‘hUQ»D2|
e:fym, Q=c—¢, R=—1+c)d+alc—e)+b(l+e), S=—ac’d(l+e)+
Uz,D2
b(e(d+ae)+c(—d+ae?)), T = _a—é‘, =—(1+c)d+b(1+e), U= % =be—cd, n=

min { Ppax,, A3}, 7 = min{n,w}, 6 = min{Pyax,, A3, p3}, and ' = min {0,w} (4.40)

can be solved as follows

1. FQR <0

(a) If S >0, A” >0,B" >0, (or A” <0,B"” >0)

n Q>0,R<0
& B ' <0,Q<0,R>0 (4.43)
n B'>0,Q<0,R>0

(b) If S >0, A” <0,B" <0

n” Q>0,R<0
Pf=430 B <0,Q<0,R>0 (4.44)
n” B >0,Q<0,R>0

(¢) If S <0, A” >0,B" >0

max {p3,w} B’ ' >0,Q>0,R<0
pr = {3, w} Q (4.45)
w Q<0,R>0
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(d) If S <0, A” <0,B" <0 (or A” <0,B" >0)
B'>0,Q>0R<0
pr={" @ (4.46)
0 Q<0,R>0
2. If QR >0
(a) If S>0,T <0 and B' >0
arg max C; A”>0,B">0
P, Pre{max{pz.w}n}
Py ={arg max C; A" <0,B" <0 (4.47)
Py Pie{esn'}
arg max O A"<0,B" >0
Py Pie{psn}
(b) IfS<0,T>0,A">0,B">0
Pic Picep
_ Cs P ,B'">0
pp={arg max Gy Pio ¢ p1 (4.48)
Ccs, P ,B'<0
ey & e
(¢) IfS<0andT >0, A” <0, B" <0
Pic Pic ep
_ C, P ,B'">0
Pr = alglg Plg%?;’} s Picé¢p (4.49)
Cc, P ,B'<0
W8 i O ro g
(d) If S <0 and T >0, A” <0, B" >0
Pic Picep
_ Jarg max Cs P, ,B'>0
Pr =88 plttom © ¢ £ (4.50)
arg max O, P ,B' <0
Plg Preqo.0) s 1c & p1
(e) If S>0,T>0,U <0 and A” >0, B” >0
arg max Cs Piocemp
Pik Py P1€{Plcyw79} (451)

arg max C P
P1gP1e{w,9} s 1C ¢p1
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(f) If S>0,T>0,U <0 and A” <0, B" <0

arg max Cs Pioéep
Pl* — P PIE{PICaO:G } (452)

arg max C P,
PN = 10 ¢ P1

(9) If S>0,T>0,U <0 and A” <0, B" >0

arg max Cg Piocé€Ep

Pf — P P1€{Plc,0,9} (453)
arg max C P,
Plg P00y ic ¢ p1

(h) If S<0, T<0,U>0,A">0,B">0 (or A” <0, B">0)

arg max Cs Picem
Pi\' — Py PIE{PIC’:ma’X{SD37w}7T]} (4‘54)
arg max Cs Pic ¢ p1

Py Pre{max{ps,w}n}

(i) If S<0, T<0,U>0and A” <0, B" <0

arg max Cs Picep
Pl* — P Ple{P1Ca§03,77,} (455)

arg max Cg Pic ¢ p
P Pie{psn'}

(G) If S>0,T>0andU >0

n A”>0,B">0
Pl=qn A"<0,B">0 (4.56)
n A" <0,B"<0

where P = 72(1(1“)%1;)[]0’27\/5 and A = 4abdQR(U%)4 (14+¢)(1+e).

Proof. The proof can be obtained in the similar way to that of Theorem 4.4. O

For problem (4.39), the closed-form solution for P is given in the following theorem.

Theorem 4.9. Assume f = |hU1,D1|2, g = |hU1,D2|27 h = |hU2,D1|27 1 = |hU2,D2|27
j=lhv, 5)*, E=ad+bey—e(d+cy), F=ad—e(d+ ), and 7 = min (Ppay,, inf p).

Then, optimal Py is as follows:
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1. IfE<0
P =0 (4.57)
2. IfE>0
(a) If F >0
Py e Pyo € po
P = oop (4.58)
arg ma
P2g PQG{O);} s 2C ¢ D2
(b) If F <0
Py =arg max C 4.59
2 = S meton (4.59)

where Poc = _GQ_‘/Z, A = 4Eabcdey(d+cy)o?, G = —2bcey(d+cy)o, H = —bcey(ad+

UTZL(|hU17D1|2_‘hU1vE|2>|hU21D2’2 o2
bey), p = 3 5 — — o and py is the feasibility domain of
v|hvy | [Py, | |huy Dy |hy s |

the problem.

Proof. The proof can be obtained in the similar way to that of Theorem 4.4. O

4.5 Secrecy Energy Efficiency

Before going to Section VI, we define a metric in order to investigate the energy effi-

ciency of the considered scenario. We define the secrecy energy efficiency, nspg, as the

maximum secrecy rate obtained from the objective of (9), namely ¥, to the optimal
max ¥

consumed power of Uy, Py, ratio as nsgg = P]lgil*.

Similarly, in the case we have only one transceiver pair and an eavesdropper with no

interfering user, the secrecy energy efficiency metric, nsgg, can be defined as nsgg,, =

1 24 P*hy.pl? 24 P hy g
0g<<gn il ]2/ <Un [hore| )), where P is the transmission power, and P* is the

optimal transmission power obtained from the optimization problem in the nominator.
When the condition |hy, D‘z > |hy, E|2 holds, the optimum consumed power in the single-
user case is Pyqe,. In contrast, as we shall see in Section VI, the optimal power consumed
by Ui in the interference channel is considerably lower than P,,... Hence, as shall be
shown in Section VI, in a wide range of powers, the interference network outperforms

the single-user network in terms of secrecy energy efficiency.
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4.6 Numerical Results

In this section, we present different scenarios as numerical examples to further clarify the
derived results. As a benchmark, we consider a single-user scenario where only one user is
present in the environment and there is no second user to produce interference [5]. Then,
we compare this benchmark with our system model. Here, we refer to the altruistic and
egoistic scenarios as interference channel modes. In all simulation scenarios, we assume
that the noise power is equal to one, i.e., 02 = 1. All the channel coefficients are

modeled as i.i.d. complex normal random variables with real and imaginary parts being

as NV (0,1). The channel coefficients are normalized to have a unit variance as CN(0, 1).

For the first scenario, we consider the effect of the users’ power limits, Ppax, and Prpax,,
on the average secrecy rate as shown in Fig. 4.3 for SINR = 1 at Uy’s destination. By
observing the results in Fig. 4.3, we can draw the following conclusions for both altruistic

and egoistic scenarios:

1. Average secrecy rate of U; increases as Ppax, O Pmax, increases.

2. Increasing Ppax, is more effective on improving the average secrecy rate rather
than increasing Pnax,. The reason is that increasing Us’s power creates more

interference to both U; and E.

3. The average secrecy rate of U; is lower in the egoistic scenario since Uz does not
change its transmitted power in favor of U;, and only adjusts it according to the
required QoS at Ds. Also, by comparing Fig. 4.4 and Fig. 4.5, it can be seen
that Us consumes less power in the egoistic scenario. When the Cases (4.15k)
and (4.151) of Theorem 4.1 are true, Uy can improve the secrecy rate by providing

more power in the altruistic scenario.

The average optimal powers consumed by U; and Us are shown in Fig. 4.4 for the

altruistic scenario. Following points are implied by Fig. 4.4 as:

1. In contrast to the single-user case where the maximum power consumption is
optimum when the data link is stronger than the wiretap link, average optimal
powers expended by users in the interference channel modes are considerably less
than the available quantity. So, the optimum power control in the interference

channel leads to enormous power saving.

2. As Ppax, increases, Uy consumes more power. A higher power transmission from
U1 produces more interference on Do. This makes Us to choose higher transmission

power in order to maintain the QoS at Ds.
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F1GURE 4.3: Average secrecy rate versus the users’ maximum available powers in
altruistic and egoistic scenarios.

3. As Ppax, increases, U; utilizes more power. A higher available power for Us enables
it to compensate a higher interference from Uy, so U; transmits with a higher power

to increase the secrecy rate.

4. Depending on the maximum available power to the users, the optimal consumed
power by one user can be higher or lower than the power consumed by the other

user.

Consumed powers by U; and U; for the egoistic scenario are illustrated in Fig. 4.5. As
we can see, the power consumption pattern is similar to the altruistic scenario as in
Fig. 4.4. By comparing Fig. 4.5 with Fig. 4.4, it is noticed that the power consumed by

the users in the altruistic scenario is higher than the egoistic scenario.

Average excess SINR provided by Us at D in the altruistic scenario is shown in Fig. 4.6
for different values of the required QoS, . Following messages are conveyed by Fig. 4.6

as:
1. By increasing Ppax, for a fixed Ppax,, the excess SINR provided at D drops due
to increased interference from Up’s transmission.
2. Increasing Ppax, for a fixed Ppax, leads to a higher excess SINR at Ds.
The average secrecy rate comparison among the single-user benchmark and the inter-

ference channel modes is presented in Fig. 4.7 with respect to the maximum available

power of Uj. Following conclusions can be made according to Fig. 4.7:

1. Increasing Ppax, also enhances the average secrecy rate but much less compared

to increasing the Ppax,, because Us induces interference on both D; and E.
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FIGURE 4.4: Average optimal power consumed by the users versus their maximum
available powers in altruistic scenario.
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FIGURE 4.5: Average optimal power consumed by the users versus their maximum
available powers in the egoistic scenario.

2. The secrecy rate in the egoistic scenario is always lower than the one in the altru-
istic scenario. In the egoistic scenario, Uy consumes power to only fulfil the QoS
at Ds. As a result, Us does not increase its transmission power to produce inter-
ference on E when the Cases (4.15k) and (4.151) of Theorem 4.1 hold. However, in
the altruistic scenario, Uz can change its transmission power in favor of U; when

it becomes necessary.

A similar comparison as in Fig. 4.7 is displayed in Fig. 4.8 with respect to the maximum
available power of Us. The Statements 1 and 2 of Fig. 4.7 also hold for Fig. 4.8. As we
see in Fig. 4.8, increasing Ppax, also increases the average secrecy rate. By increasing
Prax,, Uz gets a higher ability to suppress the interference coming from U; as well
as causing more interference on E when the Cases (4.15k) and (4.151) of Theorem 4.1

hold. As a result, U; can transmit with a higher power and enhance the secrecy rate.
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FIGURE 4.6: Average excess QoS provided at Do versus users’ maximum available
powers in the altruistic scenario.
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FIGURE 4.7: Average secrecy rate versus U;’s maximum available power.

