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Identification approaches
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Error minimisation

Least squares method(conventional
approach):

σ = Eε

J = 1
2

N∑
i=1

(σi − Eεi )2

E = argmin
E

J(E )
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Frequentist inference
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Frequentist inference

10 6
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Frequentist inference

Pr(head) = 10
16 Pr(tail) = 6

16
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Frequentist inference: Young’s modulus identification

Method of maximum likelihood
(ML):

σi = Eεi + Ω with
πnoise(ω) = 1√

2πSnoise
exp

(
− ω2

2S2
noise

)

π(σi |E , Snoise) =

1√
2πSnoise

exp
(
− (σi − Eεi )2

2S2
noise

)
σi

εi
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Bayesian inference
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Bayesian inference

Original belief

Observations

New belief

π(cause|effect) =

prior︷ ︸︸ ︷
π(cause)×

likelihood︷ ︸︸ ︷
π(effect|cause)

π(effect)︸ ︷︷ ︸
evidence
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Bayesian inference: Young’s modulus identification

Bayes’ formula:

σi = Eεi + Ω

Ω : noise in stress measurement

π(E |σi ) = π(E)π(σi |E)
π(σi )

=⇒ π(E |σi ) = π(E)π(σi |E)
C

π(E |σi ) ∝ π(E )π(σi |E )
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Frequentist vs Bayesian
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Why do we pick BI?

BI treats with the parameters as random variables
You probably will not test hundreds of specimens and then the prior
(πprior ) may have a positive influence
For inverse problems, the prior (πprior ) regularises the system (avoids
ill-posedness)
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What have we accomplished?
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The End
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