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Electrical Characterisation of Defects in Cu-rich
Grown CulnSe, Solar Cells
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Abstract—We study defects in CulnSe; (CIS) grown under
Cu-excess. Samples with different Cu/In and Se/metals flux
ratios were characterized by thermal admittance spectroscopy
(TAS), capacitance-voltage measurements (CV) and temperature
dependent current voltage measurements (IVT). All samples
showed two different capacitance responses, which we attribute to
defects with energies around 100 and 220 meV. Plus the beginning
of an additional step that we attribute to a freeze-out effect.
By application of the Meyer-Neldel rule, the parameters of the
two defects can be assigned to two different groups, both lying
within the energy region of the so-called ‘N1-defect’ that has
been observed for Cu-poor absorbers.

Index Terms—Admittance measurement, Capacitance mea-
surement, Thin Film PV Device Properties and Modeling, Pho-
tovoltaic cells

I. INTRODUCTION

Commercial and record lab cells based on Cu(In, Ga)Se,
are manufactured under Cu-poor conditions; therefore most in-
depth studies are confined to this type of material. However, by
growing CIGS (or its ternary CIS) under an excess of copper it
becomes possible to form a stoichiometric chalcopyrite phase
with the surplus of Cu being incorporated in a secondary
Cu,Se phase, which preferably aggregates at the surface. The
overall Cu/In ratio of this whole film is then above unity.
Due to its high conductivity, the secondary phase has to be
removed from the surface by KCN etching before finishing
the absorber into a solar cell. In the following, solar cells and
absorbers made from CIS without Ga are examined. These
were grown under Cu-excess conditions and etched. So they
are referred to as ‘Cu-rich’. This material provides a multitude
of benefits over the standard Cu-poor grown material [1]:
Spectral photoluminescence measurements at fixed excitation
densities can quantify the quasi-Fermi-level splitting. Previous
studies [2] utilizing this method have shown that Cu-rich
absorbers show a higher amount of splitting compared to the
Cu-poor material and therefore have the potential to achieve
higher open-circuit voltages. Furthermore Hall measurements
on CuGaSe, (CGS) reveal increased carrier mobilities for
Cu/In ratios above stoichiometry [3], which if it translates to
CIS can improve carrier collection, resulting in better short-
circuit currents (Jg¢) than for the Cu deficient material. But
although Cu-poor devices reach efficiencies up to 15 % [4], in
general Cu-rich devices show much lower efficiencies, because
they suffer from interface recombination [5]. Nonetheless, it
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is possible to mitigate this limitation by applying a surface
treatment in order to form a Cu-poor layer at the absorber
surface [6] [7] [8]. This surface treatment allowed us to
produce Cu-rich devices as efficient as our Cu-poor ones
[9]. Here, we study the defects occurring in Cu-rich CIS,
grown with different Cu/In and Se/Me flux ratios. It was
shown previously [10] that a lower Se flux has a positive
impact on solar cell efficiency, as well as influences on X-
ray diffraction and photoluminescence spectra. It has been
shown that the selenium supply during growth has a high
impact on the intrinsic doping of the Cu-rich absorbers and
can even lead to a type inversion for very low Se environments
[10] [11]. Here we investigate the electronic structure of deep
defects within the absorber. Thermal admittance spectroscopy
was employed in order to achieve this goal. This method
allows the characterization of deep states within the absorber
[12] by changing the applied AC bias frequency and sam-
ple temperature. The measurement results were subsequently
evaluated by modelling the defect distribution according to
Walter et al. [13], which gives insights into the defects’
activation energies, capture coefficients and concentrations
within the sample. In the case that the Fermilevel is not
pinned at the absorber surface it is possible to distinguish
bulk from interfacial states by applying a small DC reverse
bias [14]. Capacitance-Voltage measurements were used to
measure the devices’ doping and built-in voltages; these are
crucial parameters for the evaluation according to Walter et
al. [13]. To gauge the influence of the series resistance on the
admittance spectrum, temperature dependent current-voltage
measurements complemented the capacitive methods shown
here.