As we can see from Fig. 4.7 and Fig. 4.8, the average secrecy rate in the interference
channel modes is lower than its value in the single-user case. However, we should note
that the power consumed in the interference channel modes is considerably lower than
the single-user case. To make a fair comparison, we use the “secrecy energy efficiency”
metric defined in Section 4.5 to compare the secrecy rates of the interference channel
modes and the single-user benchmark. This metric is derived for different values of 4,

in Fig. 4.9. According to graphs in Fig. 4.9, we can make the following conclusions:

1. The secrecy energy efficiency is higher for the interference channel modes in a
considerable range of 7, and Puay,. If we consider a specific available power for
Ui, the acquired secrecy rate in the interference channel modes becomes higher

than the one achieved in the single-user case.
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FIGURE 4.9: Average secrecy energy efficiency versus U;’s maximum available power.

2. As the maximum available power to U; increases, the secrecy energy efficiency falls

faster for the cases with lower 4.

4.7 Conclusion

We considered a two-user interference wireless channel in this chapter where the first

user, namely user 1, wants to sustain a positive secrecy rate while communicating with

its destination. The second user of the network, namely user 2, requires to preserve

a specific QoS at its destination. Both users create interference for their destinations

and another unintended user of the network, i.e., the eavesdropper, which is interested

in wiretapping user 2. We showed that by appropriate power control of user 1, the

eavesdropper cannot perform SIC. We studied the effect of interference from user 2

on the secrecy rate of user 1.

Specifically, depending on the channel conditions, we
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derived the conditions on user 2’s transmission power in which positive secrecy rate can
be provided. In addition, we jointly derived closed-form expressions for optimal power
transmission of user 1 and 2 to maximize the secrecy rate of user 1 and preserving the
QoS at the destination of user 2. We solve the joint power control problem for both
altruistic and egoistic scenarios. In the altruistic scenario, user 2 changes its power
to over satisfy the QoS at its destination if it improves the secrecy rate. However, it
preserves the minimum QoS at its destination in the egoistic scenario. The simulations
showed that decreasing the QoS at the destination of user 2 improves the secrecy rate

and the secrecy rate gets closer to the single-user case.

Moreover, the ratio of the secrecy rate over the optimal consumed power by user 1
was introduced as a new metric called “secrecy energy efficiency”, in order to take
into account both the secrecy rate and the consumed power. This was mainly done to
have a fair comparison with the benchmark scheme which is the single-user channel. It
was shown that in comparison with the single-user case, the secrecy energy efficiency
is considerably higher in the interference channel for a wide range of QoS at user 2’s

destination.



Chapter 5

Secrecy Energy Efficiency in

MISO and SISO Communication
Networks

Energy-efficiency, high data rates and secure communications are essential requirements
of the future wireless networks. In this chapter, optimizing the secrecy energy efficiency
is considered. The optimal beamformer is designed for a MISO system with and without
considering the minimum required secrecy rate. Further, the optimal power control in
a SISO system is carried out using an efficient iterative method, and this is followed by
analyzing the trade-off between the secrecy energy efficiency and the secrecy rate for
both MISO and SISO systems. The contribution of this chapter is published in [25].

5.1 Introduction

Due to the presence of several wireless devices in a specific environment, the trans-
mitted information may be exposed to unintended receivers. Using cryptography in
higher layers, a secure transmission can be initiated. Nevertheless, it is probable that
an unintended device, which maybe also be a part of the legitimate network, breaks
the encryption [3]. Fortunately, physical layer security techniques can further improve
the security by perfectly securing a transmission rate using the “secrecy rate” concept
introduced in [5]. While security is a concern, power consumption is also another impor-
tant issue in wireless communications since some wireless devices rely on limited battery

power.

85
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There are a wealth of research works in the literature which investigate the energy effi-
ciency in wireless networks such as [230, 231] and the references therein. Recently, some
research has been done to jointly optimize the secrecy rate and the power consumption.
Sum secrecy rate and power are jointly optimized in [113] to attain a minimum quality
of service (QoS). In [114], switched beamforming is used to maximize the secrecy out-
age probability over the consumed power ratio. Powers consumption for a fixed secrecy
rate is minimized in [117] for an amplify-and-forward (AF) relay network. The secrecy
outage probability over the consumed power is maximized subject to power limit for a
large scale AF relay network in [118]. The optimal beamformer for a wiretap channel
with multiple-antenna nodes is designed in [115] to maximize secrecy rate over power

ratio.

Here, we consider a multiple-input single-output (MISO) and a single-input single-output
(SISO) scenario while a single-antenna unintended receiver, which is part of the network,
is listening. The secrecy rate over the power ratio, named “secrecy enerqgy efficiency”
and denoted by (, is maximized with and without considering the minimum required
secrecy spectral efficiency, denoted by 1), at the destination. For comparison, we derive
the optimal beamformer when zero-forcing (ZF) technique is used to null the signal
at the eavesdropper with considering the minimum required secrecy spectral efficiency.
Note that the ZF can only be used for the MISO scenario. Furthermore, the trade-off

between ( and secrecy spectral efficiency, denoted by 7, is studied.

The following issues distinct our work from the most related research. In [115], first-
order Taylor series expansion and Hadamard inequality are used to approximate the
optimal beamfromer for a MIMO system. However, the exact beamformer for the MISO
system is derived in this chapter. Furthermore, the innermost layer of algorithm in [115]
is based on the singular value decomposition, and is not applicable to SISO and MISO
systems. In this chapter, apart from the MISO system exact beamformer design, exact

optimal power allocation for the SISO system is also derived.

5.2 Signal and System Model

Consider a wireless communication network comprised of a transmitter denoted by T', a
receiver denoted by R, and an unintended user denoted by E. Note that to obtain the
secrecy rate, the legitimate user needs to be aware of the instantaneous channel to the
eavesdropper. This knowledge for the most general case with a passive eavesdropper is
not practical. In this work, the unintended user is assumed to be part of the network.

Therefore, the transmitter 7" is able to receive the training sequence from F, in order to
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estimate its channel. The signal model and the secrecy rates are derived in the following

parts.

5.2.1 MISO System

Here, we assume that the transmitter employs multiple antennas. The received signals

at R and E are then as follows

YR = hg’wa—i—nR, (5.1)

YE = h?ywa—i—nE, (5.2)

where x is the transmitted message, w is a vector containing beamforming gains, hr
and hr g are the transmitter’s channel gains toward the receiver and eavesdropper,
respectively. The additive white Gaussian noise at the receiver and eavesdropper are
shown by ng and ng, respectively. The random variables z, ng, and ng are complex cir-
cularly symmetric (c.c.s.) and independent and identically Gaussian distributed (i.i.d.)

with  ~ CN(0,1), ng ~ CN(0,02 ), and ng ~ CN(0,02 ), respectively, where CA/

2

denotes the complex normal random variable. The noise powers, o;;

, and U,%E, are equal
to KT;B where K is the boltzman constant, T; is the temperature at the corresponding
receiver with ¢ € {R, F'}, and B is the transmission bandwidth. Using (5.1) and (5.2)
and the result in [13], the secrecy spectral efficiency (or rate in bps/Hz) denoted by 7 is

obtained by

NMISO = [log <1 - a)] +, (5.3)

140
|hT w|2 ’hT w|2 + .
where a = 35—, b = “—7——, and [z]" denotes max (x,0). In this chapter, all the
"R "E

logarithms are in base two. Further, the operator []+ is dropped throughout the chapter

for the sake of simplicity.

5.2.2 SISO System

When one antenna is employed at the transmitter, using the result in [232], the secrecy

spectral efficiency, 7, is calculated as

1N5150 = [1Og (1 - a/ﬂ +, (5.4)
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Plhr g|?
o2

hr g are the channel gains to the receiver and eavesdropper, respectively. The statistical

where o/ = , V= —== P is the transmission power by T, and hr r and

characteristics of the message signal and the noise are the same as those in Section 5.2.1.

5.3 Problem Formulation: MISO System

In this section, we maximize ¢ in a MISO system by obtaining the optimal beamformer

for the cases with and without QoS constraint at the receiver.

5.3.1 With QoS at the Receiver

The metric ¢ is defined as n multiplied by bandwidth over the total consumed power

ratio as

Bn

(==
Iwl® + e

(5.5)

where P, is the circuit power consumption. We define our problem so as to maximize

the secrecy energy efficiency subject to the peak power and QoS constraints as follows
max ¢ s.t. [W|* < Prax, 1> 0. (5.6)

To design the optimal beamformer, we rewrite (5.6) as

log Tng Tnp W BT RBT W
2 2 Hy* T
Ong Onptwihi phy pw

max B x 5
v [wil” + Pe
st [|w]? < Puax, wCw >2m —1, (5.7)
h% phl h% phT . - . 2 .
where C = =51 — L5 LE9M0, Using an auxiliary variable as ¢t = [|w||", (5.7) is

reformulated as follows

2
Inp wi Aw
log <U%R wHBw

max
w,0<t< Pmax t + Pc
st |w]?=t, wlCw >2m —1, (5.8)

2 2
where A = 2221 4 hi phT ¢ and B = 2221 4 hi gh 5. The constraint |w|* < Ppax

is omitted since the upper limit of the search on variable shall be Py .y, which satisfies

this constraint. To make the last constraint convex, (5.8) is transformed to a semidefinite
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programming (SDP) optimization problem.

‘7721 r
log <0’%E Eré\%ﬁ%)
max B f
W,0<t< Prax t+ P,
st. tr (W) =¢, tr (WC) >2™ —1, W = 0, (5.9)

where rank(W) = 1 constraint is dropped to have a set of convex constraints. Similar
to [233], matrix V and scalar s are defined such that V. = sW and tr (sWB) = 1.
Accordingly, (5.9) is transformed into

B g [ 7ie (VA)
a. 0]
V,o<r?§1}§max,s t+ P. & o2

nR
s.t. tr (V) = st, tr (VC) > (2" —1),
tr(VB) =1,V > 0,5 > 0. (5.10)

Finally, by considering the auxiliary variable ¢ to be fixed and dropping the log due to
the monotonicity of logarithm function, (5.10) can be solved using SDP along with a
one-dimensional search over the variable ¢t where t € (0, Ppax]. Since the matrices A, B,
and C in (5.10) are Hermitian positive semidefinite, Theorem 2.3 in [223] can used to

derive an equivalent rank-one solution if the solution to (5.10) satisfies rank(W) > 3.

In order to perform a comparison, we also design the optimal beamforming vector to
maximize the secrecy energy efficiency when zero-forcing (ZF) strategy is used to null
the received signal at the eavesdropper. Using (5.7), the ZF beamformer design problem

can be defined as follows

log <U?LR+WIZ}21§“,R}1T RW>
"R

max B 5

v Wl + Pe
s.t. [W]|* < Prax, wCw > 2™ — 1, hi pw = 0. (5.11)

Using t = ww, we get
H 2
max o (log (w Aw) — log o*nR)
s.t. [w]® =¢, wCw >2™ —1, hl ;w =0, (5.12)

which can be simplified into

max w Aw
w

st [[w]|® =t, wCw > 2™ — 1, hi pw = 0. (5.13)
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To make the third constraint convex, similar to (5.8), (5.13) can be transformed into a

SDP optimization problem as

max tr (WA)
W

s.t. tr (W) =¢, tr (WC) > 2™ — 1,
tr (WD) = 0, W > 0, (5.14)

where D = h*T’ Eh% p and the rank-one constraint on W is dropped to make the problem
convex. Since the matrices A, C, and D in (5.14) are Hermitian positive semidefinite,
Theorem 2.3 in [223] can used to derive an equivalent rank-one solution if the solution
to (5.14) satisfies rank(W) > 3.

