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The helical gap in interacting Rashba wires at low electron densities
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Rashba spin-orbit coupling and a magnetic field perpendicular to the Rashba axis have been predicted to open
a partial gap (“helical gap”) in the energy spectrum of noninteracting or weakly interacting one-dimensional
quantum wires. By comparing kinetic energy and Coulomb energy we show that this gap opening typically
occurs at low electron densities where the Coulomb energy dominates. To address this strongly correlated limit,
we investigate Rashba wires using Wigner crystal theory. We find that the helical gap exists even in the limit
of strong interactions but its dependence on electron density differs significantly from the weakly interacting
case. In particular, we find that the critical magnetic field for opening the gap becomes an oscillatory function

of electron density.

PACS numbers: 71.10.Pm, 71.70.Ej, 73.23.-b

The past years have brought a rapid growth of interest
in quantum wires with Rashba spin-orbit coupling (RSOC).
Much of this activity results from the discovery that, if sub-
jected to the proximity effect of a nearby superconductor and
a magnetic field, such wires can host Majorana bound states at
their ends."> The topological protection of these bound states
depends crucially on the simultaneous opening of a “helical”
RSOC gap and a superconducting gap throughout the wire.>=
This results in a topologically protected twofold ground state
degeneracy and a highly unconventional Josephson effect, and
it even makes these systems useful for quantum computation.®
Experimental signatures of these elusive quantum states have
already been found in indium arsenide (InAs) or indium anti-
monide (InSb) quantum wires.”'!

While many of the expected properties of Majorana bound
states have been verified, ruling out all possible alternative
explanations still requires a better understanding of the wires
used in experiments. Therefore, more experimental effort
has recently been devoted to the investigation of normal-
conducting Rashba wires and in particular to the characteriza-
tion of their RSOC itself.'>"!> A rather straightforward exper-
imental signature of RSOC would be a “helical gap”, i.e., the
opening of a partial gap in the energy spectrum of a Rashba
wire in response to an applied magnetic field perpendicular
to the Rashba axis, see Fig. 1. Indications of such a gap have
already been found in another material,'® and experimental ef-
forts in InAs and InSb quantum wires are currently underway.

In its simplest form, the helical gap can be understood based
on a single-particle theory. It is evident, however, that this gap
appears near the band bottom and thus at low electron den-
sities p = (mls)~", where £y, is the spin-orbit length. Not
only does this present a major challenge for experimental-
ists, it also renders the theoretical description in the pres-
ence of electron-electron interactions more complicated. A
direct comparison shows that at the required electron densi-
ties the Coulomb energy actually exceeds the kinetic energy
of the electrons. In this case, the energy range accessible to
Luttinger liquid (LL) theory is exponentially suppressed as a
function of density.!”'® For electrons without spin-orbit cou-
pling, this limit was reviewed in detail recently in the context
of spin-incoherent LLs."”

The low-density limit mandates a theoretical description

in terms of a 1D Wigner crystal.”>-??> This approach has ad-
vanced considerably over the past decade,'”**" and experi-
ments have already shown signs of Wigner crystal phases in
quantum wires, 283! and carbon nanotubes.??

To study the helical gap, we therefore extend the theory of
1D Wigner crystals to systems with RSOC. We start with a
short discussion of the noninteracting case, followed by an
estimate of the Coulomb energy. Next, we derive the effec-
tive Hamiltonian governing the charge and spin sectors of the
Rashba wire at low densities. We find that the spin Hamil-
tonian has a spectral gap for magnetic fields above a critical
field B.it(p) which depends in a nontrivial way on the electron
density p. Finally, we calculate the differential conductance of
the interacting quantum wire which is the most accessible ex-
perimental probe of the helical gap.

Let us start by considering a single electron with band mass
m moving in a one-dimensional wire along the z direction. In
the presence of RSOC with strength ag, and a magnetic field
perpendicular to the wire in the x direction, the single-particle
Hamiltonian and its spectrum read (using # = 1),
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where p is the momentum operator, and the electron spin is
given by § = @/2 where & = (0%, 0, o) is the vector of Pauli
matrices. The magnetic field B = (B, 0,0), where we assume
B > 0, gives rise to the Zeeman energy gugB which depends
on the g factor and the Bohr magneton ug. The appearance
of the helical gap is an immediate consequence of the spec-
trum (2), which is shown in Fig. 1. For small magnetic fields
(gupB < maﬁ) the spectrum develops a local maximum and a
gap of width gupB at k = 0, whereas the outer modes remain
unaffected.

