
Software	Verification	and	Validation	Laboratory:

GemRBAC-DSL:	a	High-level	Specification	Language	for

Role-based	Access	Control	Policies

Ameni	Ben	Fadhel, Domenico	Bianculli	and	Lionel	Briand

Interdisciplinary	Centre	for	Security, Reliability	and	Trust

University	of	Luxembourg

TR-SnT-2016-4

ISBN:	978-2-87971-151-5

April	27, 2016

Version	1.0



GemRBAC-DSL: a High-level Specification Language

for Role-based Access Control Policies

Ameni Ben Fadhel, Domenico Bianculli, Lionel Briand

May 13, 2016

Abstract

A role-based access control (RBAC) policy restricts a user to perform op-
erations based on her role within an organization. Several RBAC models have
been proposed to represent different types of RBAC policies. However, the ex-
pressiveness of these models has not been matched by specification languages for
RBAC policies. Indeed, existing policy specification languages do not support
all the types of RBAC policies defined in the literature.

In this paper we aim to bridge the gap between highly-expressive RBAC
models and policy specification languages, by presenting GemRBAC-DSL, a
new specification language designed on top of an existing, generalized conceptual
model for RBAC. The language sports a syntax close to natural language, to
encourage its adoption among practitioners. We also define semantic checks to
detect conflicts and inconsistencies among the policies written in a GemRBAC-
DSL specification. We show how the semantics of GemRBAC-DSL can be
expressed in terms of an existing formalization of RBAC policies as OCL (Object
Constraint Language) constraints on the corresponding RBAC conceptual model.
This formalization paves the way to define a model-driven approach for the
enforcement of policies written in GemRBAC-DSL.

1 Introduction

In a role-based access control (RBAC) system, a user’s request to access a resource or
perform an operation is allowed or denied based on access control policies (also called
authorization constraints) that take into account the role of the requester. Various
types of RBAC policies have been proposed in the literature; in this paper, we refer
to the policies classified in the taxonomy recently proposed in [7]. This taxonomy
identifies eight types of RBAC policies: prerequisite [4,23], cardinality [2], precedence
and dependency [24], role hierarchy [23], separation of duty (SoD) [3, 25], binding of
duty (BoD) [27], delegation and revocation [13, 28], and contextual (both temporal
and spatial) [10,19].

Several RBAC models have been proposed to characterize the conceptual enti-
ties that are needed to represent these policies. The original, standardized RBAC96
model [23] supports only prerequisite, cardinality, role hierarchy, and simple SoD poli-
cies. Various extensions of this model have been defined to support additional policies.
For example, support for delegation policies have been added in the models proposed
in [13, 26, 28, 29]; the models introduced in [5, 9, 10, 19, 22] have added support for
contextual policies. In our previous work [7] we proposed the GemRBAC model,
designed with the goal of integrating, in a coherent and comprehensive model, all the

2



conceptual entities required to express the various types of RBAC polices proposed in
the literature. We have also proposed the GemRBAC+CTX model [8], which is an
extension of the GemRBAC model that adds support for richer and more expressive
contextual policies.

On a par with the definition of complex and more expressive RBAC models, there
is the problem of defining policy specification languages that are at least as expressive
as the policies supported by the existing models. While RBAC models provide the
fundamental concepts needed to formalize various types of RBAC policies, policy spec-
ification languages represent a means to express RBAC policies that can be used (for
both policy definition and enforcement) in practice. One group of proposals to define
such languages revolves around XACML [21], the OASIS standard for defining access
control policy languages. Since XACML does not support RBAC models natively, it
has been extended with profiles specific to RBAC [1,6]. Other types of RBAC policy
languages are ontology-based [15, 16] or logic-based [3, 12, 17] languages. The main
problem of existing RBAC specification languages is that they do not support all the
types of RBAC policies defined in the literature. For example, a simple delegation
transfer policy like “any user with role r1 can transfer her role to any user assigned
to role r2” cannot be expressed in any of the existing languages. Moreover, the se-
mantics of some of these languages is not executable for the purpose of enforcing the
policies specified with them. Furthermore, many of them are not designed to be used
by practitioners.

These problems have practical implications, since the lack of expressive policy spec-
ification languages limits the adoption, among practitioners, of the more expressive
RBAC models proposed in the literature. In turn, this situation makes practitioners
use simple(r) RBAC models, resulting in systems underspecified from the point of view
of access control. For example, the industrial partner for the research project in which
this work has been carried out, is a provider of situational-aware information systems
for emergency scenarios; given the criticality of such scenarios, highly-detailed role
access control policies are an essential need for them. However, although our partner
is aware of state-of-the-art proposals for expressive RBAC models, it could not adopt
them in practice, because of the lack of a policy specification language as expressive as
them. Besides the expressiveness, another requirement on the specification language
stated by our partner is the possibility of interpreting the policies written in the lan-
guage, with the purpose of automatically generating policy enforcement mechanisms.

In this paper we aim to bridge the gap between highly-expressive RBAC models and
policy specification languages, by presenting GemRBAC-DSL, a new specification
language for RBAC policies. The language has been designed to cover the various types
of RBAC policies captured by the GemRBAC+CTX model. Being based on this
model, the language is quite expressive (see Section 3 for a detailed comparison with
the state-of-the-art). Moreover, GemRBAC-DSL sports a syntax close to natural
language, to encourage its adoption among practitioners. Furthermore, we define
semantic checks that can be run on a GemRBAC-DSL policy specification, to detect
conflicting and inconsistent policy definitions (e.g., a conflict between two policies,
one defining an SoD policy and another one defining a BoD policy for the same set of
permissions). We have built an editor for the language based on the XText framework
and the Eclipse platform, and integrated the semantics checks in it.

The GemRBAC+CTX model and its ancestor GemRBAC, which have inspired
the design of GemRBAC-DSL, come with an operationalization of the semantics of
the policies they support. This operationalization is defined following a model-driven
approach, in which the semantics of each RBAC policy is expressed as an OCL (Object

3



Constraint Language) constraint on the RBAC model. Since the expressiveness of
GemRBAC-DSL is the same as that of the GemRBAC+CTX model, we define
the semantics of GemRBAC-DSL by mapping the constructs of the language to the
corresponding OCL constraints defined for the GemRBAC+CTX model in [7,8]. This
mapping allows users of GemRBAC-DSL to benefit from the model-driven approach
for policy enforcement proposed in [7, 8]. Indeed, a policy written in GemRBAC-
DSL can be enforced by evaluating the corresponding OCL constraint (as defined
in the mapping) on an instance of the GemRBAC+CTX model obtained from the
system in which the policy is being enforced. This model-driven approach for policy
enforcement can be used both at design time and at run time and relies on standardized
technologies, supported by industry-strength tools (such as Eclipse OCL [14]).

Summing up, the main contributions of the paper are: (a) the definition of
the GemRBAC-DSL specification language for RBAC policies; (b) the definition
of the semantic checks for a GemRBAC-DSL policy specification; (c) a publicly-
available implementation of an editor to write policies in GemRBAC-DSL and check
for potential conflicts and inconsistencies among them.

The rest of the paper is organized as follows. Section 2 illustrates a motivating
example for this work. Section 3 discusses the state of the art. Section 4 presents
the language, illustrating the syntax and providing examples for each type of policy.
Section 5 defines the semantic checks for policies expressed in GemRBAC-DSL. Sec-
tion 6 provides a brief overview of the semantics of the language. Section 7 discusses
the design trade-offs and the limitations of GemRBAC-DSL, as well as its adoption
by our industrial partner. Section 8 concludes the paper and provides directions for
future work.

2 Motivating example

In this section we illustrate an example of RBAC policy specifications that motivates
our work. The example represents a subset of a real-world case study, defined in
collaboration with our industrial partner, a provider of situational-aware information
systems for emergency scenarios. The case study deals with the specification of the
RBAC policies for a Web application that provides information related to humanitar-
ian missions, ranging from satellite images to highly-confidential data about refugees
and casualties. For space and confidentiality reasons we consider a small, sanitized
subset of the system, but provide a representative list of policies that covers exhaus-
tively all the types of RBAC policies used in the policy specifications of the case
study.

We consider a humanitarian mission taking place from February 12, 2016 to June
8, 2016 in a geographical area symbolically known as “Zone1 ”, delimited by four
segments with coordinates (longitude and latitude in decimal degrees, elevation in
meters): (15:24:200)–(20:27:200), (20:27:200)–(17:27:200), (17:27:200)–(15:27:200),
(15:27:200)–(15:24:200). The mission defines five roles (admin, assistant, trainee, par-
ticipant, analyst), five permissions (add casualty, modify casualty, delete casualty,
analyse satellitePhoto, save satellitePhoto), four operations (create, read, update,
delete). The access control policies for this mission are:
PL1: To acquire role trainee, a user must be assigned to role participant.
PL2: Role assistant cannot be assigned to more than three users.
PL3: Role trainee is enabled only if role admin is active. The latter cannot be

deactivated if the role trainee is still active.

4



PL4: If a user acquires role assistant, she will also acquire all its junior roles.
PL5: A user can acquire either role assistant or trainee.
PL6: A user can activate roles assistant and admin at the same time, as long as she

does not perform all the operations (create, read, update, delete) on the same
object (of type “casualty record”).