If the solution to (5.14) is not rank-one, Theorem 2.3 in [223] can be employed to derive
an equivalent rank-one solution. Problem (5.14) can be solved using SDP along with a

one-dimensional search over the variable ¢t where ¢t € (0, Pyax]-

5.3.2 Without QoS at the Receiver

Using (5.8), the optimal beamformer design problem without considering the QoS is

reduced to

w,Ogg)émaX t+ Pc 8 HWH (5 5)
For a fixed ¢, (5.15) can be written as
B o2 wHA
max Ong W~ AW (5.16)

w t+ P.o2 wHBw’

where t € (0, Ppax]. Due to the homogeneity of (5.15), the constraints on the bam-
forming vector can be satisfied and thus dropped. The optimal value and the optimal
beamforming vector in (5.16) are easily derived using Rayleigh-Ritz [234] when (5.16) is
in its standardized form as

B o2 viDv

ng
max
v t+P.oi viv

: (5.17)

where v = CHw, D = C"'AC M, and matrix C is the Cholesky decomposition of
matrix B as B = CC. The optimal beamforming vector is derived as w* = C~Hy*

where v* is the eigenvector corresponding to Apax (C_lAC_H). Finally, the optimal ¢
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is obtained in closed-form by

0.2
log (%Amax (C—lAC—H)>
*—B . 5.18
¢ —) (5.18)

Employing a one-dimensional search over ¢ € (0, Ppax| and using (5.18), the optimal
value of (5.17) is found.

5.4 Problem Formulation: SISO System

In the SISO case, the beamformer design is reduced to scalar power control. Similar

to (5.6), the optimization problem for SISO system is defined as

2 2 1plp 2
log <Z;E AU"R—’_ | T,R‘ )

2
nR U%E+P|hT,E’

max B PP s.t. Poin < P < Phax, (5.19)
where Ppin = 2"‘:;1 is obtained from the minimum QoS constraint, and it is assumed
2 2
h h . . . .
that a = | TZ;R’ _ TQ’E‘ 2™ > 0. The numerator in the objective of (5.19) is concave

"R "E

since the argument of the logarithm is concave for P > 0 and ‘hfg’R‘Q > ‘h;’EF, which
are granted in our problem, and the denumerator is affine. Hence,n(5.19) is Zategorized
as a family member of fractional programming problems known as “concave fractional
program” where a local optimum is a global one [235]. Here, we solve (5.19) using an
iterative (parametric) algorithm named Dinkelbach [236]. For the sake of simplicity, we
mention the values related to |hr g|* and |hr g|*> by a and b, respectively. According

to [236], after dropping the constant B, (5.19) is written as

F(q) = ]
(9) max log

nggg, (5.21)

U%E J%R + Pa
o2 0%+ Pb

)—qU%+PL (5.20)

where f(P) and g(P) are the numerator and denumerator of (5.19), respectively. Also,
S shows the feasible domain of P. To calculate the optimal P for (5.20), denoted by
P~ the derivative of F'(q) with respect to P is calculated as follows

oF
P abqBP? + PqpB (—aaZE — boiR)

2 2 2 2
+aoy,, — qﬂanRanE — banR,

(5.22)
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Algorithm 1 Iterative approach to solve (5.19)

Initialize n = 0;
Pick any P, € S;
Derive ¢, using (5.21);
Derive P using (5.24) and calculate F'(g,,) using (5.20);
if F(gn,) > ¢ then
n=n+1;
Go to 3;
end if

which is a quadratic equation with a closed-form solution as

q (CLU?LE + bO’%R) + VA
—2abq

A=¢? (aJZE + bagR)Q + 4abq (ao’?w —qo? o2 — bagR) . (5.23)

NR-"NE

Pio=

, B =1Ln2,

Since P; in (5.23) is always negative, P* is derived as

) Py P, € S,
pr = (5.24)

Flq) P,éS

U Pe( P P} () P2 ¢S,

q(aa%E—i—bUfLR)—\/Z

where P = —2abg . The procedure to solve (5.19) using Dinkelbach method

is summarized in Algorithm 1. Using the closed-form solution of (5.20) given in (5.24),

the following recursive relation is used to merge Steps 3 and 4 of Algorithm 1 as

Py
gEPng (aa%E + ba,%R) — VA,
f(Pn) '
—2abg(Pn)

(5.25)

It is proven in [236] that Algorithm 1 converges. In addition, since a local optimum for
a concave fractional program is the global optimum, and (5.19) falls into this category,

the solution found using Algorithm 1 is a global optimum.

5.5 Trade-off between ( and 7

In this section, we study the trade-off between secrecy energy efficiency and secrecy

spectral efficiency (i.e. ¢ and 1) for MISO and SISO systems.
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5.5.1 MISO System

To find the trade-off between ¢ and 7, we solve the optimal beamforming design problem
to maximize ¢ and 7 separately for a specific power constraint, P. As a result, the pair

(¢,m) is available for different values of P. For (, the optimization problem is as follows

lo Ty Tngtwihy phi pw
82\ oz, 0% +whh bl W )
max B PP — s.t. [|[w|* = P. (5.26)
Using the constraint in (5.26), we conclude that WHTW = 1 which helps us homoge-
nize (5.26) as
1 ‘7721}3 wiAw
082 |\ 5 Wl Bw )
mV%XB P B s.t. ||w]|” =P, (5.27)

2 2

where, A = U"?RI + h},Rh%R and B = U”TEI + h;Eh%E. Similar to (5.15), the log
and the power constraint can be dropped. Similar to the solution to (5.17), the optimal
beamforming vector shall be w* = C~Hv* where v* is the eigenvector corresponding to
Amax (C_IAC_H). The final closed-form solution for ¢* is

log (f;EAmaX (C—lAc—H)>
"R
P+P.

(*=B (5.28)

The optimal beamforming vector for n* shall be the same as for (* and the optimal value

of n can be derived similar to the one for (. Hence, the pair ({*,n*) is available.

5.5.2 SISO System

. : : _ onponp(27-1)
By deriving P with respect to n using (5.4) as P = "B

o the relation between
nE

— o2 ’
a—oj o b2"

¢ and 7 is calculated using (5.5) as follows

Bn (U%Ea — U%Rb2’7)

= . 5.29
¢ 02,02 (2" —1) 4 P. (02,0 — 02 ,.b2") (5:29)
By solving % = 0 using numerical methods, 1 corresponding to the optimal ¢ can be

derived.



Chapter 5. Secrecy Energy Efficiency in MISO and SISO Communication Networks 94

x10°
4 T T 0

noooooom R*
ERIL 2222227 .88 1 ]
s * 7
3 3 * ;\! 1
~ 1
5,59000900 > =1
s 251 '/
S ! R
521 ¥ -
> U O Optimal ¢ versus n,
s15f #
e - ¥-(versus 7
g, 1k I' % Optimal ¢ versus Ny ZF
g I* O Optimal ¢ versus 5,
% 05 -II == =(versus g

----- Border |i
o | order line
0 1 2 3 4

Minimum required secrecy rate (b/s/Hz)

FIGURE 5.1: Optimal ¢ versus 7y and { versus 7 graphs.

6
=45 x 10
g —¥—N=4, P_=3, Opt
s 4 ——N=4,P_=3,ZF
Q
35 -+ -N=4,P_=5,Opt
[S]
& gF~"="---= - - -N=4,P_=5, ZF
2 —8—N=2, P_=3, Opt
(5]
3 250 NN e N=2, pC:3 ZF
g 2F - ©@-N=2,P_=5, Opt
R S YN - (R b N=2, P _=5, ZF
s | =l —A—N=1, P_=3, Opt
a1 ¢
@ A -w-N=1,P_=5, Opt
T 0.5Y
(5]
>
< 0

0 1 2 3 4 5 6
Minimum required secrecy rate (b/s/Hz)

FIGURE 5.2: Average ( versus 1 for different N and P.,.

5.6 Simulation Results

In this section, we present numerical examples to investigate the secrecy energy effi-
ciency and its trade-off with the secrecy spectral efficiency. The simulations’ parameters
are as follows. Distance from the transmitter to receiver and eavesdropper, d, is con-
sidered to be 2 km, Quasi-static block fading channel model as CA/(0,1), path loss is
128.1 4+ 37.61og;o d dB [237], bandwidth is 20 MHz, P, = 5, Pyax = 50, receiver noise
temperature is 298 K, tolerance error for Dinkelbach algorithm is § = 1073, and N is
the number of antennas. If the secrecy rate is negative, it is considered to be zero.
For the figures presenting the average graphs, enough amount of channels are generated
and the average of the resultant metrics are considered. In the first simulation sce-
nario, the secrecy energy efficiency and secrecy spectral efficiency trade-off is studied.

Optimal ¢ versus the minimum required n graphs as well as the graphs related to the
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trade-off between ¢ and n are presented in Fig. 5.1 using a single channel realization.
Two different regions are defined in Fig. 5.1 using a border line. The border line defines
the optimal operating point in terms of (. In the left-hand side region, increasing 7
also increases (. Hence, to get a higher (, the secrecy rate can be increased, which is
desirable. However, the mechanism between ¢ and 71 changes in the right-hand side of
Fig. 5.1. After the optimal point of ¢, increasing 1 demands more power which is higher
than the optimal power value for . Therefore, as 1 increases, ¢ falls below the optimal
value which is opposite to the procedure in the left-hand side, and the trade-off is clear.
Also, it is observed that ZF results in a lower secrecy energy efficiency. Nevertheless,
as the minimum required secrecy rate increases, the performance of the ZF approaches
the primary scheme, i.e., optimal beamformer design. For the second scenario, average
¢ versus the minimum required 7 is investigated for different numbers of antennas, and
circuit powers. The related graphs are depicted in Fig. 5.2. As it is shown, increasing
the number of antennas results in increasing the optimal value of { and makes it stable
for a longer range of ny. Further, we can see that decreasing P. leads to higher secrecy
energy efficiency, and this is more significant for higher number of antennas. Similar to
the result in Fig. 5.1, ZF scheme shows a sub-optimal performance. ZF’s performance
gets closer to the optimal scheme as the circuit power, P., increases. Interestingly, for
fewer number of antennas, the gap between the performance of the ZF and the optimal
scheme even gets larger. This is due to less degrees of freedom for the ZF beamformer
design as the number of antennas decreases. To investigate the trade-off between ¢ and
7, the average (¢,n) pair for different number of antennas is presented in Fig. 5.3. It is

observed that the optimal ¢ grows as number of antennas are increased.
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5.7 Conclusion

In this chapter, we studied the secrecy energy efficiency and its trade-off with the se-
crecy spectral efficiency in MISO and SISO wiretap channels. We designed the optimal
beamformer to maximize the secrecy energy efficiency with and without considering the
minimum required secrecy spectral efficiency at the receiver side. In addition, we de-
signed the beamformer to maximize the secrecy energy efficiency when the transmitter
applies zero forcing to null out the information signal in the direction of the eavesdrop-
per. The simulation results showed that the secrecy energy efficiency of the optimal
beamformer and the ZF beamformer designs gets closer as the minimum required se-
crecy spectral efficiency increases. In addition, we observed that the difference between
the secrecy energy efficiency of the optimal and ZF design decreases as the number of
transmission antennas increases. This is due to the fact that the ZF design by nature
limits the degrees of freedom in the beamformer design, while increasing the number of
antennas gives more degrees of freedom to the ZF design. Particularly, the numerical
results revealed that there is a specific point for the secrecy spectral efficiency where
the secrecy energy efficiency gets to its maximum point. Above this point, the secrecy
energy efficiency starts to fall below the optimal point. In addition, the simulations
showed that increasing the transmitter antennas improves the secrecy energy efficiency
considerably. Furthermore, increasing the transmitter antennas keeps the secrecy energy
efficiency in its maximum level for a longer range of minimum required secrecy spectral

efficiency.



