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Abstract

Data processing software is an essential component of systems that aggregate and analyse
real-world data, thereby enabling automated interaction between such systems and the real world.
In data processing systems, inputs are often big and complex files that have a well-defined struc-
ture, and that often have dependencies between several of their fields. Testing of data processing
systems is complex. Software engineers, in charge of testing these systems, have to handcraft
complex data files of nontrivial size, while ensuring compliance with the multiple constraints to
prevent the generation of trivially invalid inputs. In addition, assessing test results often means
analysing complex output and log data. Complex inputs pose a challenge for the adoption of au-
tomated test data generation techniques; the adopted techniques should be able to deal with the
generation of a nontrivial number of data items having complex nested structures while preserving
the constraints between data fields. An additional challenge regards the automated validation of
execution results.

To address the challenges of testing data processing systems, this dissertation presents a set
of approaches based on data modelling and data mutation to automate testing. We propose a
modelling methodology that captures the input and output data and the dependencies between
them by using Unified Modeling Language (UML) class diagrams and constraints expressed in
the Object Constraint Language (OCL). The UML class diagram captures the structure of the data,
while the OCL constraints formally describe the interactions and associations between the data
fields within the different subcomponents.

The work of this dissertation was motived by the testing needs of an industrial satellite Data
Acquisition (DAQ) system; this system is the subject of the empirical studies used within this
dissertation to demonstrate the application and suitability of the approaches that we propose.

We present four model-driven approaches that address the challenges of automatically testing
data processing systems. These approaches are supported by the data models generated according
to our modelling methodology. The results of an empirical evaluation show that the application of
the modelling methodology is scalable as the size of the model and constraints was manageable
for the subject system.

The first approach is a technique for the automated validation of test inputs and oracles; an
empirical evaluation shows that the approach is scalable as the input and oracle validation process
executed within reasonable times on real input files. The second approach is a model-based tech-
nique that automatically generates faulty test inputs for the purpose of robustness testing, by rely-
ing upon generic mutation operators that alter data collected in the field; an empirical evaluation
shows that our automated approach achieves slightly better instruction coverage than the man-
ual testing taking place in practice. The third approach is an evolutionary algorithm to automate
the robustness testing of data processing systems through optimised test suites; the empirical re-
sults obtained by applying our search-based testing approach show that it outperforms approaches
based on fault coverage and random generation: higher coverage is achieved with smaller test
suites. Finally, the fourth approach is an automated, model-based approach that reuses field data
to generate test inputs that fit new data requirements for the purpose of testing data processing sys-
tems; the empirical evaluation shows that the input generation algorithm based on model slicing
and constraint solving scales in the presence of complex data structures.
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Chapter 1

Introduction

1.1 Context

This dissertation presents a set of approaches based on data modelling and data mutation to auto-
mate the testing of data processing systems. The work presented in this dissertation has been done
in collaboration with Société Européenne des Satellites (SES) [SES, 2016], a world leading satellite
operator, based in Luxembourg. Data processing software is an essential component of systems that
aggregate and analyse real-world data, thereby enabling automated interaction between such systems
and the real world. Examples are search engines that return stock quotes [Yahoo!, 2016], web appli-
cations that show real-time airplane positions [FlightRadar24, 2016], and phones able to translate in
real time the words of a road sign [Schroeder, 2010].

In data processing systems, inputs are often complex files that have a well-defined structure, and
that often have dependencies between several of their fields. Software engineers, in charge of testing
these systems, have to handcraft complex data files, while ensuring compliance with the multiple
constraints to prevent the generation of trivially invalid inputs. In addition, assessing test results often
means analysing complex output and log data.

Complex inputs pose a challenge for the adoption of automated test data generation techniques
because the adopted techniques should be able to deal with the complex constraints that exist between
data fields; for example, random data generation approaches cannot be easily adopted because they are
likely to produce test cases that are immediately rejected by the system and, therefore, are not effective
in testing diverse system behaviour. An additional challenge regards the automated validation of
execution results. Software engineers often take advantage of the fact that outputs are saved in log
files, which can be processed to validate results. Validation is partially automated through scripts
developed for each test input. Scripts check for specific output messages expected for a given input
(i.e. the test oracles are written manually); such an approach requires a high development effort per
test case and should the system specifications change, the scripts must be reassessed to ensure they
are still valid.

In our approach, we propose to model the input and output data and the dependencies between
them by using Unified Modeling Language (UML) class diagrams and constraints expressed in the
Object Constraint Language (OCL), following a specific methodology. The UML class diagram cap-
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Figure 1.1. Overview of the different approaches developed for this dissertation.

fConstraints checking validates test input data only, if no system output logs are available.
Test input generation using constraints solving is only applied when new data requirements
have been modelled.

tures the structure of the input, configuration and output data in a precise and detailed way, while the
OCL constraints formally describe the interactions and associations between the data fields within
the different subcomponents. The UML class diagram and the OCL constraints are the data model of
the system. To build these models, the requirements and the domain knowledge of the system stake-
holders is used without the need for access to the source code. This makes the approach black-box
and, therefore, well suited for conditions commonly found in industry where parts of systems are
outsourced or subcontracted, such as the case with our industry partner SES. We make use of an SES
satellite Data Acquisition (DAQ) system to motivate the work within this dissertation as well as to
demonstrate the application and suitability of the approaches that we propose.

The main objective of the data model in this project is to facilitate an end-to-end automated testing
process. This includes input data validation, oracle checking, test input generation, and also includes
activities for test suite optimisation (i.e. selection of the minimal number of test cases that allows for
the achievement of the testing goals).

Fig. 1.1 presents an overview of the different approaches presented in this dissertation to enable
automated testing and how they fit into the development process. Data modelling (step 1) must first
be performed manually to create a data model that corresponds to the System Under Test (SUT). This
data model is used to drive the various automated techniques proposed within this dissertation. Given
a data model and valid field data, we can automatically generate system test inputs (step 2). Our
techniques generate system test inputs: by using generic mutation operators (step 2a), by additionally
using a search-based approach (step 2b), and by using constraint solving (step 2c)—this approach is
used in cases where the available field data is out of date with respect to the system implementation;
in this case, additional modelling must be performed to capture the updated data model. Our solution
can also work with manually written test inputs (step 3). Given test inputs, the SUT can be executed
(step 4) to generate system output logs. Given the test inputs, system output logs, and the data model,
constraints checking (step 5) can be performed to check the validity of the input data (step 5a) and to
act as a test oracle (step 5b); the constraints checker reports any detected failures.




1.2. Research Contributions

1.2 Research Contributions

In this dissertation, we addressed the challenges of testing data processing systems. Specifically, we
make the following contributions:

1. A precise data modelling methodology, dedicated to modelling the structure and content of
complex input/output data stores (e.g. files), and their relationships for systems where the
complexity lies in these elements, such as DAQ systems. This contribution has been published
in a conference paper [Di Nardo et al., 2013] and is discussed in Chapter 3.

2. A technique for the automated validation of test inputs and oracles based on the the application
and tailoring of Model-Driven Engineering (MDE) technologies in the context of data process-
ing systems. This contribution has been published in a conference paper [Di Nardo et al., 2013]
and is discussed in Chapter 4.

3. A model-based technique that automatically generates faulty test inputs for the purpose of ro-
bustness testing, by relying upon generic mutation operators that alter data collected in the
field. This contribution has been published in a conference paper [Di Nardo et al., 2015b] and
is discussed in Chapter 5.

4. An evolutionary algorithm to automate the robustness testing of data processing systems through
optimised test suites. This contribution has been published in a conference paper [Di Nardo
et al., 2015a] and is discussed in Chapter 6.

5. An automated, model-based approach that reuses field data to generate test inputs that fit new
data requirements for the purpose of testing data processing systems. This contribution has been
submitted for publication in a journal [Di Nardo et al., 2016] and is discussed in Chapter 7.

6. For each of the techniques, an empirical evaluation aimed at assessing its suitability in the
context of data processing systems.

1.3 Organisation of the Dissertation

Chapter 2 contains a description of the data processing system, our case study system, whose testing
requirements motivated the work and the proposed approaches of this dissertation.

Chapter 3 describes the model-based methodology proposed to capture the structure and content
of the complex input and output data associated with data processing systems and used to drive the
test related approaches in this dissertation. It also evaluates the feasibility of applying the modelling
methodology that captures the structure and content of complex input/output data.

Chapter 4 describes an approach to support the validation of test inputs and the checking of test ora-
cles in the context of data processing systems. An empirical evaluation is performed on an industrial
data processing system to validate the applicability and scalability of our proposed approach.

Chapter 5 describes a model-based technique that automatically generates faulty test inputs for the
purpose of robustness testing, by relying upon generic mutation operators that alter data collected in
the field. The approach uses UML stereotypes and OCL queries to configure the mutation operators
to implement a fault model of the SUT. An empirical evaluation is performed on an industrial data
processing system to evaluate the effectiveness of our proposed approach.
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Chapter 6 describes an evolutionary algorithm to automate the robustness testing of data processing
systems. The approach makes use of four fitness functions (model-based and code-based) that enable
the effective generation of robustness test cases by means of evolutionary algorithms. An extensive
study is performed to observe the effect of fitness functions and configuration parameters on the
effectiveness of the approach using an industrial data processing system as case study.

Chapter 7 describes an automated, model-based approach to modify field data to fit new data re-
quirements for the purpose of testing data processing systems. The approach uses a scalable test
generation algorithm based on data slicing that allows for the incremental invoking of a constraint
solver to generate new or modified parts of the updated field data. An industrial empirical study is
performed demonstrating (1) scalability in generating new field data and (2) coverage of new data
requirements by generated field data in addition to a comparison with expert, manual testing.

Chapter 8 discusses related work.

Chapter 9 provides a description of the core software implementations developed for the empirical
studies of this dissertation.

Chapter 10 summarises the thesis contributions and discusses perspectives on future work.




Chapter 2

Motivating Industrial Case Study

This section introduces the industrial data processing system that motivated our research and that we
used to evaluate the approaches presented in this dissertation. Our case study system is a DAQ system
developed at SES [SES, 2016], a world leading satellite operator, to collect and process satellite
data. The particular system we consider has been developed to process the transmission data for the
European Space Agency (ESA) Sentinel series of satellites [ESA, 2016]. We will refer henceforth to
this system as SES-DAQ.

There are multiple Sentinel mission types; each mission type is intended to provide different Earth
observations (e.g. climate or vegetation). The satellites related to each mission type have specialised
instrumentation. Accordingly, the content of the data transmitted for the different missions varies.

Fig. 2.1 gives a high level overview of the SES-DAQ. The system receives satellite transmissions
and processes them according to configuration settings. It first checks for transmission errors. If the
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System
=)

Configurations

Data

Figure 2.1. High-level overview of the data acquisition system that receives satellite
transmissions.
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Figure 2.2. Channel access data unit (CADU) [CCSDS, 2011]. A satellite transmission
consists of a sequence of CADUs.
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Figure 2.3. A simplified example of the transmission data processed by the SES data ac-

quisition system. The keyword VCID indicates the virtual channel each Virtual Channel
Data Unit (VCDU) belongs to; RS is the Reed-Solomon Codeblock.

transmission appears valid then the system extracts the actual packets of data to later recombine them
into the original data. The system outputs the data received as well as log files capturing errors and
events of interest that occurred in the transmission.

2.1 Background on Satellite Transmissions

Satellite transmissions are a good example of data with a complex structure and multiple relation-
ships among its fields. The Consultative Committee for Space Data Systems (CCSDS) is tasked with
developing standards pertaining to space related communications [CCSDS, 2016].

Satellites communicate with ground systems via one or more physical channels in one or both
directions. A physical channel corresponds to transmitted bitstreams of data, for example, transmitted
from a satellite to a ground (i.e. DAQ) system. Bitstreams are transmitted as a sequence of Channel
Access Data Units (CADUs) [CCSDS, 2011]. Fig. 2.2 shows a single CADU. Each CADU consists
of: a Synchronisation Marker, a specific bit pattern used to identify the start of the CADU; a Virtual
Channel Data Unit (VCDU) that contains the actual data being transmitted (for a particular virtual
channel); and a Reed-Solomon Codeblock, used for error correction.

Fig. 2.3 shows a simplified example of a satellite transmission processed by SES-DAQ. Each trans-
mission consists of a sequence of VCDUs [CCSDS, 2006] (each VCDU is contained within a CADU)).
Each VCDU contains a Header and a packet zone that contains a sequence of Packets [CCSDS, 2003].
Each VCDU is preceded by a Synchronisation Marker and followed by a Reed-Solomon Codeblock.
The VCDUs in a transmission may belong to different virtual channels; a unique Virtual Channel
Identifier (VCID) number identifies each virtual channel. VCDUs can be active (i.e. they transmit
data) or idle (i.e. they do not transmit anything). A special VCID is used to transmit idle data.
Fig. 2.3 shows a transmission with six VCDUs: four belonging to virtual channel 1; one belonging to
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Figure 2.4. Structure of a Virtual Channel Data Unit (VCDU) [CCSDS, 2006]. The
structure begins with six fields that make up the VCDU header, followed by the two-field
Multiplexing Protocol Data Unit (MPDU) header, followed by the MPDU packet zone.
The example shown in the figure corresponds to VCDU 3 in Fig. 2.3.
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Figure 2.5. Structure of a space packet [CCSDS, 2003]. The structure begins with
seven fields that make up the primary packet header, followed by the packet data field
(an optional packet secondary header and user data). Note: APID, Application Process
Identifier.

virtual channel 2; and one belonging to virtual channel 0, which indicates idle data.

Each VCDU has a predefined length. Packets can have varying lengths and they may span across
multiple VCDUs. Packet 4 in Fig. 2.3 spans over VCDU 1 and VCDU 3, while Packet 6 spans over
VCDU 3, VCDU 4, and VCDU 5.

Fig. 2.4 shows the structure of a VCDU in more detail. A VCDU consists of a VCDU Header, a
Multiplexing Protocol Data Unit (MPDU) Header, and an MPDU Packet Zone. Some of the fields of
the VCDU are characterised by complex constraints. For example, the Virtual Channel Frame Count
is used to keep an ordering between VCDUs s that belong to a same channel: the Virtual Channel Frame
Count of a VCDU must be greater by one than the Virtual Channel Frame Count of the previous
VCDU on the same virtual channel.

A more complex constraint pertains to the field First Header Pointer, whose value depends both
on the VCDU type and on the transmitted data. The First Header Pointer contains an offset to the
beginning of the first Packet that starts in the packet zone of the VCDU. In idle VCDUs, the First
Header Pointer should be filled with an expected idle bit pattern. In active VCDUs, the First Header
Pointer should contain the offset to the beginning of the first new Packet. For example, Fig. 2.4 shows
that in VCDU 3 the First Header Pointer is set to 40 because the first 40 bytes in the Packet sequence
of VCDU 3 belong to the end of Packet 4, whose transmission started in VCDU 1. The first Packet
starting in VCDU 3 is thus Packet 5, which starts at byte 40 of the packet zone.

There are constraints on other data fields as well. Fig. 2.5 shows the structure of a space Packet
(or Instrument Source Packet (ISP)); an ISP consists of a Packet Primary Header and a Packet Data
Field. The 16-bit field Data Length is used to specify the length of the Packet Data Field: Data
Length is equal to the number of octets in Packet Data Field minus 1.
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2.2 SES-DAQ System

The SES-DAQ system is a high-speed, DAQ system that is developed and tested by two independent
teams. It is a good example of a data processing system dealing with complex input and output data,
written in Java. The system has 53.5 k lines of Java code (cyclomatic complexity is 8700) and runs
on a 6-core Central Processing Unit (CPU) server with 6 GB of Random-Access Memory (RAM).

The system accepts as input one or two binary files that correspond to physical channel data (i.e.
a sequence of CADUs). Each CADU contains a VCDU that contains one or more packets of data
(packets can span multiple VCDUs). Error-correction information is stored at all levels of the data
as all communications with the satellite are unidirectional, so the receiver cannot ask the sender to
resend erroneous data.

Several configuration files are used to define how the input file should be processed (e.g. the valid
Application Process Identifier (APID) values for the packets on a given virtual channel); these files
are in the Extensible Markup Language (XML) and text formats. Four different log files report on the
results of processing the input file (e.g. two of the logs report any errors occurring at the VCDU and
the packet processing levels); the output logs are in the XML format.

Ongoing refurbishments are planned for the system for the foreseeable future.

2.3 Testing of SES-DAQ

The test suite for the system is currently created manually by highly experienced engineers, with
domain expertise. There are 32 test cases that are approved by the client for the validation of the
system, which address the SES-DAQ system requirements related to data acquisition and processing.
These test cases use synthetic input data; some represent valid transmissions, while others represent
typical patterns of events and errors in such systems.

These test cases check that the system performs as expected and captures these events and errors
in the output log files. For example, a test case could simulate a transmission error where one of the
counters is not in sequence. The input file for this test case contains an out of sequence counter and
the expected result is that the output log file reports this event.

Each test case consists of a small input transmission file that is six CADUs in length (< 12 kB)
and the relevant configuration files. The execution of test cases is currently automated using Maven
2 [Maven, Apache, 2016] (a project management tool that supports automated test execution) and
Groovy [Groovy Community, 2016] (a Java-like Java Virtual Machine (JVM) dynamic language).
The expected result is checked by using hard-coded assertions and checksum comparisons to previous
execution results.

By examining the manually created system test cases and related documentation, we derived a
fault model. Fault models are used to capture the specific faults that can occur for a given behaviour
description, meant to satisfy a given specification [Pretschner et al., 2013]; given a fault model, test
cases can be derived. In the case of SES-DAQ, the fault model pertains to the errors that can occur in
the format of the satellite transmission input data. Transmission errors (i.e. data faults) may be due to




2.4. System Testing Challenges

Table 2.1. Fault Model of SES-DAQ.

Fault Description

Duplicate CADU/ISP | The same CADU/ISP appears twice in the trans-
mission.

Missing CADU/ISP | A CADU/ISP is omitted during transmission.

Wrong Sequence CADUS/ISPs are sent out of order.

Incorrect Identifier Several transmission data fields have fixed val-

ues, for example fields identifying the transmitting
satellite. Hardware/software errors may assign in-
correct identifiers.

Incorrect Checksum | Hardware/software errors may result in an incor-
rect checksum for an ISP or VCDU header.
Incorrect Counter Counters are used to track ISP or VCDU order-
ing. Hardware/software errors may assign incor-
rect counter values.

Flipped Data Bits Physical channel noise may flip one or more bits in
the data transmission.

Note: CADU, Channel Access Data Unit; ISP, Instrument Source Packet; VCDU,
Virtual Channel Data Unit.

either the physical channel (atmospheric noise or hardware antenna errors can fall into this category)
or software failures at the system level (e.g. the miscalculation of header values). Table 2.1 shows a
fault model for SES-DAQ.

2.4 System Testing Challenges

The complexity and constraints of satellite transmission data make the testing of SES-DAQ extremely
complex and expensive. Handcrafting test cases is expensive and error-prone. Consider a software
engineer who needs to check if SES-DAQ properly detects errors in the presence of a wrong sequence
number in the Virtual Channel Frame Count of a VCDU. The software engineer will need to generate
multiple test cases (i.e. multiple faulty input data) in order to cover all the combinations of the
input data features: the number of channels in a transmission (one, two, or more), the presence of
idle channels, the type of VCDU affected by the fault (idle or active), and the presence of Packets
spanning across multiple VCDUs. The testing process is not only complicated by the number of the
generated test cases, but also by the complexity of the constraints that must hold. In fact, to generate
data affected by a single fault, the software engineer must create data with a wrong Virtual Channel
Frame Count but with other fields that conform to all the other constraints; for example, the proper
values for the field First Header Pointer must be set.

The execution of the system test suite is currently automated; however, the expected results are
checked by using hard-coded assertions and comparisons of checksums to previous execution results.
Consider that the SES-DAQ system specification might change over time concerning the treatment of
existing data. For example, an input that previously generated an error in the log, might be considered
acceptable in a subsequent release. System changes require a reassessment and possible refactoring
of the Groovy scripts related to testing that serve as test oracles (one for each individual test case).

9
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Additionally, the satellite transmission specification related to the SES-DAQ is subject to up-
dates. For example, as new Sentinel missions are deployed, new packet types must be accommodated
within the bytestream data. During development, the packet specifications might be subject to change
requiring frequent updates to any representative test input data created for testing during the software
refurbishment process.

The amount of time and resources allocated for testing are limited; raising the client’s confidence
in the system is crucial. This raises the need for an automated test generation and oracle checking
approach and also emphasises the importance of automatically generating effective test cases. Other
systems in the company have similar characteristics and, therefore, any methodologies and tools
developed for this system can be applied in future to several other products.

10
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Modelling Methodology

Given the challenges of our case study context, we are motivated to devise a modelling methodology
to support the test automation of data processing systems having complex input and output struc-
tures, with complex mappings between the two. We pursued a model-driven strategy for the various
approaches proposed within this dissertation.

By modelling the input and output data structures and constraints, we are effectively creating a
specification of the system data. In fact, capturing data specifications could already be a practice in
place at a given company. This chapter describes how data modelling should be conducted such that
the data model can also be used for testing automation.

We use this modelling methodology to support automated input validation (e.g. to check the va-
lidity of the manually written test inputs for the system). Similarly, we support test oracle automation
(e.g. to check that the resulting system output resulting from a test input is correct).

As the writing of meaningful tests is a time consuming endeavour, we support automatic test
generation. By extending the modelling methodology, we make use of data mutation operators that
work on existing valid field data files to create faulty test inputs. In the case where a system is
updated to handle new data requirements, we support automatic input generation techniques to create
meaningful test inputs conforming to the newly defined data structures.

To achieve our objectives, a modelling notation is not sufficient: a precise methodology supporting
the modelling objectives is necessary. A modelling methodology is a practical way to provide more
precise semantics to the selected modelling notation in a specific context, in our case UML class
diagrams. We initially devised a modelling methodology whose goal is to capture the structure and
constraints of system related data (i.e. input, configuration, and output data).

This chapter highlights the following research contribution:

1. A precise test modelling technology, dedicated to modelling the structure and content of com-
plex input/output data stores (e.g. files), and their relationships for systems where the com-
plexity lies in these elements, such as DAQ systems. The modelling methodology is based
on UML class diagrams and the OCL, and gives semantics to the notation through a practical
methodology dedicated to the model-based testing of data processing systems.

11
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2. An empirical evaluation on an industrial data processing system to validate the applicability
and scalability of our proposed approach.

We devised a methodology to model the input and output data of a system together with their de-
pendencies using UML class diagrams and OCL [OMG, 2015] constraints. Our first objective was to
automate test input validation and oracles. The input/output models capture the structure of complex
input, configuration and output data in a precise way, including constraints that formally describe
the interactions and associations between their different subcomponents. To build the input/output
models, the requirements and domain knowledge of the system’s stakeholders is elicited, without the
need to access the source code, making the approach black-box. The modelling process is in practice
iterative; it might be necessary to adjust the model when defining the constraints to add an attribute
or operation that is necessary for the constraints.

Simply modelling a system’s data is not sufficient. In order to provide automation that fulfils the
goals of our modelling methodology, we must be able to take the real-world data associated with a
system (e.g. the binary and text files of interest) and convert these into instantiated objects (based on
our UML representation) in order to perform the various testing related activities that we propose (i.e.
input validation, oracle checking, and test input generation).

Our examples in this chapter focus on the modelling of the satellite binary transmission file. Ap-
pendix A provides additional details on the modelling of the configuration files and output files asso-
ciated with the SES-DAQ.

The chapter proceeds as follows. Section 3.1 presents the different applications of the modelling
methodology we propose for the testing and validation of data processing systems. Section 3.2 de-
scribes the steps that we propose to model the input and output data structures and Section 3.3 de-
scribes how we define the constraints. Section 3.4 describes how UML stereotypes can be used
to augment the modelling methodology to support the use of automated generic data parsers. Sec-
tion 3.5 gives an overview of other enhancements made to the data model to enable automated test
input generation. Section 3.6 presents the empirical results obtained. Finally, Section 3.7 concludes
the chapter.

3.1 Modelling Methodology Applications

Working with the domain experts and engineers, we identified four applications of this modelling
methodology, namely test design, test oracle, specifications refinement, and run-time verification.

Test design

Due to the complexity of the input file structure and dependencies between fields, writing test cases
for such systems might be challenging. The model and constraints can help the tester design test
cases: Artificial input files created for testing can be debugged using the model and constraints.

12
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Test oracle

The constraints on the input/output can be used to automate the oracle. The output log files can be very
large and complex making manual checking of the expected output time-consuming and impractical.
An automated oracle could reduce the oracle cost allowing testers to execute a larger number of test
cases in the time allocated for testing.

Specifications refinement

Real transmission files can be tested on the model and input constraints to validate the model itself,
which is a specification of the system. As previously mentioned, in systems such as DAQ systems,
it might be hard to get detailed specifications of the expected input files early in the development of
the system. Moreover, in practice such specifications tend to change, often in implicit ways, during
development and testing. Therefore, applying real transmission files to the model could be a way to
partially reverse engineer or refine these specifications. The real transmission files are expected to be
valid; therefore, violations of the input constraints and failures when loading the transmission file into
the model might indicate faults in the model and constraints.

Run-time verification

In a similar way, using real transmission files while focusing on the constraints that map the input
to the output could help to identify faults. In real transmission files, the expected output is unknown
(i.e. which events should be captured in the output logs). However, input/output constraint violations
could indicate faults in the specifications of the system or unhandled events.

3.2 Capturing Data Structures

According to our methodology, the software engineer needs first to decide what needs to be modelled
(i.e. what files or attributes). For each of the files that are selected for modelling, the first step is
to understand the structure of the file and decide what information needs to be captured. A general
guideline is to capture every element in the files that is needed for automated testing. For example,
if some fields can only be assigned a limited number of predefined values, this needs to be captured
in the model as an enumerated data type or a property that captures the allowed range. Class dia-
grams, the most common type of UML diagrams, are then created that capture the structure and the
information that we decide to include.

The structure of the file is modelled using a tree structure of classes and composition relationships
combined with regular associations and generalisations. The structure of the class diagram can be
dictated by either the logical or physical structure of the component we want to model. For example,
the fields of a file can be logically divided into subgroups that help understand the purpose of each
part of the file. On the other hand, some files are divided into subparts physically; for example, if the
file is structured using XML.

Figs. 3.1 and 3.2 depict a simplified, sanitised model of the input data of our case study system.
These models are the structural representation of the CADU bytestream data (shown in Figs. 2.2, 2.4,
and 2.5). Fig. 3.1 shows that satellite transmission data (TransmissionData) is composed of one

13
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Figure 3.1. Simplified model example for the input Channel Access Data Unit (CADU)
data in the case study system. Note: SD, StreamData; GA, GeneralisedAttribute.

or more physical channels (ChannelData elements), which in turn are composed of a sequence of
CADUs (Cadu elements). Fig. 3.2 shows the representation of the space packets (Isp elements)
associated with the MPDU packet zones of an active virtual channel (ActivePacketZone elements, in
Fig. 3.1). This model will be used as an example throughout this section to illustrate the different
modelling elements that we use.

Each field that is composed of subfields is represented in the model by a class. The relationship
between classes is modelled as follows:

1. A containment, which is the relationship between a field and its subfields, is represented in the
model by a composition (an edge with a black diamond). For example, in the model in Fig. 3.1,
the field Cadu is composed of Sync, Vedu and ReedSolomon data.

2. In some cases, a field can be one of several alternative fields (i.e. the field has multiple different
definitions but only one of them can be true at a time). This case is represented in the model by
a generalisation (edge with an unfilled triangle). For example, in Fig. 3.1, the field MpduPack-
etZone (a superclass) can be one of two subtypes: an IdlePacketZone or an ActivePacketZone
(modelling either an idle bit pattern or the presence of actual data, respectively).

3. If a field can have several instances of the same subfield, this is represented in the model by a
multiplicity on the edge that connects the field to its subfields. A multiplicity is a number or
range representing the minimum and maximum number of times the subfield can appear. For
example, a ChannelData instance of Fig. 3.1 can contain zero or many (*) instances of Cadu.

Leaf fields are fields that do not have any subfields and hold an actual value. These fields are
represented in the model by class attributes having non-class type values. Multiple related leaf fields
may be contained within a same class; for example, versionNumber, spaceCraftld, virtualChannelld,
veFrameCount, and headerErrorControl together form a VeduHeader. The choices influencing the
creation of classes and attributes can also be determined by readability or visibility considerations.
For example, the synchronisation bytes of a Cadu could have been included as an attribute sync within
the Cadu class. To emphasise their importance, the synchronisation bytes are rather contained within
a distinct class, Sync, within the attribute data. Note that modelling a field as a class or attribute does
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Figure 3.2. Simplified model example for the input Instrument Source Packet (ISP) data
in the case study system. Note: SD, StreamData; CA, Conditional Attribute.
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Figure 3.3. Associations between input, configuration and output class diagrams.

Table 3.1. Mapping of file information items to class elements.

File Item Model Element|Example
Field Class ChannelData
Leaf Field Attribute spacecraftld
Containment |Composition |Cadu is composed
of Sync, Vcdu, and ReedSolomon
Alternative Generalisation |MpduPacketZone can either be an
Subcomponents IdlePacketZone or a ActivePacketZone
Optional/Multi |Multiplicity One ChannelData instance can have zero or
Subcomponents many instances of Cadu
Dependency Association The association between
TransmissionData and Configuration
Computation |Operation getHeaderErrorControl

not affect the final test validation process or oracles.

Dependencies between fields or different files are represented in the model by associations (edges).
These associations help in navigating the model to precisely specify a field when defining constraints.
For example, Fig. 3.3 illustrates the associations between the input class diagram (Fig. 3.1) and the
configuration (Fig. A.1 in Appendix A) and output (Fig. A.2 in Appendix A) class diagrams.

Finally, in some cases we need to define operations on some fields. These operations are not part
of the data, as opposed to other items in the class diagram; they correspond to standard computations,
normally provided by existing libraries, used to compute or check field values. These computations
are represented in the model as an operation in the class that represents the relevant field. For example,
the field headerErrorControl in the class VcduHeader has a value (calculated using versionNumber,
spaceCraftld, and virtualChannelld), used for error detection and correction, that is generated using
a complex, but standard, algorithm provided by a library that can not be expressed in OCL. There-
fore, the operation getHeaderErrorControl() was created to allow testers to get the valid value of the
Header Error Control— useful when performing test input validation (i.e. to check that the value of
headerErrorControl is correct) or for validating that the correct output has been captured in the logs
in the presence of this error.
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1 context VcduHeader inv:

2

3 et

4 config : XsveRtStps =

5 self.vcdu.cadu.channelData.transmissionData.configuration.rtStpsConfig.xsveRtStps
6 in

7

8 config.veduConfig->exists(x | x.vcid = self.virtualChannelld.intValue)

9 or

10 self.virtualChannelld.intValue = config.idleVcid

Figure 3.4. Example of a constraint on input and configuration used to validate test cases.
context Cadu inv:

1
2
3 let

4 frameCount : Integer = self.vcdu.vcduHeader.vcFrameCount.intValue,

5 prevFrameCount : Integer = self.prev.vcdu.vcduHeader.vcFrameCount.intValue,
6 transData : TransmissionData = self.channelData.transmissionData

7

8

9 self.vedu.veduHeader.virtualChannelld.intValue <>

10 transData.configuration.rtStpsConfig.xsveRtStps.idleVcid

11 and

12 not self.prev->isEmpty()

13

14 and

15

16 if prevFrameCount < 16777215

17 then frameCount <> prevFrameCount + 1

18 else prevFrameCount = 16777215 and frameCount <> 0

19 endif

20

21 implies

22

23 transData.acquisitionData.veduReportData.veduReportBody.veduEvent
24 ->exists(i | i.eventType = VcduEvents:: VIRTUAL_COUNTER_JUMP
25 and i.currentVcduFrame.header = self.vcdu.getHeaderAsString() )

Figure 3.5. Example of a constraint on input, configuration and output data used to automate the oracle.