PL7: The operations allowed by permissions add casualty, modify casualty, and
delete casualty should be performed by users having the same role.

PL8: In case a user assigned to role admin is on leave, she has to delegate all the
permissions associated with her role to another user who is assigned to role
assistant. The delegation lasts for two weeks; during this period the delegator
is still allowed to execute the permissions associated with the role she has del-
egated. Moreover, the delegated role can be further delegated (by a delegate),
with a maximum delegation depth of 2.

PL9: The delegation regulated by policy PL8 can be revoked by any user assigned
to role admin. The revocation will not affect the (further) delegations of role
admin possibly performed by delegated users. Moreover, the revocation will
only remove the affected users from the delegated role admin, and will not im-
pact the other roles possibly acquired through a role hierarchy (of the delegated
role).

PL10: Role analyst is a part-time job; it can be active for a maximum duration of 4
hours per day.

PL11: Role participant is enabled for the entire duration of the mission.
PL12: Permission add casualty is assigned to role trainee only during weekdays from

8:00 to 17:00.
PL13: Role admin is enabled only in zone Zone1.
PL14: Role trainee is enabled at 100 meters from the boundary inside Zone1.

The policies above show that defining the access control requirements of our exam-
ple requires to deal with several types of policies (see taxonomy in [7]): prerequisite
(PL1), cardinality (PL2), precedence (PL3), role hierarchy (PL4), SoD (PL5, PL6),
BoD (PL7), delegation (PL8), revocation (PL9), contextual (PL10–PL12). To express
these policies security engineers need a policy specification language expressive enough
to support all of them. In the next section we review existing RBAC specification lan-
guages in terms of the policy types they support.

3 State of the art

One of the first policy languages proposed for RBAC is RCL2000 [3], which is a for-
mal language based on first-order predicate logic and defined on top of the RBAC96
model. The language supports only role hierarchy and separation of duty policies.
FORBAC [12] is also an extension of RBAC based on first-order logic. It adds support
for attributes in policies and numeric constraints; both features enable the definition
of more complex policies, like those containing contextual constraints. However, FOR-
BAC does not support role hierarchy, delegation, cardinality, and separation of duty.
Furthermore, a limitation shared both by RCL2000 and FORBAC is the difficulty of
use by practitioners, since both languages require a strong mathematical background.
Tower [17] is a high-level specification language for access control policies; it supports
delegation and history-based SoD policies. However, delegation and revocation poli-
cies are defined only as administrative operations for role-to-user assignment, i.e., in
terms of adding/removing a role to/from a user.

5



Table 1: Support of policies in RBAC languages

Prq RH Card Prec SoD BoD Context Deleg Rev

S D Obj Op His T L

RCL2000 [3] - + + - + + - - - - - - - -
FORBAC [12] + - - - - - - - - - + + - -
Tower [17] + + + + + + + + + - - - +/- +/-
XACML [1,6] + + + - + + - - - - + + GT -
X-RBAC [18] + + + - + + + - - - + + - -
X-GTRBAC [11] + + + - + + + - - - - + - -
ROWLBAC [16] + + + - + + + - - - - - GT -
XACML+OWL [15] + + + + + + + + + - - - - -
RBAC-DSL [26] + + + + + + + + + - - - GT +

Legend. Prq: Prerequisite; RH: Role Hierarchy; Card: Cardinality; Prec: Precedence and De-
pendency; S: Static SoD; D: Dynamic SoD; Obj: Object-based DSoD; Op: Operational-based
DSoD, His: History-based DSoD, Deleg: Delegation.

Another research stream considers XML-based languages, starting from the def-
inition of XACML (eXtensible Access Control Markup Language) [21]. XACML is
a language for access control, standardized by the OASIS community. The XACML
standard provides not only the specification language for access control policies but
also a reference enforcement architecture. XACML is a general-purpose language for
expressing various types of access control models and policies; being general-purpose, it
does not support RBAC natively (e.g., sessions are not supported). RBAC support can
be added to XACML by means of profiles. The OASIS RBAC profile for XACML [6]
supports only role hierarchy and static separation of duty policies. Another RBAC
profile of XACML [1] supports separation of duty, delegation, and context-based poli-
cies. X-RBAC [18] is an XML-based specification language for RBAC policies in
multi-domain environments where authorization policies are distributed over several
domains. X-RBAC supports context-based, role hierarchy, cardinality and separa-
tion of duty policies. X-GTRBAC [11] is a language defined on top of the GTRBAC
model [19] for specifying RBAC policies for heterogeneous and distributed enterprise
resources. X-GTRBAC adds the concept of user’s credentials to the GTRBAC model:
users are grouped according to their credentials. X-GTRBAC supports cardinality,
separation of duty, role hierarchy, and temporal policies.

Another language, conceptually similar to XACML, is xfACL (eXtensible Func-
tional Language for Access Control) [20]. xFACL is a general-purpose access control
language, which tries to combine the benefits of XACML and RBAC. It is based on
the specification of attributes for entities involved in decisions (e.g., users, operations)
and supports auxiliary policies to extend its expressiveness. The latter is also its main
drawback, since support for each type of policy has to be manually added by means
of an auxiliary function.

Other languages deal with the integration of ontologies to provide a semantic inter-
pretation of access control policies across different, heterogenous organizations, and to
support advanced access control policies. For instance, ROWLBAC [16] is an ontology-
based language that combines OWL (Web Ontology Language) and RBAC properties.
The language supports the specification of prerequisite, role hierarchy, SoD, and del-
egation policies. The XACML+OWL framework [15] combines OWL and XACML.
Role hierarchy and separation of duty policies are specified using OWL, while the

6



XACML engine is used to make decisions for user access requests. The interactions
between the XACML engine and the OWL ontology are defined through semantic
functions.

RBAC DSL [26] is a domain-specific language for RBAC based on UML diagrams
and OCL constraints. The corresponding meta-model includes two levels: the policy
level and the user Access Level. The first level defines the basic RBAC concepts:
roles, resources, permissions and operations. At this level, SoD, cardinality, and role
hierarchy policies are represented as UML attributes and associations. The second
level defines the concepts of user, session, resource access, and snapshot (i.e., an
instance of an RBAC model at a specific time point). A predecessor/ successor relation
is defined for the concept of user, session and access to identify the individual users,
sessions and accesses over time. At this level, authorization policies are defined as
OCL constraints based on the information available in the policy level. RBAC DSL
supports also delegation and revocation policies. However, as acknowledged also in [8],
defining RBAC policies as OCL constraints can be difficult, since it requires a high
level of knowledge and expertise with OCL, especially in our case in which OCL
constraints tend to be rather complex to express RBAC policies.

Table 1 summarizes the support for the various types of RBAC policies in the
policy specification languages discussed above. The types of policies used for the
comparison have been taken from the taxonomy in [7] and reflect the ones we have
observed in our industrial case study. We remark that the specification of some type
of policies, such as context-based and delegation, depends not only on the language
but also on the underlying model.

One can see that none of these languages is expressive enough to express all the
policies presented in Section 2, related to our industrial case study. Moreover, the
analysis has also shown that the majority of existing policy specification languages
is based on some formalism (either first-order logic fragments, including OCL, or
ontology languages based on description logic) that require a strong theoretical and
mathematical background, which is rarely found among practitioners. Hence, we
contend that there is a need for an expressive specification language for RBAC policies
that can also be used by practitioners.

4 The GemRBAC-DSL language

The GemRBAC-DSL policy specification language has been designed as a domain-
specific language built on top of the GemRBAC+CTX model. The choice of the
underlying model for the language has been dictated by the need to support a large
variety of RBAC policies, like the ones used for the specification of our industrial
case study (see Section 2). Hence, the language inherits the expressiveness of the
GemRBAC+CTX model (see [7, 8]).

The main goal during the design of the language has been to encourage its use
among practitioners. Indeed, the language captures the main RBAC concepts that
security analysts are familiar with and allows for their specification using a syntax
close to natural language. Furthermore, the language design process has incorporated
the feedback provided by the security analysts of our industrial partner, who have
commented on the expressiveness and the clarity of the language. At the time of
writing, the language is being introduced into the security development lifecycle of our
partner, to support the top-down definition of access control policies and enforcement
mechanisms.

7



4.1 Syntax

The syntax of GemRBAC-DSL is shown in Fig. 1, using the Backus-Naur Form
(BNF) notation: non-terminal symbols are enclosed in angle brackets; terminal sym-
bols are enclosed in single quotes; (derivation) rules are denoted with the ::= symbol;
alternatives within a rule are indicated using a vertical bar; a star stands for zero
or more occurrences of an element; a plus stands for one or more occurrences of an
element; square brackets denote optional elements.