Chapter 6

Secure Directional Modulation

via Symbol-Level Precoding

Wireless transmission provides wide coverage, yet it exposes information. As an information-
theoretic paradigm, secrecy rate derives bounds for secure transmission when the channel
to the eavesdropper is known, however, it restricts us in practice and proper codings
need to be developed to achieve these bounds. Here, we employ the concept of direc-
tional modulation and follow a signal processing approach to enhance the security of a
multi-user MIMO communication system in the presence of a multi-antenna eavesdrop-
per. Enhancing the security in this chapter means increasing the symbol error rate at
the eavesdropper. Unlike the information-theoretic secrecy rate paradigm, we assume
that the legitimate transmitter is not aware of its channel to the eavesdropper, which is
a more realistic assumption. We show that when the eavesdropper has lower antennas
than the users, regardless of the received signal SNR, it cannot recover any useful in-
formation, in addition, it has to go through extra noise enhancing processes to estimate
the symbols when it has more antennas than the users. Using the channel knowledge
and the intended symbols for the users, we design security enhancing symbol-level pre-
coders for different transmitter and eavesdropper antenna configurations. We transform
each design problem to a linearly constrained quadratic program and propose two algo-
rithms, namely iterative algorithm and non-negative least squares, at each scenario for
a computationally-efficient optimization design. Simulation results verify the analysis
and show that the designed precoders outperform the benchmark scheme in terms of
both power efficiency and security enhancement. The contribution of this chapter are
published in [27, 28].

97
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6.1 Introduction

6.1.1 Motivation

Wireless communications allows information flow through broadcasting; however, it may
expose the information to unintended receivers, with eavesdroppers amongst them. To
derive a bound for secure transmission, Wyner proposed the secrecy rate concept in his
seminal paper [5] for discrete memoryless channels. The secrecy rate defines the bound
for secure transmission and proper coding is being developed to achieve this bound [8].
However, the secrecy rate can restrict the communication system in some aspects. Pri-
marily, the secrecy rate requires perfect or statistical knowledge of the eavesdropper’s
channel state information (CSI) [20-22, 179, 206], however, it may not be possible to
acquire the perfect or statistical CSI of a passive eavesdropper in practice. In addition,
in the secrecy rate approach, the transmission rate has to be lower than the achievable
rate, which may conflict with the increasing rate demands in wireless communications.
Furthermore, the transmit signal usually is required to follow a Gaussian distribution

which is not the case in current digital communication systems.

Recently, there has been growing research interest on directional modulation technology
and its security enhancing ability. As a pioneer, [17] implements a directional modulation
transmitter using parasitic antenna. This system creates the desired amplitude and
phase in a specific direction by varying the length of the reflector antennas for each
symbol while scrambling the symbols in other directions. The authors of [18] suggest
using a phased array at the transmitter and employ the genetic algorithm to derive the
phase values of a phased array in order to create symbols in a specific direction. The
directional modulation concept is later extended to directionally modulate symbols to
more than one destination. In [158], the singular value decomposition (SVD) is used to
directionally modulate symbols in a two user system. The authors of [159] derive the
array weights to create two orthogonal far field patterns to directionally modulate two
symbols to two different locations and [160] uses least-norm to derive the array weights
and directionally modulate symbols towards multiple destinations in a multi-user multi-
input multi-output (MIMO) system. The authors in [27] design the array weights of a
directional modulation transmitter in a single-user MIMO system to minimize the power
consumption while keeping the signal-to-noise ratio (SNR) of each received signal above a
specific level. The directional modulation literature focuses on practical implementation
and the security enhancing characteristics of this technology. On top of the works
in the directional modulation literature where antennas excitation weight change on
a symbol basis, the symbol-level precoding to create constructive interference between

the transmitted symbols has been developed in [180-183] by focusing on the digital
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processing of the signal before being fed to the antenna array. The main difference
between directional modulation and the digital symbol-level precoding for constructive
interference is that the former focuses on applying array weights in the analog domain
such that the received signals on the receiving antennas have the desired amplitude and
phase, whereas the latter uses symbol-level precoding for digital signal design at the
transmitter to create constructive interference at the receiver. Furthermore, directional
modulation was originally motivated by physical layer security, whereas symbol-level

precoding by energy efficiency.

6.1.2 Contributions

In this chapter, we design the optimal precoder for a directional modulation transmitter
to enhance the security in a quasi-static fading MIMO channel where a multi-antenna
eavesdropper is present. Here, enhancing the security means increasing the SER at
the eavesdropper. In directional modulation, users’ channels and symbols meant for the
users are used to design the precoder. The precoder is designed to induce the symbols on
the receiver antennas rather than generating the symbols at the transmitter and sending
them, which is the case in the conventional transmit precoding [23, 24]. In other words,
in the directional modulation, the modulation happens in the radio frequency (RF)
level while the arrays’ emitted signals pass through the wireless channel. This way,
we simultaneously communicate multiple interference-free symbols to multiple users.
Also, the precoder is designed such that the receivers antennas can directly recover the
symbols without CSI and equalization. Therefore, assuming the eavesdropper has a
different channel compared to the users, it receives scrambled symbols. In fact, the
channels between the transmitter and users act as secret keys [26] in the directional
modulation. Furthermore, since the precoder depends on the symbols, the eavesdropper
cannot calculate it. In contrast to the information theoretic secrecy rate paradigm, the
directional modulation enhances the security by considering more practical assumptions.
Particularly, directional modulation does not require the eavesdropper’s CSI to enhance
the security, furthermore, it does not reduce the transmission rate and signals are allowed
to follow a non-Gaussian distribution. In light of the above, our contributions in this

chapter can be summarized as follows:

1. The optimal symbol-level precoder is designed for a security enhancing directional
modulation transmitter in a MIMO fading channel to communicate with arbitrary
number of users and symbol streams. In addition, we derive the necessary condition
for the existence of the precoder. The directional modulation literature mostly
includes LoS analysis with one or limited number of users, and multi-user works

do not perform security enhancing optimization.
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2. It is shown that when the eavesdropper has less antennas than the transmitter,
regardless of the SNR level, it cannot extract useful information from the received
signal and when it has more antennas than the transmitter, it has to estimate the
symbols by extra processes which enhance the noise. We minimize the transmission
power for the former case and maximize the SER at the eavesdropper for the latter
case to prevent successful decoding at the eavesdropper. This is done while keeping
the SNR of users’ received signals above a predefined threshold and thus the users’
rate demands are satisfied. The directional modulation literature do not analyze
the abilities of a multi-antenna eavesdropper and rely on the fact that it receives

scrambled symbols

3. It is shown that in the conventional precoding, the eavesdropper needs to have
more antennas than the receiver to estimate the symbols since the eavesdropper
can calculate the precoder. In our design, the eavesdropper has to have more
antennas than the transmitter since the precoder depends on both the channels
and symbols. The transmitter, e.g., a base station, probably has more antennas
than the receiver, hence, it is more likely to preserve the security in directional

modulation, specially in a massive MIMO system.

4. The power and SNR minimization precoder design problems are simplified into a
linearly-constrained quadratic programming problem. For faster design, we intro-
duce new auxiliary variable to transform the constraint into equality and propose
two different algorithms to solve the design problems. In the first algorithm, we
use a penalty method to get an unconstrained problem and solve it by proposing
using an iterative algorithm. Also, we prove that the algorithm converges to the
optimal point. In the second one, we use the constraint to get a non-negative least
squares design problem. For the latter, there are already fast techniques to solve

the problem.

6.1.3 Additional Related Works to Directional Modulation

Array switching at the symbol rate is used in [161, 162] to induce the desired symbols.
In connection with [17], [164] studies the far field area coverage of a parasitic antenna
and shows that it is a convex region. The technique of [18] is implemented in [165] using
a four element microstrip patch array where symbols are directionally modulated for
@-PSK modulation. The authors of [166] propose an iterative nonlinear optimization
approach to design the array weights which minimizes the distance between the desired
and the directly modulated symbols in a specific direction. The Fourier transform is

used in [170, 171] to create the optimal constellation pattern for Q-PSK directional
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FIGURE 6.1: Generic architecture of a directional modulation transmitter, including
the optimal security enhancing antenna weight generator using the proposed algorithms.
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F1GURE 6.2: RF signal generation using actively driven elements, including high fre-
quency power amplifiers and phase shifters.

modulation. In [158, 172-174] directional modulation is employed along with noise
injection. The authors of [172, 173] utilize an orthogonal vector approach to derive the
array weights in order to directly modulate the data and inject the artificial noise in
the direction of the eavesdropper. The work of [172] is extended to retroactive arrays!
in [174] for a multi-path environment. An algorithm including exhaustive search is used

in [175] to adjust two-bit phase shifters for directly modulating information.
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6.2 Signal and System Model

We consider a communication network with a multi-antenna transmitter denoted by
T, R multi-antenna users denoted by U, for r = 1,..., R where the r-th user has N,
antennas, and a multi-antenna eavesdropper? denoted by E with N, antennas, as shown
in Fig. 6.1. In addition, all the communication channels are considered to be quasi-
static block fading. We present two possible architectures for the RF signal generator
block of Fig. 6.1 in Figures. 6.2 and 6.3. In Fig. 6.2, power amplifiers and phase shifters
are used in each RF chain to adjust the gain and the phase of the transmitted signal
from each antenna. In Fig. 6.3, we adapt the technique of [17] to adjust the phase
using parasitic antennas in each RF chain. A parasitic antenna is comprised of a dipole
antenna and multiple reflector antennas. Near field interactions between the dipole and
reflector antennas creates the desired amplitude and phase in the far filed, which can be
adjusted by switching the proper MOSFETs. When using parasitic, the channel from
each parasitic antenna to the far field needs to be LoS, and we need to acquire the CSI of
the fading channel from the far field of each parasitic antenna to the receiving antennas.
For simplicity, we only consider the amplitude and phase of the received signals and

drop €/?™ft which is the carrier frequency part.