In order to connect to later results for the interacting case,
let us rephrase the condition for a helical gap in terms of
the electron density p. At zero magnetic field, the spec-
trum consists of two shifted parabolas and the chemical po-
tential can be written as a function of the electron density as
u(p) = (p)*/(8m) — mcxlze /2. We define the critical field B
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FIG. 1. Single-particle spectra e.(k) for a weak magnetic field
(guB < ma?). The color coding shows the spin orientation as a
function of momentum. The corresponding density axis is shown on
the right, and values of B.;(p) for two densities are indicated.

as the minimum magnetic field needed to gap out the modes
at a given chemical potential u. Hence, we find gupgBcic = |ul,
which when expressed in terms of electron density reads

e

where we defined the Fermi energy Er = (7rp)2/ (8m) and the
spin-orbit length £, = (2mag)~!. Therefore, at the critical
density p = (1)~ (corresponding to u = 0), an infinitesimal
magnetic field opens the helical gap. Away from this density,
a finite magnetic field By o |¢ — 7| is needed. The size of
the gap as a function of the deviation from the critical field,
0B = B — B is given by,
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The simplest predicted experimental signature of the helical
gap is a dip in the zero bias-conductance as a function of elec-
tron density. At zero temperature, it is given by

G(p, B) = 2Go — Go® B — Bei(p)] ®)

where @(x) denotes the Heaviside function and Gy = €*/h is
the conductance quantum. At a given electron density, the dip
in the conductance remains visible up to temperatures 7 =
A(p, B) 3*

The case of weak interactions can be approached using
bosonization**3> which predicts a renormalization of system
parameters but does not change the structure of the helical
gap qualitatively compared to the noninteracting case. A more
quantitative comparison of our results to bosonization results
is shown in App. C.

Experimental estimates for the spin-orbit lengths are in the
range of £y, ~ 200nm,”*® so observing the helical gap requires
rather low densities p = (fy,)~"'. Such low electron densities
increase the effect of the Coulomb potential V(z) = €%/(elz)),
where € is the dielectric constant and e the electron charge.
This is a peculiar consequence of Fermi statistics, which en-
tails that the kinetic energy per particle scales as Eyj, < p,

while the Coulomb energy per particle scales as E,; oc p.
More precisely, the Coulomb energy dominates for densities
pap < 1, where ap = 4ne/ (me?) is the Bohr radius. The bare
Coulomb repulsion is usually screened at large distances. If
one assumes that screening is due to a metallic gate at a dis-
tance d from the wire, the potential reads
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Equation (7) specifies the density range where the results we
derive below are applicable. For InSb (e = 17, m = 0.015m,,
see Ref. [7]), one finds ag ~ 60nm, for InAs (¢ ~ 15,
m ~ 0.033m,, see Ref. [36]), the Bohr radius is ag ~ 25nm.
If screening is provided by the metallic contacts, we can esti-
mate d ~ 1um, which leads to d*>/ag ~ 10*nm. Hence, near
the critical electron density p~!' ~ nfy, ~ 600nm required for
the observation of the helical gap, the inequality (7) is ful-
filled and the Coulomb repulsion indeed dominates over the
kinetic energy. We will therefore develop a theoretical model
of the helical gap taking into account the strong effect of the
Coulomb repulsion.

We would like to point out that most investigations on
Rashba wires have so far focused on Majorana wires, where
a nearby superconductor screens the Coulomb interaction. In
that case, we expect d =~ ag, so a Wigner crystal does not form.
In contrast, this paper focuses on bare wires where screening
is much weaker. In this case, the fact that d > ap opens a
large density window (7) for the Wigner crystal formation.