〈RBAC-definition〉 ::= 〈preamble〉 〈policies〉
〈preamble〉 ::= 〈users〉 〈roles〉 〈permissions〉 〈operations〉 〈role-hierarchy〉
〈permission-hierarchy〉 〈geofences〉

〈users〉 ::= ‘users:’ 〈user〉 (‘,’ 〈user〉)* ‘;’

〈roles〉 ::= ‘roles:’ 〈role〉 (‘,’ 〈role〉)* ‘;’

〈permissions〉 ::= ‘permissions:’
〈permission〉 (‘,’ 〈permission〉)* ‘;’

〈operations〉 ::= ‘operations:’
〈operation〉 (‘,’ 〈operation〉)* ‘;’

〈id〉 ::= (‘a’-‘z’ | ‘A’-‘Z’ | ‘0’-‘9’)+

〈user〉 ::= 〈id〉
〈role〉 ::= 〈id〉
〈permission〉 ::= 〈id〉
〈operation〉 ::= 〈id〉
〈role-hierarchy〉 ::= ‘role-hierarchy:’

(〈rHierarchy〉 (‘,’ 〈rHierarchy〉)* | ‘none’) ‘;’

〈permission-hierarchy〉 ::= ‘permission-hierarchy:’
(〈pHierarchy〉 (‘,’ 〈pHierarchy〉)* | ‘none’) ‘;’

〈rHierarchy〉 ::= 〈role〉 ‘: {’ 〈role〉 (‘,’ 〈role〉)* ‘}’
〈pHierarchy〉 ::= 〈permission〉

‘: {’ 〈permission〉 (‘,’ 〈permission〉)* ‘}’
〈geofence〉 ::= ‘geofences:’ (〈geofence〉 (‘,’ 〈geofence〉)*

| ‘none’) ‘;’

〈geofence〉 ::= 〈id〉
〈policies〉 ::= ‘policies:’ (〈policy〉‘;’)+

〈policy〉 ::= 〈id〉 ‘:’ (〈Prerequisite〉 | 〈Cardinality〉
| 〈PrecEnabling〉 | 〈Hierarchy〉 | 〈SSoD〉 | 〈DSoD〉
| 〈BoD〉 | 〈Delegation〉 | 〈Revocation〉 | 〈ContextPolicy〉)

Figure 1: Grammar of GemRBAC-DSL

A GemRBAC-DSL policy specification (captured by the start symbol
〈RBAC-definition〉) contains a 〈preamble〉 and a list of 〈policies〉. The 〈preamble〉
contains the declaration of the main entities that will be used in the rest of the
specification1: the list of users 〈users〉, the list of roles 〈roles〉, the list of permissions

1Notice that the assignments of users to roles, of permissions to roles, and of operations to per-

8



〈permissions〉, and the list of operations 〈operations〉. The 〈preamble〉 contains also the
list 〈role-hierarchy〉 of role hierarchy relations, and the list 〈permission-hierarchy〉 of
permission hierarchy relations. Within these lists, each hierarchy relation (〈rHierarchy〉
for role hierarchy and 〈pHierarchy〉 for permission hierarchy) declares the parent (role
or permission) followed by the list of its junior (roles or permissions, respectively).
The absence of role (or permission) hierarchies is explicitly denoted with the keyword
‘none’. The 〈preamble〉 ends with the list 〈geofences〉 of logical locations, i.e., sym-
bolic abstractions that refer to real physical locations [8]. All the lists used in the
〈preamble〉 are comma-separated and contain alphanumeric identifiers. Finally, the
list of policies 〈policies〉 contains the actual policy specifications, where each policy is
composed by an identifier and by its body.

The following subsections illustrate each type of policy supported by GemRBAC-
DSL; for each policy, we include a short definition, the syntax, its explanation, and
an example of specification based on the policies defined in Section 2.

4.2 Prerequisite policy

A prerequisite policy defines a precondition on a role or a permission assignment: to
acquire a role (or a permission), a user must have been already assigned to another
role (or permission) [4, 23]. The syntax for this policy is:

(1)〈Prerequisite〉 := 〈PrereqRole〉 | 〈PrereqPermission〉
(2)〈PrereqRole〉 ::= ‘assign-role’ 〈role1 〉 ‘prerequisite’ 〈role2 〉
(3)〈PrereqPermission〉 ::= ‘assign-permission’ 〈permission1 〉 ‘prerequisite’

〈permission2 〉

The syntax uses keywords for defining a prerequisite policy either at the role (keyword
‘assign-role’ in rule 2) or at permission level (keyword ‘assign-permission’ in
rule 3). In rule 2, 〈role2 〉 corresponds to the precondition for the assignment of
〈role1 〉. Similarly, in rule 3, 〈permission2 〉 corresponds to the precondition for the
assignment of 〈permission1 〉. For example, the prerequisite policy on role assignment
PL1 is expressed in GemRBAC-DSL as:

PL1: assign-role trainee prerequisite participant;

4.3 Cardinality policy

A cardinality policy defines a bound on the cardinality of role activation and assign-
ment relations [2]. Its syntax is:

(1)〈Cardinality〉 ::= 〈CardActivation〉 | 〈CardUser〉 | 〈CardPermission〉
| 〈CardRoleToUser〉 | 〈CardRoleToPermission〉

(2)〈CardActivation〉 ::= ‘maxActiveRoles =’ 〈integer〉
(3)〈CardUser〉 ::= ‘maxUsers =’ 〈integer〉 [‘only-for-role’ 〈role〉]
(4)〈CardPermission〉 ::= ‘maxPermissions =’ 〈integer〉 [‘only-for-role’ 〈role〉]
(5)〈CardRoleToUser〉 ::= ‘maxRoles-User =’ 〈integer〉 [‘only-for-user’ 〈user〉]

missions are not specified with GemRBAC-DSL. We assume that these assignments are defined in
the RBAC system on which the policies are going to be enforced.

9



(6)〈CardRoleToPermission〉 ::= ‘maxRoles-Permission =’ 〈integer〉
[‘only-for-permission’ 〈Permission〉]

GemRBAC-DSL supports five types of cardinality policies: maximum number of
active roles within a session (rule 2), maximum number of users assigned to a role
(rule 3), maximum number of permissions assigned to a role (rule 4), maximum number
of roles assigned to a user (rule 5), maximum number of roles assigned to a permission
(rule 6). In rules 2–6, 〈integer〉 represents the cardinality bound. In rules 3–6, if
the optional element is omitted, it means that the bound will apply, respectively, to
all roles (rules 3–4), all users (rule 5), all permissions (rule 6). For example, the
cardinality policy on user-to-role assignment PL2 is expressed in GemRBAC-DSL
as:

PL2: maxUsers = 3 only-for-role assistant;

4.4 Precedence and dependency policies

A precedence policy establishes a precedence relationship between the enabling of a
role and the activation of another one. A dependency policy restricts the deactivation
of a role if another one is already active [24]. The syntax is:

(1)〈PrecEnabling〉 ::= ‘enable’ 〈role1 〉 ‘ if active’ 〈role2 〉
[‘,’ 〈timeShift〉] [‘deactivation-dependency’]

(2)〈timeShift〉 := ‘after’ 〈integer〉 〈timeUnit〉
(3)〈timeUnit〉 ::= ‘second’ | ‘minute’ | ‘hour’ | ‘day’ | ‘week’ | ‘month’ | ‘year’

In rule 1, 〈role2 〉 denotes the role whose activation has to precede the enabling of
the role denoted by 〈role1 〉. An optional 〈timeShift〉 can be specified to define the
amount of time that has to pass between the role enabling and the role activation
events (rules 2–3). The optional keyword ‘deactivation-dependency’ is used to
express a dependency policy. For example, the precedence and dependency policy
PL3 is expressed in GemRBAC-DSL as:

PL3: enable trainee if active admin deactivation-dependency;

4.5 Role hierarchy policy

A hierarchy policy states that assigning a role r (respectively, a permission p) to a
user u (respectively, a role s) implies assigning to u (respectively, s) also all the junior
roles of r (respectively, the sub-permissions of p) [23]. Its syntax is defined as:

(1)〈Hierarchy〉 ::= ‘trigger-’ (〈RoleHierarchy〉 | 〈PermissionHierarchy〉)
(2)〈RoleHierarchy〉 ::= ‘role-hierarchy’ 〈role〉
(3)〈PermissionHierarchy〉 ::= ‘permission-hierarchy’ 〈permission〉

The syntax uses two different keywords for distinguishing between role hierarchy
(rule 2) and permission hierarchy (rule 3). Notice that while the preamble of a
GemRBAC-DSL specification declares the role and permission hierarchy relations
for the system, a security analyst has to explicitly define a role hierarchy policy (for a
role or permission) to put the hierarchy relation(s) into effect. For example, the role
hierarchy policy PL4 can be expressed as:

PL4: trigger-role-hierarchy assistant;

10



4.6 Separation of duty policy

A separation of duty (SoD) policy defines a mutual exclusion relation between users,
roles, or permissions; mutually-exclusive entities involved in a SoD relation are called
conflicting. SoD can be static or dynamic.