After applying the optimal coefficients to array elements, the received signals by U, and

FE are

yy, =Huw+mng , Vr (6.1)
Yp=Hgw+ng, Vr (6.2)

LA retroactive antenna can retransmit a reference signal back along the path which it was incident
despite the presence of spatial and/or temporal variations in the propagation path.
2The same system model and solution holds for multiple colluding single-antenna, eavesdroppers.
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where the random variables n;; and ny denote the additive white Gaussian noise at
U, and FE, respectively. The Gaussian random variables n; and ng are indepen-
dent and identically distributed (ii.d.) with n; ~ CN(O, U%Ur In, «n,), and ng ~
CN (0,02 In,xn,), respectively, where CA” denotes a complex and circularly symmetric
random variable. The signal y; is an N, x 1 vector denoting the received signals by Uy,
¥ is an N, x 1 vector denoting the received signals by E, Hy, = [hy,,...,h, , ..., hy, |7 is
an NNV, x N; matrix denoting the channel from 7" to U,, h,, is an Ny x 1 vector containing
the channel coefficients from the transmitter antennas to the n-th antenna of the r-th
user, the channel for all users is Hyy = [Hy,, ..., Hy,., ..., HUR]T, Hpg is an N, x N; matrix
denoting the channel from 7" to E, and w is the transmit vector. In directional modu-
lation, the elements of Hy, w = [\ﬁsh, ey A/ Y Sy wees \ﬁsNT]T are the induced M-PSK
symbols on the antennas of the r-th user where sy, is the induced M-PSK symbol on the
n-th antenna of the r-th user with instantaneous unit energy, i.e., |s,,|> = 1 and 7 is the
SNR of the induced symbol. To detect the received symbols, U, can apply conventional

detectors on each antenna.

To consider the worst case, throughout the chapter, we assume that 7" knows only Hys
while £ knows both Hy and Hg. In the following, we analyze the conditions under

which we can enhance the system security.

6.3 Security analysis of directional modulation

In this section, we discuss the conditions under which the directional modulation can
provide security benefits. We assume that E’s channel is independent from those of
the users, and to consider the worst case, we assume that Hg is full rank. Hence, the
element numbers of Hpw, i.e., received signals on E’s antennas, are different from those
of Hy, w, i.e., received signals on receiver antennas, for r = 1, ..., R. Since w depends
on the symbols and E cannot calculate it, F has to remove Hg to estimate w, and
then multiply the estimated w by Hy; to estimate the symbols. For N, < Ny, E cannot

estimate Hyw, however, when N, > N;, E can estimate w as follows
~ -1 —1
w=(HfHg) Hiyp,=w+ (HfHg) Hing, (6.3)

where w is the estimated w at E. Next, F can multiply w by Hy; to estimate the signals

at receiver antennas, Hyw, as

H,w = Hyw + Hy (HEHg) ' Hin,,. (6.4)
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Through (6.3) to (6.4), E virtually puts itself in the location of the users, since we
assume that E knows the users’ channels Hy;, to estimate the received signal by them.
This way, E gets access to the secret key, which is observing the signals from users’ point

of view, however, the required process increases the noise at F.

Remark 6.1. Using a large scale array transmitter, it is more probable to satisfy the
condition N, < N;. Hence, the directional modulation technique seems to be a good
candidate to enhance the security when the transmitter is equipped with a large scale

array. |

Remark 6.2. Assuming that the legitimate channel is reciprocal, the users can transmit
pilots to T so it can estimate Hy. This way, we avoid the additional downlink channel
estimation and the users do not have to send feedback bits to 7T, hence, F cannot
estimate Hy. Assuming that E knows the channel from T to itself, i.e., Hg, it can
estimate w for N, > N; as in (6.3), but it cannot perform (6.4) to estimate the received

signals on the receiver antennas. |

In the next section, optimal symbol-level precoders for the directional modulation are

designed to enhance the security.

6.4 Optimal Precoder Design for Directional Modulation

In this section, we define the underlaying problems to design the security enhancing
symbol-level precoder for the directional modulation when N, < N; and N, > Ny,

respectively.

6.4.1 The Case of Strong Transmitter (N, < IV;)

Since N, < N, according to Section 6.3, E' cannot estimate w and extract useful in-
formation from y,. In wireless transmission, adaptive coding and modulation (ACM)
is used to enhance the link performance and the channel capacity. In ACM, the trans-
mission power, coding rate, and the modulation order is set according to the channel
signal to noise ratio (SNR) [238]. Based on this, we preserve the SNR of the induced
symbol on the receiver antenna above or equal to a specific level to successfully decode
it. Here, we only focus on the SNR of an uncoded signal since considering SNR of a

coded transmission based on ACM is beyond the scope of this chapter.

To have a convex design problem and avoid an NP-hard problem [239], we separately

consider amplitudes of the in-phase and quadrature-phase parts of the induced M-PSK
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symbol, s,,, on the receiver antenna instead of the power of s,, . Since the real and
imaginary valued parts of s,, may differ in amplitude, and the angle of s, is fixed, we
need to increase the real and imaginary valued parts of s,, in the same proportion, not
the same amount. If we show the real and imaginary valued parts of s, as Re (s,)

and Im (s,), the required in-phase and quadrature-phase thresholds are defined as

VAR (50, v/ (51, (6.5)
Since |sp, |* = 1, we can see that v = yRe? (s, ) + yIm? (s, ).

We design the directional modulation precoder to minimize the total transmit power such
that 1) the signals received by the n-th antenna of the r-th user result in a phase equal
to that of s,,., and 2) the signals received by the n-th antenna of the r-th user create
in-phase and quadrature-phase signal levels satisfying the thresholds defined in (6.5).
Accordingly, the precoder design problem is defined as

min w?

s.t. arg (h] w) = arg (s, ), (6.6a)
Re (hy, w) > \/FRe (sn,) , (6.6b)
Im (h} w) > \/AIm (sy, ), (6.6¢)

for r =1,...,R and n = 1,...,N. Due to (6.6a), Re (hgTw) and Im (h,:frw) have the
same sign as Re(sp,) and Im (s, ), respectively. If both sides of (6.6b) or (6.6c) are
negative, the signal level constraints may not be satisfied. Since (6.6a) holds at the
optimal point, Re (hf w) and Im (h% w) have the same sign as Re (s,,) and Im (sp,),
therefore, we can multiply both sides of the signal level constraints in (6.6b) and (6.6¢)
by Re(sy,) and Im(sy,, ), respectively, to get

min [wlf?
s.t. arg (hl w) = arg (sy, ), (6.7a)
Re(sn) e (hl w) > \/ARe? (sn,), (6.7b)
m (sp,) Im (hy w) > \/AIm? (sn,) (6.7¢)

We can rewrite the phase constraint in (6.7a) as

Re (h] w)a,, —Im (h] w) =0, Vn, Vr, (6.8)
where «a;,, = tan(s,,). Since tan(-) repeats after a 7 radian period, symbols with

different phases can have the same tan value, e.g., tan (%) tan (3”). Therefore,
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replacing (6.7a) with (6.8) creates ambiguity. To avoid this, we can add the constraints

, (6.9)

to the design problem (6.7) to avoid ambiguity. Interestingly, constraints (6.9) are
already present in (6.7b) and (6.7c). Note that (6.8) and (6.9) together are equivalent
to (6.6a), so the required condition to go from (6.6) to (6.7) still hold. Putting together
the constraints (6.8), (6.7b), and (6.7¢c) for all the users, (6.7) is written into the following

compact form

min [w]?

s.t. ARe(Hyw) —Im (Hyw) = 0, (6.10a)
Re (S)Re (Hyw) > /7, (6.10Db)
Im (S) Im (Hyw) > \/7s;, (6.10c)

where S = diag(s), s is an Ny x 1 vector containing all the intended M-PSK symbols
for the users with Ny = Zle N,, s, =Re(s)oRe(s),s; =Im(s)olm (s), A = diag (),

T
a=[a1,...0n,, ..., N, .

To remove the real and imaginary valued parts from (6.10), we can use Hy = Re (Hy) +
iIlm (Hy) and w = Re (w) + ilm (w) presentations to separate the real and imaginary

valued components of Hyw as

Hyw =Re (Hy) Re (w) — Im (Hy) Im (w)
+i[Re (Hy) Im (w) + Im (Hy ) Re (w)], (6.11)

which leads into the following expressions
Re (HUW) = HUIVA(’, Im (HUW) = HU2V~V, (6.12)

where w = [Re (w”?) ,Im (WT)]T, Hy, = [Re (Hy), —Im (Hy)], and Hy, = [Im (Hy) , Re (Hy)].

Also, it is easy to see that |[w]* = ||w]*.
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Using the equivalents of Re (Hyw) and Im (Hyw) derived in (6.12), (6.10) transforms

into

. ~ 12
min  [|w||
w

st. (AHp, — Hp,) W =0, (6.13a)
Re (S)Hy,w > /s, (6.13b)
Im (S) Hy,w > /7s;. (6.13c)

Proposition 6.3. A necessary condition for the existence of the optimal precoder for the
directional modulation is Ny > % where 7' is the rank of AHy, — Hy,. If AHy, — Hy,
is full rank, the necessary condition becomes Ny > %, which means that the number of

transmit antennas needs to be more than half of the total number of receiver antennas.

Proof. Constraint (6.13a), shows that w should lie in the null space of the matrix
AHy, — Hy,. If the SVD of AHy, — Hy, is shown by UXV# the orthonormal ba-
sis for the null space of AHy, — Hy, are the last 2N; — ' columns of the matrix V
with 7 being the rank of AHy, — Hy, [240]. If AHy, — Hy, is full rank, we have
r = Ny. For (6.13) to be feasible, the mentioned null space should exist, meaning that
2N, — 1’ > 0. O

Provided that the necessary condition of Proposition 6.3 is met, a sufficient condition can
be proposed from a geometrical point of view; namely that the feasible set of (6.15) is
not empty. This holds if and only if the intersection of the linear spaces in the constraint

set constitutes a non-empty set.

According to Proposition 6.3, the null space of AHy, — Hyy, spans w as w = EX where
E= [V, van], A= {)\1,...,)\2Nt_r/ . (6.14)
By replacing w with EX, (6.13) boils down into
min AP

st. Re(S)Hy,EX > /vs,,
Im (S)Hy, EX > \/7si, (6.15)
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which can be written into the following compact form?

min || A[]?
A
st.  BA>\/ysp, (6.16)
where
Re(S)H, E
B= e (8)Hu, , S = [STT,szT]T. (6.17)
Im (S)Hy, E

Problem (6.16) is a convex linearly constrained quadratic programming problem and
can be solved efficiently using standard convex optimization techniques. The design
problem (6.18) needs to be solved once for each set of the symbol, s7. Using optimization
packages such as CVX to solve (6.16) can be time consuming, hence, we propose two

other approaches to solve (6.16).