To extend the existing conductance calculations of Rashba
wires?33%3 towards strong correlations, we develop a 1D
Wigner crystal theory?*2* for systems with RSOC. We start
by considering a system of N electrons, each of which is
described by the Hamiltonian (1), and add the translation-
invariant and spin-independent interaction term V(z,, — z,),
where z,, denotes the position of the nth particle. Moreover,
it is convenient to perform a unitary transformation U =
[1. exp (2imagz,S%) on Eq. (1) to gauge away the Rashba
term at the expense of turning the constant magnetic field into
a spiral magnetic field in the spin-x — y plane. Importantly,
this transformation commutes with the interaction Hamilto-
nian. Hence, the transformed Hamiltonian reads (see App. A
for details)
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For B = 0, the low-density limit of this Hamiltonian has been
studied in Refs. [23]. Strong repulsions favor a crystalline
alignment of the electrons near lattice position z, = an, where
a = 1/p is the lattice spacing. Including the kinetic energy
allows fluctuations about these lattice positions, and gives rise



to a single branch of acoustic phonons with wave vector k €
[-mp, mp]. The charge sector of the system can be described
by the Hamiltonian,

He = ) wkala, ©)
k

where a; are bosonic operators. For unscreened Coulomb re-
pulsion, the phonon dispersion w(k) has a logarithmic singu-
larity at k = 0. If screening by a metallic gate at a distance
d from the wire is taken into account, the phonon spectrum
near k = 0 becomes linear, w(k) « v.k with a sound velocity?'
ve = [2e’plog(8pd)/(em)]'/?. Denoting by vy = np/(2m)
the Fermi velocity of the noninteracting electron system, the
low-energy continuum limit of Eq. (9) is a LL with Luttinger
parameter K, = vp/v. < 1.

To lowest order, the Coulomb repulsion does not affect the
spin sector, thus leaving a 2V-fold spin degeneracy. The latter
is lifted, however, by virtual spin exchange between neighbor-
ing lattice sites. Taking this into account, one finds that in the
absence of magnetic field, the spins are described by an an-
tiferromagnetic XXX Heisenberg chain,?® in accordance with
the Lieb-Mattis theorem.?® Including the magnetic field, we
obtain the spin Hamiltonian,
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with exchange constant J(p) ~ Erexp(-n/+jpag) < Er
and n ~ 2.8.'7% In addition to the antiferromagnetic ex-
change term, the Hamiltonian contains a spiral magnetic field
§n = [cos(¢n), sin(pn), 0], where ¢ is defined in Eq. (3). For
B = 0, the spectrum is gapless and a low-energy limit leads
back to a LL Hamiltonian for the spin sector at temperatures
T < J." In contrast, the Wigner crystal remains stable up to
much higher temperatures / < T < Ep. We note that due
to the dependence of J on p, the Wigner crystal picture nat-
urally gives rise to the spin-charge coupling expected when
going beyond the linear-spectrum approximation of Luttinger
theory. 184041

The helical gap shows up as an opening of the spectral gap
in the spin Hamiltonian (10) above a critical magnetic field.
Before discussing the phase diagram of the Hamiltonian H,
let us discuss some simple limits. On the one hand, for large
densities (¢ < 1) the magnetic field is essentially constant.
In that case, H, describes a Heisenberg XXZ model, whose
phase diagram is well known: the system remains gapless up
to a critical magnetic field By = 2J(p). For larger fields,
a gap opens and the spins order ferromagnetically along the
applied field.

On the other hand, for ¢ = &, corresponding to the critical
density p = (nfs,)”", the magnetic field is precisely staggered:
B = (=1)"B. This type of Heisenberg model was investi-
gated using bosonization, and it was found that it is quantum-
critical. For B = 0, the spectrum is gapless, whereas a finite B
opens a gap of order*? A/J o« (B/J)*3. Hence, at the critical
density, an infinitesimal field is sufficient to open the helical
gap.
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FIG. 2. Helical gap A as function of magnetic field B and inverse
electron density ¢ = 1/(pfs,). The surface plot and the green (bright)
lines denote the numerical results obtained using DMRG. The red
line shows the critical magnetic field B (o), see Eq. (12).