4.6.1 Static Separation of duty (SSoD)

An SSoD policy restricts the assignment of mutually exclusive roles, users, or permis-
sions [2, 3]. Its syntax is:

(1)〈SSoD〉 ::= 〈SSoDCR〉 | 〈SSoDCU 〉 | 〈SSoDCP〉
(2)〈SSoDCR〉 ::= ‘conflicting-roles-assignment’ 〈role〉 (‘,’ 〈role〉)+

[‘on permission’ 〈permission〉]
(3)〈SSoDCU 〉 ::= ‘conflicting-users-assignment’ 〈user〉

(‘,’ 〈user〉)+ [‘on role’ 〈role〉]
(4)〈SSoDCP〉 ::= ‘conflicting-roles-assignment’

〈permission〉 (‘,’ 〈permission〉)+ [‘on role’ 〈role〉]

SSoD policies can define conflicting roles (rule 2), conflicting users (rule 3), and
conflicting permissions (rule 4). Rules 2–4 have an optional block that indicates that
the SSoD policy is applied only when the roles are assigned to a specific permission
(rule 2) and when the users (rule 3) or the permissions (rule 4) are assigned to a
specific role. For example, the SSoD policy on conflicting roles PL5 is expressed in
GemRBAC-DSL as:

PL5: conflicting-roles-assignment assistant , trainee;

4.6.2 Dynamic Separation of duty (DSoD)

A DSoD policy allows the assignment of conflicting roles but forbids their activation
in the same session [25]. GemRBAC-DSL supports the specification of four types of
DSoD: simple, object-based, operational-based, and history-based DSoD. We refer the
reader to [7, 25] for more details about these types of policies. The syntax for DSoD
policies is similar to the one for SSoD policies but uses different keywords:

(1)〈DSoD〉 ::= 〈DSoDCU 〉 | 〈DSoDCP〉 | 〈DSoDCR〉
(2)〈DSoDCU 〉 ::= ‘conflicting-users-activation’ 〈user〉 (‘,’ 〈user〉)+

[‘on role’ 〈role〉]
(3)〈DSoDCP〉 ::= ‘conflicting-permissions-activation’

〈permission〉 (‘,’ 〈permission〉)+ [‘on role’ 〈role〉]
(4)〈DSoDCR〉 ::= ‘conflicting-roles-activation’ 〈role〉 (‘,’ 〈role〉)+

[‘depending-on-business-task-list’ 〈operation〉 (‘,’ 〈operation〉)+]
[‘on-same-object’]

The optional keyword ‘on-same-object’ in rule 4 is used to express an object-based
DSoD policy. Similarly, the keyword ‘depending-on-business-task-list’ followed
by a list of 〈operation〉s is used to specify an operational-based DSoD. A history-based
DSoD is defined by combining these two keywords. For example, the history-based
DSoD policy PL6 is expressed in GemRBAC-DSL as:

11



PL6: conflicting-roles-activation assistant , admin

depending-on-business-task-list create ,read ,update ,delete

on-same-object;

4.7 Binding of duty policy

A binding of duty (BoD) policy states that the operations of bounded permissions
should be performed by the same role or subject [27]. Its syntax is:

〈BoD〉 ::= ‘bounded-permissions’ 〈permission〉 (‘,’ 〈permission〉)+
(‘role-BoD’ | ‘subject-BoD’)

The syntax distinguishes between a role- or a subject-based policy with the two key-
words ‘role-BoD’ and ‘subject-BoD’. The bounded permissions are specified as a
list of 〈permission〉s. For instance, the role-based BoD policy PL7 is expressed in
GemRBAC-DSL as:

PL7: bounded-permissions add_casualty , modify_casualty ,

delete_casualty role-BoD;

4.8 Delegation policy

A delegation policy allows a delegator (a user or any user assigned to a specific role) to
delegate her role to delegates (the users or roles receiving the delegation). GemRBAC-
DSL adopts the concepts of delegation presented in [13, 28] and integrated into the
GemRBAC model [7], in which a delegation can be single or multi-step, total or
partial, of type grant or transfer. A delegation of type transfer can be either strong
or weak. Moreover, a weak transfer delegation can be of type static or dynamic. The
syntax of a delegation policy is defined below:

(1)〈Delegation〉 ::= (‘user ’〈user〉 | ‘role ’〈role〉) ‘can-delegate’ 〈role〉
(‘to users’ 〈user〉 (‘,’ 〈user〉)* | ‘to roles’〈role〉 (‘,’ 〈role〉)*) ‘as’
(‘total’ | ‘partial with permissions (’〈delegated-permissions〉‘)’) ‘,’
(‘grant’ [〈duration〉] (‘single’ | ‘multi-step’ 〈integer〉)
|‘transfer’ (‘strong’|‘weak-static’|‘weak-dynamic’))

(2)〈delegated-permissions〉 ::= 〈permission〉 (‘,’ 〈permission〉)*
(3)〈duration〉 ::= ‘for’ 〈integer〉 〈timeUnit〉

In the syntax, keywords ‘user’ and ‘role’ are used to denote the delegator. The key-
word ‘can-delegate’ denotes the 〈role〉 being delegated. The list of delegate 〈user〉s is
denoted by the keyword ‘to users’; similarly, the keyword ‘to roles’ denotes the list
of delegate 〈role〉s. If the delegation is partial, the keyword ‘partial-with-permissions’
denotes the list of 〈permission〉s being delegated. In the case of a multi-step delegation,
the syntax requires to indicate the 〈integer〉 corresponding to the maximum number
of delegation steps allowed. If the delegation is of type grant, a duration (denoted
with the keyword ‘for’, rule 3) can be optionally specified to indicate the amount of
time after which the delegation is automatically revoked. For example, the delegation
policy PL8 defines a delegation that is multi-step (with a maximum delegation depth
of 2), total (because all the permissions of the delegated role have to be delegated),
of type grant (because the delegator is still allowed to execute the permissions asso-
ciated with the delegated role), with a duration of at most two weeks. This policy is
expressed in GemRBAC-DSL as:

12



PL8: role admin can-delegate admin to roles assistant as total ,

grant for 2 week , multistep 2;

4.9 Revocation policy

A revocation policy allows a user or a role to revoke a delegation. GemRBAC-DSL
supports the concept of revocation presented in [28] and integrated into the GemR-
BAC model [7], in which a revocation can be grant-dependent or grant-independent,
strong or weak and, cascading or non-cascading. Its syntax is defined as:

〈Revocation〉 ::= (‘user’ 〈user〉 | ‘role’ 〈role〉 | ‘delegator’)
‘can-revoke-delegation’ 〈id〉
(‘from users’ 〈user〉 (‘,’ 〈user〉)* | ‘from roles’ 〈role〉 (‘,’ 〈role〉)*)) ‘as’
(‘strong’ | ‘weak’) ‘,’ (‘nonCascading’ | ‘cascading’)

The syntax allows for specifying who can revoke a certain delegation; the keywords
‘user’ and ‘role’ denote, respectively, an explicit user or role, while the keyword
‘delegator’ implicitly refers to the user or role that originally performed the delega-
tion. The delegation that is being revoked is referenced through its identifier, preceded
by the keyword ‘can-revoke-delegation’. The keyword ‘from users’ denotes the list
of 〈users〉 from which the delegation is revoked; similarly, the keyword ‘from roles’
denotes the list of 〈roles〉 from which the delegation will be revoked. The additional
keywords that come after the keyword ‘as’ indicate the type of revocation. For exam-
ple, the revocation policy PL9 is defined as weak (because it will not impact the other
roles possibly acquired through a role hierarchy) and as non-cascading (because it will
not affect the further delegations performed along a delegation chain). This policy is
expressed in GemRBAC-DSL as:

PL9: role admin can-revoke-delegation PL8 from roles assistant as

weak , nonCascading;

4.10 Contextual policy

A contextual policy allows (or disallows) a user to be a member of a role or to perform
an operation according to her context, i.e., depending on the current time [19] and/or
location [10]. The syntax for this policy is defined as follows:

(1)〈ContextPolicy〉 ::= 〈RoleContextPolicy〉 | 〈PermContextPolicy〉
(2)〈RoleContextPolicy〉 ::= ‘role-context’ 〈role〉

(〈activeDuration〉
| ( (‘assign’ | ‘unassign’) [‘to user’ 〈user〉] 〈context〉
| (‘enable’ | ‘disable’) 〈context〉
[‘,’ (‘assign’ | ‘unassign’) [‘to user’ 〈user〉] 〈context〉 ])
[‘,’ 〈activeDuration〉]))

(3)〈activeDuration〉 :: = ‘activation’
(‘duration’ 〈integer〉 〈timeUnit〉
| ‘ cumulative duration = ’ 〈integer〉 〈timeUnit〉 ‘,’
‘reset =’ (‘none’ | 〈periodicTime〉) ‘,’
‘duration-per-session =’ (‘unlimited’ | 〈integer〉 〈timeUnit〉))

13



(4)〈periodicTime〉 ::= ‘every’ [〈integer〉] 〈timeUnit〉
(5)〈PermContextPolicy〉 ::= ‘permission-context’ 〈permission〉

((‘assign’ | ‘unassign’) [‘to role’ 〈role〉] 〈context〉
| (‘enable’ | ‘disable’) 〈context〉
[‘,’ (‘assign’ | ‘unassign’) [‘to role’ 〈role〉] 〈context〉])

(6)〈context〉 ::= ‘@’ (〈temporalContext〉 | 〈spatialContext〉
| 〈SpatioTemporalContext〉 (‘&&’ 〈SpatioTemporalContext〉)*)

(7)〈SpatioTemporalContext〉 ::= 〈spatialContext〉 〈temporalContext〉

A contextual policy can be specified either at the role (rule 2) or at the permission
level (rule 5). At the role level, a contextual policy can define a) a bound for the
sum of activation durations of a given role and/or, b) the context of role assignment
and/or role enabling. An activation duration represents the amount of time during
which a role is active. As shown in rule 3, an activation duration can be specified
for a single session (denoted with keyword ‘duration’) or for multiple sessions (de-
noted with keyword ‘cumulative duration =’). In the second case, a security analyst
should specify a reset period (line 3 of rule 3) and a bound for the maximum duration
per single session (line 4 of rule 3). The reset period corresponds to a specific period
of time after which the cumulative duration is reinitialized to zero. This period is
represented by a periodicity expression as indicated in rule 4. The keyword ‘none’
is used to indicate the absence of a reset period (rule 3). Similarly, the keyword
‘unlimited’ is used to indicate the absence of a bound for the activation duration per
session (rule 3). In addition to the activation duration, a security analyst can specify
if a role should be assigned/unassigned (possibly to a specific user, as denoted by
the optional keyword ‘to user’), or if a role should be enabled/disabled in a specific
〈context〉(rule 2). Notice that the same policy can restrict both role enabling/dis-
abling and assignment/unassignment as indicated by the optional part in line 4 of
rule 2. Rule 5 is structured similarly to rule 2 (lines 1–4) but it is used for specifying
the enabling/disabling and/or assignment/unassignment of permissions. As shown
in rule 6, GemRBAC-DSL supports temporal, spatial and spatio-temporal context
specifications preceded by the ‘@’ symbol. Temporal and spatial policies will be illus-
trated in the next subsections, using the concepts of the GemRBAC+CTX model
introduced in [8]. Since spatio-temporal specifications can be seen as the conjunction
of a temporal policy and a spatial one, we will omit their description.

