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Context: Soft-tissue biomechanics simulations with uncertainty

- Non-linear hyperelastic model as a stochastic PDE with random coefficients
- Partially-intrusive Monte-Carlo methods to propagate uncertainty
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Deformation of the beam: mean +/- standard deviation

- Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015]

- Ipyparallel and mpi4py to massively parallelise individual forward model runs across a
cluster



1) Monte-Carlo method

- A non-linear stochastic system to solve can be written as:
Flu,w)=0
Expected value of a quantity of interest [Caflisch 1998]:

B (ulw.) = [ 0 (u@w) dPw) = 5 30 (u@.w.) +o

—
Probability space: (2, F, P)

Random parameters: (v = (Wla W, ... 7WM)

- The classical Monte-Carlo approach:
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2) MC method with use of sensitivity information

Expected value of a quantity of interest [Cao et al. 2004]:
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- Tangent linear model to evaluate the sensitivity derivatives [Farrell et al. 2013]:
(9F(u, w) du — _ 8F(u, w) U: size of the deterministic problem
ou dw Ow M: number of random parameters
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First and Second moments of the displacement:




3) Multi-level MC method with use of PCE

Polynomial chaos expansion (PCE) [Wiener 1936]:

uk(az,w): Z uka(w)Ha(w)
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ML-MC method [Matthies 2008, Giles 2015]:

Algorithm 1 Algorithm for the multilevel Polynomial Chaos Expansion Monte-Carlo method
d

1: Solve the deterministic system with average parameters to obtain u
2: K+ 1
3: while no convergence do
4: for z=1to Z do
5: Generate w, = (wf,w3,...,w},)
6 Generate u*(w;) = Fpee (071 (wy)) or u? if k ==
7 Call to deterministic solver to do d (1 or more) iterations with starting values u*(w.)
and all random parameter function of w,
8: output: u¥(w.) after d iterations
9: end for
10:  Calculate Fe, the PCE of u® from Z values of w, and u*(w,)
11: k=k+1
12: end while




4) 3D Numerical simulations
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Fig: Mesh, initial configuration and deformed configuration.

- The stored strain energy density function for a compressible Mooney—Rivlin material:
W =Ci(I —3) +Cs(Is —3) + Di(det F — 1)°

- The total potential energy: 1l = Wdx — pgdz, (g = gy,9 = 9.81 m-3_2)

; D(l) —2.10° Pa
— 1 2 Co=2-10°P
- 2 RV with beta(2,2) distribution: p(wl) P ( N wl/ ) 02 — 10* Pa ’

p? =600 kg/m?



-0.11

-0.115

-0.12

-0.125¢

—0.131

4) 3D Numerical simulations
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4) 3D Numerical simulations
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4) 3D Numerical simulations
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Conclusion

- Partially-intrusive Monte-Carlo methods to propagate uncertainty

- By using sensitivity information and multi-level methods with polynomial chaos expansion
we demonstrate that computational workload can be reduced by one order of magnitude
over commonly used schemes

- Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015]

- Ipyparallel and mpi4py to massively parallelise individual forward model runs across a
cluster
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