To investigate the general case, it is convenient to restore
translation invariance by mapping the system with spiral mag-
netic field onto a system with constant magnetic field and
modified exchange terms,

N-1
H, = J(p)Z [ cos@)(SS L, + 85282, (11)
n=1

N
+Sin(@)(SESY, = SASE ) + 8385, | - qusB )| S
n=1

Reflection symmetry makes it possible to restrict our analy-
sis to ¢ € [0,7]. To investigate the full crossover between
the limits of constant (¢ = 0) and staggered (¢ = m) mag-
netic fields, we solve the Hamiltonian (11) numerically via
a density-matrix renormalization group (DMRG) analysis us-
ing the ALPS package.**** The results for the spectral gap as
a function of magnetic field for different values of ¢ are shown
in Fig. 2. Comparing different system lengths (from N = 64
up to N = 256) to mitigate finite-size effects, we find by fit-
ting the numerical results that the critical magnetic field as a
function of electron density reads

81sBerit(p) = J(p) [cos () + 1] . (12)

This equation is the central result for this Letter. It predicts
that the critical magnetic field to open a helical gap at a given
electron density is actually an oscillatory function of density,
in stark contrast to the noninteracting result (3) and results
based on Luttinger liquid theory. A comparison between in-
teracting and noninteracting results is shown in Fig. 3. The
figure also illustrates that the helical gap can be regarded as
a commensurability effect between the pitch of the effective
spiral magnetic field and the density. We will now discuss the
implications of this result and compare it to existing results.
The expression (12) for the critical field can be reproduced
using spin-wave theory for the Hamiltonian (11). Despite
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FIG. 3. Critical magnetic field B, as a function of density p for the
noninteracting (blue line) and the interacting (red line) case. In the
noninteracting case, B = 0 only at the critical density mp = 1/{s,.
In the interacting case, in contrast, we find B.; = 0 whenever the
particle density is commensurate with the pitch of the effective spiral
magnetic field. Examples for commensurate densities are shown in
the right panel, where the dots denote the electron positions and the
spiral indicates the effective magnetic field, see Eq. (8).

being a large-S expansion, this semiclassical approximation
is known to often yield qualitatively correct results even for
S = 1/2 spin Heisenberg chains.*> As we show in the App. B,
in addition to Eq. (12), spin-wave theory predicts the follow-
ing scaling of the helical gap for B = B + 0B,

A(p, B) = gug V6B 6B + J[1 — cos(p)] (13)

Hence, we find the expected linear gap opening A o 6B for
¢ < 1, similarly to the noninteracting limit in Eq. (4). On
the other hand, for 6B <« J[1 — cos(¢)], spin-wave theory pre-
dicts that the gap opens with a square-root cusp, A o« 6B with
v = 1/2. The fact that A(6B) changes from linear to power-
law behavior as ¢ is increased agrees well with our DMRG
results. However, the true exponent of the power-law differs
from the spin-wave theory prediction. Indeed, from our nu-
merical simulation we find y = 0.66 at ¢ = &, in agreement
with bosonization result A oc B*/? for the Heisenberg chain in
a staggered magnetic field.*?

A possible way to observe the helical gap which is currently
being explored in experiments'>!*!3 is to study the zero-bias
conductance of Rashba wires as the electron density is low-
ered. Therefore, let us briefly discuss this quantity in the low-
density regime. Calculating the conductance of an interacting
quantum wire is a nontrivial problem because of the impor-
tance of the contacts.*®*3 In case of Rashba wires, it is known
in particular that the contact profile can modify the amplitude
of the conductance step.>’ In the Wigner crystal regime, the
conductance of a wire with noninteracting contacts can be de-
rived by studying the dissipated heat when the system is sub-
ject to an ac drive current I(f) = Iy cos(wr),? and taking the
limit w — 0. The method was reviewed in detail in Ref. [17].
Adapting it to our system, we find that at low temperatures
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FIG. 4. Schematic plots of the conductance G(p) for different values
of B. For clarity, the lines for larger magnetic fields have been shifted
downwards. In the interacting case (upper panel), the conductance
drops whenever the Wigner lattice is commensurate with the Rashba
length. Moreover, the conductance saturates at G, towards low den-
sities because J(p) — 0, in stark contrast to the noninteracting case
(lower panel).