6.4.1.1 Iterative solution

In this part, we propose an iterative approach to solve (6.16). To do so, first, we define
an auxiliary real valued vector denoted by u to change the inequality constraint of (6.16)

into equality as

min ||A[?

)

st. BA=,/ysr+u, u>0. (6.18)

Using the penalty method [224], we can write (6.16) as an unconstrained optimization

problem

Jnin IAIZ + 7l BX = (vAsr +w)|, (6.19)
,u>0

which is equivalent to (6.16) when n — oco. We can solve (6.19) using an iterative
approach by first optimizing u and considering A to be fixed, and then optimizing u and
considering A to be fixed. In the following, we mention these two optimization problems

and their closed-form solutions.

When optimizing over u and keeping A fixed, the optimization problem is

min [lu— (BA —/s7)|". (6.20)

3The design problem (6.16) can be extended to M-QAM modulation [182] by changing the constraint
into equality which is beyond the scope of this thesis.
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The closed-form solution of (6.20) is given in Lemma 6.4.

Lemma 6.4. The closed-form solution of (6.20) is u* = (B)\ — \ﬁsT)+.

Proof. To solve (6.20), we need to minimize the distance between the vectors u and
(B)\ — \ﬁsT). Since A is fixed, the elements of (B)\ — \ﬁsT) are known. If an element
of BA — /vsr is nonnegative, we pick up the same value for the corresponding element
of u. If an element of BA — |/ys7 is negative, we pick up zero for the corresponding

element of u since u > 0. This is equivalent to picking up u as

u* = (BA— /ys7),. (6.21)

O]

When optimizing over A and keeping u fixed, the optimization problem is
min [IA|* +7]BA = (VAsr +w)|” (6.22)
The closed-form solution of (6.22) is given in Lemma 6.5.

—1
Lemma 6.5. The closed-form solution of (6.22) is X* = (% + BTB) BT (a+u).

Proof. First, we expand (6.22) as

F ) =IAIP +0lBX — (ys7 + w)*
=AT (I+nB"B) X —2pA" (BT ysp + B"u)

+n(y/ysT + u)T (v/ysT+u). (6.23)

Taking the derivative of f (A) with respect to A yields
I ~1
A= ( + BTB> B (a+u). (6.24)
n

Since BB is positive semidefinite, addition of % to BB for n # oo leads into diagonal
loading of BTB, which makes % + BTB invertible. O

Using the closed-form solutions mentioned in Lemmas 6.4 and 6.5, we propose Algo-
rithm 2 to solve (6.19), where the matrix inversion in (6.24) needs to be calculated once

per symbol transmission.

Lemma 6.6. Algorithm 2 monotonically converges to the optimal point.
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Algorithm 2 Iterative approach to solve (6.19)

1: Pick up A, € R? and 5 € (0, ool;
2: Substitute A, in (6.21) to get up;
3: Substitute u, in (6.24) to get Apt1;
4. if ”)\n — >‘n+1H > ¢ then

5: n=n+1;

6: Go to 1;

7: end if

Proof. Let’s denote the objective function in (6.19) by f(A,u). Assume Ao and ug
are initial values of f (A, u). Using A in Algorithm 2 gives us u* and A* from (6.21)
and (6.24), respectively, which results in

J 5, u") < f (Ao, u”) < f (Ao, up) - (6.25)

Since fixing A, (6.20), or u, (6.22), leads into a convex function, each iteration in Algo-
rithm 2 monotonically gets closer to the optimal point. This along with the fact that
f (A u) is lower bounded at zero, guarantees the convergence of Algorithm 2 to the

optimal point. O

6.4.1.2 Non-negative least squares

We can derive A using the constraint of (6.18) as
A= Bl (Asr +u). (6.26)
Replacing the A derived in (6.26) back into the objective of (6.18) yields

2
min HBTu + ﬁBTsTH
u

st. u>0, (6.27)

which is a non-negative least squares optimization problem. Since Bf and \ﬁBTST are
real valued, we can use the method of [241] or its fast version [242] to solve (6.27). Multi-
ple loops exist in algorithm used to solve non-negative least squares problem which their
iterations depend on the problem parameters, hence, the complexity of the algorithm
may not be derived analytically [241]. However, we present numerical results in Sec-
tion 6.5 to evaluate the computational time of this algorithm. Similar to Section 6.4.1.1,

BT needs to be calculated once per symbol transmission.
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6.4.2 The Case of Strong Eavesdropper (N, > N;)

In this case, as (6.4) shows, E can estimate the signals on receiver antennas, however,
this process enhances the noise at . This capability of EF comes from the fact that it
has more antennas than 7' and owns global CSI knowledge, which puts E in a superior
position compared to 7" from hardware and CSI knowledge point of view. Nevertheless,
there is still one possible way to enhance the security. Ignoring the noise, the estimated
symbols by E are equal to those induced on receiver antennas, therefore, we can design
the precoder such that the SNR of the induced s, becomes equal to the required level
for successful decoding, which is defined by ACM. However, due to enhanced noise at
E, the SNR level at E is lower than that of the users, which may prevent successful
decoding of the M-PSK symbol at . Based on this, we can minimize the sum power of
the received signals at the users, |[Hyw]|%, which is the same as the sum power of the
estimated signals at E. Since the power of the received signal on each receiving antenna
is constrained, minimizing the sum power leads into minimizing the power of the signal
on each receiving antenna. This results in a sort of “security fairness” among the users.

Accordingly, the precoder design problem can be defined as

min [|Hyw]?
W

s.t. arg (hgrw) = arg (sn,.) , (6.28a)
Re (s5,) Re (h w) > \/ARe? (sp, ), (6.28Db)
Im (s, ) Im (b} w) > \/4Im? (s,,), (6.28¢)

forr=1,....,Rand n =1,..., N. Following a similar procedure as in Section 6.4.1, (6.28)

can be transformed to

min [Hyw|®
s.t. ARe(Hyw)—Im (Hyw) =0,
Re (S) Re (Hyw) > /vy,
Im (S) Im (Hyw) > /7 si. (6.29)

Using (6.11) to (6.12), we expand |[Hyw|? as

HHUWH2 = \AA}THngUl\XI + \XITHEQHUQVTI

=w' (H{, Hy, + H},Hy, ) w, (6.30)
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which along with (6.12) helps us to convert (6.29) into

min W’ (H{, Hy, + H{,Hy,) w
w
s.t. (‘AI‘IU1 — HU2) w =0,

Re (S)Hy,w > /7s,,
Im (S) Hy,w > /7s;. (6.31)

For (6.31) to be feasible, w has to be in the null space of AHy, — Hy,. Hence, we can
write w as a linear combination of the null space basis of AHy, — Hy, which yields
w = EX, where E and X are as in (6.14). This way, (6.31) boils down to*

min ME" (H{, Hy, + Hf,Hy,) EA

s.t. BA> /7sr, (6.32)

where B and sy are as in (6.17). Similar as in Section 6.4.1, in the following, we propose

and iterative algorithm and non-negative least squares formulation to solve (6.32).

6.4.2.1 Iterative solution

By introducing the new variable u, we can rewrite (6.32) as

win AET (H}, Hy, + H,Hy,) EX

st. BA=,/ysr+u. (6.33)

We can adapt Algorithm 2 to solve (6.32) by replacing the solution to A* as

N <ET (HY, Hy, + H}, Hy,) E

-1
+ BTB> BT (a+u), (6.34)
U

which is derived using a similar procedure as in Section 6.4.1.1. Similar as in (6.24), the

matrix inversion in (6.34) needs to be calculated only once per symbol transmission.

6.4.2.2 Non-negative least squares

Assuming that Hy, and Hyy, are non-singular, the matrix ET (HaHU1 + H(T]2 HUQ) Eis
positive definite, hence, its Cholesky decomposition ET (H{,IHU1 + HEQ HU2) E=LL7

“The design problem (6.32) can be extended to M-QAM modulation by changing the constraint into
equality which is beyond the scope of this thesis.



Chapter 6. Secure Directional Modulation via Symbol-Level Precoding 113

exists and can be used in order to rewrite (6.33) as
. T 2
min HL /\H
Au
st. BA=,/ysr+u (6.35)

We can derive A using the constraint of (6.35) as A = B (\ﬁsT + u) and replace it
back into the objective of (6.35) to get

2
min HLTBT u+ L7Bf WSTH
u

st. u>0, (6.36)

which is a non-negative least squares optimization problem. Since L”BT and LTBT\ﬁsT

are real valued, we can use [241, 242] to solve (6.36) in an efficient way.

6.5 Simulation Results

In this part, we present different simulation scenarios to analyze the security and the
performance of the directional modulation scheme for different precoding designs, and
compare them with a benchmark scheme. In all simulations, channels are considered to
be quasi static block Rayleigh which are generated using i.i.d. complex Gaussian random
variables with distribution~ CN(0, 1) and remain fixed during the interval that the M-
PSK symbols are being induced at the receiver. Also, the noise is generated using i.i.d.
complex Gaussian random variables with distribution~ CN(0,0?), and the modulation
order used in all of the scenarios is uncoded 8-PSK modulation. Here, we simulate each
precoder for both strong transmitter, N, < N, and strong eavesdropper, N, > V¢, cases.
This way, we show the benefit of the power minimizer precoder in the strong transmitter
case and the signal level minimizer precoder in the strong eavesdropper case. We use
the acronym “min” instead of minimization in the legend of the figures. We consider
the ZF at the transmitter [23] as the benchmark scheme since both our design and the

benchmark scheme use CSI knowledge at the transmitter to design the precoder.

In the benchmark scheme, ZF precoder is applied at the transmitter to remove the
interference among the symbol streams. The received signals at users and F in the

benchmark scheme are

vy = HyWsf +ny, (6.37)
vy =HgWsf + ng, (6.38)
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where W = H{]I (HUHIUJ )_1 is the precoding vector, s contains the symbols, and 3
is the amplification factor for the symbols which acts similar as /7 in the directional
modulation scheme. For a fair comparison, we pick up the same values for /4 and 3 in

the simulations.

When using the benchmark, F has two ways to estimate the symbols. In the first way,
given that N, > Ny, E can follow a similar approach as in Section 6.3 to estimate W as

follows

W = [HiH;] 'Hy,
—W + [HIH] 'Hn,, (6.39)

then, it can estimate the symbols by calculating HUW. In the second way, E can use

the knowledge of Hy to calculate W and directly estimate s3 as

B = [(HEW)HHEW} “EwW) Ty,

— 8B+ [(HEW)HHEW} _I(HEW)HnE (6.40)

where 50 is the estimated 83 at E. Since HyW is N, x N, [(H »W)1H EW] T (HyW)THEW =
I for N > Ny. Hence, in the benchmark scheme, FE can derive the precoder and es-
timate the symbols when N, > Ny. On the other hand, since our designed precoder
depends on both the channels and symbols, E' cannot derive the precoder and estimate
the symbols when N, > Ny. Broadly speaking, the base station has usually more anten-
nas than the users, hence, satisfying the condition N, < N; is more likely than N, < Ny,
specially with a large scale array. Therefore, it is more probable to preserve the security
in our design compared to the benchmark scheme. Furthermore, by comparing (6.4)
and (6.40), we see that F has to multiply W by Hy in our design whereas E does need

to do this in the benchmark scheme.