An example of a contextual policy on role activation with a reset period is PL10,
which can be expressed in GemRBAC-DSL as:

PL10: role-context analyst activation cumulative duration = 4

hour , reset = every day , duration-per-session = unlimited;

4.10.1 Policies with temporal context

The syntax for defining a temporal context is:

〈temporal〉 ::= ‘time’ (〈absoluteTime〉 | 〈relativeTime〉
| (〈compositeTime〉 (‘&’ 〈compositeTime〉)*)

〈compositeTime〉 ::= 〈absoluteTime〉 〈relativeTime〉

The type of temporal context supported by GemRBAC-DSL corresponds to the one
defined in [8], which distinguishes between absolute and relative time expressions.

14



An absolute time expression refers to a concrete point or interval in the timeline;
conversely, a relative time expression cannot be mapped directly to a concrete point
or interval in the timeline. Furthermore, absolute time and relative expressions can
also be composed. The syntax of an absolute time expression is:

(1)〈absoluteTime〉 ::=
((〈date〉 [‘at’ 〈hour〉] | ‘(’ 〈date〉 (‘,’〈date〉)+‘)’)
|(‘starting from’ 〈date〉 [‘at’ 〈hour〉]
| ‘[’〈date〉‘,’〈date〉‘]’
| ‘(’ ‘[’〈date〉‘,’〈date〉‘]’ (‘, [’〈date〉‘,’〈date〉‘]’)+‘)’)
[〈periodicTime〉] )

(2)〈periodicTime〉 ::= ‘every’ [〈integer〉] 〈timeUnit〉
(3)〈date〉 ::= 〈sDayOfMonth〉(‘1’-‘9’)(‘0’-‘9’)(‘0’-‘9’)(‘0’-‘9’)

(4)〈sDayOfMonth〉 ::= 〈integer〉 〈sMonth〉
(5)〈sMonth〉 ::= ‘Jan’ | ‘Feb’ | ‘Mar’ | ‘Apr’ | ‘May’

| ‘June’ | ‘July’ | ‘Aug’ | ‘Sept’ | ‘Oct’ | ‘Nov’ | ‘Dec’

(6)〈hour〉 ::= ((‘0’-‘1’)(‘0’-‘9’) | (‘2’)(‘0’-‘3’)) ‘:’
(‘0’-‘5’) (‘0’-‘9’) ‘:’ (‘0’-‘5’) (‘0’-‘9’)

An absolute time expression can have different forms. The simplest form is captured
by 〈date〉, which is composed of a day of the month 〈sDayOfMonth〉 and a year
(rule 4). An 〈sDayOfMonth〉 denotes a day, represented as an 〈integer〉, and a month,
represented as an 〈sMonth〉. The latter corresponds to the abbreviation for a specific
month (rule 6). A 〈date〉 can be optionally followed by the ‘at’ keyword and an
〈hour〉, to represent a specific hour during a day2. An absolute time expression can
also correspond to a list of 〈date〉s enclosed in round brackets. Another type of absolute
time expression is represented by intervals. An unbounded time interval is specified
with a 〈date〉 prefixed by the keyword ‘starting from’. A bounded time interval is
represented as two 〈date〉s enclosed in square brackets. Lists of bounded intervals are
enclosed in round brackets. Unbounded and bounded time intervals as well as lists of
bounded time intervals can be followed by a periodicity expression (denoted with the
keyword ‘every’, see rule 2), which specifies how often, during the selected interval(s),
the action determined by the policy (e.g., enabling a role) should be in effect. For
example, the role enabling policy PL11 can be expressed as:

PL11: role-context participant enable @time [12 Feb 2016, 8 Jun

2016];

A relative time expression is a time expression that cannot be mapped directly to
a concrete point or interval in the timeline. The syntax of a relative time expression
is:

〈relativeTime〉 ::= ((〈iHour〉 ( ‘,’ 〈iHour〉)*)
| (〈dayOfMonthH 〉 (‘and @ time’ 〈dayOfMonthH 〉)*)
| (〈dayOfWeekH 〉 (‘and @ time’ 〈dayOfWeekH 〉)*)
| (〈monthDayOfWeekH 〉
(‘and @ time’ 〈monthDayOfWeekH 〉)*))

2The current version of GemRBAC-DSL does not support the concept of time zone.

15



A relative time expression can have different forms. The first form is as a list of hour
intervals, which are intervals whose start and end points are hours. The syntax of an
hour interval is:

(1)〈iHour〉 ::= ‘from’ 〈hour〉‘to’ 〈hour〉
[(‘excluding (’ 〈exHour〉 (‘,’ 〈exHour〉)* ‘)’]

(2)〈exHour〉 ::= ‘from’ 〈hour〉‘to’ 〈hour〉

Within the definition of an 〈iHour〉, one can also specify a list of hour intervals to be
excluded, denoted with the keyword ‘excluding’ (rule 2).

A relative time expression can be also defined as a list of expressions starting with
a day of month (〈dayOfMonthH 〉s). This expression corresponds to a day of month
(〈dayOfMonth〉) that optionally overlays an hour interval. The syntax of a relative
expression with a day of month is:

(1)〈dayOfMonthH 〉 ::= 〈dayOfMonth〉(‘,’〈dayOfMonth〉)*
[(〈iHour〉 ( ‘,’ 〈iHour〉)*)]

(2)〈dayOfMonth〉 ::= 〈sDayOfMonth〉 | 〈iDayOfMonth〉
(3)〈iDayOfMonth〉 ::= ‘from’ 〈sDayOfMonth〉 ‘to’

〈sDayOfMonth〉 [‘excluding (’ 〈exDayOfMonth〉
(‘,’ 〈exDayOfMonth〉)* ‘)’]

(4)〈exDayOfMonth〉 ::= 〈sDayOfMonth〉|〈exIDayOfMonth〉
(5)〈exIDayOfMonth〉 ::= ‘from’ 〈sDayOfMonth〉 ‘to’

〈sDayOfMonth〉

A day of month can correspond to a single day (〈sDayOfMonth〉, see page 15) or an
interval of days of month (〈iDayOfMonth〉) (rule 2). The latter can also be defined
to exclude a single day of month or an interval of days of month 〈exIDayOfMonth〉;
notice that exclusion is not recursive.

A relative time expression can also have the form of a list of 〈dayOfWeekH 〉s. The
latter is a day of week that optionally overlays an hour interval. The syntax of a
relative expression with a day of week is:

(1)〈dayOfWeekH 〉 ::= 〈dayOfWeek〉 (‘,’ 〈dayOfWeek〉)*
[〈iHour〉 ( ‘,’ 〈iHour〉)*]

(2)〈dayOfWeek〉 ::= 〈sDayOfWeek〉 | 〈iDayOfWeek〉
(3)〈sDayOfWeek〉 ::= [[‘on’] ‘the’ 〈integer〉] (‘Monday’

| ‘Tuesday’ | ‘Wednesday’ | ‘Thursday’ | ‘Friday’ | ‘Saturday’ | ‘Sunday’ )

(4)〈iDayOfWeek〉 ::= ‘from’ 〈sDayOfWeek〉 ‘to’
〈sDayOfWeek〉 [‘excluding (’ 〈exDayOfWeek〉
(‘,’ 〈exDayOfWeek〉)* ‘)’]

(5)〈exDayOfWeek〉 ::= 〈sDayOfWeek〉 | 〈exIDayOfWeek〉
(6)〈exIDayOfWeek〉 ::= ‘from’ 〈sDayOfWeek〉 ‘to’

〈sDayOfWeek〉

This syntax follows a pattern similar to the ones seen above. For example, the time-
based policy on permission assignment PL12 is expressed in GemRBAC-DSL as:

PL12: permission-context add_casualty assign to role trainee

@time from Monday to Friday from 08 :00:00 to 17 :00:00;

16



A relative time expression can be also defined as a set of 〈monthDayOfWeekH 〉s.
The latter is a list of 〈month〉s that optionally overlays a 〈dayOfMonthH 〉 or an
〈iHour〉. The syntax of 〈monthDayOfWeekH 〉 is:

(1)〈monthDayOfWeekH 〉 ::= 〈month〉 ( ‘,’ 〈month〉)*
[(‘#’ 〈dayOfWeekH 〉)+
|(〈iHour〉 ( ‘,’ 〈iHour〉)*)]

(2)〈month〉 ::= 〈sMonth〉 | 〈iMonth〉
(3)〈iMonth〉 ::= ‘from’ 〈sMonth〉 ‘to’ 〈sMonth〉

[‘excluding (’ 〈exMonth〉 (‘,’ 〈exMonth〉)* ‘)’]

(4)〈exMonth〉 ::= 〈sMonth〉 | 〈exIMonth〉
(5)〈exIMonth〉 ::= ‘from’ 〈sMonth〉 ‘to’ 〈sMonth〉

Also this syntax follows the same structure of the previous definitions. Notice that
in this case, the list of 〈month〉s can overlay either a list of 〈iHour〉s or a list of
〈dayOfWeekH 〉s.