T < J, A, the conductance is given by Eq. (5) with the mod-
ified critical field B (o) in Eq.(12), which is now an oscilla-
tory function of p. Hence, at the critical density p = (7€s)~",
the conductance reaches the value G( and increases towards
2Gy in its vicinity. However, as shown in Fig. 3 a reduced con-
ductance Gy is reached again at lower densities p < (7€s)~",
whenever the electron density is commensurate with the spin-
orbit length. A schematic plot of the conductance as a function
of density is shown in Fig. 4. For low densities (at fixed ap),
Beiit — 0, so the conductance is reduced to G = Gy for any fi-
nite magnetic field. This is in stark contrast to the behavior for
noninteracting systems [see Eq. (3)], where gugBeit = malze/ 2
forp — 0, so G(p — 0, B) = 2Gy for weak magnetic fields
B < B.i. Moreover, when reducing the interaction strength
(increasing ap) at constant p, B¢ remains nonzero: the limits
p — 0and ag — co do not commute.

Disorder is always a important concern in one dimension,
both from the point of view of Luttinger liquids where it is
renormalization-group relevant for repulsive interactions, and
in the Wigner crystal where it can drive a Peierls instability. In
this respect, it is encouraging to note that recent experiments
have managed to realize good contacts,'* suspended wires,'?
and ballistic transport with a mean free path of several ym in
InSb nanowires.!> We therefore expect our predictions to be
observable in these state-of-the-art wires.

To conclude, we have shown that at the low electron densi-
ties p needed to see the helical gap in experiments on Rashba
wires, Coulomb repulsion dominates over the kinetic energy
of electrons. To access this regime, we developed a Wigner
crystal theory for 1D systems with RSOC. Within this the-
ory, the helical gap arises in the spin sector as a consequence
of commensurability between the Wigner lattice spacing 1/p
and the Rashba length {;,. We studied the critical magnetic



field for the opening of a helical gap as a function of the elec-
tron density. We found that, in contrast to the noninteracting
or weakly interacting cases, the critical field is an oscillatory
function of density and tends to zero for p — 0. Hence, the
effect of strong Coulomb interactions need to be taken into ac-
count when looking for experimental signatures of the helical
gap in Rashba wires.

ACKNOWLEDGMENTS

We would like to thank Tobias Meng and Thomas Schipers
for helpful discussions. We acknowledge support by the Na-
tional Research Fund, Luxembourg under grant ATTRACT
7556175.

Appendix A: Hamiltonian with Rashba SOC
1. Background

Let us briefly discuss the theoretical approaches taken so
far to describe Rashba wires with interactions.

In the case of weak interactions, it is possible to start with
the single-particle spectrum of the free fermions (see Fig. 1),
linearize it near the Fermi points, and use bosonization to ac-
count for the interactions.*3> Without magnetic field, this
results in Luttinger Hamiltonians describing the charge and
spin sectors. In this language, a magnetic field generates a
sine-Gordon term, and a perturbative renormalization group
(RG) analysis allows an estimate of the helical gap, which
was shown to open for arbitrary repulsive interactions, and in-
creases in magnitude for stronger interactions.

Parts of this approach continue to work for strong inter-
actions (or low densities). Without magnetic field, a linear
Rashba term oc agpo® can simply be gauged away and the
Hamiltonian becomes identical to that of SU(2) invariant spin-
ful fermions. In that case, the spectrum in both charge sector
and spin sector remains gapless for arbitrarily strong repulsive
interactions. The charge sector is then a Luttinger liquid with
Luttinger parameter K. < 1 and sound velocity v, > vg, vp
being the Fermi velocity of the noninteracting particles. The
parameters of the spin sector are vy < v and Ky = 1 due
to SU(2) invariance.*’ Luttinger theory in the two sectors re-
mains valid up to energies E. ; ~ v, 0, Where p is the electron
density.”? A magnetic field can again be added to the system
as a perturbation. One finds again a helical gap, but this ap-
proach is limited to small magnetic fields gugB <« E; < E,.