Table 3.1 provides a summary of the mapping between elements in the files and class elements.
Appendix A provides additional details pertaining to the modelling of XML and text file data.

3.3 Capturing Data Field Constraints

Restrictions on data fields and relationships (i.e. dependencies) between different fields are modelled
using OCL, a logical choice when using UML. OCL is widely supported by modelling engines, such
as ECore [The Eclipse Foundation, 2013].

Constraints can be divided into two main groups based on their function: constraints on the inputs
(including configurations) and constraints that capture relationships between the input and output.

The constraints on the inputs are used to check that input data is valid. For example, a constraint
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«enumeration» «stereotype» «stereotype»
FileType FileInfo StreamData «stereotype»
binary type : FileType| | size : Integer GeneralisedAttribute
text sizeUnit : Unit
XML 1 9 - generalisedAttribute
«enumeration» 1 |+ constraint
Unit . T
bit «metaclass» «metaclass» E“;;l::r?;’;
Propert: 1
byte Class perty
1.%7"+ properties 1 |+ constraint
1 1 - conditional Attribute
«stereotype» «stereotype»
ContentOrder | - contentOrder ConditionalAttribute

Figure 3.6. Portion of the custom profile that extends the UML metamodel to support
automated parsing. The shaded elements in the figure represent UML metaclasses.

on the input data in Fig. 3.1 is that the value of virfualChannelld can only be one of the values
defined in the configuration file. The OCL code in Fig. 3.4 precisely expresses this constraint; the
field virtualChannelld has to exist in the list of vcid entries in the configuration file (line 8) or be
equal to the idleVcid (line 10).

The constraints that define relationships between the input and output are used to verify that the
result of executing a test case matches what is expected—acting as a test oracle. The OCL code in
Fig. 3.5 expresses a constraint of this type; if the values of veFrameCount are not in sequence for a
certain virtualChannelld (lines 16-17), or in the case that veFrameCount has reached its maximum
allowed value (16,777,215) and the value of the next vcFrameCount is not zero (line 18), then a VIR-
TUAL_COUNTER_JUMP event should be recorded in the relevant output log file (VceduReportData,
lines 23-25).

3.4 Augmenting the Model for Automated Parsing

The automation of the approaches proposed in this dissertation requires that we load the system data
into memory as an instance of the data model. We therefore require the use of data parsers and object
instantiators to create instantiated models that correspond to our data models. Creating custom parser
software to support the parsing of specific data files can be an incredible burden on software engineers,
especially in cases where specifications and file formats change frequently. Therefore, to minimise
implementation effort, we propose the use of generic data parsers that are guided by extensions to
our modelling methodology. In general, we believe that generic parsers could be implemented for
different data types to support the adoption of the methodology in different contexts.

For example, we developed a parser that processes bytestreams of data and one that processes text
files. In the specific case of the SES-DAQ, which receives as input the transmission data saved on the
filesystem as bytestreams, we developed a generic bytestream parser that processes stereotypes and
OCL expressions that were created to augment the data model to enable automated parsing (further
details on the parser tool created for this project can be found in Chapter 9).

We enhanced the methodology to support the automatic data parsing of binary satellite transmis-
sion files by introducing four stereotypes: «ContentOrder», «StreamData», «GeneralisedAttribute»,
and «ConditionalAttribute». Fig 3.6 shows the portion of our UML profile where these stereotypes
are defined.
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context Vcdu::getVirtualChannelType() : VirtualChannelType body:

1
2
3 if self.vcduHeader.virtualChannelld.intValue =

4 self.cadu.channelData.transmissionData.configuration.rtStpsConfig.xsveRtStps.idleVcid
5 then VirtualChannelType::IDLE

6 else VirtualChannelType::ACTIVE

7 endif

Figure 3.7. OCL query to determine whether a virtual channel is active or idle.

The stereotype «ContentOrder» extends (via the arrow with the solid black triangle) the metaclass
Class (i.e. the stereotype can be applied to the classes of our data model). When applied to a
given class, this stereotype captures the parsing order of the attributes of the underlying class via
the containment denoted by the role properties, part of the directed aggregation association between
«ContentOrder» and Property. Note that the Property metaclass represents UML attributes.
For example, the « ContentOrder» stereotype assigned to the class Vedu in Fig. 3.1 indicates that the
order in which the fields (i.e. attributes) of the class Vcdu appear in the bytestream is as follows:
veduHeader, mpduHeader, and mpduPacketZone.

The stereotype «StreamData» extends the metaclass Property (thus, the stereotype can be ap-
plied to the attributes of our data model). When applied to a given attribute, this stereotype enables
software engineers to specify the number of bits or bytes a particular data field (represented by the
attribute) occupies. The stereotype «StreamData» specifies (via its attributes) the size (an Integer) and
the sizeUnit of the transmitted data (i.e. a bit or byte). For example, in Fig. 3.1, the «StreamData»
stereotype attached to attribute value virfualChannelld sets the size of the represented data field to
6 bits; similarly, the «StreamData» stereotype assigned to attribute value headerErrorControl sets
the size of the represented data field to 2 bytes. The bit representation of the data is then translated
according to the format declared in the data model (a BitSequence or ByteSequence).

The stereotype «GeneralisedAttribute» extends the metaclass Property. This stereotype is as-
sociated with an OCL query (denoted by the association between stereotype «GeneralisedAttribute»
and metaclass Constraint) that will be used during bitstream parsing to choose which class to
instantiate from a given generalisation of classes (e.g. from a base class and its specialisations). For
example, in Fig. 3.1, the «GeneralisedAttribute» stereotype applied to the attribute mpduHeader has
an OCL query, getVirtualChannelType() defined in the context of the Vedu class. This OCL query,
presented in Fig. 3.7, returns a value that is used to determine whether an instance of MpduActive-
Header or MpduldleHeader should be created and then assigned to the attribute mpduHeader.

The stereotype «ConditionalAttribute» extends the metaclass Property. This stereotype has
an OCL query (denoted by the association between stereotype « ConditionalAttribute» and metaclass
Constraint) that will be used during bitstream parsing to determine whether an optional data field
should be created. For example, in Fig. 3.2, the « ConditionalAttribute» stereotype applied to the at-
tribute packetPrimaryHeader has an OCL query, hasPrimaryHeader() defined in the context of the
class Isp; the OCL query hasPrimaryHeader() returns a Boolean value that indicates whether or not
an instance of PacketPrimaryHeader should be created and assigned to the attribute packetPrimary-
Header.

This section dealt specifically with the stereotypes necessary to parse the satellite bytestream data.
There are other file types that we need to parse to be able to instantiate the entire data model. The
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parser solution we developed (presented in Chapter 9), in fact, is able to call one of three generic
parsers we developed to parse the files related to the SUT. Accordingly, we introduce a fifth stereo-
type, «Filelnfo», also shown in Fig 3.6, that the tool uses to determine how to proceed with parsing.

The stereotype «Filelnfo» extends the metaclass Class. The stereotype is applied to each class
within the data model that represents the root of the modelled data corresponding to the contents of a
file. Stereotype «Filelnfo» has one attribute, type, that indicates whether the data file associated with
the modelled data is: (1) binary, (2) text, or (3) XML. For example, the first option, binary, refers to
the transmission binary data covered in this chapter; in this case, «Filelnfo» is applied to the class
ChannelData in Fig. 3.1 to designate that the contents of the data having the root class ChannelData
are of type binary.

Examples of the other two file type options, XML and text, can be found in Appendix A.

3.5 Other Enhancements to the Data Model

3.5.1 General support for automation

Given that we can define and instantiate our data model using the modelling methodology that has
been augmented to support data parsing, some of tools designed to implement the approaches of this
dissertation further required that we classify the subcomponents of the model instance according to
the types of data they represent. Accordingly, we introduced the «InputData», «OutputData», and
«ConfigData» stereotypes. Fig. 3.3 shows the application of these three stereotypes to the data model
of the SES-DAQ.

3.5.2 Support for test input generation via data mutation

We enhanced the methodology to support automatic data mutation by using four UML stereotypes:
«InputData», «ldentifier», «Measure», and «Derived». Data mutation is used to support automatic
test input generation. An overview of these stereotypes is given in Chapter 5.

3.5.3 Support for test input generation via constraint solving

This dissertation includes an approach for automatic test input generation in the presence of updated
data models, and the methodology supports this. In particular, we introduced the stereotype «Re-
placement» to support test input generation in the presence of replaced classes. Details pertaining to
the «Replacement» stereotype can be found in Chapter 7.

3.6 Empirical Evaluation

We performed an empirical evaluation of the modelling methodology aimed at addressing its scala-
bility with respect to the effort involved in the modelling process. The modelling process must be
scalable in practice, and only a realistic empirical evaluation can help us to make this assessment.
The empirical evaluation aims to respond to the following research question:

RQ: How much effort is needed to produce the data model and constraints for a real system?
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The size of the created model and constraints for an actual, representative data processing system
is a surrogate measure for modelling effort, since actual effort is largely dependent on skills and
experience and therefore not a generalisable measure. Of course, determining if the size of a model
is acceptable is subjective. An assessment must therefore be made in light of typical system models
and based on the experience with project engineers.

3.6.1 Subject selection

This empirical evaluation makes use of the SES-DAQ system described in Chapter 2.

3.6.2 Approach application and data collection

To perform the empirical evaluation, we first studied the SES-DAQ system using design and test
documents and held several modelling sessions with the system testers and developers. The model and
constraints for the system were created, in an iterative manner, following the modelling methodology
defined in Sections 3.2 and 3.3.

For this evaluation, IBM Rational Software Architect (RSA) was used to create the UML class
diagrams and the OCL constraints. Alternatively, there are free software packages available that could
also be used (e.g. Papyrus UML).

3.6.3 Results

In this section, we discuss the results of the empirical evaluation to answer our research question.
As mentioned before, the size of the model and constraints can be a surrogate measure to estimate
the effort needed to follow our modelling methodology in a specific context. We report model size
rather than modelling time because the time needed for modelling is largely dependent on the person’s
domain knowledge and expertise in modelling and in OCL, and is therefore expected to vary from
context to context.

We count and report the number of classes, attributes, associations (which include compositions)
and generalisations of our case study system in Table 3.2. The results show that the size of the model,
with 68 classes overall, seems acceptable given typical system model sizes and the size of the SUT
(53.5 KLOC). Of course, as mentioned before, such an assessment is subjective. Therefore, we also
rely on the feedback of the system’s developers and testers when they were presented with the final
model and constraints; since the system is developed by third parties, the modelling methodology
allows for a high-level view of input and output constraints. The feedback we received is that the size
of the model and constraints are reasonable compared to the benefit of defining the constraints used
for test validation and oracles.

We classify each constraint in the model of the case study system based upon the location(s) of
the referenced system data (i.e. the location(s) of the constrained attributes within the model). There
are two distinct categories for the constraints: (1) those involving only input and configuration data
(the constraint of Fig. 3.4 is in this category), and (2) those involving input, configuration and output
data (the constraint of Fig. 3.5 is in this category). The constraints of the first category are used for
test validation, while those of the second category are used for the oracle. For each of the categories,
we report the number of constraints, the total number of clauses in all constraints, the number of
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Table 3.2. Size of the input, configuration and output models that were created for the
case study system.

File | Classes | Attributes | Associations | Generalisations
Input 36 156 17 4
Configuration 9 30 6 1
Output 23 132 15 0
Total [ 8] 318 38| 5
Table 3.3. Information about constraints for the case study system classified by the files
to which they apply.
#of|  # of|# of Operations|# of Iterative
File Constraints|Clauses| on Collections| Operations
Input/Configuration 27 84 20 7
Input/Configuration and Output 22 125 17 29
Total | 49 209 37| 36

operations on collections (e.g. indexOf) and the number of iterative operations (e.g. forAll). The
results show (in Table 3.3) that the number of constraints is similar for the two categories of constraints
(27 and 22). The results also show that the complexity, represented by the total number of clauses
and iterative operations in constraints, mainly lies in the constraints that are used as the oracle (125
clauses compared to 84 and 29 iterative operations compared to 7).

Igbal et al. show that they can obtain models of similar sizes for similar systems [Igbal et al.,
2012]. More specifically, they created models using UML extended with the Modeling and Analysis
of Real-Time Embedded Systems (MARTE) profile to conduct four industrial case studies. Due to
the differences in the modelling methodologies and on the problems addressed and the domains, we
cannot directly compare the model compositions and sizes to that of this study. However, considering
the size metrics reported gives us confidence that the size of our model and constraints is reasonable.
One of their case studies used modelling notations similar to our own; the related model contained a
total of 71 classes and 16 OCL constraints (as well as other elements). Similarly, Sabetzadeh et al.
use SysML to model a real safety-critical SW/HW interface [Sabetzadeh et al., 2011]. Their design
consisted of 194 elements having 186 relations and 57 attributes.

Answer to RQ:

The results show that the size of the model and constraints is reasonable compared to typical
system model sizes. The data model created for this empirical study contained a total of 68 classes,
318 attributes, and 49 OCL constraints. Most significantly, the cost of modelling was considered
acceptable by the SES-DAQ system’s engineers, especially compared to the benefit of defining the
constraints used for test validation and oracles.

3.6.4 Threats to validity

In this section, we discuss the threats to validity in this study following the standard classification of
threats [Wohlin et al., 2000].
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External threats

The external threats are related to the choice of case study system and the ability to generalise results.
Although we only used one system in the empirical evaluation, it is representative of data processing
systems. Our results might only be relevant in this application domain; nevertheless, this domain is
important and widely used. Many other types of data processing systems have similar characteristics
as they process very complex inputs, detect input errors, and extract data. In other words, our ap-
proach might also be applicable to any system where the complexity lies in the input, output and their
mappings.

Construct threats

For studying scalability, we used the size of the model and constraints. As we mentioned before, we
chose the size of the model and constraints instead of modelling effort because the latter can vary
greatly based on the modeller’s expertise. We reported all elements of the model and constraints that
can be counted. Such data, which is representative of what can be approximately expected in practice,
can then be used in context to estimate modelling effort.

3.7 Conclusion

In this chapter, we presented our proposed modelling methodology for capturing the data associated
with data processing systems; this data typically has complex input and output structures having
complex constraints between their fields. Many systems share these characteristics, including DAQ
systems common in the satellite communications industry.

This dissertation, as further reported in our discussion of related work (in Chapter 8), is the first
to provide a modelling methodology and an automation strategy dedicated to the automated testing of
data processing systems. The results of our empirical evaluation show that the approach is scalable.
The data model and constraints required to specify the input and output structures and their contents,
as well as their dependencies, of a real data processing system (a satellite DAQ system) are of reason-
able size and complexity. This data model was developed in collaboration with project engineers and
no practical issues were raised regarding the modelling process.
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Automatic Test Input Validation and Oracles

This chapter presents a technique able to validate complex test inputs, and automate a test oracle (i.e.
checking that the system outputs are valid given the inputs processed).

This technique is based on the data modelling methodology presented in Chapter 3 and com-
plements the automatic test generation techniques presented in this dissertation. In the presence of
automatically generated test cases, in fact, it is particularly important to have automated oracles. In
general, test automation techniques may lead to thousands of test cases whose results might be diffi-
cult to verify by hand by software engineers; thus, a technique for test oracle automation is required.

In addition to this, the technique presented in this chapter can be used independently from the
test input generation approaches presented in this dissertation. In particular, it can be used as an
additional tool to validate system outputs in the presence of manually written test cases, to validate
generic executions directly in the field, and to validate test inputs (i.e. to check if software inputs
comply with specifications).

Since there may be changes or misunderstandings related to the purported specifications of the
system, this is a way to validate both the provided input files and models. Furthermore, if artificial
input files are created for testing purposes, their complexity makes them error-prone; these input files
must therefore be checked.

This chapter highlights the following research contributions:

1. The application and tailoring of MDE technologies to support the validation of test inputs and
the generation of test oracles in the context of data processing systems.

2. An empirical evaluation on an industrial data processing system to validate the applicability
and scalability of our proposed approach.

This chapter is organised as follows: Section 4.1 presents an overview of the approach. Section 4.2
presents the empirical evaluation on a real industrial system together with a discussion of the results.
Finally, Section 4.3 concludes the chapter.
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Figure 4.1. Steps for test input validation and test case oracle evaluation.

4.1 Description of the Approach

The approach works in four steps: data modelling, system execution (optional), data loading, and
constraints checking. Fig. 4.1 provides an overview of the approach.

4.1.1 Data modelling

Data modelling refers to the activity performed by software engineers by following the technique
described in Chapter 3 to create a Data Model. Data modelling consists in the definition of a class
diagram that models the input and output data of the SUT. The diagram is augmented with a set of
OCL constraints that capture properties of the input data, and relationships between input data and
output data.

4.1.2 System execution

During the system execution step, input data (e.g. a test case input) is executed against the SUT.
In our context, input data consists of input files containing the information modelled with the given
data model of the system. In our experiments with SES-DAQ, we focus on the processing of input
satellite transmission files. In principle, other data formats (e.g database entries) could be used as
inputs. System outputs, in our context, files that fit the data model, are saved for further processing
(i.e. to identify failures).

This system execution step is optional. In the case a software engineer is interested only in vali-
dating the content of input data (i.e. a test input, or a generic input of the program), system execution
is not required since system outputs are not used by the technique. The test outputs generated by the
system are processed to obtain an automated test oracle.

For the SES-DAQ, the manually created test suite, a collection of representative Transmission
Data (described in Section 2.3), is executed. For each test case, we save the resulting System Output
Logs.
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4.1.3 Data loading

The input data and (optionally, if it was executed against the system) its corresponding output data
are loaded as an instance of the given data model.

In the case of SES-DAQ, we load the contents of the transmission data, configuration files, and
output logs associated with each executed SES-DAQ test case. The details of how this is implemented
are provided in Chapter 9.

4.1.4 Constraints checking

Once the model has been instantiated, the input data and input/output data constraints can be auto-
matically checked. More specifically, since we use OCL to express data constraints, we can rely upon
existing OCL libraries to check if an instance of the data model (i.e. an instance of the class diagram)
invalidates some of the given constraints.

We distinguish between two constraints checking components, the Input Data Validator and the
Oracle. The former identifies invalid data in input data; the latter acts as an oracle and identifies
outputs that invalidate constraints for the given input data (i.e. failures).

The Input Data Validator calls the input and configuration OCL constraints to validate the input
data. Invalid constraints correspond to an input that does not fit the specification. An invalid constraint
is reported to software engineers as a problem that might reflect one of the following three scenarios:

1. The input is wrong, which means that there is a failure in the component that generated the
input; this allows, for example, to identify failures in the components working in the field that
generated such data.

2. The input is wrong by design. Another context of use is that of test design; software engineers
in fact can use the Input Data Validator to determine if manually written inputs are valid, or
if they contain just the expected data faults they intended (test inputs, in fact, by design may
contain erroneous data to test the capability of the SUT to cope with wrong inputs).

3. In the presence of field data known to be valid, the component allows for the identification of
errors in the data model (i.e. in the data specification).

Similarly, the Oracle calls the constraints that map the input and configuration data to the output
data to validate the results of executing the SUT. Invalid constraints mean that there is a failure. De-
pending on the constraints, invalid constraints may identify missing, invalid, or malformatted outputs
(e.g. having a missing field value) given the input. For example, in the case of SES-DAQ, input/output
constraints capture the outputs expected in the presence of an invalid input (e.g. as in Fig. 3.5). The
presence of an invalid constraint indicates that, in the presence of an invalid input, a corresponding
error message was not reported by the system. In the case of the constraint given by Fig. 3.5, in the
event that two VCDUs on a same virtual channel are swapped, the constraint detects that veFrame-
Counts are out of order and checks that the corresponding error(s) are reported in the relevant output
log; if no such error(s) are logged, then a constraint violation is reported.
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4.2 Empirical Evaluation

We empirically evaluated the effectiveness of the approach presented in this chapter by applying it
on the SES-DAQ system. To be useful, our proposed approach must be scalable and applicable in
practice, and only a realistic empirical evaluation can help us assess such criteria. To this end, we
defined two research questions:

RQ1: Is the approach scalable in terms of execution time? How long does it take to validate
input data and apply the oracle?

The validation of input data and applying the oracle have to be fast enough and scale effectively
as file sizes increase, at least within realistic ranges.

RQ2: Are the model and constraints accurate in practice in validating input data and applying
the oracle? Are they accurate in uncovering issues, if any, in the real transmission files, the
SES-DAQ system, or the specifications of the system?

Since our validation is based on models of the input, output and their mappings, the main aim of
our investigation is to determine whether the level of abstraction of the models is not an impediment
to accurate input validation and oracles. This research question aims to validate the technique in two
contexts: (1) when it is used to validate test inputs and test outputs, and (2) when it is used to validate
field data. For our approach to be effective for test input validation, it needs to correctly identify the
constraint violations that are expected for each test input and not trigger false positives by indicating
violations in perfectly correct input files. On the other hand, if constraint violations on the input occur
when validating real transmission files, this may indicate either problems in the specifications (e.g.
implicit changes) or bugs in the implementation.

4.2.1 Subject selection

This empirical evaluation makes use of the SES-DAQ system described in Chapter 2. The technique
is particularly useful for SES-DAQ because it needs black-box testing; in fact, this DAQ system
is developed and tested by two independent teams with limited or no knowledge of the underlying
software code.

There are 32 manually written test cases available (each test input is (< 12 kB) in size), as de-
scribed in Section 2.3. We know the expected behaviour of this acceptance test suite. For our evalu-
ation, we also use a real representative transmission file, provided by the SES, which is larger in size
(=~ 2 GB, arealistic size for such files in our context) and can be used to further validate our approach
and in particular assess its scalability. The file is expected to be correct and should only trigger vi-
olations if either our specifications (models) or the SES-DAQ system are incorrect; in practice, this
usually happens when the client changes the specifications of the system during development and
testing, thus leading to violations that require implementation changes.

4.2.2 Approach execution and data collection

To perform the empirical study, we use the model and constraints for the system that were created for
the empirical study in Section 3.6. We consider two sets of input data: (1) the 32 manually written
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test inputs for the system and (2) multiple real satellite transmission files of incrementally larger sizes
up to 2 GB, obtained by sampling from the real representative transmission file.

Each of the input data files considered for the empirical evaluation was executed against the DAQ
system to obtain its corresponding test output log files.

We validated the input and configuration files for each of the 32 test cases with our tool using the
created model and constraints. We then processed the output log files for each test case using our tool
to apply the oracle. The same process was repeated for the real transmission files.

To respond to RQ1, we analysed the relationship between execution time and file size. For each
test input and real transmission file that was processed, we recorded the execution times of the three
main subprocesses for each: Instantiating the model, validating the input data (checking the input and
input/configuration constraints) and applying the oracle (checking the input/output and input/config-
uration/output constraints). We report the time for each process individually to be able to identify
which process is more time-consuming and could benefit from optimisation. The processing time for
input data validation and applying the oracle is expected to depend on both the input file size and
content (e.g. the number of constraint violations) of the input and output files. Investigating input
validation scalability therefore entails studying the relationship between processing time and the size
of the input file. One particular issue of interest was the shape of the relationship between processing
time and input file size. A linear relationship would clearly suggest our approach is scalable whereas
an exponential relationship would limit its range of applicability. The processing time of oracles is
expected to be more complex to study as it depends on both the input and output files’ size and con-
tent. Assessing whether the execution time for applying the oracle is acceptable with representative
transmission files is nevertheless important.

To respond to RQ2, the log files that were produced by our tool were examined to analyse if
the tool behaved as expected in finding constraint violations. For the 32 manually written input data
files, we expected violations of the input and input/configuration constraints that reflected the errors
of the files containing invalid data; when we applied the oracle, we expected that no violations would
occur as the SUT was deemed to be compliant with the system test suite. Though violations were
not expected in the real transmission files, in practice the client could have changed the specifica-
tions during development, thus leading to violations that required changes to the SES-DAQ system
implementation.

All experiments were executed on a MacBook Pro with an Intel Core 17 CPU running at 2.2 GHz
with 8 GB RAM.

4.2.3 Results

In this section, we discuss the results of the empirical evaluation to answer our two research questions.

4.2.3.1 RQ1: Execution time

Table 4.1 reports the execution time for the 32 test cases in the acceptance test suite. For each process,
we report the minimum, maximum and average execution time over all 32 test cases. The results show
that execution time is a maximum of 940 milliseconds, which makes it feasible to validate the input
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Table 4.1. Execution times of the approach on the acceptance test cases.

Execution Time (ms)
Operation Min | Max | Avg
Model Instantiation 684 845 762
Test Input Validation 1f 56 41
Oracle of 39 31
Total | 685] 940 834

TOne of the 32 test cases considers an empty input.

and apply the oracle for all 32 test cases in less than 30 seconds. This is not surprising as the test
cases required by the client are small in size.

We investigated the relationship between the size of the input file and execution time that we
obtained by analysing processing times for different sizes of real transmission files. Real transmission
files can be much larger than test case files: The largest test case input file has 6 CADUs, while the
real transmission files we used can have up to one million CADUs.

Figs. 4.2, 4.3 and 4.4 show the result of our analyses. For each figure, the y-axis shows execution
time while the x-axis is the file size in number of Cadu elements. Note that each CADU is approx-
imately 2 kB in size. Each curve is based on seven roughly equally spaced data points of randomly
selected real transmission files. Of course, as discussed earlier, we do not expect input file size to be
the only factor that affects performance, however, it is expected to be the main factor.

Applying the oracle is the most time consuming process in our approach. For the largest file
size (2 GB), applying the oracle takes 49.94 minutes compared to 1.35 minutes for instantiating the
model and 2.46 minutes for validating the input file. Recall from Table 3.3 and the discussion in
Section 3.6.3 that the constraints used for the oracle are more complex than the constraints used for
test case validation. Therefore, it is expected that checking those constraints would take more time
than checking the input validation constraints.

We noticed that execution time for the first data point is higher than expected for each of the three
processes. This might be caused by the constant time overhead that is required for starting up and
initialising the tool.

The three graphs clearly show that the relationship between size and execution time is approxi-
mately linear, with a maximum of 53.7 minutes in total to perform all three processes for one mil-
lion Cadu elements (2 GB). Such execution times are acceptable in practice since practitioners do not
need instant results. These execution times enable testers, for example, to run batch jobs overnight,
which is a common practice for large scale testing in the industry. The linear relationship with input
file size indicates that much larger files can be handled in the future.

When we compared the execution time results of real transmission files to those of the test cases
in the acceptance test suite, we noticed that while applying the oracle is the most time consuming
process for the real transmission files, we did not observe the same for the acceptance test cases. This
might be caused by the fact that each test case was designed to violate only one constraint, while the
real transmission files exhibited a large number of constraint violations caused by implicit changes by
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Figure 4.4. Time needed to apply the oracle versus the input file size.

the client to the specifications, which were not yet reflected in the system.

Answer to RQ1: The results show that our approach is scalable in terms of execution time. The
input data validation and oracle execution time on real transmission files is manageable in practice,
with less than 3 and 50 minutes for input and oracle constraints, respectively. Since oracle constraints
are more complex, it is not surprising that they take more time to be checked. Furthermore, the linear
relationship between the size of the input file and execution time makes it possible to potentially
process much larger files.

4.2.3.2 Additional remark on execution time

We observed that the performance of our approach is also dependent on the quality of the OCL
constraints. For example, if OCLs contain iterative operations, validation takes longer. As an effective
solution to deal with this problem, we found that using additional associations in the model could help.

For example, when the constraint initially developed to check for the VIRTUAL_COUNTER_JUMP
event (in Fig. 4.5) was executed, the performance of the tool suffered a considerable degradation as
the number of Cadu elements in the input file increased. This was caused by the nested loops used
when expressing the constraint. To solve this problem, we modified the model slightly and rewrote the
constraint in a way that avoids the constructs that negatively affect performance. We added a custom
association (i.e. prev in Fig. 3.1) that links every Cadu element to the previous Cadu element having
the same virtualChannelld. In this way, we avoid the nested loops when checking the constraint,
which greatly improves performance. The OCL code in Fig. 3.5 shows the newer version of the con-
straint after modification. Note that the context of the original constraint is ChannelData, while the
context for the new constraint is Cadu. The new constraint will be checked by the tool for each Cadu
element while the old constraint needs to be checked only once for each input file. Nevertheless, the
new constraint still performs better in terms of execution time.
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context ChannelData inv:

let
vcduHeaders : Sequence(VcduHeader) = self.cadu.vedu.veduHeader,
transData : TransmissionData = self.transmissionData

in

vcduHeaders->forAll(x, y : VcduHeader |
y.virtualChannelld.intValue <> transData.configuration.rtStpsConfig.xsveRtStps.idleVcid

and

vcduHeaders->indexOf(x) < veduHeaders->indexOf(y)

and

x.virtualChannelld.intValue = y.virtualChannelld.intValue

and

vcduHeaders->forAll(z : VcduHeader |

not (

vcduHeaders->indexOf(x) < veduHeaders->indexOf(z)
and
vcduHeaders->indexOf(z) < veduHeaders->indexOf(y)
and
x.virtualChannelld.intValue = z.virtualChannelld.intValue

)

and

if x.vcFrameCount.intValue < 16777215

then y.vcFrameCount.intValue <> x.vcFrameCount.intValue + 1
else x.vcFrameCount.intValue = 16777215 and y.vcFrameCount.intValue <> 0
endif

implies

transData.acquisitionData.veduReportData.veduReport.veduReportBody.veduEvent
->exists(i | i.eventType = VcduEvents:: VIRTUAL_COUNTER_JUMP
and i.currentVcduFrame.header = y.vcdu.getHeaderAsString() )

)

Figure 4.5. Example of a constraint on input, configuration and output data used to
automate the oracle prior to making changes to enhance performance. The updated,
more efficient, version is that of Fig. 3.5. Note: The constraint was originally developed
using slightly different data types; for consistency, we show an updated version here that
is compliant with the UML model of Fig. 3.1.
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4.2.3.3 RQ2: Accuracy

For our approach to be effective, the tool has to be able to identify all constraint violations in the input
and accurately apply the oracle without reporting any false positives. For each of the 32 test cases,
we know from the test documentation what violations of the input constraints should be reported. We
expect no violations of the oracle constraints because the system is correct with regard to the test suite
based on the manually written system tests.

When we validated the 32 test cases using our tool, we found that every expected violation of
input/configuration constraints was correctly reported with no false positives. We also found, as
expected, that no violations of the oracle constraints were reported. Because all the constraints are
checked on each test case, any number of test cases can be added to the test suite without the need to
manually check the expected output or write assertions for the new test cases (the current practice).
This reduces the resources and effort needed to test the system more extensively.

When we validated the real transmission files, we found that in some files many input constraints
were violated. Investigating these violations revealed that some of the specifications of the input
file were changed by the client but had not yet been implemented in the system. For example, a
constraint on ISPs (modelled in Fig. 3.2) specifies that their length should be a multiple of four. This
constraint was violated in the real transmission file as the client decided to remove this restriction
causing a violation to be reported for each packet that violated this constraint. This change was
discovered by SES through running the real transmission on the DAQ system and then manually
examining the output log files. This shows that our input data validation approach could help identify
changes in specifications without the need to execute the transmission file on the system, which takes
considerably more time and effort than input data validation due to the need to analyse many test case
failures, as opposed to a subset of violated constraints.

