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|dentification approaches
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Error minimisation

Least squares method(conventional
approach):
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Frequentist inference
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Frequentist inference
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Frequentist inference
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Frequentist inference: Young's modulus identification

Method of maximum likelihood
(ML):

o;i = E¢; + Q with
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Bayesian inference
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Bayesian inference
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Bayesian inference: Young's modulus identification

Bayes’ formula:
g;j = EE,' + Q

 : noise in stress measurement

n(Elo) = TEMGIE) — 7(E|g;) = TE(IE)

(o)

| 7(E|o) o w(E)m(oi[E) |

Hussein Rappel Bl for parameter identification 12 /19



Frequentist vs Bayesian
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Why do we pick BI?

@ Bl treats with the parameters as random variables

@ You probably will not test hundreds of specimens and then the prior
(7 prior) May have a positive influence

e For inverse problems, the prior (7pior) regularises the system (avoids
ill-posedness)
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What have we accomplished?
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What have we accomplished?
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What have we accomplished?
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What have we accomplished?

0.4 . T

95% credible region curves
¥ Measured value
Mean

0.25 - ]

o (GPa)
o
[\

0.15 1

0.1+ ]

0.05 + 1

€ x1073

Hussein Rappel Bl for parameter identification 18 /19



The End
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