In the first scenario, the effect of number of transmitter antennas, Ny, on transmitter’s
consumed power and the SER at users and FE is investigated for power and signal level
minimization precoders in (6.6) and (6.28), and the benchmark scheme. The average
consumed power, Hw||2, with respect to Ny is shown in Fig. 6.4 for Ny = 8,10. As
N; increases, the power consumption of our design with power minimization precoder
converges to that of other two schemes. The power consumed by power minimization
precoder has the largest difference with other two schemes, almost 6 dB, for N; = Ny.
The signal level minimization precoder has almost the same power consumption as the
benchmark scheme. When the difference between N; and Ny increases, all three schemes

consume considerably less power.
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FIGURE 6.4: Average consumed power with respect to N; for our designed precoders
and the benchmark scheme when v = 15.56 dB and 32 = 15.56 dB.

The average total SER at users and the average SER at F with respect to N; are
presented in Fig. 6.5. Our designed precoders, power and signal level minimization, cause
considerably more SER at F compared to the benchmark scheme for a long range of N;.
Furthermore, as N, increases, there are cases, e.g., Ny = 16, that the error caused at FE
by the benchmark scheme decreases while the error caused by our designed precoders
remains almost fixed. As Fig. 6.6 shows, our design with signal level minimization
precoder and the benchmark scheme keep users’ SER constant since they preserve a
constant SNR for the received signals on receiver antennas. As mentioned earlier, when
the SNR of the received signal is fixed, ¥ may not successfully decode the symbols since
it suffers from enhanced noise and in contrast to the users, its SNR is probably lower
than the required level. Since the directional modulation with signal level minimization
imposes more error on F and consumes the same power as the benchmark scheme, it is
the preferable choice for secure communication when N, > N;. Comparing Figures. 6.4
and 6.5 shows when the difference between Ny and Ny goes above a specific amount,

the power and signal level minimization precoders converge in both power consumption
and the SER at E and users.

The instantaneous power of the induced symbols to average noise power in shown in
Fig. 6.7 for power and signal level minimizer precoders when N, > N;. As we see, even
with E being able to estimate the symbols, the SNR at E is lower than the users since F
has to perform extra process to estimate the symbols which increases the noise. On the
other hand, when using the power minimizer precoder, the SNR at F may go over the

threshold value while for the signal level minimizer precoder, the SNR at E is always



Chapter 6. Secure Directional Modulation via Symbol-Level Precoding 116

10°

= = =E, signal level min
\< ——E, power min

—b—E, benchmark E

e —¥*— Users, signal level min
O Users, benchmark
=+ = Users, power min

e
10

11 12 13 14 15 16

N,

Average symbol error rate

FIGURE 6.5: Average total SER at the users and average SER at E with respect to IV;
for our designed precoders and the benchmark scheme when Ny = 10, v = 15.56 dB,
and 32 = 15.56 dB.
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FIGURE 6.6: Average |Hyw|| for our designed precoders and the benchmark scheme
when v = 15.56 dB, and 5% = 15.56 dB.

kept at a fixed level below the required threshold, which imposes the maximum SER at
E.

In the second scenario, T’s power consumption, total SER at the users, and SER at F
are plotted with respect to total receiving antennas, Ny. Fig. 6.8 shows the average
consumed power with respect to Ny. In contrast to Fig. 6.4, increasing Ny decreases
the degrees of freedom and increases the power consumption. As Ny approaches N,
the difference between the power consumed by the power minimization precoder and the

other two schemes increases.
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and the benchmark scheme when v = 15.56 dB, and 5% = 15.56 dB.

We investigate the effect of Ny on average total SER at the users and the average SER
at F for all the schemes in Fig. 6.9. As Ny increases, the SNR provided by the power
minimization precoder goes more above the threshold. This reduces the average SER
at both users and £. On the other hand, regardless of difference between N; and Ny,
our design with signal level minimization precoder always preserves the SER at F in
the maximum value. When N; > N,.,., our design imposes more SER at E' compared to
the benchmark scheme since N, > Ny is required for E to estimate the symbols in the
benchmark scheme. As Ny approaches Ni, the SER imposed on E by the signal level

minimization precoder and the benchmark scheme get closer.
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FI1GURE 6.10: Average consumed power with respect to required SNR for our designed
precoders and the benchmark scheme when Ny = 19.

The next scenario inspects the effect of the required SNR for the received signals, v, on
T’s consumed power and the SER at users and E. The difference between the power
consumed by the power minimizer precoder and the other two schemes in low SNRs is
more than that of high SNRs. The average total SER at users and the average SER
at E with respect to v is shown in Fig. 6.11. As SNR increases, the difference between
the SER imposed on E by our design and the benchmark scheme increases, where the
difference is the most for N, = 20. The difference between the average total SER at
the users for power and signal level minimization precoders remains almost constant as

v increases. The effect of low-density parity-check (LDPC) codes on the average total
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FIGURE 6.11: Average SER versus required SNR for our designed precoders and the
benchmark scheme when N; = 20 and Ny = 19.
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FI1GURE 6.12: Average BER versus required SNR for our designed precoders and the
benchmark scheme when N; = 6, Ny = 6, and N, = 7.

bit error rate (BER) at the users and the average BER at E is shown in Fig. 6.12. For a
long range of SNRs, the usage of the LDPC at the users decreases the BER more than
that of E.

In the last scenario, we investigate the computational time of the proposed solutions for
the optimal directional modulation precoder design. Fig. 6.13 shows the average con-
sumed time with respect to system dimensions when designing the optimal precoders
using CVX package, iterative algorithm, and the non-negative least squares formulation

of Section 6.4.1.2. Both iterative algorithm and non-negative least squares consume
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FIGURE 6.13: Average consumed time with respect to number of transmit and receive
antennas to design the power minimization precoder using CVX package, iterative
algorithm, and non-negative least squares formulation when v = 15.56 dB and € = 1073,

considerably less time than CVX. Also, the average computation time of iterative al-
gorithm and non-negative least squares problem get closer as we move toward larger

system dimension.

6.6 Conclusions

We considered enhancing the security in a multi-user MIMO wireless network where a
multiple-antenna eavesdropper can potentially intercept the wireless transmission. We
used the directional modulation technique to follow a signal processing paradigm in
order to improve the security. The security is enhanced by increasing the SER at the
eavesdropper without using the eavesdropper’s CSI for M-PSK modulation, which is a
practical physical layer security scenario. In the directional modulation, the phase of
the received signal at the destination depends on both the channel and symbols; hence,
the receiver gets the phase of the intended M-PSK symbols while the eavesdropper gets
different phases. Our analysis showed that when the eavesdropper has less antennas than
the transmitter, the eavesdropper cannot get useful information from the received signal.
On the other hand, when the eavesdropper has more antennas than the transmitter, it
has to remove the effect of its own channel to estimate the precoding vector and then
multiply the estimated precoder by the users’ channel. This way, the eavesdropper
can estimate the received signal by the users; however, these operations enhance the
noise at the eavesdropper. This puts the users in a superior position compared to the

eavesdropper since the users can directly detect the symbols without requiring extra
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processes as in the eavesdropper. We proposed the power minimization for the case that
the eavesdropper has less antennas than the transmitter and the SNR minimization
precoder for the case than the eavesdropper has more antennas than the transmitter.
More specifically, the SNR minimization precoder keeps the SNR at the eavesdropper
below the required level for successful decoding. We developed an iterative algorithm and
non-negative least squares formulation as fast ways to calculate the precoders. Further
analysis on the security of the conventional precodes revealed that the eavesdropper can
estimate the users’ signals in this type of precoding when it has more antennas than
the users. On the other hand, the eavesdropper has to have more antennas than the
transmitter to estimate the symbols in the directional modulation precoding. Generally,
the transmitter has more antennas than the users; as a result, it is more likely to enhance
the security using the directional modulation precoding. This benefit comes from that
fact that the precoder in the directional modulation depends on both the symbols and
the channels, consequently, the eavesdropper cannot calculated it. On the other hand,
the conventional precoder depends only on the channel CSI and can be calculated by

the eavesdropper.

The simulation results showed when the eavesdropper has less antennas than the trans-
mitter, the SNR minimization precoder causes more SER at the eavesdropper at the
expense of more power consumption. As the difference between the antennas of the
transmitter and users increases, the power and SNR minimization precoders consume
almost the same power. Furthermore, the simulations verified that the SNR minimiza-
tion precoder keeps the SNR level at the eavesdropper below the required threshold for
successful decoding. The results showed that compared to the conventional precoder,
the directional modulation precoders cause more SER at the eavesdropper and consume
less power in most of the cases. This is due to the fact that our precoders depend on
both the CSI knowledge and the symbols while the conventional precoder only depends

on the CSI knowledge and the eavesdropper can calculate it.






Chapter 7

Conclusions and Future Work

7.1 Conclusion Summary

Physical layer security has shown to be a promising technique to strengthen the security
of wireless networks and can complement the higher level network security approaches
such as cryptography. The concept of keyless information-theoretic physical layer se-
curity proposed by Wyner [5] has undergone an enormous amount of research and has
been extended to different types of direct link and cooperative wireless communica-
tion networks. In addition, the researchers have employed signal processing approaches
to enhance the security. We reviewed the literature of both information-theoretic and
signal processing paradigms in Chapter 2. This thesis has focused on both information-
theoretic and signal processing approaches to improve the security of wireless commu-

nication networks.

We considered maximizing the sum secrecy rate in a satellite communications network
in Chapter 3. The studied SATCOM network employs network coding to initiate the
bidirectional data exchange. Network coding principle has been known to increase the
throughput of bidirectional SATCOM. We studied the use of XOR network coding to
improve the sum secrecy rate of bidirectional SATCOM. We showed through the anal-
ysis that if the RL has positive secrecy rate, the XOR network coding can help having
a perfectly secure FL transmission for the corresponding message. The beamforming
vector as well as the optimal time allocation between the RL and the FL were optimized
to improve the secrecy rate in the considered SATCOM network. We compared the sum
secrecy rate of the XOR network coding with the conventional scheme, which operates
without network coding, using realistic system parameters. Our results demonstrated
that the network coding based scheme outperforms the conventional scheme substan-

tially, especially when the legitimate users and the eavesdroppers are not close.
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Another focus of this thesis was studying the secrecy rate in wiretap interference channels
in Chapter 4 and investing the effect of interference on the secrecy rate. In this direction,
we studied the effect of interference on improving the secrecy rate in a two-user wireless
interference network where signals had a Gaussian distribution. We developed channel
dependent expressions for both altruistic and egoistic scenarios to define the proper
range of transmission power for the interfering user, namely user 2, in order to sustain
a positive secrecy rate for the other user, namely user 1. Closed-form solutions were
obtained in order to perform joint optimal power control for both users in the altruistic
and egoistic scenarios. It was shown that by decreasing the required QoS at user 2’s
destination, the secrecy rate in the interference channel improves and approaches to the
single-user case. Moreover, to fairly compare our scheme with the benchmark, the ratio
of the secrecy rate over the optimal consumed power by user 1 was introduced as a new
metric called “secrecy energy efficiency”, in order to take into account both the secrecy
rate and the consumed power. It was shown that in comparison with the single-user
case, the secrecy energy efficiency is considerably higher in the interference channel for

a wide range of QoS at user 2’s destination.