Answer to RQ2: The results of our empirical evaluation show that our approach is accurate in
validating test cases and applying the oracle. The results also show that our approach is able to
identify implicit changes in specifications (from the client) of the input file and the DAQ system
without the need to execute any test cases on the DAQ system.

4.2.4 Threats to validity
Internal threats

The internal threats to validity in this study are related to the test cases and transmission files used to
evaluate the system. We used all the test cases and transmission files provided by the system testers
to avoid experimenter bias.

External threats

The external threats are related to the choice of case study system and the ability to generalise results.
Although we only used one system in the case study, it is representative of data processing systems.
Our results might only be relevant in this application domain; nevertheless, this domain is important
and widely used. Many other types of systems have similar characteristics as they process very
complex inputs, detect input errors, and extract data. In other words, our approach might also be
applicable to any system where the complexity lies in the input, output and their mappings.
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Construct threats

For studying scalability, we used the execution time of the test validation and applying the oracle
processes. Though execution time depends to some extent on the content of the files, and not just
their size, the used transmission files are not only real but representative and, in any case, we are
mostly interested in the order of magnitude of the processing, not exact figures.

4.3 Conclusion

In this chapter, we evaluated our proposed automated test validation and oracle approach for data
processing systems with complex input structures and mappings between input and output. Many
systems share these characteristics, including DAQ systems common in the satellite communications
industry. In such systems, generating valid test inputs is challenging and checking the output manually
is time-consuming and error-prone. Requirements change on a regular basis and the input and output
files are large and complex. Our approach is driven by models of the input and output structure and
content, and to support it, we defined a specific modelling methodology using UML class diagrams
and OCL constraints as a notation. We developed a tool to automate our approach and evaluated the
approach on a real industrial DAQ system. Though there is substantial work in the area of Model-
Based Testing (MBT) (as reported in related works, Chapter 8), none of the existing approaches match
the needs for DAQ systems and other systems with similar characteristics.

Our empirical evaluation showed that we were able to properly validate input data and automate
the test oracle by correctly identifying failing and successful test inputs, as well as effectively val-
idating real transmission files. Additionally, the results of our empirical evaluation show that the
approach is scalable as the input and oracle validation process executed within reasonable times on
real transmission files for a real satellite DAQ system. Though input files can be validated in a few
minutes, it can take up to 50 minutes for applying the oracle. The main reason is that transmission
files in our case study generated large numbers of violations due to changes to specifications from the
client that had yet to be addressed. Furthermore, oracle constraints are more expensive to check as
they are significantly more complex, though such durations are fine in practice since such oracle vali-
dation processes can be run in batch mode, at night for example. Furthermore, results on existing test
suites show that the level of abstraction of the model is not an impediment to the accurate evaluation
of oracles. In terms of scalability, the relationship between execution time and input file size is linear,
suggesting that much larger files can be handled in the future using our approach.
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Chapter 5

Automatic Test Input Generation

In this chapter, we focus on the problem of testing the correct behaviour of data processing systems in
the presence of faulty input data. The proper identification of faulty input data is particularly impor-
tant in our case study since a satellite transmission is often subject to alterations that may introduce
faults, such as channel noise, which should be properly handled to prevent the generation of erro-
neous results. This problem generalises to other types of data processing systems. For example, web
crawling engines, which process complex data structures (i.e. web pages) and need to determine the
presence of faulty data (e.g. tags) not properly closed (a common mistake of novice web developers
and bloggers).

Most model-based approaches that relate to the problem above focus on generating data structures
for unit testing [Boyapati et al., 2002, Senni and Fioravanti, 2012]. In addition, the few approaches
that focus on system testing and generate faulty data are based on Context-Free Grammars (CFGs)
and, as a result, cannot generate data that presents complex relationships between the data fields
[Hoffman et al., 2009, Zelenov and Zelenova, 2006].

The approaches that are particularly appealing for automatically testing data processing systems
for input data faults are the ones based on the adoption of mutation operators that alter existing test
inputs to generate faulty data [Shan and Zhu, 2009, Bertolino et al., 2014, De Jonge and Visser, 2012].

The main limitation of these approaches is that the mutation operators are specific for the particu-
lar kind of input data used by the SUT. In contrast, we would like software engineers to define a fault
model, capturing their experience of the domain, and then provide a way to tailor generic mutation
operators to implement this fault model on a specific data model of inputs and outputs.

This chapter highlights the following research contributions:

1. A model-based technique that automatically generates faulty test inputs, by relying upon generic
mutation operators that alter data collected in the field.

2. The use of UML stereotypes and OCL queries to configure the mutation operators to implement
a fault model of the SUT.

3. An empirical evaluation on an industrial data processing system to evaluate the effectiveness of
our proposed approach.
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Figure 5.1. Steps for generating complex and faulty test data.

The remainder of the chapter proceeds as follows. Section 5.1 describes the data mutation tech-
nique presented in this chapter. Section 5.2 details the data mutation operators that are used to mutate
field data. Section 5.3 describes how mutation operators can be configured to comply with the fault
model of the SUT. Section 5.4 describes how we enhanced the modelling methodology to enable
automatic data mutation. Section 5.5 provide details about the data mutation strategies considered in
this chapter. Section 5.6 presents the empirical results obtained. Finally, Section 5.7 concludes the
chapter.

5.1 Description of the Approach

The mutation approach requires two inputs: field data and a data model (i.e. a class diagram modelling
input and output data, annotated with UML stereotypes and constraints, which in our case are written
in the OCL). Field data is used to generate new test inputs by means of six different data mutation
operators that alter existing data on the basis of its data model. The data model drives the usage
of the generic mutation operators in order to implement the fault model specified for the SUT. The
characteristics of the fault model are captured by means of UML stereotypes and OCL expressions.
UML stereotypes are used to select the data fields to mutate, the kind of mutation operators to apply,
and the data fields to update after mutation to preserve data invariants. OCL expressions are used
to configure mutation operators by selecting the targets of the mutation through appropriate OCL
queries.

Further, the technique makes use of automated test oracles that, in our context, consist in the detec-
tion of faulty inputs that remain undetected by the SUT. Oracles work by checking OCL constraints
that capture the relationships between faulty inputs and expected outputs, hereafter input/output con-
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straints. These constraints are relatively simple to define, since they indicate the output expected (e.g.
an error message) in the case of invalid input data.

The approach works in six steps: data modelling, data loading, data mutation, data writing, system
execution, and output validation. Fig. 5.1 provides an overview of the approach.

5.1.1 Data modelling

Step 1, data modelling, refers to the activity performed by software engineers by following the tech-
nique described in sections 3.2 and 3.3. Data modelling consists in the definition of a class diagram
that models the input and output data of the SUT. The diagram is augmented with a set of OCL con-
straints that capture properties of the input data, and relationships between input data and output data.
To support data mutation, the model is additional augmented with mutation related stereotypes that
are described in Section 5.4.

5.1.2 Data loading

Step 2, data loading, loads a chunk of field data into memory, in the form of objects that we refer to
as a field data object. Data loading depends on the kind of data processed by the SUT. In practice,
a tool can load the field data as an instance of the modelled class diagram produced by the software
engineers (e.g. Chapter 9 describes our related implementation for the SES-DAQ system).

5.1.3 Data mutation

In Step 3, data mutation, the approach mutates the loaded field data using mutation operators (de-
scribed in Section 5.2) according to configuration settings (described in Section 5.3) that allow for the
application of a specific fault model. For the approach of this chapter, only a single mutation is made
per test input.

Data mutation consists of the following activities: the identification of the classes and fields to
mutate, the selection of a mutation operator, the selection of a mutation target (an instance of the
class or field to mutate) according to OCL queries, the application of the mutation operator, and lastly
the updating of the attributes of the mutated data object annotated with the stereotype «Derived». For
the study in this chapter, mutation operators are selected according to two strategies, Random and All
Possible Targets, both detailed in Section 5.5.

For the case of SES-DAQ, we developed a mutation toolset as described Section 9.3.2.

5.1.4 Data writing

Step 4, data writing, writes the mutated field data object back to the format processed by the SUT,
thus generating what we call mutated field data. In practice, a tool similar to the one used for data
loading can be used (e.g. Chapter 9 describes our related data writing implementation for the SES-
DAQ system).
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5.1.5 System execution

In step 5, system execution, the approach executes the SUT using as input the mutated field data. Once
the mutated field data has been written in the format processed by the SUT, the SUT is executed and
the outputs are collected for the validation step. For example, in the case of SES-DAQ, we collect the
output logs generated by the system for each mutated field data passed as input.

5.1.6 Output validation

In step 6, output validation, the approach identifies violations of the input/output constraints as indica-
tors of software failures. Input/output constraints capture the system output, usually an error message,
expected in case of a faulty input. The approach loads the output of the system and determines the
presence of violated constraints. This step makes use of the oracle approach presented in Chapter 4.

In addition to violated constraints, the approach reports contextual information like the name of
the operator applied on the original data, the target entity, and a portion of the original and mutated
data in the neighbourhood of the mutation. Our experience indicates that this contextual information
is useful to better understand the fault.

It is worth mentioning that the approach reports failures only when an input/output constraint is
violated—that is, when a faulty input data does not lead to the generation of an expected output (i.e.
an error message). This implies that if a data mutation does not generate faulty data, a false positive
is not going to be reported by the technique.

Steps 2 to 6 are repeated until the data mutation step determines that a stopping condition is
reached. Section 5.5 details the stopping conditions for the two different mutation selection strate-
gies.

5.2 Data Mutation Operators

The approach mutates input data by applying six mutation operators on the data loaded into memory
(i.e. on the field data object). The identification of the mutation operators to apply and the selection
of the data fields to mutate is guided by stereotypes used in the data model. Section 5.4 describes how
we enhanced the modelling methodology presented in Chapter 3 to enable automatic data mutation.

The stereotype «InputData» is used by the software engineer to annotate the classes that model
input data, to distinguish them from the configuration and output data classes, which do not need to
be mutated. The two stereotypes «ldentifier» and «Measure» are used to annotate class attributes;
data that correspond to an attribute tagged by one of these stereotypes is mutated by applying a
specific mutation operator or, otherwise, by applying an operator that simply flips bits. The stereotype
«Derived» is used to annotate class attributes that need to be updated after certain mutations in order to
prevent trivial inconsistencies; Section 5.3 provides additional details about the role of this stereotype.

We defined six mutation operators: three working at the class instance level (Class Instance Dupli-
cation, Class Instance Removal, Class Instances Swapping), and three working at the attribute level
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(Attribute Replacement with Random, Attribute Replacement using Boundary Condition, Attribute
Bit Flipping).

The six mutation operators do not include operators for the generation of class instances from
scratch (e.g. we do not include an operator whose goal is to create a new class instance and add it
to a sequence). This choice mainly depends on the fact that the generation of a portion of a complex
test input from scratch would require a detailed specification of the characteristics of such inputs, for
example by means of a grammar. One of the benefits of the approaches presented in this dissertation
is that they do not require software developers to provide a complete specification of the format of the
input data.

The following subsections detail the six mutation operators. For each operator, an informal
description is provided along with an example that refers to the input data of SES-DAQ (refer to
Figs. 3.1 and 3.2).

5.2.1 Class Instance Duplication (CID)

Description: The operator Class Instance Duplication duplicates an instance of a class belonging to
a collection of elements. This operator copies a randomly chosen instance of a class in a collection
and then inserts it at a random position in the collection. This operator simulates unexpected data in
a collection.

Example: For the SES-DAQ, this operator can be applied to the containment associations between
the classes ChannelData and Cadu, and between the classes ChannelDataPerVcid and Isp. In both
cases, the duplicated data generated by this operator simulates a transmission error.

5.2.2 Class Instance Removal (CIR)

Description: This mutation operator deletes a randomly selected instance of a class from a collection
of elements.

Example: For the SES-DAQ, this operator can be applied to the containment associations between the
classes ChannelData and Cadu, and between the classes ChannelDataPerVcid and Isp. The removal
of an instance of class Cadu, for example, simulates a transmission error that may lead to either
missing or broken packets; in this case, when processing erroneous data created with this mutation
operator, SES-DAQ should report a VIRTUAL_COUNTER_JUMP error as indicated by the constraint
in Fig. 3.5.

5.2.3 Class Instances Swapping (CIS)

Description: Swaps the positions of two randomly chosen instances of a class in a collection of
elements.

Example: For the SES-DAQ, this operator can be applied to the containment associations between
the classes ChannelData and Cadu, and between the classes ChannelDataPerVcid and Isp. The effect
of swapping two packets belonging to the association between the classes ChannelDataPerVcid and
Isp simulates the presence of transmission data sequence errors.
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5.2.4 Attribute Replacement with Random (ARR)

Description: This mutation operator replaces the value of an identifier attribute in an instance of a
class with a different, randomly chosen, value. In principle, all the attributes of a class can be replaced
with randomly chosen values, but in the general case a randomly generated value is not necessarily
erroneous. We are interested in mutations that lead to errors; for this reason, we introduced the
UML stereotype «Identifier» that allows software engineers to indicate which attributes are used as
identifiers, and thus can be mutated according to the ARR operator. The «Identifier» stereotype
enables software engineers to specify a numeric range for the random value to generate.

Example: This mutation operator can be applied to all the attributes annotated with the stereotype
«ldentifier». For example, a random mutation of the attribute versionNumber belonging to an instance
of class VeduHeader simulates an invalid frame version, which should be reported by the software in
the error logs.

5.2.5 Attribute Replacement using Boundary Condition (ARBC)

Description: This mutation operator changes the value of an attribute according to a boundary condi-
tion criterion. This operator is particularly useful for mutating attributes that should be bound within
a range, these attributes are usually measures. We thus introduced the UML stereotype «Measure»
to annotate the attributes that belong to this category. This stereotype enables software engineers to
indicate the minimum and maximum values allowed for the annotated attribute. The mutation opera-
tor generates (up to) six values according to traditional boundary testing strategies: minimum value,
minimum value plus/minus one, maximum value, and maximum value plus/minus one. The operator
ensures that the generated values are in the range representable with the data type (e.g. unsigned bytes
cannot represent negative values).

Example: This operator can be applied to all the attributes annotated with the UML stereotype «Mea-
sure». For the SES-DAQ, this operator can be applied to the attribute veFrameCount of class Vedu-
Header.

5.2.6 Attribute Bit Flipping (ABF)

Description: This operator randomly selects an attribute that corresponds to transmitted data and
alters the value of a randomly selected bit. This mutation operator is particularly effective for intro-
ducing errors in attributes that cannot be designated as an «Identifier» or a «Measure». The operator
works by flipping a single bit of an attribute.

Example: This mutation operator can be applied to the attribute data of class PacketData of the SES-
DAQ. The attribute data is a byte array: the mutation of one of its bits simulates the presence of a
realistic transmission error that should be identified thanks to the presence of a Cyclic Redundancy
Check (CRC) error detection code (contained in the field data of class PacketErrorControl).

5.3 Configuring Mutation Operators to Apply a Specific Fault
Model

Although the mutation operators proposed in Section 5.2 are generic, we combine the use of UML
stereotypes and OCL constraints to enable software engineers to configure the mutation process to
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Table 5.1. Mapping between the SES-DAQ fault model of Table 2.1 and mutation oper-
ators and configurations.

Incorrect Identifier
Incorrect Checksum
Incorrect Counter

Flipped Data Bits

Attribute Replacement with Random.
Attribute Replacement with Random.

Attribute Replacement using
Boundary Condition.
Attribute Bit Flipping.

Fault Mutation Operator Configuration

Duplicate CADU Class Instance Duplication. «InputData»’

Duplicate ISP Class Instance Duplication. «InputData»', «Derived»
Missing CADU Class Instance Removal. «InputDatax

Missing ISP Class Instance Removal. «InputData»T, «Derived»
Wrong CADU Sequence | Class Instances Swapping. «InputDatax»

Wrong ISP Sequence Class Instances Swapping. «InputData», «Derived>,

Query to select packets

«Identifier», «Derived»*
«Identifier»

«Measure», «Derived»*

This stereotype need only be applied to the root input container class. *If necessary.
Note: CADU, Channel Access Data Unit; ISP, Instrument Source Packet.

generate data that matches the specific fault model of the SUT.

The technique presented here simply requires that software engineers annotate the attributes and
the classes of the data model with stereotypes that specify the nature of these attributes/classes. Mu-
tation operators are then applied to the data according to the stereotypes used. Table 5.1 shows the
mutation operators and the corresponding configurations (i.e. stereotypes and queries) that enable the
specific faults of the SES-DAQ fault model (Table 2.1). The mutation operator Attribute Bit Flipping
does not require the application of a specific stereotype; it is applied on all the attributes not annotated
with other stereotypes.

Data mutation may lead to the generation of inconsistent data containing multiple errors that do
not enable proper system testing. In particular, it might lead to the generation of trivial faults that do
not comply with the given fault model or that mask the intended effect of the mutation operator, thus
preventing the possibility to cover the whole fault model.

In the running example, a trivial fault may mask the effect of a mutation operator applied to one
of the following attributes (shown in Fig.3.1) of class VeduHeader: versionNumber, spacecraftld,
and virtualChannelld. Any change to the values of one of these attributes makes the value of the
check symbols (used for error-correction) within attribute headerErrorControl inconsistent. The at-
tribute headerErrorControl of class VcduHeader is calculated by applying the Reed-Solomon algo-
rithm [Wicker and Bhargava, 1999] against the bit fields that correspond to attributes versionNumber,
spacecraftld, and virtualChannelld. For example, mutating the attribute virtualChannelld leads to
an inconsistent (wrong) value for the attribute headerErrorControl. In practice, this may prevent
testing the effect of a wrong value for the attribute virtualChannelld since the software first verifies
the correctness of the check symbols. To properly evaluate the effect of a fault in one of the three
attributes of class VcduHeader that are protected by the check symbols, the value of the attribute
headerErrorControl should be recalculated (i.e. considering the updated mutant value assigned to
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1 context Isp::cis() : Set(Isp) body:

2

3 et

4 packetl : Isp = Isp.alllnstances()->any(true),

5 vcid : Integer = packetl.mpduActivePacketZone->first().vcdu.vcduHeader.virtualChannelld.intValue,
6 packet2 : Isp =

7 packetl.channelDataPerVcid->select(cd | cd.virtualChannelld = vcid).isp
8 ->select(p | p <> packetl)->any(true)

9 in

10

11 Set { packetl, packet2 }

Figure 5.2. OCL query for the swapping of two packets.

attribute virtualChannelld).

Inconsistent data might also be caused by mutation operators that target class instances. For
example, the swapping of packets (represented by the class instances of Isp in Figs. 3.1 and 3.2) that
belong to two different virtual channels may lead to the generation of VCDUs that contain packets
with invalid APIDs (i.e. inconsistent data). The goal of the swapping operator is, rather, that of
generating sequences of packets received in a wrong order. The class instances swapping operator
should thus be applied only to instances of the class Isp that belong to the same virtual channel.

To preserve data consistency, we enable software engineers to configure the behaviour of mutation
operators by means of OCL queries and UML stereotypes.

OCL queries are used to enable software engineers to specify the characteristics of the object
instances on which the mutation operators can be applied. By default, a mutation operator is applied
on randomly chosen objects in the absence of an OCL query that configures its behaviour.

Fig. 5.2 shows an example of an OCL query that regulates the swapping of instances of class Isp.
Line 1 in Fig. 5.2 indicates that the OCL query controls the application of the operator Class Instances
Swapping (CIS) on class instances of type Isp; the query returns a set containing the Isp instances to
be swapped (line 11). Line 4 shows the OCL expression that selects the first parameter (this query
simply indicates that any Isp instance might be used as first parameter of the CIS operator). Lines 5
to 8 indicate how the second parameter of the CIS operator should be selected. The query identifies
the virtual channel (i.e. vcid) that the Isp instance, packetl, belongs to (line 5), and then selects a
different Isp instance, packet2, that belongs to this same virtual channel (lines 6 to 8).

We defined a UML stereotype, «Derived», that enables software engineers to specify which at-
tributes need to be updated after certain mutations in order to prevent trivial errors. The stereotype
requires that software engineers specify the name of a method that is invoked at runtime by the muta-
tion framework to regenerate the value of the annotated attribute. The implementation of this function
should be provided by the software engineer and we expect to find the method in the class path. Such
implementations should match methods present in the SUT, which are expected to be unit tested.

Fig. 3.1 shows that the attribute headerErrorControl of class VcduHeader has been annotated
with the stereotype «Derived». In this case, the attribute is associated with a utility function named
Util.reedSolomon (a method available in the SES-DAQ implementation) that recalculates the check
symbols (e.g. following the mutation of a spacecraftld field).
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«stereotype» «stereotype» «stereotype»
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Figure 5.3. Portion of the custom profile that extends the UML metamodel to support
automated data mutation. The shaded elements in the figure represent UML metaclasses.

5.4 Augmenting the Model for Automated Data Mutation

We enhanced the modelling methodology to enable automatic data mutation by introducing four
stereotypes: «InputData», «ldentifier», «Measure», and «Derived». Fig 5.3 shows the portion of
our UML profile where these stereotypes are defined.

The stereotype «InputData» extends the metaclass Class. The stereotype is applied to the classes
that model input data, to distinguish them from other data class types (i.e. «ConfigData» or «Out-
putData»), which do not need to be mutated. The stereotype need only be applied against the root
container class of the corresponding input data (e.g. the TransmissionData class in Fig. 3.1).

The stereotypes «Identifier» and «Measure» both extend the metaclass Property (i.e. they can
be applied to the attributes of the data model). Each stereotype has two Integer attributes, minValue
and maxValue. Data corresponding to an attribute annotated by one of these stereotypes is mutated
by applying a specific mutation operator. These stereotypes specify (via their attributes) the minValue
and the maxValue (both Integers) that define a range for the values generated by the corresponding
mutation operators. For example, in Fig. 3.1, the attribute spacecraftld of class VcduHeader is anno-
tated with the stereotype «Identifier» and the attribute firstHeaderPointer of class MpduActiveHeader
is annotated with the stereotype «Measure». Section 5.2 details how mutation operators are applied
for the given stereotypes.

The stereotype «Derived» extends the metaclass Property. This stereotype is applied to at-
tributes whose data needs to be updated after certain mutations in order to prevent trivial inconsis-
tencies (e.g. in Fig. 3.1, the attribute headerErrorControl of class VcduHeader). When applied to a
given attribute, this stereotype captures the attributes of our data model (via the containment denoted
by the role properties) to monitor to detect if they have been mutated; the stereotype also designates,
via the role operation, the method for updating the value of the given «Derived» attribute. Section 5.3
provides additional details about the role of this stereotype.

5.5 Data Mutation Strategies

The technique generates a mutated field data object by applying the mutation operators described in
Section 5.2 on the field data object (recall that this is an instance of the data model that corresponds
to a specific data chunk). Although in principle all the elements of the field data object could be
mutated, thus obtaining hundreds of mutants even from a small portion of the input data, the elements
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Require: fieldData, a reference to the field data

Require: model, the data model

Require: mutants, the number of mutated versions to generate
1: created < 0
2: while created < mutants do

3: dataObj + loadData(fieldData)
4: operator < randomlySelectMutationOperator()
5: target < randomlySelectMutationTarget(operator,model)
6: opInputs < identifyOpInputs(dataObj,target,operator)
7 if opInputs # null then
8: dataObj <+ operator.execute(dataObj,opInputs)
9: dataObj + updateData(dataObj,model)
10: executeSystem(dataOb)
11: created < created + 1
12: end if

13: end while
Figure 5.4. Algorithm for applying the Random mutation strategy.

to mutate should be carefully selected to reasonably limit the test execution time.

In this chapter, we consider two simple strategies to select the elements to mutate: Random (RND),
and All Possible Targets (APT). Chapter 6 focuses on elaborating and evaluating more sophisticated
strategies, including the possibility of applying multiple mutation operators to a same data chunk.

5.5.1 Random data mutation strategy

The RND mutation strategy randomly selects a mutation operator and randomly applies it to one of
the elements where it can be applied. The algorithm in Fig. 5.4 shows how the RND mutation strategy
works. The algorithm iterates until enough mutated data objects have been generated (line 2). New
data is loaded at every iteration (line 3), this is done to sample multiple parts of the field data, thus
increasing the possibility of covering all the different types of inputs. After selecting the mutation
operator (line 4), the algorithm randomly selects the mutation target (line 5). Depending on the
mutation operator, the mutation target will be either an attribute of the data model, or a class instance
or class instances that belong to a collection.

In line 6, the algorithm selects the class and attribute instances to mutate (i.e. the inputs for the
mutation operator). This is done by invoking function identifyOpInputs. The logic behind function
identifyOplnputs 1s simple: if there is an OCL query for the selected operator, function identifyOpIn-
puts identifies the inputs of the operator by executing the OCL query. Otherwise random inputs are
selected. Line 8 executes the mutation operator. Line 9 updates the data by executing the methods
associated to all the affected attributes annotated with the stereotype «Derived». Function executeSys-
tem invoked in line 10 executes the activities required to test the system with the mutated data: data
writing, system execution, and output validation.

5.5.2 All Possible Targets data mutation strategy

The APT mutation strategy ensures that an instance of each class or attribute of the data model is
mutated at least once by each of the mutation operators that can be applied to it. Fig. 5.5 shows
the algorithm for applying the APT strategy. The algorithm first identifies all the possible pairs
(target ,operator) that result from the composition of every possible target (attribute or association in
the data model) with the operators that can be applied to it (line 2). To maximise data diversity, the
algorithm ensures that each mutation operator is executed on a different sample of the data (line 4).
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Require: fieldData, a reference to the field data
Require: model, the data model
Require: maxAttempts, the maximum number of mutation attempts
1: attempts + 0
2: targetPairs + retrieveTargetsToMutate(model)
3: while target Pairs.size() > 0 and artempts < maxAttempts do
4 dataObj <+ loadData( fieldData)
5: i+ 0
6 mutated < false
7 while i < target Pairs.size() and !mutated do
8 attempts < attempts + 1

9: (target,operator) < targetPairsi|
10: opInputs < identifyOpInputs(dataObj,target,operator)
11: if opInputs # null then
12: dataObj <+ operator.execute(dataObj,opInputs)
13: dataObj <+ updateData(dataObj,model)
14: executeSystem(dataOb j)
15: target Pairs.remove(i)
16: mutated < true
17: end if
18: i+i+1

19: end while
20: end while

Figure 5.5. Algorithm for applying the All Possible Targets mutation strategy.

The algorithm then looks for the first pair (target,operator) that can be applied on the loaded data
(lines 7 to 19): the algorithm iterates on the list of pairs (target,operator) until it is able to identify a
set of inputs that allows for the application of the operator on an instance of the target class. Once an
operator is found, the algorithm generates the mutated data and invokes the SUT (lines 12 to 14), and
removes the pair (target,operator) from the list of pairs to process. The algorithm continues until all
the pairs are processed or the maximum number of attempts is reached.

5.6 Empirical Evaluation

The goal of our evaluation is to determine whether the mutation approach presented in this chapter
can automatically achieve equivalent or better coverage than manually written test cases. Though test
cases are derived from requirements and library and dead code tend to make any interpretation of
coverage difficult, in practice, in many organisations coverage is an indication of test completeness.

5.6.1 Subject selection

We empirically evaluated the effectiveness of our mutation approach, using the strategies presented
in this chapter, by applying it on the SES-DAQ system. To assess our approach, we compare it to the
SES-DAQ manual test suite (described in Section 2.3).

5.6.2 Approach execution and data collection

To perform the empirical study, we created a model of the SES-DAQ system data according to our
modelling methodology (the same used for the empirical study of Chapter 3). We added the ap-
propriate stereotypes (described in Section 5.4) and configured them (following the methodology of
Section 5.3) to fit the SES-DAQ fault model. The complexity of the input data model is clearly indi-
cated by its size, thus illustrating how complex it can be in practice to manually generate input files
for testing: 82 classes with 322 attributes and 56 associations. The overall effort required to tailor the
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Table 5.2. Test suite coverage results.

Coverage (bytecode)

Strategy Minimum | Maximum | Average
SES Manual Test Suite - — | 22,820 (70.9%)
RND Test Suite Generation || 22,550 (70.1%) | 23,060 (71.7%) | 22,899 (71.2%)
APT Test Suite Generation || 23,226 (72.2%) | 23,374 (72.7%) | 23,283 (72.4%)

Note: In total, SES-DAQ has 32,170 bytecode instructions. RND, random data mutation
strategy; APT, all possible targets data mutation strategy.

generic mutation operators to the fault model of SES-DAQ has been limited: only four OCL queries
and two attributes annotated with the stereotype «Derived» were necessary. Finally, the definition
of input/output constraints also required limited effort: 23 input/output constraints were necessary to
automate oracles so as to validate the entire system.

To generate faulty input data, we randomly sampled chunks (50 CADU s in size) of a large trans-
mission file containing field data provided by SES and mutated them. The size of the transmission
file is 1 million CADUs (or about 2 GB), containing 1 million VCDUs belonging to four different
virtual channels. We generated test cases by applying both the RND and APT test generation strate-
gies against the field data chunks. For APT, we stopped when all attributes were covered and this led
to the generation of 43 test cases. To better compare the two strategies, we generated 43 test cases
for RND as well. Note that, in our context, since test execution is entirely automated, the number
of executed test cases is not a concern, within reasonable limits. All the generated inputs included
faulty data matching our fault model. The two main costs are the cost of generation and verification
of test results. Manual testing is expensive in both respects. RND is quick in generating test cases
whereas APT is slower, due to differences in generation algorithms as described above. In both cases,
we automate the test oracle the same way. What we hope to achieve with APT is a more systematic
and predictable strategy in terms of code coverage, as reported below.

Both APT and RND carry a degree of randomness (i.e. the sampling of the elements to mutate).
To account for such randomness, we evaluated RND and APT with 10 different test suites generated
independently, averaged their results, and accounted for their random variation in our analysis.

To measure the coverage of test cases we used EclEmma, a Java code coverage tool [Mountain-
minds, 2006]. We collected information about the number of bytecode instructions covered. This
is the finest coverage granularity available in EclIEmma since it captures the coverage of the subex-
pressions in branch conditions. Since SES-DAQ includes third party components, we narrowed the
measure of the coverage to 341 classes that SES software engineers identified as being involved in
data processing (in total, 32,170 bytecode instructions) and that were developed by them.

5.6.3 Results

Table 5.2 shows the results of the experiments. The manual system test cases implemented by SES
cover 71% of all instructions, amounting to a total of 22,820 bytecode instructions covered. APT
covers on average 23,283 instructions, that is, 72% of all instructions. RND performs similarly to
the SES test suite, since it covers 22,899 instructions on average. We inspected the instructions
covered by the three test suites and we noticed that APT covers the same instructions as the test
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cases implemented by SES plus hundreds of instructions related to the handling of faulty data cases,
not accounted for by the manual test suite. Such a difference may sound small, but these uncovered
instructions may address critical faults.

To further compare APT and RND, we report that the minimum and maximum number of in-
structions covered by the test suites generated applying APT are 23,226 and 23,374, respectively.
As a comparison, the RND test suites cover a minimum and a maximum of 22,550 and 23,060 in-
structions, respectively. For some of the runs, RND actually covered fewer instructions than the SES
test suite. This clearly shows that in general APT performs better than RND. Other more advanced
strategies will be investigated in Chapter 6.