II. SAMPLE PREPARATION

The absorbers of the cells were grown at 590 °C by a 1-stage
physical vapour deposition (PVD) co-evaporation process on
a Mo-coated soda-lime glass substrate in an MBE System.
Two different series at fixed Cu and In fluxes, as measured by
quartz crystal microbalance (QCM), were prepared to study the
influence of the Se pressure. The two series were controlled to
exhibit a low and a high Cu-excess, respectively. The flux of Se
was measured by a beam flux monitor (BFM) and controlled
by the valve of the Se source. Within each series with fixed
Cu/In flux ratio the Se/Me flux ratio was varied between 12
and 6. More details regarding the growth can be found in
reference [10]. To evaluate the Cu/In ratios of the absorbers,
energy dissipative X-ray spectroscopy (EDX) measurements
were performed before the etching step. It was observed that
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the Cu/In ratio was dependent on the Se flux during growth,
leading to higher Cu/In ratios for Se-poorer environments
regardless of the fixed Cu and In fluxes. Therefore the Cu/In
ratios in the films were between 1.2 and 1.5 for the low Cu/In
series and between 1.8-2.0 for the high one. All samples
were selectively etched by KCN to remove the secondary
Cu,Se phase, before deposition of the n-CdS buffer layer by
chemical-bath deposition. Afterwards they were sent to the
Helmholtz Zentrum Berlin for finishing with the i- and n-ZnO-
window layer and AL:Ni grid front contacts.

III. CAPACITANCE-VOLTAGE MEASUREMENTS

CV measurements were performed by measuring the capac-
itance of the cell under an applied DC-bias utilizing a LCR-
meter with AC frequencies up to 1 MHz at room temperature.
The main goal is to measure the doping density N4 of the
absorber and the built-in voltage V;;. From N4 & Vi,; we
can calculate the space-charge region width dscpr and its
contribution C'sc g to the measured capacitance. To prevent an
overload of the setup due to high currents, the samples had to
be cut into small pieces with areas of approximately 0.2 cm?.
Evaluation was then carried out through linear extrapolation
of the Mott-Schottky plot [12], which is defined as the square
of the inverse capacitance over the applied bias yielding V4
and Vj;. The first parameter is anti-proportionally linked with
the slope, while the second one is constituted by the intercept
with the bias-axis. This can easily be derived from the formula
for the one-sided pn-junction [12]
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Furthermore dgcgr can be estimated from the capacitance
of the linear fit at zero-bias, by applying the parallel plate
capacitor model for the SCR (with ¢ = 12 [15]). Only data
points at small forward biases were factored in for the linear
fit. This methodology was chosen to diminish the capacitance
contribution of deep defects on the measurements [12]. Under
reverse bias those defects cross the Fermi-level which in-
creases the measured capacitance, thereby lowering the slope.
The extracted carrier density is then not equal to the doping,
but rather the combined doping and defect densities, which
also increases the built-in voltage to unphysical high values.
Also as described by Scofield ef al. [20], when evaluating CV
data it is advised to pay attention to the measured phase angle
Y., between the measured capacitance and conductance, as the
capacitance results are deemed unreliable for values smaller
than 20°.

IV. ADMITTANCE MEASUREMENTS

For the admittance measurements the samples were
mounted in a closed cycle liquid helium cryostat. The tem-
perature is measured by a silicon diode, glued to a glass
substrate close to the sample. Capacitance and conductance
values were monitored with the same LCR-meter as for CV.
The measurements were performed on the full sized samples,
with areas of about 0.5cm?. Measurement and evaluation of

the activation energies (F4) and emission coefficient ()
were carried-out in terms of the standard analysis for deep
defects [12]. Capacitance steps are usually analysed in terms
of the emission rate of deep defects, see eq. (2). Because of
the temperature dependence of the emission rate, it becomes
possible to probe different defect energies within the space
charge region (SCR), by decreasing the temperature of the
cell. Levels which cross the Fermi-level within the SCR can
be charged and uncharged by an AC bias signal. At increased
frequencies, higher than the emission rate of the trap, this
contribution is eliminated - resulting in a capacitance step with
an inflection point at a characteristic frequency (fp), which is
described by [15]:
Vg —Ea
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To quantify E4 and &y of these defects one either plots
the natural logarithm of fy over the inverse temperature in an
Arrhenius graph, or [13] models the density of states (DOS)
of the defect to fit the % spectrum by the formula, hereafter
referred to as Walter analysis:

_ Vo C w
dscr [qVei — (Efpoo — Ea)] dw kT

The first method is a quick and simple way to gain insight
into the desired defect parameters that manifest themselves
in the slope and intercept of the linear regression of the
data points, while the second one requires some estimates for
input parameters like the bulk Fermi-energy (Ef,c), the SCR
width (dgcr) and built-in voltages (V;;), but also offers the
added benefit of giving an estimate of the concentration of the
trap states (IN7) and the broadness in energy (Wgyw gas) of
their distribution. The required parameters are obtained by CV
measurements as described in the previous section. Once all
the values are inserted into the formula, the activation energy
can be extracted by adjusting the characteristic frequency vy
until the defect densities at each given temperature line up.
Both evaluation methods assume the capacitance response
to originate from bulk defects within the p-type absorber.
Obviously the complex structure of a solar cell leads to other
phenomena, which can show a similar contribution, namely
localized defects at the absorber-buffer interface [16], the
response of the equivalent circuit with a thermally activated
series resistance Rg [17], a back-contact barrier [18] or
mobility freeze-out [19]. The TAS measurement gives further
insight into the character of the signals. TAS steps which
are due to deep defects occur above the SCR capacitance
while series resistance, barrier or freeze-out related steps occur
usually below the C'scr. TAS measurements under a small
reverse bias may in some cases help to tell an interfacial from
a bulk defect. The latter will have the same F 4 regardless
of bias, but - if the Fermi-level is not pinned - an interface
state will occur at a different energy [14]. For the thermally
activated series resistance Rg, as described in [17] the shunt
Rgsp and series resistance form a circuit, which responds to

Ni(Ea) = (4)
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the measurement signal. This response C'..s can be modelled
from the low frequency capacitance Cjy above the step in
question:

le
R 2 2
(1+ RSSH) + (wRsCiy)
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At low temperatures the series resistance increases, up
to the point where wRgC)s becomes significantly large for
high frequencies, resulting in a reduction of the capacitance
similar to a defect response. If the shunt and series resistances
are known from complementary IVT measurements, one is
able to model this equivalent circuit, by setting Cjs as the
measured capacitance at low frequencies and calculate at
which frequency this response sets-in for each temperature.
Above this frequency the capacitance data is dominated by
the series resistance, so it can not be evaluated as described
by equation 4. However, it can still contain information about
defects, if the thermally activated behaviour of Rg is due
to carrier freeze-out, or about barriers, if the activated Rg
behaviour is due to a transport barrier. A mobility freeze-
out leads to a non-linear behaviour of the Arrhenius plot,

which can be straightened out by plotting In (wT%) over

T—% [19] if the low temperature mobility is dominated by
variable range hopping. Also it should be the last step in the
admittance spectrum and go down to the geometric capacitance
Cyeo (lowest dashed blue line in fig. 2) of the fully depleted
absorber.

V. MEASUREMENT RESULTS

The room temperature CV measurements were evaluated
as described in sec. III via Mott-Schottky plots. As reported
previously [10] a correlation between Se supply during growth
and doping density was found, the value of which was
3-10'cm™2 for the high Se flux samples and could be
reduced to 1-10'6cm™3 for the low Se flux samples. In
fig. 1 the measurement results are shown for the high Cu/In
series. All the results for the extracted parameters from the CV
measurements are shown in table 1. Due to the still rather high
doping of the absorbers the SCRs are rather short. The built-
in voltages in the range of 0.55-0.75V showed reasonable
values below the band gap energy. However, we can not fully
exclude the possibility that there still is a defect contribution
from a deep defect within the sample, therefore the values for
N4, Vi and Cscr might be slightly lower than the measured
values.