An 〈sDayOfWeek〉 can contain an index (represented as an 〈integer〉), which refers
to a specific occurrence of a day, as in “on the first Monday” (of a month).

4.10.2 Policies with spatial context

The syntax for defining a spatial context is:

(1)〈spatial〉 ::= ‘location’ 〈location〉 (‘,’ 〈location〉)*
(2)〈location〉 ::= [relativeLocation] (‘physical’ 〈physicalLocation〉

| ‘geofence’ 〈geofence〉)
(3)〈physicalLocation〉 ::= 〈point〉 | 〈polygon〉 | 〈circle〉 | 〈userPos〉
(4)〈point〉 ::= ‘(lat’ 〈float〉‘: long’ 〈float〉‘: alt’ 〈float〉‘)’

(5)〈userPos〉 ::= ‘position’ 〈user〉
(6)〈circle〉 ::= ‘center’ 〈point〉 ‘radius’ 〈float〉 〈locUnit〉
(7)〈polygon〉 ::= 〈polyline〉 〈polyline〉 ( ‘,’ 〈polyline〉)+
(8)〈polyline〉 ::= ‘line {’ 〈point〉 ‘,’ 〈point〉 ‘}’

(9)〈relativeLocation〉 ::= [〈integer〉 〈locUnit〉] 〈direction〉
(10)〈locUnit〉 ::= ‘miles’ | ‘meters’ | ‘kilometers’

(11)〈direction〉 ::= 〈cardinalDir〉 | 〈qualitativeDir〉
(12)〈cardinalDirection〉 ::= (‘N’ | ‘E’ | ‘S’ | ‘W’ | ‘NE’ | ‘SE’ | ‘SW’ |‘NW’)

| ‘degree’ 〈integer〉
(13)〈qualitativeDirection〉 ::= ‘inside’ |‘outside’ |‘around’

The spatial context in GemRBAC-DSL is represented as a set of locations. The con-
cept of location is taken from [8]: it is a bounded area or a point in space. Reference [8]
further classifies locations as physical (a precise position in a geometric space) and
logical (a symbolic abstraction of one or many physical locations). Physical locations
are denoted in GemRBAC-DSL with the keyword ‘physical’, while the keyword
‘geofence’ denotes logical locations. Notice that the identifiers that can be used as
logical locations are those declared in the preamble under the rule 〈geofences〉.

The simplest type of physical location is a 〈point〉, i.e., a set of geographic coordi-
nates denoted with the keywords ‘lat’, ‘long’, and ‘alt’, corresponding to latitude,

17



longitude, and altitude (rule 4). Each coordinate is expressed as a floating-point num-
ber. The keyword ‘position’ followed by a user id (rule 5) is used to define a location
in terms of the coordinates of a user. Bounded physical locations can have the shape
of a circle or of a polygon. A 〈circle〉 is denoted with a ‘center’ and a ‘radius’; the
latter is specified using units of length (see rules 6 and 10). A polygon is defined in
terms of polylines, which are denoted with the keyword ‘line’ and a start and an end
〈point〉 (rules 7–8). For example, the location-based policy on role enabling PL13 is
expressed in GemRBAC-DSL as:

PL13: role-context enable admin @location physical

line {(lat 15 : long 24 : alt 200),

(lat 20 : long 27 : alt 200)},

line {(lat 20 : long 27 : alt 200),

(lat 17 : long 27 : alt 200)},

line {(lat 17 : long 27 : alt 200),

(lat 15 : long 27 : alt 200)},

line {(lat 15 : long 27 : alt 200),

(lat 15 : long 24 : alt 200)};

As shown in rule 2, both physical and logical locations can be optionally prefixed
by 〈relativeLocation〉, which represents a location defined with respect to another
one. A 〈relativeLocation〉 is expressed with a 〈direction〉 and an optional distance
expressed with a unit of length (rule 9). A direction of type 〈cardinalDirection〉 is
denoted with symbols corresponding to cardinal and ordinal directions or with the
degrees of rotation (denoted with the ‘degree’ keyword followed by an integer) on
a compass (rule 12). A direction of type 〈qualitativeDirection〉 represents a relative
proximity to a location and is defined using the keywords ‘inside’, ‘outside’, or
‘around’ (rule 13). For example, the contextual policy PL14, which contains a relative
location, is expressed in GemRBAC-DSL as:

PL14: role-context trainee enable @location 100 meters inside

geofence Zone1;

5 Semantic Checks

A security analyst can erroneously write policies that are inconsistent or conflicting.
In the following paragraphs we describe all the possible conflicts that can be found
in a GemRBAC-DSL specification. We mainly focus on inter-policy conflicts, i.e.,
global conflicts between different policies. The Eclipse-based editor for GemRBAC-
DSL includes semantic checks for these conflicts, which are then reported to the user
as errors or warnings.

Prerequisite role and SSoD on conflicting roles policies. Let PR be the set of roles
involved in a prerequisite role policy, and SCR be the set of conflicting roles in a
SSoDCR policy. If PR ⊆ SCR, the two policies are in conflict. The reason is that,
while the prerequisite role policy requires the assignment of two roles to the same user
(in a certain order), the SSoDCR policy prohibits this assignment. This situation can
be avoided by not specifying prerequisite role policies and SSoDCR policies for the
same subset of roles. This conflict is reported as an error. The conflict between the
prerequisite permission policy and the SSoDCP one is defined in a similar way.

Prerequisite role and Role hierarchy policies. Let PR be the set of roles in a
prerequisite role policy, and RH be the set {r} ∪ juniors(r) in a role hierarchy policy,

18



where junior() is a function that returns the junior roles of its argument. If PR ⊆ RH ,
the prerequisite role and the role hierarchy policies will require the assignment of the
same subset of roles. Hence there is no need to define a prerequisite policy between a
role and its parent role. This conflict is reported as a warning. The conflict between
the prerequisite permission policy and the permission hierarchy one is defined similarly.

Cardinality (role-to-user assignment) and Role hierarchy policies. Let n be the
number of juniors of role r in a role hierarchy policy, and maxRoles be the maximum
number of roles that can be assigned to a user, as specified by a cardinality policy. If
n ≥ maxRoles, the cardinality policy will be violated. This situation can be avoided
by having maxRoles greater than the number of juniors of any role. This conflict is
reported as an error. The conflict between the cardinality (role-to-permission assign-
ment) policy and the permission hierarchy one is defined similarly.

Cardinality (permission-to-role assignment) and Binding of duty policies. Let n be
the number of bounded permissions in BoD policy, and maxPerm be the maximum
number of permissions that can be assigned to a role, as specified by a cardinality
policy. If n > maxPerm, the cardinality policy will be violated, because the BoD
policy will require a role to be assigned to more than maxPerm permissions. This
situation can be avoided by having maxPerm be equal or greater than the number of
bounded permissions in a BoD policy. This conflict is reported as an error.

Role hierarchy and SSoD on conflicting roles policies. Let RH be the set {r} ∪
juniors(r) in a role hierarchy policy, where junior() is a function that returns the junior
roles of its argument; let SCR be the set of conflicting roles in an SSoDCR policy.
If |RH ∩ SCR| > 1 the two policies are in conflict. Indeed, while the role hierarchy
policy requires the assignment of a set of roles, the SSoDCR policy prohibits this
assignment. To avoid this situation an SSoDCR policy should not contain a role and
its junior(s) or, similarly, two juniors of the same role. This conflict is reported as an
error. The conflict between the permission hierarchy policy and the SSoDCP one is
defined similarly.

Role hierarchy and Context (role unassignment) policies. Let JRH be the set
containing the juniors of role r. If a context policy on role un-assignment is specified
for any role s ∈ JRH , the role hierarchy policy will be violated. Indeed, while the
role hierarchy requires the assignment of a junior of role r, the role context policy can
prohibit this assignment. This conflict is reported as an error. The conflict between
the permission hierarchy and context-based (permission assignment) policies is defined
similarly.

SSoD and DSoD on conflicting roles policies. Let SCR and DCR be the sets of,
respectively, conflicting roles in an SSoDCR policy and a DSoDCR one. If |SCR ∩
DCR| > 1, the assignment of at least two conflicting roles will be allowed by the
DSoDCR policy but forbidden by the SSoDCR policy, generating an inconsistency in
the system. This conflict is reported as a warning. The conflict between the SSoD and
DSoD on conflicting users (or permission) policies is defined similarly. Notice that an
SSoDCU policy and a DSoDCU one with the same list of users on different roles are
not conflicting.