In other words, in a completely automated fashion, our approach covers more than 70% of all
instructions, which is on par with industry standards for system testing coverage [Cornett, 2016], and
the APT approach consistently executed more instructions than expensive, manual testing, based on
the expertise of experienced engineers. Such automation is a source of significant savings in a context
where several releases of the SUT are produced every year, over a typical lifespan of a decade or two.

5.7 Conclusion

In this chapter, we presented an approach to automatically test software systems that process complex,
structured data, which might contain faults. Though many data processing systems fit this description,
a typical example is a satellite DAQ system. Automated testing is particularly important in such a
context as each test case is highly complex and expensive to produce manually since it is a large,
structured, and complex input file. This problem is even more acute in a context of frequent system
changes, when test cases need to be reviewed and possibly updated/replaced to remain consistent with
new requirements, and when one needs to run frequent regression testing.

Though many MBT approaches have been reported in the literature (see Chapter 8), they do
not target data processing systems and are, for the most part, focused on testing compliance with
behavioural system models or generating data structures for unit testing.

The approach proposed in this chapter, receives field data and a data model describing its structure
and content. The approach applies generic mutation operators on field data to generate faulty data and
exercise the robustness of the data processing system. UML stereotypes and OCL queries are used
by software engineers to configure mutation operators to implement a fault model of the SUT, which
captures domain experience in terms of typical faults encountered in input data. This also prevents
the generation of trivially invalid data.

An industrial case study performed with an already deployed DAQ system, for which frequent
versions are released every year, shows that our approach achieves slightly better instruction coverage
than the manual testing taking place in practice, based on domain expertise.
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Chapter 6

Search-Based Robustness Testing

This chapter presents an advanced approach for creating effective robustness test suites based on
data mutation. Robustness is “the degree to which a system or component can function correctly in
the presence of invalid inputs or stressful environmental conditions" [ISO/IEEE, 2010]. Robustness
testing of data processing software in the presence of invalid inputs is of particular importance because
of the impact unexpected failures may have. For example, data faults in the transmission of an airplane
position may crash airplane tracking applications, while malformed HyperText Markup Language
(HTML) pages may lead a web crawler to report stock market collapses and cause panic to end
users [McCarthy, 2001].

Robustness testing of data processing software is often complicated by the complex structure
of the input data. A well-known example is an HTML page that contains many blocks, some of
which are kept hidden or contain dynamic information. Similar complexity characterises other kinds
of processing systems; for example, the SES-DAQ system developed by our industrial partner SES
to process satellite transmissions (see Chapter 2). When performing robustness testing, software
engineers need to handcraft complex data structures where valid and faulty values need to be inserted
while taking care to preserve all the relationships among the data fields. Handcrafting huge amounts
of complex data is particularly time consuming and error prone.

In this chapter, we tackle the more general problem of generating minimal robustness test suites,
with high fault revealing power, for data processing systems. When dealing with robustness testing,
a single test generation criterion, for example the coverage of the SES-DAQ fault model (described
in Section 2.3 and implemented in Chapter 5) is not enough. In practice, Chapter 5 presents a tech-
nique that checks if basic test input sanitisation functionalities are implemented in a software. In this
chapter, we deal with the more complicated problem of testing software robustness. Multiple factors
must be considered; for example, the presence of multiple data faults in the same input, the cover-
age of functional specifications in addition to fault models, and the generation of a minimal number
of test cases. Satisfying multiple criteria when generating robustness test suites may easily lead to
combinatorial explosion and specific techniques able to deal with scalability issues are required.

When addressing complex problems where there is a large space of candidate solutions, and one
wants to choose a solution that maximises some chosen criteria, metaheuristics are a plausible so-
lution [Luke, 2013]. Metaheuristic algorithms, such as evolutionary algorithms, identify optimal
solutions for a problem by iteratively building candidate solutions and by testing them to identify the
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one that best achieves the objectives. At each iteration, new candidate solutions are built by means of
a tweak operation that is applied on a copy of a candidate solution. The tweak operation allows the
algorithm to explore the search space looking for an optimal solution.

Testing techniques based on metaheuristic search focus mostly on unit testing [Ali et al., 2010],
while techniques that tackle testing at the system level either address the problem of testing non-
functional properties such as execution time [Afzal et al., 2009], or deal with the problem of testing
systems where the costs of testing do not depend on complex input data structures, such as in the case
of embedded systems working with input signals [Igbal et al., 2015].

In this chapter, we propose a model-based evolutionary algorithm that relies upon a data model and
a set of data mutation operators to build system test suites for data processing systems that optimises
multiple objectives. The evolutionary algorithm uses data sampling and data mutation operators to
generate new test inputs, and relies upon four different model-based and code-based fitness functions
to evaluate how well each test input contributes to a proper robustness test suite. Model-based fitness
functions exploit the data model to generate test cases that cover important aspects of the behaviour of
the system by ensuring the coverage of all the different types of test inputs processed by the system,
the presence of different types of data faults, and the possible violations of the constraints among test
inputs. The code-based fitness function has the goal of achieving the maximum structural coverage
of the SUT.

This research contributions in this chapter are:

1. An evolutionary algorithm to automate the robustness testing of data processing systems.

2. The defining of four fitness functions (model-based and code-based) that enable the effective
generation of robustness test cases by means of evolutionary algorithms.

3. An extensive study of the effect of fitness functions and configuration parameters on the effec-
tiveness of the approach using an industrial data processing system as case study.

The chapter proceeds as follows. Section 6.1 presents a list of challenges that need to be addressed
when building a search algorithm for robustness testing. Section 6.2 provides an overview of the
evolutionary algorithm that we designed to generate robustness tests. Section 6.3 describes how data
mutation is adopted to generate new test inputs during the search. Section 6.4 presents the heuristic
functions used to evaluate candidate solutions. Section 6.5 describes the seeding strategy integrated
into the algorithm. Section 6.6 details how we automate the execution and validation of the generated
test suites. Section 6.7 presents the empirical results obtained. Finally, Section 6.8 concludes the
chapter.

6.1 Challenges for the Search-Based Generation of Robustness
System Tests

Search algorithms are useful when addressing complex problems where there is a large space of
candidate solutions, and one wants to choose one that optimises some chosen criteria. A typical
example in software engineering is test data generation, in which a tester might want to find test data
that maximises code coverage or triggers new failures.
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There are many different kinds of search algorithms, including genetic algorithms, which have
been widely applied in many fields. Not all search algorithms perform well on all types of problems.
Each problem can have special characteristics that are better exploited by some search algorithms,
whereas others might struggle.

In this chapter, we identify four main challenges that need to be addressed when designing an al-
gorithm for the automatic generation of a system test suite: (1) configuring the algorithm to properly
find a tradeoff between exploration and exploitation of the search landscape, (2) building a tweak op-
eration, (3) defining effective fitness functions for the problem under investigation, and (4) integrating
effective seeding techniques (i.e. techniques that speed up search by exploiting knowledge about the
input domain).

One of the main discerning characteristics among search algorithms is the tradeoff they have
between exploration and exploitation of the search landscape. On one hand, some algorithms (e.g.
hill climbing) put more emphasis on the exploitation of the search landscape. This means that, given
an evaluated solution, they will only look at “close” solutions to see if any small change could improve
the chosen criterion. On the other hand, other algorithms put more emphasis on the exploration of the
search space. Typical examples are population-based algorithms, in which a diverse set of solutions
is maintained to consider different areas of the search landscape at the same time, in case one area
turns out to feature more fitting solutions than the others.

In the context of robustness testing, exploration is very important since it enables the construction
of test suites with a high diversity of test cases. In the case of SES-DAQ, for example, one wants
to generate test inputs that include IdlePacketZones and test inputs that include ActivePacketZones at
the same time (these fields are modelled in Fig. 3.1). However, exploitation leads to covering invalid
inputs that include a specific set of data faults. For example, SES-DAQ might be able to properly
process an invalid input containing faulty data that breaks the virtual channel frame count constraint
of Fig. 3.5, but it may crash in the presence of both a broken constraint and a duplicated packet. To
satisfy this case, the algorithm must be able to exploit the search space by both breaking the constraint
of Fig. 3.5 and by duplicating a packet.

Tweak operations play an important role in guiding the search algorithm towards the exploitation
of the search landscape; they modify existing solutions to generate new candidate solutions. When
defining tweak operations, the characteristics of the domain should be carefully considered. For ex-
ample, when a solution is represented in a binary format, a tweak operation could just flip one or more
bits. However, flipping bits on a complex data transmission file would likely result in meaningless or
trivially wrong input data. Therefore, one would need to exploit the information in the data models to
automatically derive better tweak operations, for example by applying our model-based data mutation
approach (detailed in Chapter 5).

In the context of robustness system testing, one still wants to generate faulty input data, but in a
nontrivial way (e.g. by including multiple faults in a same test input). However, there is a limit on the
number of faults that can be included in a same input. Although having multiple mutations that affect
a same test input might help stress the robustness of the system, a number of faults that is too high
might lead to inputs that are trivially recognised and discarded by the SUT.

Another very important aspect for the success of a search algorithm is the definition of a fitness
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Require: fD, the field data used to generate test inputs
Require: dM, the data model used to drive tweaking
Require: budget, the maximum proportion of the search space that needs to be visited
Require: py;eq, probability of sampling a new individual from the field data
Require: p,,rqrion, probability of mutating an individual just after sampling it
Require: pgeeqing, probability of using seeding to sample from the field data
Require: minSize, the minimum size of a test input
Require: maxSize, the maximum size of a test input
Require: maxMutations, the maximum number of mutations for a same test input
Ensure: archive, the archive containing the minimised robustness test suite

1: total =0

2: while total < budget do

3 if ( (archive.individualAvailable(maxMutations) = false)
4 OR (random() < pie1q) ) then
5: ind = sampleNew(fD,dM ,minSize,maxSize, pseeding)
6: if random() < puurarion then
7 mutate(ind)
8 end if
9: else
10: ind = archive.sampleACopy()
11: mutate(dM ,ind)
12: end if
13: if (improving(ind,archive) then
14: archive.add(ind)
15: for prev in archive do
16: if subsume(ind, prev) then
17: archive.remove(prev)
18: end if
19: end for
20: end if
21: total = total + ind.size

22: end while

Figure 6.1. An evolutionary algorithm for robustness testing.

function, used to evaluate how close a solution is to optimising a chosen criterion. Such a function
is problem dependent, and effort must be made to design a proper one. Ideally, one would like to
exploit as much domain information as possible, but this might lead to computationally expensive
fitness functions. The more time consuming the fitness function, the fewer solutions can be evaluated
by a search algorithm in the same amount of time. In the case of model-based testing, this tradeoff
can be very critical, as fitness functions calculated on models can be much quicker to compute than
ones calculated from test case executions (e.g. using structural coverage).

Finally, in the presence of complex search spaces, the quick identification of a proper solution is
often aided by the adoption of techniques that exploit knowledge about the search space to build so-
lutions that improve the effectiveness of the search algorithm; these are known as seeding techniques.
Different seeding techniques have been adopted in the context of software testing; for instance, a
well-known approach used by techniques that generate inputs for unit testing is the reuse of constant
values taken from the source code of the SUT [Fraser and Arcuri, 2012]. However, smart seeding at
the system level is not as simple as that, and poses new challenges; in our case, since our test genera-
tion approach is black-box, these challenges are related to how we can exploit the information of our
system data model data to improve the search-based test data generation.

6.2 Evolutionary Data Mutation Algorithm

To address the problem of generating test cases to stress the robustness of software at the system level,
we propose a novel evolutionary algorithm based on an archive. Fig. 6.1 shows the algorithm.
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The evolutionary algorithm uses data models to automatically generate test inputs. Such data
models are designed according to the data modelling methodology introduced in Chapter 3. Test
cases are generated by using the data mutation approach presented in Chapter 5.

In our context, a solution to the search problem consists of a test suite that effectively tests the
capability of the software to handle invalid data. A test suite is a collection of test inputs (i.e. data files
conforming to a data model) to be processed by the SUT. During the search, test inputs are generated,
and those are then aggregated to form a final test suite to give as output to the user. In our context,
the solution to the search problem (i.e. the test suite) cannot be represented using a fixed size data
structure because the size of the test suite (i.e. the number and size of the test cases it contains) cannot
be known a priori.

We did not directly use a traditional search algorithm (e.g. a genetic algorithm or a hill-climbing
algorithm) due to the special characteristics of the addressed problem. For example, in system level
testing, each test case execution can be computationally very expensive. So, a traditional genetic algo-
rithm that works on a population would likely be too computationally expensive to use. Furthermore,
special care would be needed to design a crossover operator that generates valid offspring. On the
other hand, hill-climbing algorithms put emphasis on the exploitation of the search landscape; this is
achieved by using a tweak operation that iteratively improves a single solution. In our case, it is hard
to envision a single tweak operation that works at the test suite level and allows for the building of a
minimised test suite that contains test inputs with high diversity.

Our customised evolutionary algorithm is based on the use of an archive of test cases, initially
empty. Archives have been used in prior work related to multi-objective search algorithms (e.g. [Parks
and Miller, 1998, Knowles and Corne, 1999]). The archive plays the important role of guiding the
algorithm towards the exploitation of the search landscape like hill climbing, while maintaining at
the same time some characteristics of population-based algorithms. Like hill climbing, the algorithm
improves only a single test input at each iteration, but uses the archive to keep a collection of the best
test inputs found so far (i.e. the test suite). Furthermore, our algorithm keeps solutions in the archive
that are different from each other to maximise exploration, like population algorithms. The size of the
archive can vary during the search and the test suite is minimised by keeping in the archive only the
best individuals that contribute to overall fitness of the whole test suite (i.e. the archive). Finally, the
individuals in the archive are tweaked one at a time, thus exploiting the search landscape and creating
new individuals that improve the overall fitness of the test suite.

Our novel algorithm addresses all the challenges presented in Section 6.1. The tradeoff between
exploration and exploitation is controlled by configuration parameters that regulate: (1) the prob-
ability of tweaking an individual from the archive versus generating a completely new individual
(parameter pyicq in Fig. 6.1), (2) the probability of working with correct test inputs versus the use
of test inputs that contain at least one fault (parameter p,sarion in Fig. 6.1), and (3) the maximum
number of data faults a test input may contain (parameter maxMutations in Fig. 6.1). Tweaking op-
erations are implemented by means of mutation operators described in Section 5.2, while specific
fitness functions have been developed and are described in Section 6.4. The probability of seeding is
controlled by the parameter pgecqing (further details are given in Section 6.5).

At the first iteration, the archive is empty, and a new random individual needs to be sampled.
Generating new input data completely at random would result almost certainly in trivially wrong
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data. An alternative is to sample according to some specific rules, if those can be defined for the
addressed problem domain (e.g. a grammar in the testing of parsers). In our case, we used a different
approach that relies on the sampling of field data. In the case of industrial data processing systems,
we can have access to very large amounts of existing valid field data. If not already available, a large
field data pool can be constructed, and then used by the evolutionary algorithm to sample from.

New individuals are sampled from the available field data by means of the function sampleNew,
which randomly selects and returns a chunk of the available field data (Line 5). The function sam-
pleNew receives as input two integer values, minSize and maxSize that indicate the minimum and
maximum size of the data chunk to be sampled. Since in general an input for a data processing sys-
tem does not have a size that is fixed a priori, we leave it to the software engineers to decide the range
of the input size according to their domain knowledge; for example, in the case of SES we choose the
values 1 and 500 for the minimum and maximum values, respectively (where these values represent
the number of CADUSs).

The evolutionary algorithm incrementally builds a test suite by keeping only those individuals in
the archive that contribute to improving the overall combined fitness of all the currently stored test
cases, which will form the final test suite. The algorithm generates test inputs by applying the tech-
nique presented in Chapter 5, that is by sampling chunks of data from the field data and by mutating
these chunks to generate possibly faulty inputs. Unlike the strategies considered in Chapter 5, in this
chapter we consider the possibility of applying multiple mutations to a same test input. Each test
input is thus represented in terms of the offset from the beginning of the original field data file, the
length of the sample, and a list of the mutations that have been applied to the sample.

The algorithm keeps exploring the search space until a given stopping condition is reached (Line 2).
Since our algorithm focuses on the generation of test inputs for data processing systems, we express
the stopping condition in terms of the amount of data processed to generate test cases, that is the sum
of the size of all the test inputs generated during the search. At each iteration, the algorithm incre-
ments the counter of the data processed (Line 21). In the specific case of SES, we measure the size of
a single test input in terms of the number of CADUs that it contains, but different measurement units
(meaningful for a given domain) may be used for different systems.

At each iteration, the algorithm works by tweaking an individual (i.e. a test input). Each individual
is created by sampling either the field data or the archive; this choice is driven by a probability value,
the parameter p f;.;4 in Fig. 6.1, which indicates the probability of sampling a new individual from the
field data (see Lines 3 and 4).

If no individuals are available in the archive, the algorithm samples the field data (see the condition
archive.individualAvailable() = false in Line 3). This happens in two situations, when the archive is
empty (i.e. on the first search iteration) or when all the individuals in the archive have already been
mutated a maximum numbers of times. Software engineers can specify the maximum number of
mutations that can be applied to the same test input. This is done to avoid trivially invalid inputs.
Although in principle a test input can be mutated an infinite number of times, the presence of too
many mutations (i.e. data faults) on the same test input, might transform the test input into a trivially
invalid input that is easily detected by the data processing system and does not help to extensively test
its robustness.
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Lines 6 to 8 show that the parameter p,,;,rqrion regulates the probability of mutating an individual
just after creating it, that is, the probability of working with individuals that contain at least one data
mutation. Lines 10 and 11 show that every time the algorithm samples a copy of an individual from
the archive it applies a mutation to it. This is done to create a copy that differs from the original one.
This tweaking operation is further described in Section 6.3.

Lines 13 and 14 show that an individual is added to the archive only if it improves the overall
fitness of the archive. Similarly, the algorithm removes any individual already present in the archive
that is subsumed by the last one added (see Lines 15 to 17). Individuals that are subsumed by new
ones can be safely removed from the archive because they do not contribute to the overall fitness
of the archive. Section 6.4 describes the assessment procedure adopted to measure how individuals
contribute to the fitness of the archive.

6.3 Tweaking by Means of Data Mutation

The search algorithm tweaks individuals by applying the data mutation operators described in Sec-
tion 5.2. There are six mutation operators that can be applied to an individual: Class Instance Du-
plication, Class Instance Removal, Class Instances Swapping, Attribute Replacement with Random,
Attribute Replacement using Boundary Condition, and Attribute Bit Flipping. To apply a mutation
operator to an individual, the algorithm loads into memory the data chunk corresponding to the test
input as an instance of the data model (the tool described in Section 9.3 was used to implement this
feature).

Each mutation operator can be applied only to a specific set of targets (our data mutation oper-
ators are configured, as described in Section 5.3). This is done to avoid making mutations that will
result in the generation of trivial data faults and to ensure conformance with a domain-specific fault
model. Software engineers specify the targets of each mutation operator by using appropriate stereo-
types in the UML class diagram (data model). These stereotypes indicate the elements that can be
mutated and the operators that can be applied to them. To mutate an individual, the algorithm ran-
domly picks a mutation operator, identifies a possible target for the operator on the current individual,
and applies the operator on the target. For example, during the generation of test inputs for SES-
DAQ, the algorithm may randomly choose the operator Attribute Replacement with Random. 1t then
selects one of the attributes that can be mutated according to that operator, for example the attribute
sequenceCount of class PacketPrimaryHeader (modelled in Fig 3.2). Finally, it identifies a specific
instance to mutate, which means that it changes the value of the attribute sequence Count of one of the
PacketPrimaryHeader instances contained in the current test input.

In case a selected operator cannot be applied on a given individual, another operator is randomly
selected; this can happen, for example, if the algorithm selects the attribute sequenceCount for re-
placement with random, but the current test input contains only IdlePacketZones (which according to
Figs. 3.1 and 3.2 does not contain any PacketPrimaryHeader instances).

6.4 Assessment Procedure

We identify four objectives that should be fulfilled to effectively stress the robustness of the software:
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O1: include input data that covers all the classes of the data-model;

02: include data faults such that all the possible faults of the fault model have been covered;
O3: cover all the clauses of the input/output constraints;

0O4: maximise code coverage.

Each of the four objectives captures how well the test inputs cover some specific targets, respec-
tively, the classes of the data-model, the faults of the fault model, the clauses of the input/output
constraints and the code instructions. Each objective defines a set of targets (e.g. instructions in code
coverage) that the algorithm aims to cover. A given objective is fully achieved by a test suite if each of
its targets is covered by at least one test input of the test suite. A portion of the targets for SES-DAQ
along with their coverage for three test inputs are shown in Table 6.1 (covered targets are marked
with an X). We describe below each objective, and how fitness improvements and subsumption can
be defined in terms of these objectives.

Objective O1 ensures that the test suite includes test inputs that cover all the classes of the data
model. Each class of the data model is univocally represented by an objective target. A test input cov-
ers a class if it contains at least one instance of the class. Table 6.1 shows that input I3 covers, among
others, classes ActivePacketZone and IdlePacketZone; input I1 covers only class ActivePacketZone
(there are no idle packets in /7).

Objective O2 ensures that an instance of each class and attribute has been mutated at least once
by each mutation operator that can be applied to it (to generate test inputs covering all the faults of
the fault model). Our algorithm generates faulty data (i.e. new test inputs) by applying mutation
operators on instantiated field data objects. Since the attributes and classes of the data model can
be mutated in different ways by applying different mutation operators, for each test input we keep
track of which mutation operator has been applied to a specific class/attribute. Table 6.1, for example,
shows that input // contains at least one instance of a VeduHeader whose vcFrameCount has been
mutated with the operator AttributeReplacementWithRandom, while input /3 contains both a CADU
with a deleted packet (operator ClassinstanceRemoval is marked as being applied on an instance
of class Isp) and a VcduHeader whose versionNumber has been replaced with a random value (see
operator AttributeReplacementWithRandom marked for the attribute versionNumber).

Objective O3 ensures that every clause of the input/output constraints has been exercised. In-
put/output constraints are expressed in the form of implications. The left hand side of the implication
captures the characteristics of the input under which a given output is expected. The right hand side
captures the characteristics of the expected output (see Fig. 3.5).

To measure how well the test suite stresses the conditions under which a given output is gener-
ated, it is enough to focus on the clauses contained on the left side of the implication (i.e. clauses
defined over the characteristics of the test input). For each clause, we aim to have at least one test
input that causes the clause to be true and another that causes the clause to be false. Each clause
is thus associated to two different targets for objective O3 that trace whether the clause is true/false
at least once in the input. Table 6.1 shows some targets derived for the constraint in Fig. 3.5. Ta-
ble 6.1 shows that input /7 has at least one VeduHeader whose veFrameCount (frameCount in the
constraint) does not correspond to the previous vcFrameCount (prevFrameCount in the constraint)
plus one (this is the effect of the mutation operator AttributeReplacementWithRandom applied to the
attribute veFrameCount). The same clause can be both true and false within the same test input. This
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is the case of input I1 that, in addition to having a VeduHeader with the invalid veFrameCount, also
includes VeduHeaders with valid veFrameCounts (i.e. in the constraint, having a frameCount equal
to prevFrameCount plus one).

It is noteworthy that, by focusing on the input clauses, we can measure objective O3 without the
need to execute the SUT (i.e. without generating an output for a given test input). This makes the
search algorithm scale even when the execution of the test cases is particularly time consuming.

Objective O4 aims to maximise the structural coverage of the source code. This is one of the
means adopted by software engineers to ensure that all the implemented features have been tested at
least once. Each instruction in the system is an objective target. In our implementation, we measure
coverage using EclEmma, a toolkit for measuring Java code coverage [Mountainminds, 2006].

The main limitation of measuring the structural coverage of system test cases is that it requires the
execution of the SUT. This may slow down the overall search process considerably and prevent the
generation of results in practical time. Furthermore, in certain contexts, for example systems deployed
on dedicated hardware, structural coverage might not be easily calculated in practice. For this reason,
the empirical study presented in Section 6.7 aims also to determine to which extent objective O4 is
subsumed by other objectives.

Our algorithm works with objectives that are not conflicting and aims to maximise the coverage
of all targets. Therefore, the algorithm does not rely upon the computation of Pareto fronts, a solution
adopted by others (e.g. [Zitzler et al., 2001]).

Our algorithm adds to the archive only test inputs that improve the overall fitness (i.e. a test
input must cover at least one target not covered by the other inputs in the archive). Furthermore,
the algorithm removes from the archive any test inputs subsumed by new test inputs. A test input i
subsumes an input i' if, and only if, i’ covers all the targets covered by i', and either i’ covers at least
one target not covered by i’ or the size of i is smaller. For example, given an archive that contains
inputs /7 and 12, our algorithm creates input /3 by tweaking a copy of input /2 (i.e. by deleting a class
instance). I3 is added to the archive because it covers target Isp::ClassInstanceRemoval (not covered
by /1 and I2). Given that I3 subsumes /2 the algorithm will then remove /2 from the archive thus
minimising its size.

6.5 Input Seeding

To further improve search results, we developed a novel model-driven seeding strategy that guides the
search towards the identification of a diverse and complex set of test inputs.

To stress diversity in the data, the algorithm aims to generate test inputs that cover all the available
data types (see objective O1 described in Section 6.4). Given that some of these data types may occur
rarely in the field data, it might be highly improbable to cover these types by means of random
sampling. To guarantee the coverage of all the data types, it is enough to know the locations of the
different data types. For example, within a field data sample of SES-DAQ, we may have idle packets
only in a very small number of the VCDUs of the bytestream. Having the location information makes
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Table 6.1. Assessment of three inputs of SES-DAQ.

Test Inputs

Objective Targets Inj|mn|ins3

TransmissionData
Sync

VcduHeader
MpduldleHeader
MpduActiveHeader
IdlePacketZone
ActivePacketZone
Isp

Objective O1
XXX X XK

XK KX X X )

VcduHeader.versionNumber:: AttributeReplacementWithRandom
VcduHeader.vcFrameCount:: AttributeReplacementWithRandom
Isp::ClassInstanceRemoval

Isp::ClassInstanceDuplication

Isp::ClassInstancesSwapping

>
XX R XK X XX

Objective 02

True : prevFrameCount < 16777215
True : frameCount <> prevFrameCount + 1
True : prevFrameCount = 16777215
True : frameCount <> 0 X | X | X

ol

False : prevFrameCount < 16777215

False : frameCount <> prevFrameCount + 1
False : prevFrameCount = 16777215

False : frameCount <> 0

Objective O3

>R
>
ole

SesDag.java:Line 10
SesDagq.java:Line 11

04
>R

it easier for the search algorithm to load multiple data chunks containing idle packets; otherwise, the
chance of loading idle packets is low when only resorting to random sampling.

To stress complexity our algorithm looks for test inputs that contain instances of two or more
subclasses belonging to the same generalisation. In the case of SES-DAQ, this corresponds to the
case of an input containing a transition between two alternate data types (e.g. from idle to active
packet zone). These complex inputs are interesting for robustness testing because one can assume
that handling heterogeneous data zones might be more prone to processing failures than homogeneous
ones.

Our seeding strategy works by first processing the field data to build a seeding pool that contains
data chunks that are useful to stress both diversity and complexity. To maximise diversity, we iden-
tify, for each class S that is a subclass of a generalisation: (1) data chunks that contain at least one
instance of the subclass S, (2) data chunks that contain only instances of the subclass S (i.e. data
chunks that contain instances of S but that do not contain instances of other classes belonging to the
same hierarchy of §). To maximise complexity, we identify, for each pair of classes that belong to
a generalisation, data chunks that contain at least one instance of each class in the pair. In the case
of SES-DAQ, this ensures that we test scenarios where two different data types are processed in se-
quence (e.g. idle and active packets). Table 6.2 shows a list with the characteristics of the data chunks
we identify for the SES-DAQ data model in Figs. 3.1 and 3.2.

The seeding pool can be used when a new individual is sampled. When seeding is enabled, the
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Table 6.2. List of the characteristics of the input data used to drive seeding for SES-DAQ.

Only MpduldleHeader instances are included

At least one MpduldleHeader instance is included

Only MpduActiveHeader instances are included

At least one MpduActiveHeader instance is included

Only IdlePacketZone instances are included

At least one IdlePacketZone instance is included

Only ActivePacketZone instances are included

At least one ActivePacketZone instance is included

Both MpduldleHeader(s) and MpduActiveHeader(s) are included
Both IdlePacketZone(s) and ActivePacketZone(s) are included

Only ActivePacketDataField instances are included

At least one ActivePacketDataField instance is included

Only IdlePacketDataField instances are included

At least one IdlePacketDataField instance is included

Both IdlePacketDataField(s) and ActivePacketDataField(s) are included

algorithm selects one of the chunks in the seeding pool. In the case of SES-DAQ, this is done by first
selecting one on the characteristics listed in Table 6.2, and then by loading a data chunk that presents
such characteristics. Software engineers can tune the use of seeding by means of a parameter for the
search algorithm that indicates the probability of applying seeding when sampling a data chunk from
the field data (pyecaing in Fig. 6.1).

Higher values of py..qing guarantee that all the characteristics are covered, at the expense of a free
exploration of the search space (which may lead to the sampling of complex test inputs not identified
by predefined seeding characteristics).

6.6 Testing Automation

The evolutionary algorithm generates a minimised robustness test suite that is kept in an archive. The
test suite consists of a set of test inputs that can be executed against the data processing system SUT.
The oracle relies on the modelling methodology introduced in Section 3.3.

After the execution of a test case, the oracle simply loads the test input and the test output as
an instance of the data model, and checks if the OCL constraints of the data model are satisfied.
Unsatisfied constraints indicate the presence of a failure (i.e. unexpected or missing output) and are
reported to the software engineers. Similarly, crashing executions are reported.

6.7 Empirical Evaluation
We performed an empirical evaluation in order to respond to the following research questions:

RQ1: How does the search algorithm compare with random and state-of-the-art approaches?
RQ2: How does fitness based on code coverage affect performance?

RQ3: How does smart seeding affect performance?

RQ4: What are the configuration parameters that affect performance?

RQS: What configuration should be used in practice?
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6.7.1 Subject of the study

As subject of our study we considered the industrial SES-DAQ system (introduced in Chapter 2).
SES-DAQ is a good example of a data processing system dealing with complex input and output
data, written in Java (having 32,170 bytecode instructions). The same data model developed for the
evaluation of Chapter 5 was used. The data model of SES-DAQ includes 82 classes with 322 attributes
and 56 associations. As an input for our approach, we considered a large transmission file containing
field data provided by SES, the same adopted for the empirical evaluation in Chapters 4 and 5. The
size of the transmission file is 1 million CADUs (or about 2 GB), containing 1 million VCDUs
belonging to four different virtual channels.

6.7.2 Experimental settings

To answer our research questions, we carried out a series of experiments. Since our search algorithm
depends on several parameters, we evaluated several possible configurations.

The minSize and maxSize parameters (i.e. the minimum and the maximum size of a test input,
measured in CADUs) were fixed to 1 and 500, respectively. We used three different values for pfieq:
0.3, 0.5, and 0.8. For purarion, We considered the values: 0.0, 0.5, and 1.0. For maxMutations, we
used: 1, 10, and 100. For peqing, We used two values, 0.0 and 0.5, which means that in one case the
seeding strategy was not used, while in the other case the seeding was applied with a 50% probability
every time a new input was sampled.

In order to give the algorithm some degree of freedom when exploring the search space, we
do not consider the case in which inputs are selected exclusively according to the smart seeding
strategy. Finally, we considered cases with and without the code coverage fitness function. This led
to 3 x 3 x 3 x 2 x 2 = 108 different configurations.