Hence, in the limit of strong interactions, the Luttinger lig-
uid approach suffers from certain shortcomings. Firstly, lin-
earizing the free particle spectrum is not a good starting point
for strong interactions. Secondly, the energy range accessi-
ble to LL theory tends to zero for strong interactions,’ a cir-
cumstance which has been discussed in detail in the context
of spin-incoherent LLs.!” In our strongly interacting system
this means that while LL theory remains correct in the limit
of zero energies, it cannot give correct predictions at the in-
teresting magnetic field strengths. Finally, the RG arguments

leading to the gap scaling equations are perturbative and valid
only for small magnetic fields.

2. Wigner crystal theory

To extend the existing approaches for the conductance of
Rashba wires**3 towards strong interactions, we build on
successful efforts over the past decades to develop a consistent
theory for interacting electrons in one dimension at low densi-
ties, which is referred to as a 1D Wigner crystal theory.!”-20-23
Clearly, the concept of a Wigner crystal in one dimension has
to be taken with a pinch of salt, because the Mermin-Wagner
theorem rules out a spontaneous breaking of the translation
symmetry in the thermodynamic limit. Moreover, long-range
crystalline order is evidently unstable against quantum fluctu-
ations in 1D. These issues have been discussed in detail in a
recent review.!”

In the limit of low energies, Wigner crystal predictions
agree with LL theory.* In particular long-range correlations
decay as power-laws with interaction-dependent exponents.>>
However, its advantages over LL theory are twofold: firstly, at
low densities its energy range of validity is much larger than
that of LL theory,?? and secondly, it often allows a quantita-
tive estimate of the parameters,”®> whereas the parameters en-
tering the LL Hamiltonian, i.e., the Luttinger parameter and
the sound velocity, are usually phenomenological at strong
interactions.*’

We consider the following Hamiltonian which describes N
spinful electrons with quadratic spectrum subject to Rashba
spin-orbit coupling, a magnetic field perpendicular to the spin-
orbit axis, and interactions,

- [ p? 1 gusB <
n B X
H= Z_;[ﬁ —CKano'f, +§Z:V(Zm_zn)_ ) _lo-n
(A1)

Here, p, and z, are the momentum and position operators of
the nth particle, @z denotes the strength of the spin-orbit cou-
pling, and o ;° denotes Pauli matrices corresponding to the
particle n. First, it is convenient to remove the spin-orbit cou-
pling by a unitary transformation. Using the action of the
translation operator e”pe~P = p — p,, we shift the mo-
mentum of particle n by maro?,

U =exp {i > maRan;} (A2)

Under this transformation, the Hamiltonian becomes

H=UHU'
N pz 1

=§—"-§vm—n—N A3
n:l2 +2m:ﬁn (Z Z) “0 ( )

N
. |
- BB [cosmanz,)ors ~ sinCmaz,)or

n=1

where eso = ma/2.



3. Charge Hamiltonian

Let us first review the case B = 0. In that case, the
transformed Hamiltonian A, := H(B = 0) is independent
of Rashba spin-orbit coupling, so we shall just reproduce
the known results for a Wigner lattice here.?? If the electron
density is sufficiently small, the potential energy will domi-
nate over the kinetic energy term. A Wigner lattice will then
form,?*?? where the electrons are localized approximately at
positions z, ® nL/N = an. Here, L denotes the length of the
system and a = 1/p = L/N is the lattice spacing. In that limit,
we can introduce the small displacement operator,

=z —an<a (A4)

which is canonically conjugate to p,. Expanding to the second
order in the displacement, we find

N 2 N
~ n 1 ’ N 7\2
H. ~ ,;:1 et E E V"(aj)zy,; = 2,)° — Neso  (AS)

n=1 j#0

where we used V’(am — an) = 0 which holds because the
equilibrium positions of the particles minimize the potential
energy. The summation over j is over N — 1 values. We
can assume periodic boundary conditions, i.e., p, = py+, and
z;, = 2,y to simplify that sum to Z?’: _11. The Hamiltonian can
now easily be diagonalized by Fourier transformation. We in-
troduce the normal modes