SSoD on conflicting permissions and Binding of duty policies. Let SCP be the set
of conflicting permissions in an SSoDCP policy and let PBoD be the set of bounded
permissions in a BoD policy. If |SCP ∩ PBoD | > 1, the two policies are in conflict.
Indeed, while the SSoDCP restricts the assignment of at least two conflicting permis-
sions, the BoD policy requires this assignment. To avoid this situation, an SSoDCP
policy should not contain permissions that are used in a BoD policy. This conflict is
reported as an error.

19



employee:Role scEmployee:SpatialContext

LLEmployee:LogicalLocation

RoleContext
Enabling

rloc1: RelativeLocation

inside:QualitativeDirection
-direction: inside -label: Office

Figure 2: A fragment of an instance of the GemRBAC+CTX model

Delegation and SSoD on conflicting roles policies. Let SCR be the set of conflicting
roles in an SSoDCR policy, r be the role being delegated, and RECR be the set of
roles that will receive the delegation in a delegation policy. If ({r} ∪ RECR) ⊆ SCR,
the two policies are in conflict. The reason is that, while the delegation policy allows
the assignment of a set of roles to the same user, the SSoDCR policy prohibits this
assignment. This conflict is reported as an error.

Additional checks. The editor also detects overlapping intervals in policies with
temporal context, and circular dependencies for role hierarchy and precedence policies.

6 Semantics

The GemRBAC+CTX model (as well as its non-contextual ancestor GemRBAC),
which is the conceptual RBAC model on top of which GemRBAC-DSL has been
designed, comes with an operationalization of the semantics of the policies it supports.
The operationalization follows a model-driven approach, by which the semantics of
each RBAC policy is expressed as an OCL constraint on the RBAC model. Since
the GemRBAC+CTX model and GemRBAC-DSL have the same expressiveness,
we can define the semantics of GemRBAC-DSL by mapping its constructs to the
corresponding OCL constraints defined for the GemRBAC+CTX model. In the rest
of this section we sketch this mapping; we refer the reader to [7, 8] for the details on
the structure of the GemRBAC+CTX model.

Each entity in the 〈preamble〉 of a GemRBAC-DSL specification corresponds to
an instance of a UML class in the GemRBAC+CTX model: users, roles, permis-
sions, operations, and logical locations (〈geofences〉) are mapped to instances of the
homonymous classes in GemRBAC+CTX. Similarly, role and permission hierarchies
correspond to the homonymous associations in the GemRBAC+CTX model.

Each type of RBAC policy is mapped to the corresponding OCL constraint tem-
plate defined in the GemRBAC+CTX model; in each template the symbolic param-
eters are replaced with the actual entities used in the specification. For instance, the
semantics of the object-based DSoD policy

objDSoD: conflicting-roles-activation author , reviewer

on-same-object;

can be defined by the OCL invariant DSoD of the class Session (see [7], §7.5.2), by
replacing the parameters r1 and r2 with roles author and reviewer.

Regarding contextual policies, the context to be assigned/enabled (as prescribed
by the policy) is represented in the GemRBAC+CTX model, as an association with
the corresponding role/permission. For example, consider the policy

20



loc: role-context enable employee only @location inside office;

which enables role employee only inside the logical location denoted by the label
“office”. Figure 2 depicts an excerpt of an instance of the GemRBAC+CTX model
in which role employee is associated to a SpatialContext object that contains the
object LLEmployee of type LogicalLocation, which denotes the location “office”.
This object is associated with object rloc1 of type RelativeLocation, which contains
a QualitativeDirection. The policy loc can be mapped to the OCL invariant
relativeLocationRoleEnabling of class Session (see [8], §4.2), parametrized with
role employee.

Expressing the semantics of GemRBAC-DSL policies as OCL constraints on the
GemRBAC+CTX model enables the users of the language to benefit from the model-
driven policy enforcement mechanisms described in [7, 8]. Briefly, making an access
decision for a policy can be reduced to checking the corresponding OCL constraint
on a instance of the GemRBAC+CTX model, which represents a snapshot of the
system at a certain time.

Table 2: Mapping of GemRBAC-DSL constructs to OCL constraints on
the GemRBAC+CTX model

Type of policy OCL constraint ref
〈PrereqRole〉 context User :: assignRole(r:Role): pre

PreqRole

[7]

〈PrereqPermission〉 context Role :: assignPermission(p:

Permission): pre PreqPermisssion

[7]

〈CardActivation〉 context Session inv Cardinality [7]
〈CardUser〉 context User inv Cardinality [7]
〈CardPermission〉 This policy is expressed in a similar way as the pre-

vious one by replacing the context of User with the
context of Permission.

[7]

〈CardRoletoUser〉 context Role inv Cardinality [7]
〈CardRoletoPermission〉 This policy is expressed in a similar way as the pre-

vious one by replacing the instances of users with
instances of permissions.

[7]

〈PrecEnabling〉 context Session :: enableRole(r:Role):

pre RoleEnablingPrecedence

[7]

Dependency
〈PrecEnabling〉

context Session ::

deactivateRole(r:Role): pre

RoleActivationDependency

[7]

〈RoleHierarchy〉 context User :: assignRole(r:Role): post

RoleHierarchy

[7]

〈PermissionHierarchy〉 context Role :: assignPermission(p:

Permission): post RoleHierarchy

[7]

〈SSoDCU 〉 context Role inv SSoDCU [7]
〈SSoDCR〉 context User inv SSoDCR

context Role inv SSoDCP2

[7]

〈SSoDCR〉 context User inv SSoDCR

context Role inv SSoDCP2

[7]

〈SSoDCP〉 context Role inv SSoDCP1 [7]
〈DSoDCR〉 context Session inv DSoD [7]

21



〈DSoDCU 〉 context Role inv DSoDCU web1
〈DSoDCP〉 context Role inv DSoDCP web1
〈DSoDCR〉 context Session :: performOperation(op:

Operation, p:Permission, r:Role): pre

ObjectDSOD

[7]

〈DSoDCR〉 context Session inv OperationalDSoD [7]
〈DSoDCR〉 context Session :: performOperation(op:

Operation, p:Permission, r:Role): pre

HistoryDSOD

[7]

Role-based 〈BoD〉 context Session :: performOperation(op:

Operation, p:Permission, r:Role) pre

RoleBoD

[7]

Subject-based 〈BoD〉 context Session :: performOperation(op:

Operation, p:Permission, r:Role) pre

SubjectBoD

[7]

〈Delegation〉 context Delegation inv TotalDelegation

context Delegation inv MultiStepDelegation

context delegation inv PartialDelegation

context Delegation inv StrongTransfer

context Delegation inv StaticWeakTransfer

context Delegation inv DynamicWeakTransfer

context Delegation inv AutomaticRevocation

[7]

〈Revocation〉 context Delegation :: revoke() pre

RevacationDependency

context Delegation :: revoke() post

StrongRevocation

context Delegation :: revoke() post

CascadingRevocation

[7]

TPA with
〈absoluteTime〉

context Session inv AbsoluteBTIRoleEnab

context Permission inv

AbsoluteBTIPermAssign

context Role inv AbsoluteTPRoleAssign

context Role inv AbsoluteUBIRoleAssign

[8]
web2

TPA with
〈periodicTime〉

context Role inv

periodicUnboundTIRoleAssign

[8]

TPA with
〈activeDuration〉

context Session inv

DurationAbsoluteBTIRoleEnab

[8]

TPRInd
〈sDayOfWeek〉

context Role inv indexRoleAssign [8]

TPRH 〈iHour〉 context Role inv RelativeHoursRoleAssign web2
TPRDM
〈dayOfMonthH 〉

context Role inv DayOfMonthHoursRoleAssign

context Permission inv

DayOfMonthHoursPermAssign

web2

TPRDW
〈dayOfWeekH 〉

context Permission inv

DayOfWeekHourPermAssign

[8]

TPRMD
〈monthDayOfWeekH 〉

context Role inv

MonthDayOfWeekHourRoleAssign

web2

22



TPCT
〈compositeTime〉

This policy can be checked by a logical conjunction
of two temporal policies: one with absolute time
and one with relative time.

[8]

SPP
〈physicalLocation〉

context Role inv physicalLocationRoleAssign [8]

SPL 〈geofence〉 This policy can be checked in a similar way
as the previous one by replacing the in-
stances of PhysicalLocation with instances of
LogicalLocation.

[8]

SPR 〈relativeLocation〉 context Session inv

relativeLocationRoleEnabling

[8]

SPT〈SpatioTemporal〉 This policy can be checked by a logical conjunction
of the spatial and temporal policies.

[8]

Legend. TP: temporal policy; TPA: TP with absolute time; TPR: TP with relative time;
TPRInd: TPR containing an index; TPRH: TPR of type hour interval; TPRDM: temporal pol-
icy with a relative time of type day of month that optionally overlays hours; TPRDW: TPR of
type day of week that optionally overlays hours; TPRMD: TPR of type day of month that op-
tionally overlays days of week (the days of week may optionally overlay hours); TPCT: TP with
composite time; SP: spatial policy; SPP: SP with a physical location; SPL: SP with a logical
location; SPR: SP with a relative location; SPT: spatio-temporal policy.