The search budget (in the case of SES-DAQ, the number of CADUs inspected when building new
inputs during search) might vary from project to project. For this reason, we evaluated each of the
108 configurations of the algorithm on five different search budgets from 50,000 to 250,000 CADUs
(in steps of 50k). 250,000 CADUs correspond to one fourth of the transmission file used for building
test inputs. This led to 108 x 5 = 540 different configurations of the search algorithm.

Because search algorithms have a random component, to take into account the effects of such ran-
domness on the final results, each of the experiments was repeated five times with a different random
seed. This led to a total of 540 x 5 = 2,700 runs of the algorithm. Because each run could take be-
tween ten and thirty-five hours, we used a large cluster of computers to run these experiments [ Varrette
et al., 2014].

6.7.3 Cost and effectiveness metrics

We want to assess and compare cost-effectiveness among automatically generated test suites. Code
coverage is used as a measure of test effectiveness as it helps assess how complete the test suite is
from a structural and functional standpoint. We measure the code coverage in terms of the number
of bytecode instructions covered by the test suite by using EcIEmma [Mountainminds, 2006]. Max-
imising code coverage within time constraints is often an objective among system testers. Even small
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Table 6.3. Comparison between the best search algorithm configuration and random
search. (Seeding disabled. Code coverage fitness enabled.)

Budget Configuration Coverage # Tests
(Avg/Min/Max )  (Avg/Min/Max)

Best: 1=0.5,m=1,n=100  23424.4 /23407 / 23448 28.4/19/32

é BO: r=0.5,m=1,n=100  23424.4 /23407 / 23448 28.4/19/32
Rand: r=1,m=1,n=1 23386.8 /23341 / 23424 43.2/38/46

. Best:r=0.5,m=1,n=100 23487.8 /23461 /23577 31.6/25/35
8 BO:r=0.5m=1,n=100  23487.8 /23461 /23577 31.6/25/35
~—  Rand: r=1,m=1,n=1 23436.8 /23428 /23458 52.0/50/57
. Best:r=0.5,m=1,n=100  23502.0 /23471 /23577 34.0/30/38
@ BO:r=0.5m=1,n=100  23502.0 /23471 /23577 34.0/30/38
~—  Rand: r=1,m=1,n=1 23453.4 /1 23438 / 23480 57.8/55/64
. Best: 1=0.5,m=0.5,n=100 23519.6 /23464 /23618 34.6/28/38
& BO:r=0.5,m=1,n=100  23513.4/23476 /23579 36.0/31/41
& Rand: r=1,m=1,n=1 23465.8 /23449 / 23490 60.2/57/66
. Best: r=0.5,m=1,n=10 23538.6 / 23463 / 23631 38.4/31/43
2 BO:r=0.5m=1,n=100  23515.2/23480/23579 36.4/33/40
™ Rand: r=1,m=1,n=1 23482.6 /23452 / 23499 62.4/60/69

improvements in coverage can help exercise important corner cases. For example, in our case study,
additionally covered instructions often turned out to be critical blocks of code including exception
handling and critical scenarios. We also compare test suites with respect to their size because, given
two test suites having identical coverage, one would prefer the smaller one, entailing a lower testing
and debugging cost. The size of a test suite is measured in terms of the number of test inputs in the
test suite. Smaller test suites are of practical importance as, in many systems, system testing must be
performed on actual deployment hardware or a dedicated, realistic testing platform, which requires
some degree of tuning or simulation to run test cases. Access time to such platforms can also be
limited.

6.7.4 RQ1: How does the search algorithm compare with random and
state-of-the-art approaches?

The effectiveness of a search-based algorithm highly depends on the nature of the problem to solve.
For example, if the solution space of the problem is flat, that is if the fitness function does not provide
any gradient, then a search-based algorithm might perform even worse than a random approach.

RQ1I aims to evaluate the usefulness of the search-based algorithm proposed in this chapter by
comparing it with a random algorithm and with a simple model-based algorithm.

However, a direct comparison with a trivial random generation approach would not bring any
useful result. For example, test inputs containing random data may be trivially invalid and useless
for extensively testing the system. For this reason, we use as baseline for the comparison the random
algorithm employed in Chapter 5; the algorithm (shown in Section 5.5.1) samples a portion of the
field transmission file, randomly selects a mutation operator and applies it to one of the elements
where it can be applied.

The algorithm employed in Chapter 5 does not support the generation of test inputs of variable
size; furthermore, it does not minimise the generated test suite. To address these limitations and
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perform a fairer comparison, we execute an improved version of the random algorithm employed in
Chapter 5 by using our search algorithm with a specific configuration: minSize and maxSize are set
to the same values as the search algorithm; p .y = 1, to generate a new test input at each iteration
by sampling the field data; and p;usarion = 1, to always mutate the sampled test input (as was done in
Chapter 5). The value chosen for maxMutations is irrelevant because we generate a new test input at
each iteration (because of pfieq = 1).

To compare with a simple model-based approach, we consider the results achieved with the A/l
Possible Targets (APT) approach proposed in Chapter 5. The APT mutation strategy (shown in Sec-
tion 5.5.2) ensures that each class or attribute of the data model is mutated at least once by each of the
mutation operators that can be applied to it.

Table 6.3 shows the comparison of the search algorithm with random search. Columns Budget and
Configuration report the search budget and the best configurations found, column Coverage reports
the average, minimum and maximum coverage achieved by the test suite, and column # Tests reports
the average, minimum and maximum number of test inputs in each test suite. For each search budget
we identified the best configuration out of the 54 configurations of the search algorithm with seeding
disabled (Best in Table 6.3). Furthermore, we identified the best configuration on average over all the
search budgets (BO in Table 6.3). The comparison with BO is fairer since the configuration indicated
as BO is not optimised for a specific search budget, but is a stable, good overall configuration. For
each configuration we report the probability of random sampling (), the probability of applying
mutation when sampling (m), and the maximum number of allowed mutations in a test (n). The best
values for maximum coverage and minimum test suite size appear in bold. Our comparison did not
include configurations with seeding because it is an optimisation of the search algorithm. The impact
of seeding is addressed in RQ3.

The search algorithm presented in this chapter provides better results than both the random ap-
proach and the APT algorithm presented in Chapter 5. APT achieves an average coverage of 23,283
instructions, which is less than the coverage obtained with the search and random approaches (see Ta-
ble 6.3). This is mostly because APT focuses on the coverage of the model and stops after sampling
many fewer CADUs (at most 20,000 CADUs, while the lowest search budget is 50,000). In summary,
the search algorithm presented in this chapter generates significantly less test inputs while achieving
better coverage. This mainly results from the adoption of fitness functions that help minimise the test
suites by keeping only useful test inputs in the archive.

Results also show that the search algorithm achieves better coverage than the random approach.
The difference in coverage ranges between 37.6 and 56 instructions. Though the difference in cov-
erage might not appear large, as discussed earlier, even small increases in coverage might exercise
important corner cases. Once again, the search algorithm generates significantly smaller numbers of
test inputs (e.g. 57.8 versus 34 on average for a 150k budget).

Our conclusions hold even considering the random variation across runs, which is small, as shown
by the Min and Max values appearing in Table 6.3.
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Table 6.4. Comparisons between best search algorithm configurations based on whether
code coverage is employed in the fitness evaluation (column ‘Code’), and on whether
smart seeding is activated (column ‘Seeding’).

Budget Code Seeding Configuration Coverage #Tests #Mutations
False 0.0 Best: r=0.5,m=1,n=100 233614 17.0 4.8

True 0.0  Best: 1=0.5,m=1,n=100 234244 284 3.6

§ False 0.5 Best: r=0.5,m=1,n=10 234172 21.0 4.0
True 0.5 Best: r=0.5,m=1,n=10 234284 34.2 3.2

True 0.5 BO:r=0.3,m=0,n=10 23401.8 27.0 4.3
False 0.0 Best: r=0.3,m=1,n=10 234044 16.8 8.2

v True 0.0 Best: r=0.5,m=1,n=100  23487.8 31.6 49
S False 0.5 Best: r=0.5,m=1,n=10 234422 21.0 6.4
- True 0.5 Best: r=0.3,m=0,n=10 23487.0 33.2 5.6
True 0.5 BO:r=0.3,m=0,n=10 23487.0 33.2 5.6
False 0.0 Best: r=0.8,m=1,n=100 234184 28.2 4.0

v True 0.0  Best: r=0.5,m=1,n=100  23502.0 34.0 6.0
K False 0.5 Best: r=0.5,m=1,n=100 234474 234 7.5
- True 0.5 Best: r=0.3,m=0,n=10 23528.2 35.6 6.5
True 0.5 BO: r=0.3,m=0,n=10 23528.2 35.6 6.5
False 0.0 Best: r=0.8,m=1,n=100 23426.0 28.0 4.7

» True 0.0  Best: r=0.5,m=0.5,n=100 23519.6 34.6 6.7
S False 0.5 Best:r=0.5m=1,n=100 23456.0 23.2 92
N True 0.5 Best: r=0.3,m=0,n=10 23551.0 372 7.0
True 0.5 BO:r=0.3,m=0,n=10 23551.0 37.2 7.0
False 0.0 Best: r=0.8,m=1,n=100 234332 28.6 5.4

M True 0.0  Best: r=0.5,m=1,n=10 23538.6 384 7.1
& False 0.5 Best: r=0.5,m=1,n=100 23461.8 23.6 10.3
o True 0.5 Best: r=0.3,m=0,n=10 235544 37.2 7.4
True 0.5 BO: r=0.3,m=0,n=10 235544 372 7.4

6.7.5 RQ2: How does fitness based on code coverage affect performance?

To answer RQ2, Table 6.4 shows, for each search budget, the best configurations (Best) with and
without code coverage fitness (Code), with seeding enabled and disabled (Seeding). Furthermore,
Table 6.4 also reports the configuration that performs better on average over all the search budgets
(BO in Table 6.4).

Enabling code coverage fitness results in higher coverage but it comes, however, at the expense of
a significantly larger test suite. All configurations in Table 6.4 with higher coverage enable coverage
fitness whereas all the ones with smaller test suites do not. For small search budgets, the difference in
coverage when enabling coverage fitness is small, thus suggesting that relying on model information
is enough, not requiring test execution for generating test cases.

6.7.6 RQ3: How does smart seeding affect performance?

Table 6.4 shows that smart seeding has a positive effect on cost-effectiveness when the search budget
is above 150k. In these cases, smart seeding is always part of the configurations that achieve the
highest coverage or the lowest number of test cases.
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6.7.7 RQ4: What are the configuration parameters that affect performance?

For each of the 108 configurations, we calculated their average coverage over all the search budgets
(thus considering 25 test suites for each configuration). We ranked these configurations based on
their average coverage. A detailed analysis showed that coverage fitness was enabled in the top 15
configurations, and never by the worst 15, thus showing its importance to guide the search. The effect
of seeding is however much less visible as it depends on other parameters.

Different parameters have different effects depending on the selected search budget. For example,
Table 6.4 shows that, for small search budgets (i.e. search budgets including at most 100,000 CADUs)
search achieves better results when more focused on exploitation (i.e. having a low probability of ran-
dom sampling, like 0.3 and 0.5). Table 6.4 also shows that with higher search budgets, in the absence
of coverage fitness or seeding, putting more emphasis on the exploration of the search landscape (i.e.
using a 0.8 probability of random sampling) pays off. This result is expected since, with a higher
search budget, random sampling allows for the sampling of much of the field data transmission file,
roughly one fourth.

Further, Table 6.4 shows some interesting side effects. For search budgets above or equal to
150,000, using either seeding or code coverage decreases the need to explore the search landscape
(probability of random sampling decreasing from 0.8 to 0.5). If both are used, even less exploration is
needed (probability of random sampling equal to 0.3). This phenomenon can be easily explained for
smart seeding, as it does provide more diverse and useful samples in the search landscape. In the case
of code coverage, this phenomenon occurs because some rare inputs contribute to code coverage but
not to other search objectives. Enabling code coverage fitness prevents the algorithm from discarding
rare inputs that contribute to code coverage once they are found. In the absence of code coverage
fitness, such rare inputs can be easily missed if there is low variety in the test inputs stored in the
archive. In the case of higher values of exploration, there is going to be higher variety in the archive,
which increases the probability of having those rare inputs.

For completeness, Table 6.4 reports also the average number of mutations per test input (column
#Mutations). Although the presence of multiple mutations (i.e. data faults) in a same input may
trigger hard-to-detect, complex failures, it could also complicate debugging. Table 6.4 shows that on
average the number of mutations is low compared to the maximum allowed (e.g. 5.4 versus 100 for a
budget of 250k), thus making eventual debugging operations easier!.

6.7.8 RQS: What configuration should be used in practice?

The best overall configuration (see Table 6.4) is using pyi.;q = 0.3 (small probability of sampling
a new test data at random instead of reusing the ones already in the archive), puurarion = 0 (do not
mutate new inputs immediately when sampled), and maxMutations = 10. Furthermore, it does use
seeding and the code coverage fitness function.

For each search budget, we ran experiments only five times per configuration, due to the high
time cost of running them. On one hand, this is useful to get a general picture of cost-effectiveness
trends among different parameter configurations. On the other hand, it makes it harder to compare

ITo further simplify debugging our implementation keeps track of the list of mutations applied on each test input and
a reference to the mutated element.
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6.8. Conclusion

Table 6.5. Statistical comparisons of best overall (BO) configuration against best with
no seeding, best with no code coverage fitness function, and random with code coverage.

Budget Configuration Coverage Ajp p-value

BO 23401.8 - -
= BO no seeding 234244 0.32 0.403
g BO no code 23417.2 040 0.676
Rand with code 23386.8 0.64 0.530
BO 23487.0 - -
= BO no seeding 23487.8  0.56 0.835
=] BO no code 234422 092 0.037
Rand with code 23436.8 0.96 0.022
BO 23528.2 - -
= BO no seeding 23502.0 0.68 0.403
e BO no code 234434 1.00 0.012
Rand with code 234534 094 0.027
BO 23551.0 - -
= BO no seeding 235134 0.80 0.144
S BO no code 23448.6  1.00 0.012
Rand with code 23465.8 1.00 0.012
BO 23554.4 - -
= BO no seeding 235152 0.80 0.144
4 BO no code 23450.4  1.00 0.012

Rand with code 23482.6 1.00 0.012

two specific configurations, as the randomness of the algorithm does introduce some degree of noise.
Is the best found configuration really better than the others? To address this issue, one could run
more experiments just on a subset of configurations of interest. For example, in our case, we are
interested in what is the best overall configuration, how it differs when seeding and code coverage
fitness functions are or are not used, and how it compares with random search. However, even with
just five runs, we obtained statistically significant results regarding our research questions, as reported
in Table 6.5.

Following the guidelines in [Arcuri and Briand, 2014], we used the Wilcoxon-Mann-Whitney
U-test to check statistical difference quantified by the Vargha-Delaney standardised effect size. For
large search budgets, code fitness has the strongest effect (e.g. for a 250k budget, BO is statistically
significantly better than BO no code, with an effect size of 1.00). Also for large budgets, random
yields statistically and practically worse results than search (e.g. for a 250k budget, BO is statistically
significantly better than Rand with code, with an effect size of 1.00). But for low budgets, no statis-
tically significant results are visible, which can be explained by low statistical power resulting from
lower effect size (less search) and a small number of observations.

6.8 Conclusion

Building a minimal robustness test suite for data processing systems, with high fault revealing power,
is complicated by multiple factors: the complex structure of the test inputs that present several con-
straints among their data fields, the need for generating a set of inputs that covers both the functional
specifications and the data faults captured by a given fault model, and the possibility to have multiple
data faults in a same input.
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We designed a novel evolutionary algorithm that addresses these challenges by: generating com-
plex test inputs by means of data mutation, relying upon model-based and code-based fitness func-
tions, and identifying optimal test suites by managing the tradeoff between the exploration and the
exploitation of the search landscape thanks to a set of configuration parameters. The fitness functions
capture aspects that are relevant for robustness testing, that is, how well each input covers the structure
of the input data, the fault model, the functional specifications, and the structure of the system.

Empirical results obtained by applying our search-based testing approach to test an industrial data
processing system show that it outperforms previous approaches (introduced in Chapter 5) based on
fault coverage and random generation: higher code coverage is achieved with smaller test suites.

Furthermore, we show that although a fitness function that includes code coverage is essential to
maximise the coverage of the generated test suite, fitness functions based on models alone can achieve
good coverage results, while significantly reducing test suite size. This is of practical importance as
test generation is much quicker and often more practical when no test execution is required. Finally,
we identified a best configuration for our search algorithm that returns better results regardless of
the search budget; this configuration facilitates the application of our approach and includes smart
seeding, which turns out to be a key feature in improving search results.
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Chapter 7

Testing of New Data Requirements

When testing data processing systems, software engineers often take advantage of the availability of a
huge quantity of real world data to perform system level testing. For example, when developing a web
crawler, software engineers can rely upon existing web pages to verify the robustness' of the system.
The approaches of this dissertation presented so far automatically generate test inputs by modifying
existing field data. However, in the presence of new requirements, where there is a need to deal with
new data formats, software engineers may no longer have the benefit of having existing real world
data with which to perform testing. Typically, new test inputs that comply with the new format would
have to be written.

This situation is very common, especially in industry, where requirements are continuously chang-
ing. For example, the approach of this chapter was motivated by the needs of SES. The SES-DAQ
(data acquisition system for satellite transmissions, introduced in Chapter 2) has been developed for
the ESA Sentinel series of satellites. The first of the Sentinels is already in orbit and more Sentinel
satellites will be launched in the coming years. Real transmission data for the first of the Sentinel
mission types is available for testing the data acquisition system. For other Sentinel mission types,
real transmission data is not yet available. Additionally, during the development process it is not
uncommon for the transmission data specifications to continue to change. Hence, an approach that
supports the automatic generation of valid synthetic transmission data files is necessary to ensure that
the DAQ system can be thoroughly tested throughout development.

In practice, testing data processing systems involves the handcrafting of inputs, which requires
the creation and editing of large and complex data structures saved in binary files. Furthermore, given
available time and resources, test files should be as realistic as possible in terms of size and content,
as large sizes will stress the system more and are more likely to reveal faults. The size and complexity
of the test inputs makes this process error-prone and expensive, especially in the presence of changing
requirements that force software engineers to modify or rewrite already defined complex test inputs.

Most existing approaches for the automatic generation of test inputs cannot be used because they
require extensive specifications in the form of CFGs, which cannot capture all the complex relation-
ships between data fields. A few approaches that use extended grammars to capture such relationships

'Robustness is “the degree to which a system or component can function correctly in the presence of invalid inputs or
stressful environmental conditions" [ISO/IEEE, 2010].
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exist (e.g. [Xiao et al., 2003]); however, these approaches are not based on a generic language to ex-
press such relationships and are limited in the types of relationships they can express.

Constraint solvers that process constraints expressed using the OCL language [Ali et al., 2013],
Alloy [Anastasakis et al., 2007], or constraint programming [Cabot et al., 2008] can be used to gener-
ate test inputs from scratch. However, existing approaches do not scale in the presence of numerous
constraints and complex and highly structured data, as visible for Alloy in our empirical study. An
additional limitation of these approaches is that they require software engineers to model all the con-
straints on input data, which may require a lot of time.

To limit the modelling effort, other approaches generate test inputs by mutating existing field
data [Shan and Zhu, 2009]. Our own approach, presented in Chapters 5 and 6, that generates test
inputs by mutating available field data represented by a data model is not applicable when existing
field data do not comply with new data requirements.

In this chapter, we propose an approach that modifies existing field data to generate test inputs
for testing new requirements. The approach combines data modelling and constraint solving. The
approach scales in the presence of complex and structured data, thanks to both the reuse of existing
field data and the adoption of an innovative input generation algorithm based on slicing the model into
parts; it reuses field data for parts unaffected by requirements changes, and then iteratively updates
parts that are affected, by using data generated by means of constraint solving.

The contributions presented in this chapter are:

1. An automated, model-based approach to modify field data to fit new data requirements for the
purpose of testing data processing systems.

2. A scalable test generation algorithm based on data slicing that allows for the incremental in-
voking of a constraint solver to generate new or modified parts of the updated field data.

3. An industrial empirical study demonstrating (1) scalability in generating new field data and (2)
coverage of new data requirements by generated field data in addition to a comparison with
expert, manual testing.

The chapter is structured as follows. Section 7.1 summarises the challenges of the research prob-
lem addressed in this chapter. Section 7.2 overviews the approach. Sections 7.3 and 7.4 present the
details of the core contributions presented in the chapter: reuse of existing data and generation of
missing or invalid data with constraint solving. Section 7.5 shows, by means of an example, how the
algorithm proposed by this chapter correctly generates a complete solution. Section 7.6 discusses the
empirical results obtained. Section 7.7 concludes the chapter.

7.1 Running Example

To define data requirements, we rely upon the data modelling methodology described in Chapter 3.
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7.1. Running Example

trans «InputData» trans | Vedu [1. 1| ChannelDataPerVcid
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Figure 7.1. Condensed input/configuration data model for the SES-DAQ working with
Sentinel-1 satellites. The model uses elements shown in the CADU-level and ISP-level
input data model figures (respectively, Figs. 3.1 and 3.2) as well as elements of the con-
figuration data model (Fig. A.1 of Appendix A).

7.1.1 Existing data requirements

For the running example presented in this chapter, we present a condensed version of the SES-DAQ
Input and Configuration data models in Fig. 7.1. The condensed data model uses most of the elements
shown in the CADU-level figure (Fig. 3.1) with some changes: the TransmissionData is directly
composed of Vedus and we do not consider the MpduHeader. With reference to the ISP-level figure
(Fig. 3.2), the condensed model has a Packet class that is a substitute for the Isp and PacketPrimary-
Header classes; the Packet class also directly contains a PacketSecondaryHeader and a PacketData
class. Note that in Fig. 7.1, we now define the subtypes of the PacketSecondaryHeader class, which is
directly relevant for the running example. With reference to the Configuration Data figure (Fig. A.1),
Fig. 7.1 contains the configuration elements that are directly relevant to the running example.

Fig. 7.1 shows how we model Sentinel-1 mission transmission (input) data processed by SES-
DAQ. The Sentinel-1 mission is the first of several planned Sentinel missions. One Sentinel-1 satellite
is already in orbit. Note that for Sentinel-1, the PacketSecondaryHeader has two possible values:
(1) the SarPacketHeader is used by packets containing data generated by the Synthetic Aperture
Radar (SAR) instrument and (2) the GpsrPacketHeader is associated with packets containing Global
Positioning System Receiver (GPSR) data.

The data model also captures the structure of configuration files. In the case of SES-DAQ, the
structure of configuration files is captured by classes Configuration and VcduConfig. The configura-
tion files specify how the SES-DAQ software should process data and also define what data values
are valid for received transmissions. For example, the attribute checkCrc of class Configuration in-
dicates whether or not the software should check for packet correctness by using CRC information.
A Configuration also contains a collection of VeduConfig instances, one for each valid virtual chan-
nel. Class VeduConfig provides run-time information characterising the expected contents of a valid
virtual channel, for example: a valid VCID value, vcid in Fig. 7.1; and a collection of valid packet
identifiers (specifically, APID values), apids in Fig. 7.1.
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1 context Packet inv:
2 ( self.apidValue.value=1 and self.psHeader.oclIsTypeOf(SarPacketHeader) ) or
3 ( self.apidValue.value=2 and self.psHeader.oclIsTypeOf(GpsrPacketHeader) )

Figure 7.2. Mapping of packet type numbers to specific PacketSecondaryHeader sub-
classes.

‘ PacketSecondaryHeader ‘

\ \
«Replacement» «Replacement»
MsiPacketHeader Gpsr2PacketHeader
«Measure» coarseTime : Integer «Identifier» destinationld : Integer
«Measure» fineTime : Integer «Identifier» type : Integer
«Identifier» operationMode : BitSequence| |«Identifier» subtype : Integer
«Identifier» compressionStatus : Integer

Figure 7.3. Portion of the data model for SES-DAQ that handles new data requirements
specific for Sentinel-2 satellites.

1 context Packet inv:

2 ( self.apidValue.value=1 and self.psHeader.oclIsTypeOf(SarPacketHeader) ) or
3 ( self.apidValue.value=2 and self.psHeader.oclIsTypeOf(GpsrPacketHeader) ) or
4 ( self.apidValue.value=3 and self. psHeader.oclIsTypeOf(MsiPacketHeader) ) or
5 ( self.apid Value.value=4 and self.psHeader.oclIsTypeOf(Gpsr2PacketHeader) )

Figure 7.4. New OCL constraint that replaces the one in Fig. 7.2. The constraint is
updated to include the new packet secondary header types.

1 context VcduHeader inv:
2 self.vcdu.transmissionData.configuration.veduConfig.veid—exists(x | x = self.virtualChannelld)

Figure 7.5. OCL constraint involving configuration parameters.

A constraint specific to the Sentinel-1 data model is captured by the following OCL constraint:
Fig. 7.2 shows an input constraint that indicates that a PacketSecondaryHeader is of type SarPacket-
Header only if the APID value of the packet is equal to 1.

7.1.2 New data requirements

New data requirements potentially result in changes to both the data model and the contents of the
configuration files of the system. A change to the data model corresponds to a modification of the
class diagram or the OCL constraints, while changes in configuration files consist of changes in the
values assigned to configuration parameters.

Fig. 7.3 shows a portion of the data model of SES-DAQ that has been updated to process data
transmitted by Sentinel-2 mission satellites. In the case of Sentinel-2, a PacketSecondaryHeader
can be either of type MsiPacketHeader or Gpsr2PacketHeader. These two kinds of packet headers
contain information that is different from the packet headers transmitted by Sentinel-1 satellites. If we
compare, for example, the GpsrPacketHeader transmitted by Sentinel-1 and the Gpsr2PacketHeader
transmitted by Sentinel-2 we notice that both provide information about the destinationld, and the
type of the content being sent, while only the latter provides a subtype field that provides additional
information characterising the content.
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Original Original Incomplete Valid 4. Data
Data ] Model Model Model Writing
Model lnstance / Instance Instance

a O “ Test Input
for Updated
1. Data 2. Automatlc Model 3 Update Model S(Z)rftvx?ari ¢
Loadin Transformation Instance using
ﬁ ﬁ Constraint Solving D

INEEEE Updated

[ Data

Field data Model

Figure 7.6. Automatic generation of test inputs for new data requirements.

Data constraints might change as well. Fig. 7.4 shows an example for SES-DAQ where the OCL
constraint in Fig. 7.2 has been modified by specifying the new mappings between the packet type and
the two new PacketSecondaryHeaders.

In addition to changes in the data model, new data requirements often imply changes in the config-
uration files used to run the software. Different software versions may require different configuration
parameters, although changes in the content of the configuration files may not imply changes in the
structure (or the related constraints) of the configuration classes captured by the data model (e.g.
the configuration file for SES-DAQ has the same structure whether it is used to process Sentinel-1 or
Sentinel-2 data). The configuration values to be used with a given version of the software are typically
set in the field, before executing the software. When generating test inputs for the new requirements,
it is thus necessary to properly set the values appearing in configuration files, because they are refer-
enced by OCL constraints involving configuration parameters. An example is given by the constraint
in Fig. 7.5 that states that the virtual channel identifier specified in a Vedu header (attribute virtu-
alChannelld of class VcduHeader) must be equal to one of the virtual channel identifiers present in
the configuration file (attribute vcid of class VeduConfig).

7.2 Automatic Generation of Test Inputs for New Data
Requirements

We automatically generate test inputs for new requirements by adapting existing field data. To this
end, we combine model transformations with constraint solving. Model transformations enable the
partial reuse of existing field data, while constraint solving allows for the generation of missing data
that fulfils the updated constraints.

Fig. 7.6 shows the four steps of the approach. In Step 1 we load a chunk of field data in memory
as an instance of the original data model (Original Model Instance). In the case of SES-DAQ, the
process is automated by using a parser (the Data Loading component of our toolset, introduced in
Chapter 9) that makes use of the modelling approach described in Section 3.4.

In Step 2 we generate an instance of the updated data model by means of a model transformation
applied to the Original Model Instance. The result of the model transformation is an instance of
the updated data model that is incomplete (Incomplete Model Instance); in fact, it contains only the
information that can be directly derived from the Original Model Instance.

In Step 3 we generate a valid instance of the updated data model by means of constraint solving.
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Figure 7.7. Example of an instance of the Original Data Model of SES-DAQ visualised
using the object diagram notation.

As the underlying solver we use the Alloy Analyzer [Jackson, 2015]. Alloy is a modelling language
for expressing complex structural constraints [Jackson, 2002], which has been successfully used to
generate test inputs for testing object-oriented programs [Khurshid and Marinov, 2004]. We rely
upon UML2Alloy [Anastasakis et al., 2007] to generate an Alloy model that corresponds to the class
diagram and the OCL constraints of the data model.

To generate the concrete test inputs to be processed by the SUT (e.g. a binary file in the case of
SES-DAQ), the content of the Valid Model Instance is written in the format processed by the SUT
(Step 4). For example, to produce test inputs for SES-DAQ, we rely upon the toolset that we already
used in our previous work; this toolset writes the content of the Valid Model Instance back to a file as
a stream of bytes (as described in Section 9.3.3).

The following sections describe in detail Steps 2 and 3, which are the core contributions of this
chapter.

7.3 Automatic Model Transformations to Generate Incomplete
Model Instances

The proposed technique is able to automatically generate an incomplete instance of the updated data
model in the presence of changes that alter the information provided by the data model. These changes
correspond to removals, additions and replacements of classes and attributes.

The technique does not deal with model refactoring (i.e. changes that alter the structure of the data
model but preserve the information provided by the data model). Model refactoring can be effectively
implemented by means of model transformations [Mens and Tourwé, 2004].

To create an instance of the updated data model, the technique copies and adapts the instance of
the original data model. When attributes or classes have been removed, the technique simply ignores
the deleted attributes or classes when creating the copy. To deal with classes added to the data model,
the technique creates an instance of each new class along with a new association instance linking
the new class instance to its containing class instance. The new class instances are tagged as being
incomplete. Similarly, the technique tags as incomplete the instances of classes with attributes that
have been introduced in the updated data model. In the case of the replacement of classes, we rely
upon a stereotype, named «Replacement», that is used by software engineers in the data model to
indicate that a class replaces another one. Fig. 7.3 shows that the stereotype «Replacement» is used
for classes MsiPacketHeader and Gpsr2PacketHeader. The stereotype «Replacement» also enables
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Figure 7.8. Incomplete Model Instance derived from the Original Model Instance in
Fig. 7.7. Incomplete instances are blue, attribute values invalidated by modified con-
straints are red.

software engineers to specify, for each replacement class, the name of the class whose instances
should be replaced. For example, to generate a Sentinel-2 input, class MsiPacketHeader replaces
class SarPacketHeader in the field data of Sentinel-1 satellites.

Fig. 7.8 shows the Incomplete Model Instance derived from the Original Model Instance of
Fig.7.7. Since class MsiPacketHeader replaces class SarPacketHeader, each instance of class SarPack-
etHeader in the Incomplete Model Instance has been replaced by an instance of class MsiPacket-
Header. Each instance of class MsiPacketHeader has been tagged as incomplete.

An instance of the updated data model also often differs from an instance of the original data
model by the parameter values used in the configuration file. To deal with this case, the technique
automatically updates the Incomplete Model Instance to include the content of the new configuration
file. To this end, the technique automatically loads the content of the configuration file into mem-
ory and replaces the instances of the configuration classes in the Incomplete Model Instance with
instances that capture the new given configuration. The instance c2 of class Configuration appearing
in the Incomplete Model Instance of Fig. 7.8 replaces the instance c/ appearing in the Original Model
Instance of Fig. 7.7.