Since the energy efficiency is an important issue in wireless networks and is vital for
battery operated devices, we performed a joint study on secrecy rate and energy efficiency
in Chapter 5. In this chapter, we studied the secrecy energy efficiency and its trade-off
with the secrecy spectral efficiency in MISO and SISO wiretap channels. An optimal
beamformer was designed to maximize secrecy energy efficiency for the cases with and
without considering the minimum required secrecy spectral efficiency at the receiver
in a power limited system. We saw that as the minimum required secrecy spectral
efficiency increases, the performance of the optimal beamformer and the ZF beamformer,
the benchmark scheme, designs gets closer. Furthermore, as the number of antennas
decreases, the performance gap between the optimal and the ZF design increases. It
was observed that there is a specific amount of secrecy spectral efficiency below which
increasing secrecy spectral efficiency leads to higher secrecy energy efficiency, and above
which the opposite trend occurs. Depending on the power value corresponding to the
optimal secrecy energy efficiency, increasing secrecy spectral efficiency can increase or
decrease the secrecy energy efficiency. In addition, it was shown that adding more
antennas to the transmitter side increases secrecy energy efficiency considerably and
sustains the optimal secrecy energy efficiency for a longer range of minimum required

secrecy spectral efficiency.

Implementing the information-theoretic secrecy rate in real work communication net-
works has several challenges. One major drawback is that in order to design the system
parameters such as the optimal power or optimal beamformer, the perfect or partial

CSI of the eavesdropper is required. However, it may be impossible to get the CSI of
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an eavesdropper in practice, especially, when the eavesdropper is passive. In addition,
implementing the secrecy rate requires transmitting lower than the achievable rate and
the data need to follow a Gaussian distribution. To handle these challenges, we focused
on using the signal processing paradigm to enhance the security in the second part of
this thesis. In Chapter 6, we used the directional modulation technology and followed
a signal processing approach to enhance the security over multiuser MIMO channels
in the presence of a multi-antenna eavesdropper. When using directional modulation,
we showed that the eavesdropper cannot estimate the symbols if it has fewer antennas
than the transmitter. On the other hand, when it has more antennas than the trans-
mitter, additional processing is required before estimating the symbols which enhances
the noise, whereas the users can directly apply conventional detectors. In addition, we
derived the necessary condition for the feasibility of the optimal precoder for the direc-
tional modulation. We proposed an iterative algorithm and non-negative least squares
formulation to reduce the design time of the optimal precoders. The results showed that
in most of the cases our designed directional modulation precoders impose a considerable
amount of symbol errors on the eavesdropper compared to the conventional precoding.
This is due to the fact that our precoders depend on both the CSI knowledge and the
symbols while the conventional precoder only depends on the CSI knowledge and the
eavesdropper can calculate it. The simulations showed that regardless of the number of
antennas, the signal level minimization precoder keeps the SER at the eavesdropper on
the maximum value, and it consumes the same power as the power minimization pre-
coder when the difference between the number of transmit and receive antennas is above
a specific value. Simulations showed that LDPC coding for the signal level minimization
precoder improves the BER more at the users than the eavesdropper for a long range
of SNRs. In addition, the numerical examples showed that both the power and signal
level minimization precoders outperform the benchmark scheme in terms of the power

consumption and/or the imposed error at the eavesdropper.

7.2 Future Work

In the directional of the information-theoretic secrecy rate, the contribution of Chap-
ter 3 can be extended to the case where users and/or the eavesdroppers have multiple
antennas. Furthermore, friendly external jammers can be considered to improve the

secrecy rate when the satellite broadcasts the XORed content.

The research direction in enhancing the wireless security using signal processing paradigm
seems to be a promising direction. In particular, the eavesdropper CSI is not required

in this scheme. Furthermore, in contrast to the information-theoretic secrecy rate, the
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signal processing paradigm improves the security without reducing the achievable rate
and the data do not have to follow a Gaussian distribution. As an improvement, the
artificial noise can be incorporated into the directional modulation scheme to improve

the security when the transmitter has fewer number of antennas than the eavesdropper.



Appendix A

Proof of Theorem 3.3

Proof. In the objective function of problem (3.40), only the second argument of the
“min” operators, FL secrecy rates, include the beamforming vector. Hence, we focus on
these terms in our optimization. Using contradiction, we shall show that ||w?||> = 8Pg
and ||[w3|? = (1 — ) Ps must hold for the optimal solutions w} and wj. Assume that
w? and w} are the optimal solutions to (3.40) and satisfy ||w1||> < BPs and ||w*> <
(1 — B) Pg, then there exist constants a; > 1 and ap > 1 that satisfy |w*|*> = 8Ps and
|W5]* = (1 — B) Ps where W* = ayw} and W5 = apwj. Replacing w} by W} and w3

by w3 in the FL secrecy rates of the objective in (3.40), we get

2 2 UNT  <orx|2
0g, O, T ailhg Wi
bit (041):752103;< 5 2 ;

2 ST wor|2
o, 0, + aflhg g Wi

2 2 UNT k|2
og, Oty + aslhg Wi
f2(a2)=t310g< 5 L )

2 ST worl2
oy, 0, + aslhg g w3

(A1)

Also, we assume that in the RL and FL of each user the secrecy rate is nonzero which

translates into

o3, (o8, + IS, wil?) > o2, (o3, + [BL 5 wil?)  3wi, (A2)

T T
o, (of, + |hS7U1W2|2) > opy, (0, + |hS,E1W2‘2) , Jwa. (A.3)

According to the conditions in (A.2) and (A.3), we can see that fi(«) and fo(a) are
monotonically increasing functions in the parameters a; and ag. This contradicts that
w] and wj are the optimal solutions. Since adjusting the RL and FLs transmission
time balances the RL and FL secrecy rates, the RL bottleneck does not limit the FL
secrecy rate increment. Hence, the power constraint should be active. This completes

the proof. O
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Appendix B

Proof of Theorem 4.1

For the objective function in (4.12) to be positive, the following condition must hold
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B <0

P <

where B = |hU1,D1|2’hU2,E|2 - |hU2,D1|2‘hU1,E|2'
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Appendix C

Proof of Theorem 4.4

In order to find the optimal P, for (4.19), we analyze the derivative of the objective
function in (4.19). The derivative is defined at the top of next page in (C.61) where
@ = Paaxy |hvy.0y |7, b = |hts.0; |, € = Panaxy [Py E|?, and d = |hy, g|*. According to the
sign of the derivative, the optimal Py can be found. The denumerator in (C.61) is already
positive, so the sign of (C.61) directly depends on the sign of the numerator. The numer-
ator is a quadratic equation. According to the sign of the discriminant of the quadratic
equation [243, Section 5.1], denoted by A = 4abedo? (b—d) [—d (a+ o2) + b (c+02)],

the status of the roots can be defined. The sign of the discriminant can be defined as

1L If (b—d)[—d(a+02)+b(c+02)] <0, A<O.

2. If (b—d) [~d(a+02) +b(c+02)] >0, A>0.
Using the sign of A as well as the sign of the P»’s coefficients in the quadratic equation
which we denote them from highest order to constant as a’, b’ and ¢’ in (C.61), the sign

of the derivative can be defined and consequently the optimal value for P, Pj, can be

found as follows:

1. If A < 0, no root exists for the numerator in (C.61) leading to the following cases:

OOF _ bd(bc— ad) Py +2b(—a + ¢)dop Py + oy, (cdoy, — a (—cd +b(c+07)))
oPy (02 + bPy)*(c + 02 + dPy)?

(C.61)
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FIGURE C.1: Different cases for the sign of the derivative in (C.61).

(a) a’ > 0, then the derivative is strictly positive, as shown in Fig. C.1a, and is

monotonically increasing, so the highest value in the feasible set is the Ps.

(b) @’ < 0, then the derivative is strictly negative, as shown in Fig. C.1b, and

is monotonically decreasing, so the lowest possible value in the feasible set is
the Pj.

2. If A > 0, there exist two roots (two critical points for the objective function

in (4.19)) for the derivative leading to the following cases:

(a) Only one of the roots is positive. This happens when the product of the

roots [243, Section 5.1], (%/” is negative in the following cases:

i. @’ > 0 and ¢ < 0, as shown in Fig. C.1c. In this case, the critical point

is a minimum, so one of the vertices of the feasible domain is the Ps.

ii. @’ <0and ¢ > 0, as shown in Fig. C.1d. For this case, the critical point
is a maximum and if falls into the feasibility domain of P, it is the Ps.

Otherwise, one of the vertices of the feasible domain is the P35

/

(b) Both of the roots are positive. This happens when both the product, &, and
the sum [243, Section 5.1], —2—/,, of the roots are positive in two following

conditions:
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i

ii.

a >0,c >0and b <0, as shown in Fig. C.le. For the first case, the
derivative is first positive, then negative and then positive, respectively,
meaning that the first root results in a maximum and the second root
results in a minimum. If the smaller root falls in the feasibility domain
of P,, then by comparing it with the vertices of the feasibility domain,
Pj is found. If the smaller root is not in the feasibility domain of P, the

optimal value of P» is at one of the vertices of the feasibility domain.

a < 0,cd < 0and?b > 0, as shown in Fig. C.1f. In this case, we
find out that the larger root is a maximum. If the larger root falls in
the feasibility domain of P», then by comparing it to the vertices of the
feasibility domain of P,, we can find the P3. If the larger root is not in
the feasibility domain of P», we should find the optimal value of P» in

the vertices of the feasibility domain.

(c) Both of the roots are negative. This happens when the product of the roots,

C/

a’’

is positive and the sum of the roots, —Z—/,, is negative in two following

conditions:

i.

ii.

a >0, >0andd >0, as shown in Fig. C.1g. Since the transmission
power is always positive, the critical points cannot be the answer to Ps.
For the first case, the derivative is first positive, then negative and then
positive, respectively. As a result, the secrecy rate will be increasing after
P, > 0. So, P is the maximum possible value of P, inside the feasibility
set.

a <0,d <0andd <0, as shown in Fig. C.1h. As in Case 2(c)i,
the critical points cannot be the answer to Pj. For the first case, the
derivative is first negative, then positive and then negative, respectively.
So, the secrecy rate is decreasing after P» > 0. Hence, P35 is the minimum

possible value of P» inside the feasibility set.

In deriving the above closed-form optimal solutions, we have considered all the possible

cases of discriminant sign, A, and the coefficients of the quadratic equation, a’, &', and

c’. In each case, we have calculated all the critical points and if applicable, these critical

points are compared with the vertices of the domain to make sure that the derived power

value is globally optimum. Hence, the optimal solutions presented in Appendix 7?7 are

global optimum.
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