N N
1 : 1 .
I = — § ek, Op = — § ek (A6)
N n=1 VN n=1

where k = 2zm/L runs over N momenta in the first Brillouin
zone. These operators satisfy the canonical commutation rela-
tions [T, Qp] = —idxw . It is easy to show that this transforms
the Hamiltonian to

A=) 1T, T+ 0 01 - € (A7)
¢ = | om T2 &k — €so
where we introduced the mode frequencies
=
Wk) = — Z V" (apll — cos(ka)] (A8)
m

J=1

If we were to consider a short-range potential, we would only
keep the terms j = 1 and j = N — 1, in which case we would
find the typical spectrum of acoustic phonons,

w(k) = 2+/V"(a)/m|sin(ak/2)| (A9)
which corresponds to a linear spectrum for small k. On the
other hand, for a generic interaction potential, we should ex-

press w(k) in terms of the Fourier transform of the interaction
potential. Using V(x) = (1/N) 3, '™V, we have

k2
W (k) = =V, (A10)
m

Finally, we introduce the conventional creation and annihila-

tion operators,
- [mok)
I, =i — (ak - a_k)

1 T
=—|(a',+a All
O 2mw(k)( T+ ) (A1)
which leads to the Hamiltonian
N . 1
A, = Z w(k) (a,;ak - 5) — Neso (A12)

k

which coincides, up to a constant, with Eq. (9). Because
w(k) — 0 for k — 0, the excitation spectrum is gapless (ex-
cept for a trivial finite size gap o 1/L). The low-energy ex-
citations are acoustic phonons with spectrum w(k) oc k. Its
eigenstates are Fock states with a certain set of phonon quan-
tum numbers. Each of the eigenvalues has a degeneracy 2V
because the eigenenergies are spin-independent within our ap-
proximation. A complete basis of this Hamiltonian is given by
the vectors

{165 o1 5, o) (A13)
where n; € Ny denotes the number of phonons in mode k and
0% € {—1,1} denotes the z component of the spin on lattice
site n.

4. Spin exchange

The spin degeneracy is due to the fact that we assumed
B = 0 and restricted the position of each electron to one site
in the Wigner lattice. The most important process we ne-
glected so far is tunneling between neighboring sites. Due
to the strong interactions, each lattice site should always be
singly occupied. But even in this limit spin exchange between
neighboring sites is possible, albeit weak. In order to investi-
gate this effect, we follow Ref. [23] and consider the positions
of N — 2 particles as fixed, and only investigate the dynamics
of the two remaining particles.

Starting from Eq. (A3) and keeping B = 0, these assump-
tions lead to the two-particle Hamiltonian,

- PP

H2 = — 4+ = 4+ V(Zl - Zz) + Vr(Zl) + Vr(ZZ)

Al4
2m  2m ( )

where V,(x) denotes the potential generated by the remaining
N — 2 stationary electrons. The two particles are in a double-
well potential, which we shall call U(z). Such a scenario was
investigated in Ref. [23] for an unscreened Coulomb potential
V(z) = €?/(€lz]), and a formula for U(z) was derived there.
The effective Hamiltonian in real space is now a two-body
problem,

2 2
—— -~ =+ U(z1 — )| 91, 22) = Ed(z1,22)  (A1S)
2m  2m



It is known that the ground state wave function ¢g is sym-
metric in z; and z, whereas the first excited state ¢, is
antisymmetric.>? The two states are split by an energy which
can be determined using the WKB approximation

U”((l)
myemn

J =

exp {— f ! dz \/2m[U(z)—U"(a)/2m]} (A16)

where +z are the edges of the classically forbidden region
of the potential U(z). Importantly, this energy splitting is in-
dependent of the spins of the two particles. Therefore, we
can construct the following ground state and first excited state
wavefunctions, which consist of a spin-independent orbital
part, and a singlet or triplet spin part. The ground state wave
function is nondegenerate and reads,

—05100,1]  (A17)

Yo(z1, 01,22, 02) = ¢s5(21,22) [00160,1

The first excited state is a threefold degenerate triplet and
reads,

U1,-1(21, 01,22, 02) = Pa(21,22)00, |0y
Y1021, 01,22, 02) = a(21, 22) [00110051 + Oy 1001 ]
U1,1(21,01,22,02) = $a(21,22)05,100,7 (A18)