Fig. 7.8 also shows that the updates related to the Configuration and the Packet classes lead to
invalid attributes. According to the OCL constraints of Figs. 7.4 and 7.5, the attribute apidValue of
class Packet 1s expected to be equal to apid3, while the field virtualChannelld of class VcduHeader
1s now expected to be equal to vcid2.

7.4 Generation of Valid Model Instances

To generate a Valid Model Instance, the technique updates the Incomplete Model Instance with values
generated by means of constraint solving. The technique uses constraint solving both to generate data
that is completely missing from the Incomplete Model Instance (i.e. classes or attributes tagged as
incomplete) and to replace data that no longer satisfies the constraints of the Updated Data Model.

In principle, constraint solvers can be used to automatically generate in a single run a solution that
matches the shape of the Incomplete Model Instance and satisfies all of the constraints. Unfortunately,
constraint solvers often present scalability issues if the data model includes multiple collections of
items with constraints among their elements, which is often the case when dealing with the data
models of data processing systems. For this reason, we built an algorithm, IlferativelySolve, that,
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Require: /MI, the incomplete model instance
Require: DM, the data model with the OCL constraints
Require: rootImiClass, the name of the class that specifies the root node of the IMI
Require: rootConfigClass, the name of the root class that captures the content of the configuration file
Ensure: VMI, a valid model instance generated by means of constraint solving (i.e. the test input data)
1: defined < new List()
2: toRegenerate < null
3: VMI + null
4: slices < depthFirstVisit(IMI,rootImiClass, rootCon figClass)
5: odg < buildOCLDependencyGraph(IMI,DM)
6: repeat
7 used < new List()
8 for slice in slices do
9: IMI,used,defined, toRegenerate < SolveSlice(IMI,0dg,slice,used,de fined,toRegenerate)
10: if roRegenerate # null then

11: break
12: end if
13: end for

14: wuntil toRegenerate = null
15: if IMI # null then

16: VMI < IMI

17: end if

Figure 7.9. The algorithm [IterativelySolve.

instead of generating a complete valid model instance in a single run, iteratively generates valid
instances of a portion (i.e. a slice) of the updated data model, and assigns the generated values to the
attributes in the updated model instance. This iteratively leads to a valid instance of the updated data
model.

A slice contains a subset of the class instances that belong to a data model instance. Slices are
defined by traversing a graph that corresponds to the data model instance. Let Gpys be a graph that
corresponds to an instance of a given data model Ipyy if it contains a set of nodes N, such that for each
class instance in Ipys there exists a unique corresponding node n in Gpyy, and for each pair of class
instances i.; and i, connected by an association, there exists an edge connecting the corresponding
nodes 7.1 and n.,. We assume that the data model has a single root node r. Slices are built by means of
a depth-first visit of the graph Gpy. A slice is a sequence of nodes that belong to the path between the
root r and a leaf node n;. Leaf nodes are identified during the depth-first graph visit and correspond
to class instances without any association edges that point to class instances not yet visited. Slices
contain nodes sorted according to the order in which they are traversed in the depth-first visit. We
define a parent-child relationship between two nodes in a slice, nl and n2, such that nl = parent (n2)
if n1 and n2 are connected by an association link, and n1 was visited before n2. By construction, a
slice cannot contain two nodes with the same parent.

IterativelySolve relies upon a constraint solver to modify the assignments of the attributes in the
slices such that the constraints of the data model are satisfied. We use the expression slice solving to
indicate the process of executing a constraint solver to identify the values to assign to the attributes of
a slice in order to satisfy the constraints of the data model.

The consistency of the solution is guaranteed by the incremental nature of the algorithm: items of
collections are generated assuming that previously generated items are valid.

Figs. 7.9, 7.10, and 7.11 show, respectively, the algorithm IterativelySolve, function SolveSlice,
and function EnableFactsAndSolve, which implement the logic for the incremental solving of slices.
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Require:
Require:
Require:
Require:
Require:
Require:

Ensure:
Ensure:
Ensure:
Ensure:

IMI, the incomplete model instance
odg, the OCL Dependency Graph
slice, a slice generated from the IMI
used, a list of variables appearing in the facts used to solve previous slices
defined, alist of variables whose values have been previously defined using the results generate by the solver
toRegenerate, a list of attributes (if any) that need to be regenerated
IM]I, the incomplete model instance with values updated to satisfy the constraints for each slice
used, an updated list of variables used in the facts
defined, an updated list of the variables defined by the Alloy solver
toRegenerate, a list of attributes that have been modified in the current execution and need to be regenerated by restarting the

incremental solving from the first slice

1:
2
3
4:
5:
6
7
8

9:
10:
11:
12:

function SOLVESLICE(IMI,0dg, slice,used,defined,toRegenerate)

prunedODG < pruneODG(odg, slice)

a < generateAugmentedSlice(prunedODG,slice)
alloyModel < umi2Alloy(DM)

instanceM, facts < augmentAlloyModel(alloyModel ,a)

if slice.processed = true then
// this is a re-execution of SolveSlice
// this slice only needs to be solved if it contains one of the variables to regenerate
if toRegenerate.contains(De finedVars(facts)) = false then
return IMI,used,de fined,toRegenerate
end if
end if

solution <— ExecuteAlloy(instanceM)
if solution # null then
used < SetAllFactVariablesAsUsed(facts,used)
end if
if solution = null then
solution,used,de fined,modified <
EnableFactsAndSolve(instanceM, facts,used,defined)
end if
if solution = null then
return null used,de fined ,null
end if
IMI < update(IMI, solution)
slice.processed = true // simply trace that slice has been solved at least once
if modified.size > 0 then
return IMI,used,de fined, modified
end if
return IMI,used,de fined,null

30: end function

31: function SETALLFACTVARIABLESASUSED( facts,used)

32:
33:
34
35:
36:
37:

for fact : facts do
if isCon figuration(fact) = false or isShape(fact) = false then
used <+ used U De finedVar(fact)
end if
end for
return used

38: end function

function DefinedVar returns the variable defined in a fact (i.e. the left hand side of the assignment in the fact).

Figure 7.10. Function SolveSlice.
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Require: instanceM, the alloy model that captures the content of a single slice
Require: generatedFacts, a list of facts generated from the instanceM
Require: used, a list of variables appearing in the facts used to solve previous slices
Require: defined, alist of variables whose values had been previously defined using the result generate by the solver
Ensure: solution the result generated by Alloy, or null if the formula cannot be satisfied
Ensure: used, an updated list of variables used in the facts
Ensure: defined, an updated list of the variables defined by the Alloy solver
Ensure: modified, alist of variables used in previous iterations that had been redefined to solve the current slice
1: function ENABLEFACTSANDSOLVE(instanceM, generatedFacts,used,de fined)
2: modified < new List()
3: for fact : generatedFacts do
4. if isCon figuration(fact) = false or isShape(fact) = false or DefinedVar(fact) C defined then
5: instanceM < disable(instanceM, fact)
6: end if
7 end for
8: solution < ExecuteAlloy(instanceM)
9: if solution = null then
10: return solution,used,de fined, modified
11: end if
12: for fact : generatedFacts do
13: if isDisabled(fact) then
14: instanceM < enable(instanceM, fact)
15: tempSolution <— ExecuteAlloy(instanceM )
16: if rempSolution = null then
17: instanceM < disable(instanceM, fact)
18: if DefinedVar(fact) in used then
19: modified < modified U DefinedVar(fact)
20: end if
21: defined < defined U DefinedVar(fact)
22: else
23: used <— used UDefinedVar(fact)
24 solution < tempSolution
25: end if
26: end if
27: end for
28: return solution,used,defined, modified

29: end function

Figure 7.11. Function EnableFactsAndSolve.

IterativelySolve performs 5 main activities:

Slices detection: identifies a set of slices of the Incomplete Model Instance that can be solved
separately and then recomposed to obtain a Valid Model Instance.

Solving with Alloy: for each slice, derives an Alloy model that is given to the Alloy Analyzer
to produce assignments for the attributes that (a) satisfy the constraints of the data model and
(b) reflect the actual values observed in the Incomplete Model Instance (this is implemented by
function SolveSlice).

Removal of invalid values: iteratively removes from the Alloy model the assignments that pre-
vent the solving of slices—that is, attribute values that invalidate OCL constraints (this is im-
plemented by function EnableFactsAndSolve).

Consistency check: in order to generate consistent solutions, the algorithm may solve a same
slice multiple times—this occurs when the solution of a slice changes a value used by previously
solved slices.

Update of Incomplete Model Instance: reads the values generated by the Alloy Analyzer from
the Alloy solution, and copies them into the Incomplete Model Instance (implemented by func-
tion SolveSlice).

The last four activities are repeated for all the slices. By iteratively updating the Incomplete
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Model Instance, IterativelySolve attempts to obtain a Valid Model Instance. The following paragraphs
provide a detailed explanation of the algorithm.

7.4.1 Slices detection

IterativelySolve first identifies a set of slices of the Incomplete Model Instance by performing a depth-
first visit of the Incomplete Model Instance (Line 4, Fig. 7.9). The software engineer is expected to
specify the root node of the Incomplete Model Instance (e.g. class TransmissionData in Fig. 7.8); this
is accomplished at the data model level (e.g. in Fig. 7.1, by applying the «InputData» stereotype on
the TransmissionData class). Engineers also specify the name of the class that captures the contents of
the configuration file (e.g. class Configuration in Fig. 7.8); this is also accomplished at the data model
level (e.g. in Fig. 7.1, by applying the «ConfigData» stereotype on the Configuration class). This is
required to avoid the generation of slices containing configuration items because configuration values
are specified by the software engineer and are not to be generated by means of constraint solving. For
example, in the case of Fig. 7.8, it is the software engineer who specifies the value of the attribute
spaceCraftld in the configuration file; the constraint solver is not expected to change the given identi-
fier. To prevent the generation of slices containing configuration items, function depthFirstVisit does
not traverse the configuration class during the depth-first visit.

After generating the slices, IterativelySolve builds the OCL Dependency Graph (ODG, see Line 35,
Fig. 7.9). An ODG is a directed graph whose nodes correspond to the class instances in the Incomplete
Model Instance, while its edges connect all the instances that are traversed when evaluating the OCL
constraints. Fig. 7.12 shows an example ODG built from the Incomplete Model Instance of Fig. 7.8;
the figure also shows the constraints used to produce the ODG. Observe, for example, that nodes pl,
al, vl, t1, ¢2, and vc2 in Fig. 7.12 are connected by edges because they are traversed to evaluate
constraint C3.

7.4.2 Solving with Alloy

Lines 6 to 14 of Fig. 7.9 implement the logic to solve the slices of the incomplete model instance; the
function SolveSlice is invoked in Line 9 to incrementally generate a valid model instance.

SolveSlice calls the function generateAugmentedSlice (Line 3, Fig. 7.10) to generate an augmented
slice for each slice s identified in the previous steps. The augmented slice includes all the class
instances that are required to evaluate if the class instances in the slice s violate the constraints of the
data model.

To build the augmented slice, the function generateAugmentedSlice first traverses the ODG to
identify all the nodes that can be reached from each node in the slice s. The augmented slice contains
all the class instances that correspond to the nodes traversed in the ODG. For example, the slice Aug-
mentedSlicel in Fig. 7.12 includes the class instances ¢2 and vc2, which are reached when traversing
the ODG starting from p1. Note that ¢2 and vc2 are required to evaluate the constraint C3.

Constraints on the items of collections may lead to a huge set of nodes that can be reached from
a slice s. To generate smaller sets of reachable nodes, SolveSlice prunes the ODG (Line 2, Fig. 7.10)
by removing all the edges that connect collection items with their predecessors with the exception
of the items belonging to the current slice, which remain linked to their predecessor. ODG ypeq3 in
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ODG ODGypruneds Slicel AugmentedSlicel Slice3 AugmentedSlice3

Legend ODG Legend Slice
ODG OoDG Class Bidirectional _, Unary
Node ™ Edge Instance " Association Association

OCL Constraints

C1: context Packet inv: ( self.apidValue.value=1 and self psHeader.oclIsTypeOf(SarPacketHeader) ) or
( self.apidValue.value=2 and self.psHeader.oclIsTypeOf(GpsrPacketHeader) ) or
( self.apidValue.value=3 and self.psHeader.oclIsTypeOf(MsiPacketHeader) ) or
( self.apidValue.value=4 and self.psHeader.oclIsTypeOf(Gpsr2PacketHeader) )

C2: context Packet inv: self.sequenceCount = self.prev.sequenceCount + 1

C3: context Packet inv: self zone.vedu trans config.veduConfigs apids->exists(a | a = self.apidValue)
Figure 7.12. Example of the artefacts generated to perform slicing: ODG, pruned ODG,
slices, and augmented slices. These artefacts are built from the Incomplete Model In-
stance of Fig. 7.8. The figure also shows the constraints used to produce the ODG;
colours are used to show which attributes are related to the different edges in the ODG.

Fig. 7.12 shows the result of the pruning operation performed when processing Slice3. ODG punea3
contains only the edge that links p3 with its predecessor (p2), but not the edge that connects p2 with

pl.

The augmented slice contains both data belonging to the original field data and incomplete data
(i.e. incomplete class instances or attributes). SolveSlice executes the solver to generate valid class
instances or attributes in place of the missing data.

SolveSlice uses UML2Alloy to generate an initial Alloy model that corresponds to the data model
(Line 4, Fig. 7.10). UML2Alloy implements a model transformation that maps UML class diagrams
and OCL constraints to the Alloy format. UML2Alloy generates an Alloy signature for each class
and its contained attributes, facts capturing the associations between classes, and a predicate for each
OCL constraint.

Given a model specified using the Alloy language, the Alloy Analyzer can generate a valid in-
stance of the data model; however, to reuse existing field data, we need to generate a solution that
also has the same ‘shape’ as the Incomplete Model Instance (i.e. the Incomplete Model Instance and
the Alloy solution must be isomorphic). This way we can easily copy values from the Alloy solution
to the corresponding Incomplete Model Instance. Function augmentAlloyModel (Line 5, Fig. 7.10)
modifies the Alloy model in order to enforce the generation of a solution that fits the shape of the
slice. Fig. 7.13 shows a portion of the Alloy model generated by function augmentAlloyModel from
the Incomplete Model Instance of Fig. 7.8. The keyword sig indicates a signature; that is, a set of
atomic definitions (atoms) that we use to model classes with Alloy. Signatures share similar proper-
ties with classes of UML class diagrams; in fact, they can be abstract, if they cannot be instantiated,
and can be used to extend other signatures (see the keyword extends). The keyword one is used to
indicate singletons (i.e. signatures for which only a single instance can exist). The keyword fact is
used to indicate a property that must hold in the Alloy solution.
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abstract sig Vedu { abstract sig MpduPacketZone { /ldeclarations for class instances //facts for associations
trans:one TransmissionData, vedu:one Vedu} one sig p2 extends Packet {} fact {vc2.config=c2}
packetZone:one MpduPacketZone } abstract sig ActivePacketZone gﬁz zlg 53ig)l(t:;?esngzsic/l§eti d{%[} ;zz: g ::12 .CvoclijéxCSncr;g}z ve2 }
abstract sig TransmissionData { extends MpduPacketZone { 0.8 4D A Y £ =<
a : - X one sig apid3 extends Apid {} fact { c2.transmission = t1 }
cogﬁg.one %or(ljﬁg;lranon, packets:some Packet } one sig apid4 extends Apid {} fact { tl.vedu=vl }
vedu:some Vedu . . K . A
abstract sig Packet { one sig c2 extends Configuration {} fact { v1.transmission = t1 }
abstract sig Configuration { apidValue:one Apid, one sig vc2 extends VeduConfig {} fact { v1.packetZone = al }
trans:one TransmissionData sequenceCount:one Int, one sig t1 extends TransmissionData {}  fact { al.vedu=vI }
checkCrc:one Bool, psHeader:one PacketSecondaryHeader, —one sig v1 extends Vedu {} fact { al.packets = p2 +p3 }
veduConfigs:some VeduConfig } prev:lone Packet } one sig al extends ActivePacketZone {} fact { p2.zone =al }
. . . one sig sh2 extends MsiPacketHeader {} fact { p3.zone =al }
abstract sig VeduConfi abstract sig PacketS, daryHead ; ; 3
dc?)t;?icgl‘gfe Cconuﬁg(;?at%ofl dpﬁélig'sofe lgacclf;t e}con aryHeader { one sig sh3 extends MsiPacketHeader {} fact { p2.psHeader = sh2 }
- > : fact { s2.packet = p2
apids:some Apid } abstract sig MsiPacketHeader l/c/facts for dataltypes fZZ[ é ;3 F;?{:adef: ih% }
act { apidl.ve =1 2. :
abstract sig Apid { extends PacketSecondaryHeader { f;g[ g gg;d3 .z;]ﬂ: =3 i fact { s3.packet=p3 }
value:one Int } goa{;;Tnfle:or]le Int, fact { apid4.value = 4 } //facts for non-config variables
abstract sig Veid { neTime:one Int } //facts for config variables ?acl { p%.ap}g\/a}ue = ap§g3 b
value:zone Int } fact { ve2.apids = apid3 + apidd } act { p3.apidValue = apidl }

Figure 7.13. Portion of the Alloy model generated to capture the part of the Incomplete
Model Instance containing AugmentedSlice3 (shown in Fig. 7.12).

To be isomorphic, the Alloy solution and the Incomplete Model Instance must share the same
number and types of instances. To this end, the function augmentAlloyModel sets all the signatures
in the Alloy model as abstract, and then creates a specialisation (i.e. a signature that extends another
one), for each class instance in the augmented slice. Each specialised class is a singleton (this way
we create the same exact instances observed in field data). The third column of Fig. 7.13 shows the
declarations generated for the different class instances appearing in the Incomplete Model Instance;
for example, the first two lines declare p2 and p3, the two instances of class Packet present in the
portion of the Incomplete Model Instance of Fig. 7.8 that are present in AugmentedSlice3 (Fig. 7.12).
Signature Packet is abstract; consequently, the solver will not generate any instance of class Packet
other than p2 and p3.

To preserve associations, function augmentAlloyModel generates a fact (i.e. a constraint) for each
association between the class instances in the data model. For example, the fact ‘al.packets = p2 +
p3’ in the top block of the fourth column of Fig. 7.13 indicates that p2 and p3 belong to the collection
packets.

Finally, function augmentAlloyModel also generates Alloy facts that capture the actual values
present in the Incomplete Model Instance (e.g. the facts in the bottom block of the fourth column of
Fig. 7.13).2 This is done to obtain a solution that reuses the data values observed in the original field
data.

7.4.3 Removal of invalid values

Facts reflect the values observed in the field data (e.g. fact ‘p3.apidValue = apidl’ in Fig. 7.13 that
states that the apidValue of Packet 3 is apidl). In the presence of updated (or new) OCL constraints
that do not match the data used in the original test inputs, the solver cannot generate a solution (fact
‘p3.apidValue = apidl’ breaks constraint C1). For this reason, when the solver determines that the
set of given constraints is unsatisfiable, IterativelySolve relaxes the Alloy model by disabling the facts
that prevent the identification of a solution (see function EnableFactsAndSolve in Fig. 7.11). The
disabling of a fact is performed by adding a comment at the beginning of the line; this way facts can

>To minimise execution time, function augmentAlloyModel creates facts only for those attributes that appear in the
OCL constraints.
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be easily disabled and re-enabled. The disabling of facts is what enables IterativelySolve to replace
existing values with new ones.

Function EnableFactsAndSolve proceeds by disabling all the facts (Lines 3 to 7, Fig. 7.11), and
then iteratively enabling facts one by one to identify the ones that allow for the generation of a new
solution (Lines 12 to 27, Fig. 7.11). Facts that prevent the generation of a solution are left out (Line 17,
Fig. 7.11). EnableFactsAndSolve disables facts that capture actual values of the field data but not facts
that preserve the shape of the solution. Additionally, the facts that capture configuration data (i.e. data
that is not meant to be regenerated by the solver) are also not considered for removal.

For example, to create a solution from the Alloy model of Fig. 7.13, it is necessary to relax the
model. In fact, this model cannot be used to generate an instance that satisfies the constraints C1, C2,
and C3. In particular, constraint C1 cannot be satisfied because the apidValue of p3 is apidl but its
packet header is of type MsiPacketHeader (see the facts ‘p3.apidValue = apidl’ and ‘apidl.value =
I’). IterativelySolve will solve this constraint only after disabling the fact apidl in p3.apidValue, and
will then generate a solution with p3.apidValue equal to apid3. If a solution is not found even after
removing all the facts, IterativelySolve terminates without generating a test input (see Lines 21 to 23,
Fig. 7.10). In this case, the technique simply continues the test generation process by sampling a new
chunk of field data (Step 1 in Fig. 7.6).

7.4.4 Update of incomplete model instance

Once a solution is found, SolveSlice updates the data in the Incomplete Model Instance (see Line 24,
Fig. 7.10). In particular, SolveSlice uses the values generated by constraint solving to update both
the incomplete attributes of the Incomplete Model Instance, and any values that break the updated
OCL constraints. By updating the Incomplete Model Instance, SolveSlice can incrementally generate
a consistent solution: each augmented slice contains an item of a collection and its immediate pre-
decessor (if any); this guarantees that the item is populated with data consistent with the previously
generated item.

7.4.5 Consistency check

To enforce data consistency, when relaxing a model, function EnableFactsAndSolve checks if the dis-
abled fact regards a variable that has been already observed when solving a previous slice. Lines 18 to 20
in Fig. 7.11 show that EnableFactsAndSolve adds to the list modified the names of the variables, used
by previously solved slices, that have been modified during the current execution of EnableFactsAnd-
Solve. If a solution for a slice is generated by changing a value used by previous slices, the algorithm
restarts the solving from the beginning (see the loop in Lines 6 to 14 of Fig. 7.9). This is done to
ensure that the slices already solved will still satisfy the constraints of the data model. To prevent
infinite loops, EnableFactsAndSolve does not disable facts that define variables whose values have
already been redefined by Alloy in previous iterations (see the clause ‘DefinedVar(fact) C defined’
in Line 4 of Fig. 7.11).

Lines 6 to 12 of Fig. 7.10 are an optimisation. Since SolveSlice is executed multiple times, it
should only call the Alloy Analyzer to solve slices that contain one of the variables that have been
redefined or slices that have not yet been solved.
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7.5 Analysis of Correctness and Completeness

This section shows, by means of an example, how the incremental solving of slices combined with
the consistency check contributes to the generation of a correct and complete solution.

The algorithm proposed in this chapter, IterativelySolve, incrementally updates the Incomplete
Model Instance by modifying the values assigned to the attributes of each slice. The Alloy Analyzer
guarantees that all the values assigned to a slice satisfy the constraints of the data model.

In the unlikely case the data model instance contains only a single slice, the result given by the
algorithm is correct by definition: the solver is executed once and it provides a set of assignments that
satisfy all the constraints. The generated solution is trivially correct also whenever the data model
instance contains only two slices without any shared variables. In this case, the final solution is the
union of the two separate sets of assignments generated by the solver.

In the case of two slices with a shared variable, an incorrect solution may be generated if the
values assigned when solving the second slice invalidate constraints that were true for the first slice.
By means of an example, we show that, with our incremental, slice-based approach, no incorrect
solution can be generated. To simplify the discussion, we model each slice by considering only the
attributes belonging to the class instances in the slice, thus ignoring the associations between classes.
Associations are not modified by IterativelySolve.

Let us take an example of a data model instance containing two slices. The two slices can be
represented by the sets of variables {b,a} and {c,a/, representing class attributes, where a is shared by
the two slices.

In our example we consider two simple inequalities as constraints, C; : a >=b and C; : a <= c.
Let us assume that the field data contains the values x1, xp, and x3 assigned to variables a, b, and c,
respectively. In our demonstration, we distinguish two cases that we identified by considering the
possible valuations of the constraint @ >= b: in case 1, x| < x», while in case 2, x; >= x;.

Case 1: x; < xp
Solving the first slice

To solve the slice {b,a}, our algorithm generates an Alloy model that corresponds to the formula
a>=bAND b=xy) AND a = x;.

If x; < x3, the formula cannot be satisfied. As a consequence, the algorithm will invoke function
EnableFactsAndSolve (Line 19, Fig. 7.10). Function EnableFactsAndSolve starts by disabling facts
that correspond to variable assignments (Lines 3 to 7, Fig. 7.11), and then solves the Alloy formula
that contains the remaining facts (Line 8, Fig. 7.11). In this case, the formula contains just constraint
Ci (i.e. a >= b); the formula can be solved. Then the algorithm proceeds by enabling the facts one
by one (Lines 12 to 27, Fig. 7.11).

After enabling the first fact, function EnableFactsAndSolve solves a >= b AND b = x;, which
results in a solution where a = y1, b = x» and y; >= x,. After enabling the second fact, the algorithm
tries to solve a >= b AND b = xo AND a = x|, which is not feasible. Function EnableFactsAndSolve

81



Chapter 7. Testing of New Data Requirements

thus keeps the previous solution and updates the Incomplete Model Instance (Line 24, Fig. 7.10). The
Incomplete Model Instance will thus contain the assignments a =y, b = x3, ¢ = x3 (with y; >= x»).
The algorithm then starts solving the second slice.

Solving the second slice

The formula built by the algorithm to solve the second slice is a <=c AND ¢ = x3 AND a =y;. If
y1 <= x3, the solution is immediately generated by the Alloy Analyzer in Line 13 (Fig. 7.10) and the
algorithm returns with a correct model instance.

However, we are interested in understanding if the algorithm can generate an incorrect solution,
which happens if the algorithm assigns to a a value lower than b. The values assigned to the model
instance are updated by function EnableFactsAndSolve, which is executed if y; > x3.

During the execution of function EnableFactsAndSolve, the fact a = y| cannot be disabled because
variable a was assigned when generating data for the first slice. The formula to be solved in Line 8
(Fig. 7.11) is thus a <= c¢ AND a = y;, which leads to a solution with the assignments a =y, ¢ = y»
with y; <= y,. This solution is returned and used to update the Incomplete Model Instance, which
will then satisfy all the constraints (this is trivial since when solving slice 2 the algorithm did not
replace any value belonging to slice I).

Case 2: x; >=xp
Solving the first slice

If x; >= x,, the field data already contains values that satisfy the formulaa >=bAND b=x; AND a=
x1, and the algorithm will proceed with the solving of the second slice without changing any variable
values. Please note that in this case the algorithm variable used, which is a list data structure, is pop-
ulated with all the variables appearing in the facts (see function SetAllFactVariablesAsUsed, Lines 31
to 38, in Fig. 7.10).

Generating data for the second slice

The formula built to solve the second slice is a <= c AND ¢ = x3 AND a = xj.

If x; <= x3, the solution is immediately generated by the Alloy Analyzer and the algorithm returns
with a correct model instance.

A more interesting case occurs when x; > x3. In this case, function EnableFactsAndSolve is
executed.

Function EnableFactsAndSolve disables all the facts and then re-enables them one by one. Af-
ter enabling the first fact, EnableFactsAndSolve solves the formula a <= c AND ¢ = x3 (Line 15,
Fig. 7.11), which leads to the assignments a = y3, ¢ = x3 with y3 <= x3. After enabling the second
fact, EnableFactsAndSolve tries to solve the formula a <= c¢ AND ¢ = x3 AND a = x;, which cannot
be satisfied because x; > x3. The algorithm thus keeps the previously generated solution and adds
variable a to the list modified (Line 19, Fig. 7.11) to indicate that the value of variable a, which was
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used to solve a previous slice (the variable belongs to the list used), had been modified. Variable a is
also added to the list defined (Line 21, Fig. 7.11).

Repetition of the main loop of IterativelySolve

After function EnableFactsAndSolve returns, SolveSlice updates the Incomplete Model Instance with
the generated values (Line 24, Fig. 7.10) and then checks if the list modified has a size greater than
zero (Line 26, Fig. 7.10), which is true in this case. SolveSlice then returns the updated Incomplete
Model Instance and the contents of the list modified.

Since toRegenerate # null is true (in Line 10 of Fig. 7.9), IterativelySolve re-executes the loop
in lines 6 to 14 in Fig. 7.9, which means that it again invokes the function SolveSlice. This time the
Incomplete Model Instance contains the following assignments a = y3, b = x2, ¢ = x3 (with y3 <= x3).

Solving the first slice, second iteration

To generate data for the first slice, the solver must satisfy the formulaa >=bAND b =x, AND a =yj3.
If y3 >= x,, the formula trivially evaluates to true and the algorithm proceeds by solving the next slice.

If y3 < xp, SolveSlice invokes function EnableFactsAndSolve. Variable a has already been set in
previous iterations, so EnableFactsAndSolve ends up by solving the formula a >= b AND a = ys,
which leads to the assignments a = y3, b = y4 with y3 >= y4.

Solving the second slice, second iteration

To solve the second slice, EnableFactsAndSolve builds the formula a <= c AND ¢ = x3 AND a = y3,
which trivially evaluates to true (y3 <= x3, according to the previous iteration of IterativelySolve).

The solution generated for the first slice might have lead to y3 >= x;, or to y3 < xo. If y3 >=x,
the assignments in the Incomplete Model Instance are thus a = y3, b = x», ¢ = x3, which satisfy the
constraints C; (with y3 >= x») and C, (with y3 <= x3). If y3 < x7, the assignments in the Incomplete
Model Instance are thus a = y3, b = y4, ¢ = x3, which also satisfy the constraints C; (with y3 >= yy)
and C, (with y3 <= x3).

General case

The example presented in this section shows that the algorithm is able to guarantee that all the con-
straints are satisfied even in the presence of variables contained in slices that are redefined while
solving subsequent slices.

The example has shown how IferativelySolve restarts the solving process from the first slice every
time EnableFactsAndSolve redefines a variable included in a slice solved by a previous iteration.
However, given that EnableFactsAndSolve is allowed to modify the value assigned to a variable only
once, we can guarantee the termination of the algorithm, while the execution of the Alloy Analyzer
gives guarantees about the correctness of the generated results.
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EnableFactsAndSolve behaves the same way in the presence of one or more variables. Thus,
the termination of the algorithm is guaranteed also in presence of multiple constraints working on
multiple shared variables among slices.

Therefore, our iterative, slice-based approach to generating data can only ever result in a solution
that is valid or it will generate no solution at all.

7.6 Empirical Evaluation

We performed an empirical evaluation to answer four research questions: the first two questions
address the scalability and performance of our approach, while the remaining two questions address
whether the data generated by the approach can, in fact, be used to effectively test new requirements.
The research questions are:

RQ1: Does the proposed approach scale to a practical extent?

RQ2: How does the proposed approach compare to a non-slicing approach?

RQ3: Does the proposed approach allow for the effective testing of new data requirements?
RQ4: How does the use of the proposed approach compare to a manual approach?

The following subsections overview the subject of the study and the experimental setup, and
describe, for each research question, the measurements performed and the achieved results.

7.6.1 Subject of the study and experimental setup

We implemented our approach as a Java prototype that: (a) relies upon the Eclipse UML2 Library
for the processing of data models (i.e. class diagrams), (b) implements wrapping code to integrate
UML2Alloy and the Alloy Analyzer (using the integrated SAT4]J solver [Le Berre and Parrain, 2010]),
and (c) implements IterativelySolve and all the supporting functionality.