TAS measurements on the Cu-rich samples show three sepa-
rate capacitance steps, as is depicted for a typical measurement
in fig. 2. They are labelled step 1 to 3 in order of their
appearance with decreasing temperature, step 1 always shows
the smallest capacitance drop, while step 2 and 3 are about the
same height, assuming that step 3 ultimately drops to Cyeo.
Step 1 and 2 are fully visible, but step 3 cannot be fully
resolved due to the limitation of the measurement frequency
and temperature.

The signal above C'sc g for the higher measurement temper-
atures is due to a deep defect which leads to the flattening of
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Fig. 1. Mott-Schottky plot for the high Cu/In series for evaluation of the
doping density.

TABLE I
ABSORBER PARAMETERS AS EXTRACTED FROM CAPACITANCE-VOLTAGE
MEASUREMENTS

N .
cumn | se A Upi dscr Cscr
em ™3 1% nm nFem ™2
low | 1.3-10¢ 0.55 232 45
high | mid | 2.1-10%¢ 0.58 190 55
high | 2.9-10'6 0.65 172 60
low | 1.1-10¢ 0.58 262 40
low mid | 1.3-101 0.59 240 43
high | 2.3-10® 0.75 206 50

the CV curves for reverse bias. Since it is only partly observed,
no inflection points are detected, we do not discuss this signal
further. We have performed IVT measurements and extracted
the resistances through a fit of the current-voltage curves at
each given temperature with a one-diode model. From this,
we fit the circuit response of the series resistance as described
in section IV. The third step in fig. 2, appears in the region
where the circuit response dominates the capacitance spectrum
[17]. We correlate this to the rise in Rg which can be due to
a barrier, carrier or mobility freeze-out, but it is only observed
partly, therefore it cannot be analysed further.

The two remaining, fully resolved steps (1 and 2) are
analysed further in the following. The behaviour depicted
in fig. 2 is typical for all measured samples independent of
their Cu/In or Se/Me ratio. The capacitance contribution of
deep traps adds to the capacitance of the depletion region,
in contrast to shallow defects, freeze-outs and barriers, which
subtract from it. As described previously we can get C'scpr
from CV measurements, in fig. 2 this has been plotted as the
upper blue line.

From fig. 2 it becomes directly apparent, that the three
steps appear below the Cscr and therefore seem to not
originate from deep defects. This is true for all samples, as
becomes obvious by comparing Cscg given in tab. I and the
capacitance above step 1 and 2 (denoted C,), in tab. II, black
dashed lines in fig. 2). This way of analysing capacitance
spectra is not usually done in the CIS literature, therefore
we would like to stress that admittance results should be
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Fig. 2. Typical admittance spectrum with three capacitance steps exemplary
for the studied samples. The sample that yielded the depicted data was grown
with a high Cu/In ratio under high Se.

supplemented by CV data. In the original paper by Walter et
al. [13], the evaluation on the CIS sample has been performed
on a capacitance step below Cscp. Although in this case the
prerequisites of the Walter analysis are not strictly fulfilled,
the classical analysis can be used to compare the contribution
and width of various capacitance signals among the samples
and with literature.

The evaluation via Arrhenius plot (see figure 3) was per-
formed on measurements without bias and under a small
reverse voltage of -0.2'V. The capacitance step 1 forms a
straight line, while the data points for step 2 show a deviation
from the linear behaviour towards lower temperatures for all
samples.

The extracted activation energies are in the range of 200 to
250meV for step 1 and for the linear, high temperature part
of step 2 between 50- 130 meV depending on the sample. All
values are unchanged under bias. The measured energies for
step 1 are too high for a doping defect , since the Fermi-level
would need to be above that value. Also a back-contact barrier
with such a high activation energy is unlikely. It is possible,
that the measured signal corresponds to an interface defect, but
we would have to assume Fermi-level pinning at the interface,
because of the signal not shifting with bias. Identifying step
1 as a deep defect is the conclusion for which one has to
make the least assumptions. It is rather likely, that it has a
contribution to the CV measurements, that can not be fully
resolved by applying a forward bias, this would lead to a
measured C'scr that is too high. We presume that C.,, for
this defect is actually above the true Cscp, therefore step 1
could very well be a deep defect in Cu-rich CIS.