Table 2 describes the mapping of each RBAC policy supported by GemRBAC-
DSL to its corresponding OCL constraint(s) defined on the GemRBAC+CTX model.
The first column indicates the type of policy and the corresponding grammar rule. The
second column denotes the corresponding OCL constraints, whose full definition can
be found in the reference indicated in the third column. The reference “web1” and
“web2” are the websites https://github.com/AmeniBF/GemRBAC-model and https:

//github.com/AmeniBF/GemRBAC-CTX-model.git, respectively.

7 Discussion

Policy specification languages vs RBAC models. GemRBAC-DSL is a domain-
specific specification language, built on top of the GemRBAC+CTX model, with the
goal of providing a high-level specification language for the policies that can be de-
fined using GemRBAC+CTX. The constructs included in the language have been
derived from the corresponding concepts defined in GemRBAC+CTX. In this sense,
GemRBAC-DSL does not define new concepts related to RBAC; instead, it provides
a practical way to express RBAC policies using the concepts provided by an expressive
model like GemRBAC+CTX. Although in our previous work [8] we reported on the
use of OCL for the specification of RBAC policies based on GemRBAC+CTX, we
also mentioned the impracticality of such an approach and expressed the need for a
higher-level specification language.

Adoption. GemRBAC-DSL has been used by our industrial partner for the
specification of the RBAC policies of a production-grade Web application. The adop-
tion of GemRBAC-DSL has allowed its engineers to easily specify all the policies for
their system, including 19 new types of contextual policies. Despite the fact that some
constructs of the language are non-trivial, the engineers were able to use GemRBAC-
DSL confidently after three half-day training sessions.

23



Figure 3: The GemRBAC-DSL editor

Tool Support. The GemRBAC-DSL editor has been implemented as an Eclipse
plugin. We used Xtext 2.8 to define the textual syntax and the semantic checks
(illustrated in section 5) for the language. As can be seen in Fig. 1, the editor supports
syntax highlighting and conflict detection. Furthermore it performs also syntactic
checks, such as detecting duplicated items in lists, or verifying that the identifiers of
the entities (e.g., roles, users) used in the policies have been declared in the preamble.
The editor is publicly available at https://github.com/AmeniBF/GemRBAC-DSL.git.

Limitations and Design Trade-offs. GemRBAC-DSL can express all and only
the types of policies supported by its underlying model, GemRBAC+CTX. Since
GemRBAC+CTX is quite an expressive model, GemRBAC-DSL includes many
constructs that could have increased its level of complexity, hindering its adoption.
Designing a simpler language would have implied providing limited support in terms
of policy types, leading to partial fulfillment of our expressiveness requirements and a
limited advance in terms of the state of the art. Hence, at the language design stage,
we decided to pursue our expressiveness requirements, and to provide a syntax close
to natural language to favor the adoption among practitioners and compensate (also
by means of a rich editor) for the complexity of the language.

8 Conclusions and Future Work

In this paper we presented GemRBAC-DSL, a domain-specific language that facili-
tates the specification and consistency checking of policies based on highly-expressive
RBAC models. GemRBAC-DSL supports all types of policies captured by the Gem-
RBAC+CTX model, a comprehensive model encompassing all proposed types of
policies. We have shown how the language can be used to specify the RBAC policies
of an industrial application with complex, context-aware policies. The semantics of
GemRBAC-DSL has been defined with a mapping to an existing OCL formalization
of the RBAC policies supported by GemRBAC+CTX. This mapping paves the way
for automating the enforcement of policies specifications written in GemRBAC-DSL,

24



using a model-driven approach.
As part of future work, we plan to extend GemRBAC-DSL to support richer

contextual policies, as well as administrative policies. We also plan to assess the
usability of the language through user studies with practitioners.

9 Acknowledgments

The authors wish to thank Benjamin Hourte and his team from HITEC Luxembourg,
as well as the anonymous referees for their valuable feedback. This work has been
supported by the National Research Fund, Luxembourg (FNR/P10/03) and by a
grant by HITEC Luxembourg. Ameni Ben Fadhel is also supported by the Faculty of
Science, Technology and Communication of the University of Luxembourg.

References

[1] D. Abi Haidar, N. Cuppens-Boulahia, F. Cuppens, and H. Debar. An Extended
RBAC Profile of XACML. In Proc. of SWS 2006, pages 13–22. ACM, 2006.

[2] G.-J. Ahn. Specification and Cassification of Role-based Authorization Policies.
In Proc. of WETICE 2003, pages 202–207. IEEE, 2003.

[3] G.-J. Ahn and R. Sandhu. Role-based Authorization Constraints Specification.
ACM Trans. Inf. Syst. Secur., 3(4):207–226, Nov. 2000.

[4] G.-J. Ahn and M. Shin. Role-based authorization constraints specification using
Object Constraint Language). In Proc. of WETICE 2001, pages 157–162. IEEE,
2001.

[5] S. Aich, S. Sural, and A. Majumdar. STARBAC: Spatiotemporal Role Based
Access Control. In Proc. of the OTM Conferences 2007, volume 4804 of LNCS,
pages 1567–1582. Springer, 2007.

[6] A. Anderson. XACML profile for role based access control (RBAC). OASIS
Access Control TC committee draft, 1:13, 2004.

[7] A. Ben Fadhel, D. Bianculli, and L. Briand. A Comprehensive Modeling Frame-
work for Role-based Access Control Policies. Journal of Systems and Software,
107:110–126, September 2015.

[8] A. Ben Fadhel, D. Bianculli, L. Briand, and B. Hourte. A Model-driven Ap-
proach to Representing and Checking RBAC Contextual Policies. In Proc. of
CODASPY2016, pages 243–253. ACM, 2016.

[9] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A Temporal Role-based Access
Control Model. ACM Trans. Inf. Syst. Secur., 4(3):191–233, Aug. 2001.

[10] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca. GEO-RBAC: A Spatially
Aware RBAC. In Proc. of SACMAT 2005, pages 29–37. ACM, 2005.

[11] R. Bhatti, A. Ghafoor, E. Bertino, and J. B. D. Joshi. X-GTRBAC: An XML-
based Policy Specification Framework and Architecture for Enterprise-wide Ac-
cess Control. ACM Trans. Inf. Syst. Secur., 8(2):187–227, May 2005.

25



[12] C. Cotrini, T. Weghorn, D. Basin, and M. Clavel. Analyzing first-order role based
access control. In Proc. of CSF2015, pages 3–17. IEEE, July 2015.

[13] J. Crampton and H. Khambhammettu. Delegation in Role-based Access Control.
Int. J. Inf. Secur., 7(2):123–136, 2008.

[14] Eclipse. Eclipse OCL tools. http://www.eclipse.org/modeling/mdt/

?project=ocl.

[15] R. Ferrini and E. Bertino. Supporting RBAC with XACML+OWL. In Proc. of
SACMAT 2009, pages 145–154. ACM, 2009.

[16] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and B. Thu-
raisingham. ROWLBAC: Representing Role Based Access Control in OWL. In
Proc. of SACMAT 2008, pages 73–82. ACM, 2008.

[17] M. Hitchens and V. Varadharajan. Tower: A Language for Role Based Access
Control. In Proc. of POLICY 2001, volume 1995 of LNCS, pages 88–106. Springer,
2001.

[18] J. Joshi. Access-control language for multidomain environments. Internet Com-
puting, IEEE, 8(6):40–50, Nov 2004.

[19] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A Generalized Temporal
Role-based Access Control Model. IEEE Trans. Knowl. Data Eng., 17(1):4–23,
January 2005.

[20] Q. Ni and E. Bertino. xfACL: An Extensible Functional Language for Access
Control. In Proc. of SACMAT 2011, pages 61–72. ACM, 2011.

[21] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0,
2005.

[22] I. Ray and M. Toahchoodee. A Spatio-temporal Role-Based Access Control
Model. In Proc. of DBSec 2007, volume 4602 of LNCS, pages 211–226. Springer,
2007.

[23] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based Access
Control Models. Computer, 29(2):38–47, 1996.

[24] B. Shafiq, A. Masood, J. Joshi, and A. Ghafoor. A Role-based Access Control
Policy Verification Framework for Real-time Systems. In Proc. of WORDS 2005,
pages 13–20. IEEE, February 2005.

[25] R. T. Simon and M. E. Zurko. Separation of Duty in Role-based Environments.
In Proc. of CSFW 1997, pages 183–194. IEEE, 1997.

[26] K. Sohr, M. Kuhlmann, M. Gogolla, H. Hu, and G.-J. Ahn. Comprehensive
two-level analysis of role-based delegation and revocation policies with UML and
OCL. Inf. Softw. Technol., 54(12):1396 – 1417, 2012.

[27] M. Strembeck and J. Mendling. Modeling Process-related RBAC Models with
Extended UML Activity Models. Inf. Softw. Technol., 53(5):456–483, May 2011.

[28] L. Zhang, G.-J. Ahn, and B.-T. Chu. A Rule-based Framework for Role-based
Delegation and Revocation. ACM Trans. Inf. Syst. Secur., 6(3):404–441, 2003.

26



[29] Z. Zhang, J. Xiao, H. Li, and Y. Geng. An Extended Permission-based Delegation
Authorization Model. In Proc. of CSSE 2008, volume 3, pages 696–699, December
2008.

27