As subject of our study, we considered SES-DAQ, the industrial data processing system intro-
duced in Chapter 2 that processes satellite input data. Recall from Section 7.1 that the data model
originally created to represent the Sentinel-1 satellite input data is updated to reflect the new data
requirements of the Sentinel-2 satellite input data. SES-DAQ is a non-trivial system written in Java
having 32,469 bytecode instructions (this is the successor version of the system used in the evalua-
tions of Chapters 4 to 6). The data model initially developed for the evaluation of Chapter 5 was used.
To capture the data structure, it consisted of 82 classes, 322 attributes, and 56 associations. To capture
the constraints of the SES-DAQ data model we defined 52 OCL constraints (28 input constraints, 24
input/output constraints).

As an input for our approach, we considered a large transmission file containing Sentinel-1 mis-
sion field data provided by SES. The size of the transmission file is 1 million CADUs (or about 2
GB), containing 1 million VCDUs belonging to four different virtual channels.

Because of the large number of runs performed for this experiment and considering that some
runs took up to 110 hours (each of which had to be repeated ten times), we used a large cluster of
computers to run these experiments [ Varrette et al., 2014]. To allow for a fair comparison between the
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different techniques and the various file sizes considered, the experimental runs were each executed
on computing nodes having the same characteristics. The experiments were run on a bullx B500
blade system [Atos, 2016] with each node having two processors (2 x Intel Xeon L5640 @ 2.26
GHz). Altogether, the experiments took over 143 days of run time to execute.

7.6.2 RQ1: Does the proposed approach scale to a practical extent?
7.6.2.1 Measurements and setup

RQ1 deals with the practical applicability of the proposed approach.

The generation of new data should be fast enough and scale effectively as file sizes increase. For
this reason, to respond to RQ1, we applied the proposed approach to automatically generate test input
files of various sizes. More specifically, we randomly sampled chunks of field data used by SES to
test Sentinel-1 satellite requirements, and used those data chunks to generate inputs that cover the
data requirements related to the processing of Sentinel-2 satellite data.

We automatically generated test inputs containing from 50 to 500 VCDUs, in steps of 50 VCDUs.
We chose these values because of our experience with SES-DAQ. Our previous research results, in
fact, show that test inputs with 50 VCDUs can be effectively used to perform conformance testing
(as reported in Chapter 5). Test inputs with 500 VCDUs, instead, have been effectively adopted for
robustness testing, to stress the behaviour of the software in the presence of inputs containing multiple
invalid data values (as reported in Chapter 6). In general, software engineers aim to generate test files
that are as realistic as possible in terms of size and content, as large sizes will stress the system more
and are more likely to reveal faults. For example, in the case of SES-DAQ, larger input data files are
more likely to be able to accommodate more diversity of patterns in the data and reveal faults related
to the handling of large amounts of data.

For each given VCDU value, we generated ten test inputs using our approach. We measured the
execution times for creating test inputs with the proposed approach; specifically, we analysed the
relationship between execution time and input size.

7.6.2.2 Results

Fig. 7.14 shows a plot with the average execution time (in hours) required to generate a test input
versus the number of VCDUs contained in each test input (see the curve named Solving time); box
plots are also shown to demonstrate that the variance across runs is low in most cases. Fig. 7.14 also
shows that the approach scales to a practical extent. In the case of test inputs containing 50 VCDUs,
the approach requires on average 35.6 minutes to generate a single test input. In the case of test
inputs containing 500 VCDUs, the approach requires on average 108.2 hours to generate a test input.
A test input containing 500 VCDUs is particularly complex to generate because of the presence of
multiple collections, each containing items with multiple references to other data items contained in
the test input (e.g. in the case of SES-DAQ, test inputs with 500 VCDUs contain on average 24,861
class instances and 28,827 association instances). Such big inputs cannot be handcrafted by software
engineers, which highlights the usefulness of our approach.

We consider the time required to generate big inputs to be acceptable in practice. The approach
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Figure 7.14. Average execution time required to generate test inputs and average number
of slices versus number of Virtual Channel Data Units (VCDUs) in each generated test
input. Boxplots are given for each data point. Minimum whisker value is Q1 - 1.5*IQR,
maximum whisker value is Q3 + 1.5*IQR; where IQR is the interquartile range.

provides the benefit of automated test generation (i.e. no human effort is required to generate the test
cases) and, furthermore, thanks to its model-based nature, does not negatively impact on the deadlines
of the software testing process even if test generation may require days to complete. Given that the
proposed approach requires only an updated data model and existing field data, the test input gen-
eration process can be started immediately after new data requirements are defined. Test generation
can be executed while the requirements are implemented; for this reason, the generated test inputs are
likely to be available before the system is ready to be tested.

The curve for solving time in Fig. 7.14 shows an exponential growth. This is mainly due to the
nature of the input data processed by SES-DAQ. To better understand this behaviour we also report
in Fig. 7.14 the average number of slices per test input size, and in Fig. 7.15, we show the average
number of calls to function SolveSlice and the average number of times function ExecuteAlloy (i.e.
the Alloy Analyzer) had been invoked during the generation of a test case. The plot in Fig. 7.14
shows that the number of slices grows linearly with the number of inputs. Recall that the iterative
process restarts the slice solving loop if EnableFactsAndSolve alters the value of a variable used in
a previous slice. Consequently, SolveSlice can be invoked multiple times—as was the case for our
experiments—against the same slices when generating a test input. A direct consequence of this is
that the average number of calls to function SolveSlice grows exponentially with the size of the inputs
(Fig. 7.15). This trend depends on the presence of several data items shared by multiple slices, and
constitutes an indirect indicator of the complexity of the input data. Although the average number of
calls to function SolveSlice grows exponentially, the average numbers of calls to the Alloy Analyzer
does not, which means that function SolveSlice often does not invoke the Alloy Analyzer; this is an
effect of the optimisation implemented in Lines 6 to 12 of SolveSlice (Fig. 7.10). Therefore, the most
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Figure 7.15. Average number of calls to functions SolveSlice and ExecuteAlloy versus
the number of Virtual Channel Data Units (VCDUs) in each generated test input. Box-
plots are given for each data point. Minimum whisker value is Q1 - 1.5¥*IQR, maximum
whisker value is Q3 + 1.5*IQR; where IQR is the interquartile range.

plausible explanation for the exponential growth in solving time (Fig. 7.14) is the exponential growth
in calls to SolveSlice (Fig. 7.15), which consumes computation time, even though it does not always
invoke the Alloy Analyzer.

7.6.3 RQ2: How does the proposed approach compare to a non-slicing
approach?

7.6.3.1 Measurements and setup

To be justified, the proposed approach should provide an advantage over a more straightforward
approach that does not use slicing. To respond to RQ2, we thus compared the performance of the
approach proposed in this chapter with an approach that generates test inputs from scratch without
relying upon a slicing algorithm.

We built a solution that uses a modified version of IferativelySolve that does not apply slicing.
We refer to this approach as NonSlicingSolving. NonSlicingSolving processes the entire Incomplete
Instance Model to derive an Alloy model that captures the shape of the input data but not the actual
values of attributes. All of the attribute values are thus generated from scratch through a single
execution of the Alloy Analyzer. To compare the scalability of the two approaches, we apply them
to generate test inputs containing different numbers of VCDUs and we measure the execution time
required to generate new test inputs.

NonSlicingSolving does not scale; in fact, it cannot generate test inputs containing 50 VCDUs
because of out of memory errors. In 10 separate executions performed to generate test inputs with
50 VCDUs, the Alloy Analyzer always crashed because of out of memory errors, even when 16 GB
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Figure 7.16. Comparison of the performance of IterativelySolve (that uses slicing) with
a non-slicing approach. Average execution time required to generate test inputs ver-
sus number of Virtual Channel Data Units (VCDUs) in each generated test input. Box-
plots are given for each data point. Minimum whisker value is Q1 - 1.5*IQR, maximum
whisker value is Q3 + 1.5*IQR; where IQR is the interquartile range.

of RAM had been dedicated to the Alloy Analyzer process. NonSlicingSolving is thus useless for
performing robustness testing; it is unable to generate sufficiently large augmented field data files.

To better compare the two approaches and study the effect of input size on execution time, we ran
several experiments to generate test inputs containing 1 to 40 VCDUs. We used both IterativelySolve
and NonSlicingSolving to generate 10 different test inputs for each possible input size containing
from 1 to 40 VCDUs. To perform the experiment, we randomly sampled chunks of Sentinel-1 field
data. Each sample contained the required number of VCDUs (i.e. 1 to 40 VCDUs), and we then
applied the two approaches to generate a test input to validate Sentinel-2 requirements. As a metric of
performance, we measured the solving time to generate a valid model instance for the two approaches.
For the NonSlicingSolving approach, we studied the performance using maximum heap sizes of both
8 and 16 GB. For the approach proposed in this chapter we used a maximum heap size of 8 GB3.

7.6.3.2 Results

Fig. 7.16 shows the obtained results for both NonSlicingSolving and IterativelySolve; the x-axis re-
ports the input size measured in number of VCDUs and the y-axis reports the execution time taken
in minutes. Fig. 7.16 shows that the NonSlicingSolving is more efficient for very small test inputs,
but it becomes increasingly inefficient with a growing number of VCDUs. [IterativelySolve always

3Recall that the approach proposed in this chapter always terminated, while NonSlicingSolving crashed because of
out of memory errors.
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performs better than NonSlicingSolving with test inputs containing more than 17 VCDUs. NonSlic-
ingSolving shows an exponential growth, this result is in line with research indicating that the Alloy
Analyzer shows an execution time that grows exponentially in the presence of relations that involve
thousands of elements [Leuschel et al., 2011]. When NonSlicingSolving is executed using an 8 GB
maximum heap size, out of memory failures begin to occur at 22 VCDUs, and no solution is possible
with 23 VCDUs or more. When executing NonSlicingSolving using a 16 GB maximum heap size, out
of memory failures begin to occur at 29 VCDUs; no solution is possible with 29 VCDUs or more.

7.6.4 RQ3: Does the proposed approach allow for the effective testing of new
data requirements?

7.6.4.1 Measurements and setup

RQ3 aims to evaluate the effectiveness of the approach—that is, the ability of the approach to generate
test inputs that are effective to test the new requirements of the software system.

One of the key features of SES-DAQ, our case study system, is the ability to automatically identify
and discard invalid inputs (e.g. the system should be able to automatically identify and discard data
units containing out-of-order packets); more importantly, the system is expected to be robust enough
in the presence of invalid inputs to continue functioning without failing. For this reason, robustness
testing (i.e. testing the capability of the system to deal with invalid data) plays a fundamental role in
evaluating whether the software meets its requirements.

To respond to RQ3, we thus applied the approach proposed in this chapter to automatically gen-
erate new data intended for use in robustness test cases targeting new data requirements. Since ro-
bustness testing deals with the generation of invalid test data, we must adapt the proposed approach
to automatically generate invalid test inputs for Sentinel-2 requirements. To this end, we integrated
the proposed technique with the approach presented in Chapter 5 that generates robustness test cases
by automatically mutating chunks of valid field data. We made use of our oracle approach (see
Section 3.3) to determine if the output generated by the system after processing an automatically
generated test input is wrong.

Fig. 7.17 shows how the technique presented in this chapter is integrated with our previously
developed data mutation and oracle approaches. Fig. 7.17 shows how the technique presented in this
chapter is integrated with the data mutation approach (presented in Chapter 5) and the oracle approach
(presented in Chapter 4).

In practice, since field data for the new requirements are not available, we relied upon the approach
proposed in this chapter to generate valid chunks of augmented field data that meet the new data
requirements.

Fig. 7.17 shows that the test inputs generated by the technique presented in this chapter are given
as input to the All Possible Targets data mutation technique presented in Section 5.5.2 that randomly
selects a mutation operator and a possible target for the mutation (i.e. an attribute or a class instance)
among the ones not already considered in previous iterations. The process is repeated until all the
mutation operators have been applied on one instance of every attribute (or class) on which they can
be applied. The generated test inputs are then executed against the software, and the OCL input/output
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Figure 7.17. Testing process followed to respond to research questions RQ3 and RQ4.

Table 7.1. Coverage of instructions/branches implementing Sentinel-2 specific data re-

quirements.
S2 Instructions Covered S2 Branches Covered
Test suite Avg ‘ Min ‘ Max Avg ‘ Min ‘ Max || #Tests
Auto S1+S2 74 (77.9%) | 74 (77.9%) | 74 (77.9%) || 9 (81.8%) | 9 (81.8%) | 9 (81.8%) 103.1F
Manual S1+S2 || 68 (71.6%) - — || 8(72.7%) - — | 32

T Average value. One of the 10 test suites generated contains an additional test case for an attribute
that only occurs very rarely in the field data.

Note: Auto, automatically generated test cases according to our methodology; Manual, test cases
written manually by SES; S1, Sentinel-1; S2, Sentinel-2.

constraints included in the data model are used to verify if the resulting outputs are correct.

To answer RQ3, we used test inputs generated with the process in Fig. 7.17. Since the latest ver-
sion of SES-DAQ implements both Sentinel-1 and Sentinel-2 data requirements, we created test suites
containing both test cases for the original Sentinel-1 data requirements (i.e. input data generated using
data mutation only) and test cases for the new Sentinel-2 data requirements (i.e. input data generated
with the process in Fig. 7.17). We generated ten test suites to assess the impact of the randomness of
the process. For example, different samples of field data are used; also, the same mutation operator
might target different locations within the sampled transmission data. Each generated test input is 50
VCDUs in size (i.e. the same size adopted in Chapter 5).

The ten test suites were then executed against the SES-DAQ system. We relied on code coverage
as a surrogate measure for fault detection effectiveness [Ammann and Offutt, 2008]. We used a
code coverage tool, EclIEmma [Mountainminds, 2006], to measure and evaluate code coverage in
terms of bytecode instructions and branches. An analysis by [Li et al., 2013] has determined that
the implementation of branch coverage in EclEmma, which measures the branches covered at the
bytecode level, provides the equivalent of clause coverage (i.e. it checks that each clause of a predicate
evaluates to both true and false, and, for switch statements, each branch is considered to end with a
break statement). We measured the number of instructions and branches implementing Sentinel-2
data requirements that were covered by the test inputs generated with the proposed approach. Branch
coverage captures the effectiveness of the test suite to spot failures that depend on specific values for
certain clauses.
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7.6.4.2 Results

The top section of Table 7.1 shows the results of the different test suites considered for our evaluation.
Column Test suite lists the name of the test suites, Auto S1+S2 is the test suite automatically generated
to cover both Sentinel-1 and Sentinel-2 data requirements. Column S2 Instructions Covered reports
the average, minimum and maximum number of bytecode instructions implementing Sentinel-2 data
requirements that have been covered by the generated test suites. Column S2 Branches Covered
reports the average, minimum and maximum number of Sentinel-2 specific branches covered by the
generated test suites.

The new data requirements related to the processing of Sentinel-2 data have been implemented
in 11 branches, for a total of 95 bytecode instructions. The results show that, for each automat-
ically generated test suite, the proposed approach covers 9 (81.8%) of the branches related to the
new data requirements (see column S2 Branches Covered). The proposed approach does not cover
two branches because these branches have been written to handle a particular error that cannot be
introduced through the data mutation operators of the approach presented in Chapter 5. However,
the proposed approach proved to be able to cover most, 77.9%, of the instructions implementing the
new data requirements in a fully automated manner. Uncovered instructions correspond to the two
uncovered branches mentioned above.

7.6.5 RQ4: How does the use of the proposed approach compare to a manual
approach?

7.6.5.1 Measurements and setup

In general, the costs of software testing depend on the time required to design test cases and prepare
the test suites, and the time required to execute the test cases. In our approach, the former corresponds
to the cost of modelling while, for manual testing, this is the cost of defining and writing test cases.
As for execution time, in many situations it is sufficiently small to have no practical impact on the test
process and is then of negligible importance.

Another important aspect is that, in our context, manual testing was performed by highly expe-
rienced engineers, with domain expertise. In a context where change is frequent, versions are many,
and test engineer turnover is high, this expertise may not always be available. In such situations,
automation brings a significant advantage as test cases can be automatically regenerated. However,
changes must be made to the model and the assumption is that such changes are less expensive than
reviewing and possibly changing every test case in a test suite.

In the case of SES, for example, software engineers have to handcraft test inputs (i.e. binary files)
containing proper values so that they resemble a valid satellite transmission. We report here some
data that shows that manually written test inputs are expensive to produce. Although each manually
written test input contains only 6 VCDUs, it has a complex structure that is labour intensive to produce
manually. On average, the manually written test inputs for SES-DAQ contain the equivalent of 130
class instances of the data model, and 261 attribute values. The complexity of the inputs does not
depend only on the structure of the file, but also on the constraints that a test input must satisfy to be
a valid input for SES-DAQ. On average, each test input contain 36 attribute values that must satisfy at
least one constraint, for a total of 1152 attribute values that are constrained within the whole test suite.
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This data clearly shows that manually writing and maintaining test inputs is not straightforward.

On the contrary, data modelling is a software engineering practice that can play a key role when
designing the software, which means that the model required by the proposed approach may coincide
with the models already produced by software engineers without any additional cost. Furthermore, in
the case of engineering companies like SES, data modelling has additional benefits. SES engineers,
for example, find data modelling particularly useful because it allows for the structure of data and
data constraints to be characterised with a high level notation that facilitates discussions with the
management of the company (usually engineers who can read class diagrams and constraints written
in OCL).

Furthermore, when comparing two testing approaches, it is particularly important to take into
account the fault detection effectiveness of the test cases. As for RQ3, we use instruction and branch
coverage as a surrogate measure for fault detection effectiveness.

To answer RQ4, for each of the automatically generated test suites (the same as those used for the
evaluation of RQ3) and the test suite written manually by SES software engineers with a high degree
of domain expertise: we measured test suite size and test execution time; furthermore, to measure test
suite effectiveness, we measured the branch and instructions coverage. We specifically considered
the coverage of branches and instructions implementing the functionality that deals with new data
requirements. The manually written test suite for SES-DAQ tests both Sentinel-1 and Sentinel-2 data
requirements; there are 32 test cases in the test suite, three of which were specifically written to test
Sentinel-2 data requirements.

We compared the size of the manually written SES test suite with the number of test cases in the
automatically generated test suites. We also compared the average time required to execute the test
suites. These measurements are useful because if execution time does not introduce important delays
in the testing process, which is common for this type of system, it would suggest that the test suite
size is not practically relevant in our context. Finally, we compared the coverage of the manual test
suite for SES-DAQ with the ten test suites automatically generated to respond to RQ3.

7.6.5.2 Results

The bottom section of Table 7.1 shows the coverage results for the test suite written manually by SES
software engineers (see line Manual S1+S2). Column # Tests shows the number of test cases of the
two test suites.

When using the approach proposed in this chapter, the number of test cases (103.1, on average)
is larger than in manual testing (32), and is determined by the testing strategy. In our context, the
complete automatically generated test suite can be run in under 31 minutes, and, therefore, executing
the test suite can easily be accommodated on a daily (or even more frequent) basis. Test execution
is therefore a negligible cost factor and we will focus on test design. This is likely to be the case for
many data processing systems because they are built to process megabytes of data in few seconds.

Executing this test suite can easily be accommodated on a daily (or even more frequent) basis.
Therefore, the additional execution time required by the automatically generated test suite has little
practical impact.
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Table 7.2. Coverage of instructions/branches of SES-DAQ.

Bytecode Coverage Branch Coverage
Test suite Avg / Min / Max Avg / Min / Max
Auto S1+S2 || 23,432.1 (72.2%) / 23,273 (71.7%) / 23,529 (72.5%) || 978.7 (51.3%) / 957 (50.2%) / 987 (51.8%)
Manual S1+S2 23,046 (71.0%) 950 (49.8%)

Note: In total, SES-DAQ has 32,469 bytecode instructions and 1,907 branches. Auto, automatically generated test
cases according to our methodology; Manual, test cases written manually by SES; S1, Sentinel-1; S2, Sentinel-2.

What matters most for our evaluation is thus whether the automated approach proposed in this
chapter covers as many or more Sentinel-2 specific instructions and branches than the manual test
cases, written by experts. The results show that the Manual S1+S2 test suite covers 8 (72.7%) of the
branches related to the new data requirements and 68 (71.6%) instructions, while the automated ap-
proach covers 9 (81.8%) branches and 74 (77.9%) instructions. Automated testing therefore performs
slightly better than manual testing in terms of coverage. Although small, the difference in the number
of instructions/branches covered is of practical importance for increasing confidence in the reliability
of the system—uncovered branches may trigger critical faults (e.g. runtime exceptions), while the
software is running in the field.

As an additional note, we report in Table 7.2 the overall number of instructions (see column Byte-
code Coverage) and branches (see column Branch Coverage) covered by the automated and man-
ual test suites. Results show that the proposed approach covers more bytecode instructions overall;
comparing Auto S1+S2 with Manual S1+S2 we observe that, on average, 386.1 additional bytecode
instructions are executed in the case of the test suites generated with the proposed approach. The test
suites generated according to our technique take approximately 21 minutes more to execute compared
with manual testing; in practice, 21 minutes are negligible.

To conclude, our model-based, automated approach fares slightly better than manual testing, as
performed by experts, in terms of instruction and branch coverage corresponding to new requirements.
It also achieves better coverage overall, when considering all requirements. In terms of cost, though
this is very context dependent, in a situation like the one at SES, where data processing systems incur
frequent changes and new versions must be produced, relying on the availability of experts is not
always possible or easy. Our model-based approach is therefore a valuable alternative.

7.6.6 Threats to validity
Internal threats

To limit the threats to the internal validity of the empirical evaluation—that is, a faulty implementation
of our toolset that may lead to erroneous results—we carefully inspected a subset of the generated
test inputs to look for the presence of errors: data values of the original field data not preserved in the
updated model instance, a shape of the updated model instance that did not coincide with the shape
of the original model instance, or values that did not satisfy data constraints. To further validate all
the generated test inputs, we performed two additional validation activities: (1) we relied upon the
Eclipse UMLZ2 library [Eclipse Foundation, 2016] to automatically verify that all the generated test
inputs satisfied the OCL constraints of the SES-DAQ data model, and (2) we checked that SES-DAQ
error handling code was not covered when SES-DAQ was executed to process the valid test inputs
generated with the proposed approach.
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External threats

Threats to the external validity regard the generalisability of results. The algorithm IferativelySolve
may show different performance when executed to generate test inputs for other case studies. Factors
that affect the performance of IterativelySolve are the size of the test inputs to generate and the charac-
teristics of the data model (i.e. number of classes, attributes, associations, and OCL constraints). We
have run experiments considering an industrial and complex case study system as benchmark for our
evaluation. We have shown that the data model is complex: it contains 82 classes, 322 attributes, 56
associations, and 52 OCL constraints. Working with a nontrivial system that is already in use, gives
some confidence that the scalability results can generalise to many of the industrial data processing
systems on the market. Furthermore, we studied the effect of input size on the algorithm performance,
dealing with test inputs that correspond to model instances containing up to 24,861 class instances and
28,827 association instances, which gave us confidence about the general scalability of the algorithm
with respect to test input size.

Results on the effectiveness of the proposed approach may not generalise as well. We have shown
that the technique allows for the generation of test inputs such that most of the code implementing new
data requirements is executed in the presence of a nontrivial data model. In systems where repeated
handcrafting of test inputs is significantly less expensive than modelling, the benefits provided by our
technique might be less evident, even if the generated test cases are more effective in covering new
data requirements. However, in the general case of complex data processing systems, we believe that
the assumption of modelling costs being less expensive than manual testing holds.

7.7 Conclusion

In this chapter, we presented an approach to automatically generate test inputs for testing new data
requirements of data processing systems. More specifically, we deal with changes that regard the
structure of the input data accepted by a data processing system, or the constraints that regulate the
content of the different data fields.

When test inputs coincide with complex data structures containing thousands of data items related
with each other by multiple constraints, which is often the case when dealing with data processing
systems, traditional approaches based on constraint solving cannot be applied because of scalability
issues.

The proposed technique makes use of existing field data, a data model describing the original
structure and content of the input data, and an updated data model reflecting the modifications to the
structure and the content of the input data. The data model is a class diagram capturing the structure
of the inputs, with constraints among classes and attributes. The proposed approach overcomes the
limitations of traditional approaches thanks to the integration of model slicing with constraint solving.

The proposed approach generates test inputs by augmenting and adapting existing field data that
matches the original data requirements. The reuse of existing field data reduces the amount of data
values that need to be generated by a constraint solver. In particular, the approach uses constraint
solving to generate only the data items introduced by the new data requirements, or to regenerate data
items that break new or modified data constraints. As the underlying constraint solver, we rely upon
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the Alloy Analyzer. The proposed technique also integrates a new slicing algorithm that allows for the
incremental invoking of the constraint solver to generate portions of the new test input. The algorithm
guarantees the consistency of the generated test input, which results from the composition of the data
belonging to the different slices.

We validated the scalability and effectiveness of the proposed approach using an industrial case
study, a satellite data acquisition system working with the European Space Agency Sentinel series of
satellites [ESA, 2016]. In our study, we considered a version of the system that had been modified to
accept new packet types associated with new missions. The empirical study shows that the proposed
approach scales in the presence of complex data structures. In particular, the study shows that the in-
put generation algorithm based on model slicing presented in this chapter can produce, in a reasonable
amount of time, test input data that is over ten times larger in size than the data that can be generated
with constraint solving only. To evaluate the effectiveness of the proposed approach, we generated
test inputs to stress software robustness and we measured the code covered when executing the gen-
erated test inputs against the software. Robustness testing is critical for testing the case study system
considered. The results show that the generated test inputs cover most of the source code instructions
of the updated software written to implement new data requirements. The generated test inputs also
achieve more code coverage than the test cases implemented by experienced software engineers, thus
highlighting the benefits of the proposed approach.
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Chapter 8
Related Work

This chapter provides an overview of existing work related to the approaches researched and devel-
oped for this dissertation.

We initially overview existing approaches and their suitability to solving the challenges of our
data processing system context in the following complementary areas: test models (Section 8.1) and
test oracle automation (Section 8.2). We also review existing work that addresses modelling DAQ
systems (Section 8.3). There is a large body of work dedicated to the automation of software test
case generation; a recent survey by Anand et al. provides an overview [Anand et al., 2013]. We
will focus on the related work that is most relevant to the data generation approaches presented in this
dissertation. Related work dealing with the automatic generation of faulty input data contained within
complex data structures focuses mostly on model-based (Section 8.4) and mutation-based testing
(Section 8.5) approaches. A few other approaches are also discussed (Section 8.6). Search-based
software testing approaches (discussed in Section 8.7) dealing with the automatic generation of faulty
input data for system level testing are still in their infancy. Section 8.8 provides an overview of
approaches as they relate to the testing of new data requirements. Finally, Section 8.9 examines other
related research in the area of model-based slicing.

8.1 Test models

MBT has been studied extensively and applied to several fields using different techniques and ap-
proaches [Dias Neto et al., 2007, Mussa et al., 2009]. The number of publications that discuss MBT
is very large making it hard to review all of them adequately in this dissertation. Therefore, we focus
on the taxonomy defined by Utting et al. [Utting et al., 2012].

Utting et al. [Utting et al., 2012] defined a six-dimension taxonomy of MBT in terms of the test
model, test generation technique and test execution method. The dimensions related to the test model
are: the scope of the model (e.g. input-only, input/output), the characteristics of the model (e.g.
timed, deterministic) and the modelling paradigm (e.g. pre/post, functional, data-flow). The dimen-
sions related to the test generation technique are the test selection criteria (e.g. data or requirements
coverage) and the used technology (e.g. model checking or constraint solving). Finally, the test exe-
cution can be either online, where tests are executed as they are generated and the output is monitored
or offline, where tests are generated first and then executed on the system.
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The main dimension in the taxonomy is the scope of modelling; whether the model specifies only
the inputs, which are considered the environment of the SUT or also specifies the expected input/out-
put behaviour. Utting et al. state that modelling the environment is not sufficient to produce strong
oracles. Input/output models can provide better automated test oracles by capturing the environment
as well as part of the system’s intended behaviour. These models are thus able to predict the expected
outputs for each input and check it against the output produced by the SUT. Test oracle automation,
which is essential in any MBT approach, will be addressed in detail in the context of DAQ systems in
Section 8.2.

According to Utting et al., current MBT techniques focus on modelling the behaviour of the system
using various modelling paradigms: state-based (or pre/post) [Jaffuel and Legeard, 2006], transition-
based [Tretmans, 2008], history-based [Veanes et al., 2008], functional [Gaudel and Le Gall, 2008],
operational [Moonen et al., 1997], stochastic [Walton and Poore, 2000] or data-flow notations [Marre
and Blanc, 2005]. None of the existing modelling techniques was adequate for testing DAQs, and
data processing systems in general, because they did not provide support for the case where the sys-
tem complexity lies in the input structure and constraints—and the input data has complex mappings
to highly structured output data. To address the challenges in our context, we needed a model that
not only specified the inputs but also specifies the output and expected input/output behaviour. How-
ever, this expected behaviour in DAQ systems is expressed in the form of mappings between input
and output elements, while the system itself is a black-box. Therefore, we cannot apply any of the
current modelling paradigms, such as state machines or data-flow models. Due to these specific char-
acteristics of DAQ systems and the complexity of the structure of the input and output, we adapted
UML/OCL models to formalise the DAQ system input, configuration and output data and the map-
pings between them.

Dalal et al. [Dalal et al., 1999] developed a data model to generate tests for unit testing. Their
data models specify valid and invalid values for input fields and capture the relationship between
these fields through a set of constraints. The goal of creating these models is automated combina-
torial testing; in their approach, test oracles are created manually for each generated test case. In
contrast, we created a modelling methodology (using class diagrams and constraints) that automates
test validation, oracles, and test input generation for systems with complex inputs and constraints.

Our modelling approach can be partially classified according to Utting et al.’s taxonomy as fol-
lows: The test models can be categorised as input/output and deterministic.

8.2 Test Oracle Automation

Xie et Memon [Xie and Memon, 2007] define a test oracle as a combination of oracle information
(the expected output) and the oracle procedure (a process that compares the oracle information to
the actual system output). In a traditionally manually written test, typically the oracle procedure
expects a given concrete output (e.g. for a given input x, a given output y is expected). Using more
advanced techniques, a given expected output might reflect a mapping between system attributes. In
our case, we make use of calls to OCL invariants as our oracle procedure that makes use of input
class attribute assignments mapped (using implications) to output class attribute assignments (i.e. the
oracle information in our case) to validate the system output.
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Automating the test oracle is important for reducing the testing cost. Shahamiri et al. [Shahamiri
et al., 2009] in their comparative study identify two main challenges in automating the oracle: defin-
ing the expected output and linking each expected output to the relevant inputs. They also give an
overview of six existing techniques in research for test oracle automation. Some of these techniques
rely on the output from previous versions of the system to automate the test oracle for a new ver-
sion [Last et al., 2004, Manolache and Kourie, 2001, Vanmali et al., 2002]. Three techniques auto-
mate the oracle without relying on previous versions: Input/output analysis, state-based test oracles,
and decision tables.

Schroeder et al. [Schroeder et al., 2002] automate an oracle by observing and analysing a small
set of inputs and their outputs and then generalising the input/output relationships to the whole test
suite. Although this approach can be useful in automating the oracle and reducing the oracle cost, if
the system is faulty, which is expected since the goal is to test the system, the derived observations
about the output will also be incorrect.