To explain the bending of the Arrhenius plot for step 2,
different temperature dependencies were tested, but neither
yielded a straight line. Therefore it is probably neither the
response of a barrier or a mobility freeze-out due to variable-
range hopg)ing [19], because this should be characterized by a
linear 7'~ % -plot. Since the measured energies are much lower
than for step 1 it is probably also lower than the Fermi-energy,
allowing for this step to be due to the freeze-out of a doping
defect. PL studies of Cu-rich CIS absorbers find three different
energies for the doping defects in CIS. A ~ 10 meV donor and
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Fig. 3. Typical Arrhenius plot, as exemplary for the sample with a high Cu/In
ratio and high Se during growth.
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Fig. 4. Modelling of the defect DOS for step 1 in the sample with a high
Cu/In ratio and high Se during growth.

additional to that three acceptor levels: for near stoichiometry
one with an E, of 40meV (labelled ‘Al’), for Cu-rich of
60meV (‘A2’) [21] and a third one at 100 meV independent of
Cu-excess (‘A3’ in [22]). These are well within the measured
energy range, the best explanation of step 2 therefore might
be the freeze-out of either ‘A2’, ‘A3’, or both together.

As stated previously, for comparability we will also show
the Walter evaluation. Typical results for the first and the sec-
ond capacitance step are shown in figures 4 & 5, respectively.

Furthermore all the extracted parameters from the fitting are
given in table II. The activation energy and frequency values
are usually close to the ones extracted from the Arrhenius plot,
especially for step 1. This rather well fitting of its density
of states with the Walter analysis and the straight Arrhenius
plot might support the conclusion, that step 1 actually is a
deep trap and not an interface defect. But in some cases for
the second step there is a high discrepancy between the two
evaluation methods. This can be attributed to the non-linearity
of the characteristic frequencies in regard of the energy axis,
which results in an ambiguity in the activation energy range
and causes this difference. The DOS was then fitted assuming
a Gaussian shaped defect distribution, which yielded the
width (Wgw gar) and concentration (Np) of both steps. The
concentration was derived from integration of the area under
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TABLE I
DEFECT PARAMETERS FOR THE TWO CAPACITANCE RESPONSES IN ADMITTANCE MEASUREMENTS

Arrhenius plot Walter Analysis
Cu/ln | Se Ea o Ex o Nr Wrw HM Cup
meV s 1K—2 meV s 1K—2 em ™3 nm nFem ™2
low 253 1.6 -10° 245  2.0-10° 1.6-10' 49 43
128 1.2- 108 116  8.0-10° 2.6-10 49 32
. . 252  7.0-10% 247  1.0-10° 1.2.-10¢ 37 55
high mid
81 9.9-10* 78 1.0-10° 5.5-10' 31 46
. 200 2.6-107 207 1.0-108 1.2.-10%¢ 44 59
high
101 4.8-106 58 1.0-10* 6.7-10 41 51
201 3.7-107 192 4.0-107 1.4-10'4 46 39
low
101 5.4-10° 79 1.2-10°  4.5-10' 53 30
. 209 54107 212 1.4-104  9.2.1013 41 41
low mid 4
75 8.8-10 62 4.0-105 3.8-10'* 38 34
. 216 1.5-108 192 4.0-107 9.1-1013 49 44
high
54 1.4-10% 46 1.0-10* 5.6-10™ 34 39
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Fig. 5. Modelling of the defect DOS for step 2 in the sample with a high
Cu/In ratio and high Se during growth.

the Gaussian curve. Therefore the values can be overestimated
for steps that are close to each other and intersect. Charting
of the defect energies over the Se abundance during growth of
the absorbers shows no correlation, in contrast to the strong
influence of the Se pressure on the doping [10]. We attribute
step 2 to a doping defect. Its much lower density Nt calculated
from the Walter method (3-7-10' cm~3) compared to Ny4
from CV measurements (1-3- 106 cm~3) seems to contradict
this assignment. However, since there are up to three different
acceptor levels in Cu-rich CIS, step 2 could be related to only
one of them, while the others are too shallow to be measured
with TAS but contribute to N4.

Even though all the samples showed similar responses, the
values of F4 and &, varied in between samples, seemingly
uncorrelated to the Se environment during absorber growth.
This strong variation of parameters is generally reported for
electrical measurements and shows a linear dependency when
plotted as the logarithm of &, over the associated activation
energy using thermal activation for each capacitance step.
This Meyer-Neldel plot, is often used to compare phenomena,
which are related in their activation behaviour. The variation of

Fig. 6. Comparison between newly measured defect energies and results,
published in the literature.

&o as a function of E4 is usually explained in terms of multi-
excitation entropy [23]. Admittance steps can be grouped
together and should show a linear correlation if they originate
from the same activated process. The slope of the linear fit is
then related to the underlying activation pathway: for example
a defect that captures holes from the valence band through
phonon scattering should yield a slope of the phonon energy
times the phonon-hole coupling constant [23]. Figure 6 shows
the Meyer-Neldel plot for the measured capacitance steps.

It becomes directly apparent, that the two measurement
signals form rather distinct groups that do not intermix. We
can say that the nature of the activation process of both signals
are very similar, because the Meyer-Neldel lines through both
groups exhibit very similar slopes. We also compared the
Meyer-Neldel lines to those already published in literature. In
their 2013 paper, Krysztopa et al. gathered a comprehensive
overview for various chalcopyrites including Cu-rich CulnSe;,
all measured with a multitude of different methods [24]. They
investigated polycrystalline CIS solar cells, covering a range
from Cu-poor to rich and also surveyed the literature for
similar measurements. This resulted in an aggregated plot of
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different groups of defects commonly referred to as ‘N1’ and
‘N2’ (the latter is referred to as ‘E4’ in the cited work), which
are widely observed and published. Figure 6 shows our results
for the Cu rich material in addition to the Meyer-Neldel lines
for ‘N1’ [18] and ‘N2’ [24]. Primarily it becomes apparent,
that neither of the newly detected signals corresponds to ‘N2’,
which appears in a region of higher £4 and lower £, values.
But on the other hand, both of these signals could reasonably
be assigned to ‘N1’ with step 1 at higher energies being
closer to the line. In contrast to our new findings however,
the literature results were measured on Cu-poor samples. To
compare to this literature, we also made a series of Cu-poor
samples, with similar fluxes of Se and Cu/In ratios in between
0.92 and 0.98, i.e. slightly below stoichiometry. Admittance
measurements on them show no high energy signal, but the
second, with a low E4 is shifted to lower &’s, thereby falling
on the literature ‘N1’ line. The discrepancy between this
signal in Cu-rich and Cu-poor absorbers can be explained by
the higher doping in the Cu-rich material. This results in a
higher electric field and due to this the thermal emission rate
increases, shifting the line upwards within the Meyer-Neldel
graph [25]. Therefore we propose, that the second step (with
lower E 4, visible in all the samples Cu-poor and Cu-rich) is
the same defect that also shows up in PL measurements at
100 meV (‘A3’, [22]), and this could be one explanation for
the ‘N1’ signal.

VI. CONCLUSION

This study’s aim was to shine light on the defects within
Cu-rich CIS solar cells. To achieve this, samples with different
Cu/In and Se/Me ratios were grown and analysed. The Se
environment during growth had a profound influence on the
doping density, while it had little effect on the defects’ pa-
rameters visible by admittance spectroscopy. The comparison
with the literature reveals two signatures, both similar to the
so-called ‘N1’ defect. We find that step 1 is best explained
as a signal due to a deep defect, while step 2 is attributed to
the freeze out of a doping defect. It could be the defect ‘A3,
which is reported for both Cu-rich and poor samples.
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