Memon et al. [Memon et al., 2000, Xie and Memon, 2007] used state invariants to automate a
test oracle for Graphical User Interfaces (GUIs). They formalised the GUI by a set of states, where
each state has a possible set of events with preconditions and actions that lead to other states. Actions
are computed from test cases and define the expected state from the GUI’s model, which is then
automatically compared to the actual state. Similarly, Lamancha et al. [Lamancha et al., 2013] used
UML state machines to automate the test oracle. Mouchawrab et al. [Mouchawrab et al., 2011] found
that increasing the precision of oracles and not relying only on state invariants greatly increased
the effectiveness in fault detection in state-based approaches. Although state based approaches can be
effective in automating the oracle, they can not be applied in our context because the functionalities we
want to test in DAQ systems are not stateful and cannot, therefore, be modelled using state machines.

Di Lucca et al. [Di Lucca et al., 2002] automate the oracle by combining UML class diagrams that
define the structural representation of the system, use cases that describe the behaviour of the system
and decision tables with constraints on input variables and expected results. Vishal et al. [Vishal
et al., 2012] also used decision tables to model the input and the constraints between the input data
and their outputs. Decision tables could theoretically be used to automate the oracle of DAQ systems.
However, the complexity of the input and output structures and the mappings between them would
lead to very large decision tables which are hard to create, inspect and maintain.

8.3 Modelling Data Acquisition Systems

Several previous studies addressed modelling DAQ systems. However, these studies mainly focused
on simulation and design. Baccigalupi [Baccigalupi et al., 1993] created an error model to simulate
transmission errors, such as input/output delays and noise. Plesnyaev and Pazderin [Plesnyaev and
Pazderin, 2003] proposed a mathematical model to improve the accuracy of calculating energy loss
in DAQ systems. Booth et al. [Booth et al., 1992] developed a simulation model of DAQ systems
to help developers evaluate different architectures. Oquendo [Oquendo, 2004] formalised and refined
complex software systems, including DAQ systems, to help design a concrete architecture.

The applications of these approaches are concerned with simulation or design of the system and
do not address automated testing. Validation of test cases and automated oracles are, therefore, not
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addressed by these approaches.

8.4 Model-Based Testing

Most model-based testing techniques target the generation of valid data structures to be used in unit
testing [Boyapati et al., 2002, Senni and Fioravanti, 2012, Khurshid and Marinov, 2004] that are
typically much simpler than the input files needed for testing data processing systems. TestEra, for
example, generates complex input data from Alloy specifications that describe the data structure and
the relations between the fields of the structure [Khurshid and Marinov, 2004]. The technique pre-
sented in this dissertation instead targets the generation of large, complex, and invalid system input
data for system testing.

The generation of invalid test inputs is mainly addressed by model-based techniques that focus
on security testing. These approaches, known as threat modelling techniques, rely on models used to
capture the characteristics of typical malicious (and invalid) inputs that should be properly handled by
the SUT. Models like attack trees [Morais et al., 2011], UML state machines [Hussein and Zulkernine,
2006], and transition nets [Xu et al., 2012], are used to generate sequences of illegal actions, which
are not relevant for testing data processing systems where the complexity of the testing process lies in
the definition of the input data and mappings to complex, structured outputs. The main limitation of
these approaches is that they cannot generate test inputs from scratch to test new data requirements.

8.5 Mutation-Based Testing

Specification-based mutation testing is a mutation testing approach that uses mutation operators to
seed faults into specification models (e.g. a state machine) to generate specification mutants [Jia and
Harman, 2011]. Approaches that use specification mutants to generate test inputs often deal with in-
puts that are less complex than those processed by data processing systems. Approaches that generate
mutated statecharts can only generate inputs that are sequences of system operations [Schlick et al.,
2011], while approaches that mutate class diagrams have only been used to test model transformation
systems in which the state diagram itself is the input [Mottu et al., 2006]. Mutated XML Schema have
been used to generate invalid XML data structures [Xu et al., 2005].

Data mutation approaches use mutation operators to generate new test inputs from existing ones
(i.e. by altering valid field data) [Shan and Zhu, 2009, Bertolino et al., 2014, De Jonge and Visser,
2012]. The main limitation of these approaches is that they rely upon mutation operators that are
specific to the inputs of the SUT and cannot be reused across different projects; in addition, they
cannot generate test inputs from scratch to test new data requirements. The approach presented in
this dissertation relies instead upon generic mutation operators that are tailored to the specific fault
model of the SUT with the adoption of a data model annotated with UML stereotypes and OCL
queries. This has the advantage of providing a more generic solution while enabling its tailoring to a
domain-specific fault model.

Shan et al., report about the effectiveness of the application of ad hoc mutation operators on the
inputs of existing test cases to identify faults [Shan and Zhu, 2009]. Existing test cases are executed
on the mutated inputs; test cases that do not fail are manually inspected by the software developers
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because they may indicate the presence of a fault. The adoption of ad hoc mutation operators limits
the applicability of the approach to specific projects; furthermore, software engineers must manually
verify test results by manually inspecting the error messages of the SUT. With our approach, the test
oracle is automatically generated as part of the modelling effort, albeit at a greater modelling cost.

De Jonge et al. test syntax error recovery systems by means of mutation operators for Abstract
Syntax Trees (ASTs) [De Jonge and Visser, 2012]. AST operators can be applied to generate faulty
inputs from files that can be parsed according to an abstract syntax tree. Although the use of ASTs
gives a wider applicability to the approach, it lacks methods for controlling the generation of trivial
erroneous inputs, which may affect the effectiveness of such an approach in the presence of nontrivial
data structures. Furthermore, the approach from de Jonge et al. includes a trivial oracle strategy that
works only for data correction systems; in fact, they look for failures by comparing the output of the
SUT with the unmutated AST. The technique presented in this dissertation instead can be applied to
a wider range of software systems thanks to the adoption of OCL constraints as oracles.

Different from the other approaches, Bertolino et al. do not use fault models to generate new
faulty inputs, but use fault-models to alter the configuration files that specify which inputs an autho-
risation system can accept [Bertolino et al., 2014]. The fault model in this case is defined as a set of
simple mutation operators specific for the grammar of the configuration files, and is used to generate
new configurations that should reject inputs accepted by the original configuration. The technique
presented in this dissertation does not target configuration files, but inputs. Studying the effect of
errors introduced in configuration files is part of our future work.

Like our approach presented in Chapter 5, the approaches based on data mutation focus on a single
objective (e.g. covering all the possible data faults of a fault model) but do not allow for covering the
multiple objectives needed to perform effective robustness testing. In Section 6.4 of Chapter 6, we
presented the following four search objectives for obtaining effective robustness tests: (1) including
input data that covers all the classes of our data-model, (2) including data faults such that all the
possible faults of our fault model have been covered, (3) covering all the clauses of the input/output
constraints, and (4) maximising code coverage. The answer to RQ! in Section 6.7 shows that the
search-based approach presented in this dissertation performs better than approaches that focus on
the coverage of a single objective.

8.6 Other Test Generation Approaches

Other existing approaches use CFGs to generate both valid and invalid input data structures, but
the existing approaches do not model the complex relationships among data fields [Hoffman et al.,
2009, Zelenov and Zelenova, 2006]. An example of a relationship that cannot be modelled with CFGs
is the fact that, in the SES-DAQ data, the first header pointer of a VCDU should be an offset to the
first packet that starts in the same VCDU.

Fuzz testing approaches rely upon random inputs [Miller et al., 1990, Miller et al., 1995, Forrester
and Miller, 2000] or random permutations of valid inputs generated by means of grammar-based
specifications [Xiao et al., 2003, Godefroid et al., 2008]. Similarly to grammar-based approaches,
fuzz testing cannot deal with inputs with a complex data structure and constraints leading to many
trivially invalid inputs—unlike the ones generated by the approach presented in this dissertation.
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8.7 Search-Based Software Testing

Most of the Search-Based Software Testing (SBST) techniques have primarily focused on unit test-
ing [McMinn, 2004] or the testing of non-functional properties [Afzal et al., 2009]. Work on search-
based robustness testing performed at the system level focuses either on the identification of per-
formance issues [Briand et al., 2006], which are out of the scope of this dissertation, or functional
faults caused by complex sequences of test inputs [Ali et al., 2012, Fu and Kone, 2014], or by input
signals [Baresel et al., 2003, Wilmes and Windisch, 2010].

Ali et al. [Ali et al., 2012] exploit the information encoded into UML state machines and aspect-
oriented modelling to generate test cases that stress the robustness of a software system by generating
complex invocations of function calls. Similarly, Fu and Kone [Fu and Kone, 2014] use finite state
machines to generate robustness test cases for protocol testing. In contrast with these techniques, we
focus on systems for which it is important to generate complex data structures; thus, instead of using
behavioural models such as state machines, we rely upon class diagrams and constraints.

In the context of embedded systems, metaheuristic search is used for the generation of input sig-
nals satisfying some given properties such as requirements on signal shapes [Baresel et al., 2003] or
temporal constraints [Wilmes and Windisch, 2010]. Our work is complementary to these approaches
since it addresses the problem of generating complex data structures by innovatively combining meta-
heuristic search and data mutation.

8.8 Test Approaches for Testing New Data Requirements

Most of the existing approaches that deal with the problem of testing evolving software are based
on static program analysis techniques that aim to achieve high source code coverage [Cadar and Pa-
likareva, 2014, Santelices et al., 2008, Xu et al., 2013]. These approaches do not deal with the gener-
ation of complex structured inputs; furthermore, although effective in achieving high code coverage,
these approaches cannot guarantee that the generated tests cover all the system requirements.

Existing work on the generation of test cases in the presence of evolving models is related to the
generation of test input sequences from evolving state machines [El-Fakih et al., 2004, Pap et al.,
2007, Rapos and Dingel, 2012] and does not deal with the generation of complex data structures.

Most of the existing approaches for the generation of test inputs with complex data structures
deal with the problem of generating test inputs from scratch. Bounded exhaustive testing approaches
generate all the possible test inputs that match the structure of a given data model up to a given bound,
and work with models specified in different formats: Java classes [Boyapati et al., 2002], constraint
logic [Senni and Fioravanti, 2012], Alloy [Khurshid and Marinov, 2004], or Z specifications [Horcher,
1995]. These techniques have been proven to be effective for testing software systems that process
classical data structures like trees, but they may not scale once adopted to generate more complex
structures like the ones required to test SES-DAQ.

A more efficient black-box test generation technique is UDITA [Gligoric et al., 2010]. UDITA
requires that software engineers provide a set of generator methods, to build instances of the data
structure, and predicates, to validate the generated instances. UDITA relies upon the Java Path Finder
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model-checker [Visser et al., 2004] to generate all the instances that satisfy the given predicates. The
implementation of generator methods can be quite expensive for complex data models; furthermore,
UDITA cannot be adopted to reuse existing test inputs to test new data requirements.

8.9 Model-Based Slicing Approaches

In this dissertation, we introduced an algorithm that relies upon model slicing to improve the perfor-
mance of constraints solving. Other approaches that rely upon model slicing to improve the perfor-
mance of constraint solvers exists, but they focus mostly on the slicing of static models for satisfia-
bility purposes (i.e. to verify whether it is possible to create instances of the class diagram without
violating any constraint [Shaikh et al., 2010, Balaban and Maraee, 2013]). The generated slices typ-
ically contain a subset of the elements belonging to the static models. The approach proposed in
this dissertation instead performs slicing on an instance of a class diagram; furthermore, the pro-
posed approach does not simply verify satisfiability but also supports the incremental augmentation
of incomplete model instances.

Kato [Uzuncaova and Khurshid, 2008] is a tool that incrementally builds a solution for an Alloy
model by grouping the predicates in two formulas (i.e. slices). A solution for the Alloy model is
generated by solving the base slice first, and then by conjoining the solution with the predicates
in the other slice. This approach has also been used to speed up the generation of test cases for
testing product lines [Uzuncaova et al., 2010]. Kato deals with performance issues that depend on
the presence of several constraints in a same Alloy model but it does not deal with the scalability
problems related to the generation of large collections of elements. The approach proposed in this
dissertation is thus complementary to Kato.
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Chapter 9

Tool Suite Description

A tool suite was developed to automate the approaches that we propose in this dissertation.

The models and constraints developed for this project (as described in Chapter 3) using RSA are
exported in the UML 2.2 (.uml) file format; UML 2.2 files are in the XML format and are supported
by various UML tools.

We developed our tools in Java using the Eclipse Modelling Tools package. The implementations
described below make use of the Eclipse Modelling Framework (EMF) and the following Eclipse
Modelling Development Tools: UML2 and OCL [Eclipse Foundation, 2016]. The mentioned Eclipse
development tools are used to load the UML 2.2 files and support our development efforts.

Section 9.1 describes the initial implementation of the Input Validation and Oracle tool used for
the empirical study of Chapter 4. Sections 9.2 and 9.3 describe the core tools that were used for the
rest of the empirical studies of this dissertation.

Additional tooling related to search-based test generation (Chapter 6) and test data generation by
constraints solving (Chapter 7) was implemented for the research of this dissertation.

9.1 Initial Input Validation and Oracle Tool

Fig. 9.1 illustrates the architecture of the initial tool that was created to implement the test validation
and oracle approach. Unlike the tool (which replaced this one) presented in Section 9.2, this initial
version of the tool used hard-coded data parsers. As hard-coded parsers require frequent updates due
to frequently evolving data requirements changes, parsers that make use of modelling annotations (i.e.
UML stereotypes) to drive model instantiation were later developed.

The tool takes as an input the model and constraints of the system together with the input, config-
uration and output files of the test case that needs to be validated. The tool then processes these inputs
and generates logs that capture the results. The model and constraints can be in any format that can
be imported into the EMF environment as an Ecore model.

At the end of the process, for each system instantiation (i.e. test case evaluation), Result Logs are
generated to record each failing constraint and the execution time for each execution of the tool (i.e.
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the times for model instantiation, test validation and oracle are recorded).

For this implementation, IBM RSA was used to create the UML class diagrams and the OCL
constraints. The model and constraints were exported from RSA in the UML 2.2 (.uml) file format.
These UML 2.2 files could then be imported into the EMF environment as an Ecore model. The Java
Code Generator is a component in the EMF that takes as input the Ecore model and produces Java
Classes that correspond to the model. The Java Classes directly support model instantiation and the

OCL calls.

9.2 Input Validation and Oracle

Figure 9.2 shows the tool developed to validate system input data and provide a test oracle. The Input
Data Validator only requires the System Configuration and Transmission Data as input. The Oracle
additionally requires the System Output Logs. The following subsections describe the functionalities

developed to implement the input validation and oracle tool.
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9.2.1 Data loading

The data loading activity consists of reading concrete system data (i.e. input, output, and configuration
data) and loading it into memory in the form of a Model Instance— that is, a collection of object
instances conforming with the Data Model produced by the software engineers using our modelling
methodology.

Although the specific format of the system data depends on the SUT, we believe that generic
parsers can be used to load data into memory, thus freeing software engineers from the burden of
writing a parser (or multiple parsers, given that different file types might be involved) for loading the
data. For instance, XStream [XStream, 2016] is a well-known framework that loads XML data and
provides an object oriented Application Programming Interface (API) to access and modify the data.
In case the SUT uses a nonstandard data format, software engineers can take advantage of the data
loading APIs of the SUT itself to ease the implementation of ad hoc parsers.

For this project, we developed generic file parsers that can automatically parse and instantiate
the data associated with SES-DAQ. The «Filelnfo» stereotype (described in Section 3.4) is used to
indicate the type of file to be parsed (and hence, the particular generic file parser to use). For each
of the system files, the data loader is guided by its associated class diagram file representation, an-
notated with parser-specific stereotypes. The following file types are supported for the SES-DAQ
implementation: satellite bytestream files, XML files, and text files.

For example, to parse SES-DAQ bytestream data, the data loader is driven by the stereotypes in-
troduced in Section 3.4. Note that in the case of our satellite bytestream parser, System Configuration
information is required as it is used by the parser to provide information (as explained in Section 3.4,
using OCL queries, specified by the «GeneralisedAttribute» and « ConditionalAttribute» stereotypes)
while performing the data model instantiation related to the input transmission data.

9.2.2 Input validation

The input validation step consists of checking if the input for a given system is correct.

Given the instantiated input data, the input OCL constraints are verified by the tool. These con-
straints specify content rules that a valid system input must comply to. Detected failures are reported
to the software engineer in the Result Logs for further inspection.

9.2.3 Oracle validation

The oracle validation step consists of checking if the output generated for a given system input is
correct.

Given the instantiated output and input data, the tool checks if the input/output OCL constraints
are satisfied. These constraints specify the expected output in the case of an invalid input. A violated
constraint indicates that an erroneous input is not properly managed by the SUT, and thus corresponds
to a test failure. Such failures are reported to the software engineer in the Result Logs for further
inspection.
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Figure 9.3. Tool architecture for the automation of test input generation.

9.3 Test Input Generation

Figure 9.3 shows the tool developed to generate test inputs via the mutation of valid field data. The
following subsections describe the functionalities developed to implement the tool.

9.3.1 Data loading

The same data loading functionality developed for the Input Validation and Oracle tool of Section 9.2
is used. In this case, the tool requires the System Configuration files and Valid Field Data (unlike the
input validation and oracle tool, the inputted transmission data must contain only valid data).

Sometimes the input field data may be too large to fit in memory or we might simply wish to
consider only limited chunks of a field data file. For this reason, our parser enables software engineers
to specify both the amount of data to load (e.g. 50 CADUs) and the location of the data to load.
Software engineers can specify two possible locations: beginning, which indicates that the data is
loaded from the beginning of the stream, or random, which indicates that the parser randomly chooses
a position in the stream, then identifies the first synchronisation block that follows that position and
starts loading the data. Section 2.1 provides an overview of the format of the transmission data.

9.3.2 Data mutation

Given the Model Instance, data mutation applies mutation operators according to the fault model
(captured within the Data Model). The tool supports single or multiple data mutations.

With no parameters, the mutation proceeds as follows: a mutation operator is randomly selected
and then applied to one of the elements within the Model Instance to which it can be applied (also
selected randomly).

Optionally, the Mutation Operator Configuration can be used as follows:

(1) It can specify the mutation operator to be executed against the Model Instance—in this case,
one of the elements to which the mutation operator can be applied is selected randomly. If there
are no elements mutatable by the operator, an error is returned.

(2) It can specify the mutation operator and the type of element (i.e. the specific class instance type
or attribute type) to target—one of the specified elements to which the mutation operator can be
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applied is selected randomly. If there are no elements of the specified type that are mutatable
by the operator, an error is returned.

(3) It can provide a list of (rarget,operator) pairs exactly specifying an ordered list of mutation
operators to use and the exact model elements (i.e. the specific class instances or attributes) to
mutate. If the operations cannot be completed, an error is returned.

(4) It can provide a list as specified in (3), followed by a final list item that matches the function of
list item (1) or list item (2). If the operations cannot be completed, an error is returned.

The Data mutation step returns Mutation Results detailing (1) an ordered list summarising the
successful application of mutation operator(s) and their target(s) within the Model Instance or (2) in
the event of an error, information pertaining to the attempted operation(s).

9.3.3 Data writing

The generation of concrete Mutated Field Data from the Mutated Model Instance can be handled by
using the same solution adopted for data loading. XStream APIs, for example, handle both the loading
and saving of information from and to XML files [XStream, 2016]. For the case of SES-DAQ, we
implemented a data writing tool that implements the same logic as the parser (i.e. using the same
stereotypes introduced in Section 3.4) but for writing data instead of reading it.
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Chapter 10

Conclusions and Future Work

This chapter is organised as follow. Section 10.1 summarises the contributions of this dissertation.
Section 10.2 discusses potential future work.

10.1 Summary

In this dissertation, we addressed the challenges of testing data processing systems. In data processing
systems, inputs are complex and the current practice is that software test engineers have to manually
write test cases; they have to carefully handcraft input data, while ensuring compliance with the
multiple constraints between data fields to prevent the generation of trivially invalid inputs. Assessing
test results often means analysing complex output and log data. Software engineers typically write
scripts to evaluate whether the generated outputs for a given input are correct (i.e. the test oracles
are written manually); such an approach requires a high development effort per test case and should
system specifications change, the scripts must be reassessed to ensure they are still valid.

We presented four approaches to enable the automated testing of data processing systems using
model-driven approaches. Each of the approaches addresses distinct and important problems related
to testing. These techniques are supported by the data models generated according to our modelling
methodology introduced in Chapter 3. Our modelling methodology uses UML class diagrams and
OCL constraints as a notation; we also created a profile to define stereotypes to support data parsing
and test input generation. The results of our empirical evaluation showed that the application of the
modelling methodology is scalable as the size of the model and constraints was manageable on a real
data processing DAQ system.

The first approach is a technique for the automated validation of test inputs and oracles based on
the application and tailoring of MDE technologies. The results of our empirical evaluation showed
that the approach is scalable as the input and oracle validation process executed within reasonable
times on real transmission files. For a transmission file of 2 GB, it took less than one hour to apply
input data and oracle validation. In terms of scalability, the relationship between execution time
and input file size is linear, suggesting that much larger files can be handled in the future using our
approach.

The second approach is a model-based technique that automatically generates faulty test inputs
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for the purpose of robustness testing, by relying upon generic mutation operators that alter data col-
lected in the field. An empirical evaluation performed with a data processing system, shows that our
automated approach achieves slightly better instruction coverage than the manual testing taking place
in practice, based on domain expertise.

The third approach is an evolutionary algorithm to automate the robustness testing of data pro-
cessing systems through optimised test suites. The empirical results obtained by applying our search-
based testing approach to test an industrial data processing system show that it outperforms the pre-
vious approaches based on fault coverage and random generation: higher coverage is achieved with
smaller test suites. Furthermore, we show that fitness functions based on models alone (i.e. not re-
quiring test case execution) can achieve good coverage results, while significantly reducing test suite
size. This is of practical importance as test generation is much quicker and often more practical when
no test execution is required.

Finally, the fourth approach is an automated, model-based approach that reuses field data to gen-
erate test inputs that fit new data requirements for the purpose of testing data processing systems. The
empirical study shows that the proposed approach scales in the presence of complex data structures. In
particular, the study shows that the input generation algorithm based on model slicing and constraint
solving can produce, in a reasonable amount of time, test input data that is over ten times larger in
size than the data that can be generated with constraint solving only. To evaluate the effectiveness of
the proposed approach, we generated test inputs to stress software robustness and we measured the
code covered when executing the generated test inputs against the software. The results show that
the generated test inputs cover most of the source code instructions of the updated software written to
implement new data requirements. The generated test inputs also achieve more code coverage than
the test cases implemented by experienced software engineers.

10.2 Future Work

Future work should prove the generalisability of the proposed techniques to other contexts. In partic-
ular, we identified three topics of interest.

The modelling methodology and related approaches should be applied to other case study systems.
One threat to the external validity of the empirical results of this dissertation is that we only consider
the application of our approaches against the SES-DAQ system. Future studies need to be made
considering other data processing systems in order to better assess the scalability, applicability, and
effectiveness of the approaches. Additionally, when seeking to generate optimised test suites we will
consider the use of a multi-objective optimisation algorithm; for example, in the case that we want to
maximise code coverage while keeping the test suite size at a minimum.

When developing data processing systems, external data needs to be loaded by the system for anal-
ysis. This functionality is often achieved by using custom, manually written data parsers. This work
is complex and labour intensive and the related software implementations require frequent refactoring
due to frequent changes in data requirements. Although there are many examples of tools supporting
text-based parsing (e.g. [XStream, 2016]) and others supporting binary parsing, we believe that the
bytestream parser (that uses our data model annotated with our custom UML profile) developed for
this project is one of the first generic model-driven parser approaches targeting binary files. The com-
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plexity of applying the bytestream parser in different contexts should be studied as part of our future
work.

The effect of errors introduced in configuration files should be studied. The work of this disserta-
tion considered only mutations to the input of a data processing system (e.g. in this dissertation, we
considered the mutation of the satellite bytestream data received by the SES-DAQ). Data processing
systems also accept configuration information used to define how such systems process the input data.
Studying the effect of errors introduced in configuration files is part of our future work.
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Appendix A

SES-DAQ Supplemental Data Model
Information

A.1 Configuration Data

Fig A.1 shows a simplified data model of the configuration files used for the SES-DAQ system. The
class Configuration is created as a root for the configuration content of the model. It is annotated with
the «ConfigData» stereotype. The class Configuration contains two other classes (RtStpsConfig and
ValidApidsConfig); each of the contained classes is a root of a corresponding modelled configuration
data file. The two files modelled here are the XML Real-time Software Telemetry Processing System
(RT-STPS) configuration file! and the text file containing the valid APIDs properties.

The RT-STPS file contains information directing the SES-DAQ on how to process the satellite
transmission data. For example, it contains information on what VCIDs are valid for the VCDUs of

'The SES-DAQ software incorporates the National Aeronautics and Space Administration (NASA) Direct Readout
Laboratory’s RT-STPS software package to process the transmission data (i.e. the incoming CADU bytestream) [NASA,
2016].

«FileInfo» <<ConfigData>> _ «Filelnfo»
RtStpsConfig |1 1|_Configuration |1 1| ValidApidsConfig
1 1
1 |«XE» xsveRtStps 1.*
XsveRtStps «FileRepresentation»

ValidApidsEntry
missionName : String
packetType : IspPacketTypes
apidValue : Integer [1..%]

«XE»missionName : String
«XE»rcCorrectHeader : Boolean
«XE»checkCrc : Boolean
«XE»spaceCraftld : Integer
«XE»idleVcid : Integer
«XE»idleApid : Integer

«enumeration»
1 T IspPacketTypes
1..#| «XE» veduConfig S1 SAR
VcduConfig S1_GPSR
«XE»veid : Integer S2 MSI
«XE» minPacketSize : Integer S2 GPSR
«XE» maxPacketSize : Integer L

#|«XE» ispConfig

Figure A.1. Simplified model example for the configuration data in the case study sys-
tem. Note: XE, XmlElement.
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«FileInfo» <<OutputData>> «FileInfo»
VcduReportData AcquisitionData «XE» ispReportData|IspReportData
1

1 1
1 1

VcduSummary 'VcduReportBody IspSummary |, IspReportBody
«XE»vcduTotal : Integer N :
«XE»idle : Integer i 1 1
«XE»counterWraps Integer R « & T«XE» ispEvent
«XE»counterJumps : Integer VeoduEvent TspInfo IspEvent
«XE» eventType : VcduEvents «XE» totalNumPackets : Integer «XE» eventType : IspEvents
«XE» prevVceduFrame : VeduFramelnfo «XE» idlePackets : Integer «XE» prevPacket : PacketInfo
«XE» currentVeduFrame : VeduFramelnfo «XE» sscCounterWraps : Integer «XE» currentPacket : PacketInfo
«XE» sscCounterJumps : Integer
VcduFramelnfo «enumeration»
«XE»header : String VcduEvents
«XE» spaceCraftld : Integer IDLE_FRAME PacketInfo «enumeration»
«XE» virtualChannelld : Integer| |[INVALID_FIRST_HDR_POINTER «XE» header : String IspEvents
«XE» counter : Integer VIRTUAL_COUNTER_JUMP «XE» spaceCraftld : Integer INVALID_APID
«XE» virtualChannelld : Integer INVALID_PACKET_TYPE
«XE» counter : Integer SEQUENCE_COUNTER_JUMP

Figure A.2. Simplified model example for the output data in the case study system. Note:
XE, XmlElement.

the transmission; and for each virtual channel, it lists the valid APIDs for the packets on that channel.

The valid APIDs properties file contains a list of valid APIDs for each of the packet types of the
Sentinel missions. For example, for the Sentinel-1 mission, packets of the GPSR type can have an
APID equal to one of 17 values.

A.2 Output Data

Fig A.2 shows a simplified data model of the output log files created by the SES-DAQ system. The
class AcquisitionData is created as a root for the output content of the model. It is annotated with the
«QutputData» stereotype. The class AcquisitionData contains two other classes (VeduReportData
and IspReportData); each of the contained classes is the root of a corresponding modelled output log
file. The two files modelled here are the VCDU report log and the ISP report log (both in the XML
format).

The VCDU report log contains information related to the VCDUs received in a transmission;
for example, it reports the number of idle VCDUs received. The log also reports on errors and
events of interest occurring at the VCDU level; for example, it reports each occurrence of a VIR-
TUAL_COUNTER_JUMP (i.e. when the virtual channel frame count of a VCDU header is not one
greater than the virtual channel frame count of the previously occurring VCDU header on the same
virtual channel).

The ISP report log contains information related to the packets received in a transmission; for
example, it reports the number of idle packets received. The log also reports on errors and events of
interest occurring at the packet level; for example, it reports each occurrence of an INVALID_APID
(i.e. when the APID value of a packet primary header does not correspond to a valid value contained
in the RT-STPS configuration file—either the idle packet APID value or one of the valid active packet
APID values).
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<XSVE_RT_STPS>
<Mission_Name>S1A</Mission_Name>
<RS_Correct_Header>true</RS_Correct_Header>
<Check_CRC>true</Check_CRC>
<Spacecraft_ID>43</Spacecraft_ID>
<Idle_VCID>63</Idle_VCID>
<Idle_APID>2047</Idle_APID>

<VCDU>
<VCID>45</VCID>
<Min_Packet_Size>7</Min_Packet_Size>
<Max_Packet_Size>65540</Max_Packet_Size>
<ISP>
<APID>772</APID>
</ISP>
</VNCDU>

</XSVE_RT_STPS>

Figure A.3. Example of a Real-time Software Telemetry Processing System configuration file.

S1.SAR.APIDs = 1052
S1.GPSR.APIDs =769, 771, 772,775,777, 779, 780, 781, 785, 787, 788, 790, 791, 793, 795, 796, 7197

Figure A.4. Example entries of the valid APID properties file.

A.3 Automated Parsing of XML Files

The parts of our data model that correspond to XML files exactly reflect the structure of the XML
files upon which they are based. XML child elements are represented as class attributes or contained
classes. XML sibling elements are represented as attributes of a same class. The attributes are as-
signed values based on text content of the XML element. The stereotype «XmlElement» is used to
map the XML tag names to the attributes of the class diagram.

For example, Fig. A.3 shows the RT-STPS XML file that is modelled by the classes of Fig A.1
having the root RtStpsConfg. In the XML file, VCID is a child element of the VCDU element;
correspondingly, the attribute vcid is contained within the VeduConfig class. In the XML file, the
VCID, Min_Packet_Size, Max_Packet_Size, and ISP elements are all siblings; they are modelled as
the VeduConfig class attributes vcid, minPacketSize, maxPacketSize, and ispConfig, respectively.

A.4 Automated Parsing of Text Files

The «FileRepresentation» stereotype is applied to the class that models the text file data. The «Fil-
eRepresentation» stereotype contains a list of row representations. Each row representation contains a
regular expression corresponding to a line entry of the file; each regular expression contains capturing
groups. Each row representation additionally contains mappings between the capturing groups of the
regular expression and the attributes of the modelled class.

For example, Fig. A.4 shows the text file that is modelled by the class ValidApidsConfig of Fig A.1.
The class ValidApidsConfig contains a set of ValidApidsEntry classes. In this example, one ValidApid-
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sEntry instance is created for each row of the valid apids properties file. The class ValidApidsEntry is
annotated with the stereotype «FileRepresentation» that contains the regular expression information
and mapping information. The lines of the file of Fig. A.4 are represented by a single row repre-
sentation (i.e. regular expression): (S[1-2])\.([A-Z]+)\.APIDs\s=\s([\w\s.,]+). While parsing, the
regular expression is used to match the row entries of the file. The first capturing group is mapped
to missionName, the second capturing group is mapped to packetType, and the third capturing group
is mapped to the apidValue list. For example, the first ValidApidsEntry instance created correspond-
ing to the first line of the file given by Fig. A.4 would contain the following attribute assignments:
missionName = S1, packetType = S1_SAR, apidValue = {1052}.
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