If we are only interested in the spin degrees of freedom, we
can therefore describe this by a Hamiltonian,

H,=JS,-S,» (A19)

The alignment of nearest neighbors’ spins is antiferromag-
netic in accordance with the Lieb-Mattis theorem.?® So far,

J

Jcos(@)SySh,, = Jcos(cp)S2
J cos(p)S
Jeost@)syst,, = TS (Gl vl
_JS
. _ ot i
IS, Sn+1 - 2 ( Cor1 ~ CnCnvl —
Jsin(p)S;S), | = Jsin(go){

Jsin(¢)S)S* ol = Jsin((p)[

Spin-wave theory is based on a large-S expansion. When
summed over n in the Hamiltonian the terms o« §3/? cancel.
Moreover, the terms o« VS are subleading and can be ignored.
To do a systematic expansion, we assume that B is also of or-
der §,*? and keep only the terms of order S. We obtain, after

JS cos(<p)c cp—JS cos(go)c

+ ChCurt + CaC)

we showed this for two sites. But since next-nearest-neighbor
hopping is exponentially suppressed compared to nearest-
neighbor hopping, we can use the following Heisenberg
Hamiltonian for the spin system

N
Hy=7 ) Su S (A20)

n=1

It should be pointed out that J depends on the positions of the
electrons and may in principle be nonuniform, J — J,. In that
sense, H, implicitly contains spin-charge coupling. Treating
J as a constant works as long as z, < a.

Appendix B: Spin wave theory

We start from the Hamiltonian (11). As we are mainly inter-
ested in physical effects near the critical field, we use the fer-
romagnetic large-field state as a starting point for spin-wave
theory. For B > J > 0, the spins are all polarized in the +x
direction, and we can use the Holstein-Primakoff transforma-
tion where the largest component is in x direction,

§n~[ —cley, f(mcn) \/7@ cn)] (B1)

where ¢, and cl' are bosonic annihilation and creation opera-
tors and S = 1/2. Hence, we obtain the following terms,

.1 Cnt1 T irTelevant terms

+1 + Cncn+1)

I
CnC n+l + Cncn+l)

SVS [s ,

NG (CLI + Cnr1) — ncn(cn+1 + Cn+1)]
SVS [s .

7 (CZ +cpy) — E(CZ + c,,)cnﬂcnﬂ}

(B2)
[
Fourier transform,
= Z {(—ZJS cos(¢) + B)cjc
k
JS
+ > (cos(p) — 1) (e’kach + h.c.)
JS ik T
+ - (cos(@) + 1) (e*cjci +hec. )} (B3)



Therefore, we can write this as

1 Y (x Y\
— k
= ylE) P HE) e
where

X = -2J§ cos(p) + B+ JS (cos(¢) + 1) cos(k)
Y = JS (cos(p) — De (B3)

We solve the Hamiltonian using a Bogoliubov transformation.
We write the operators as cz = ubz +vb_; and ci P = ubi b
If we assume that by fulfill bosonic commutation relations,
this leads to [ck,cl,] = (juf* = v|*)6i and thus to the re-
quirement |u|> — [v> = 1, which we can satisfy by setting
u = % coshf and v = €2 sinh 6. In terms of the new op-
erators, we find

1 b\ (X Y'\( b
T k
n=3 38 ()6

X’ = X cosh(20) + Y cos(¢; + ¢) sinh(26)
Y = ei<¢'*¢2>[x sinh(20)
+ Vel cosh?(6) + Y'e ) sinh’(0)]  (B6)

We would like to choose the parameters in such a way that the
off-diagonal part vanishes. We can achieve this by first de-
manding that Ye®1+92) is real, i.e., ¢, + ¢» = —arg Y. Having
fixed this, vanishing off-diagonal elements leads to

tanh(20) = —g (B7)

which has a real solution only if |Y| < X. With these parame-
ters, the Hamiltonian takes the form H = }; e(k, t,D)b;:bk with
the eigenenergies

X? - |Y|ReY
eh.g) = x' = X ZIYIReY (B8)

Unfortunately, in general there seems to be no simple solution
of the energies. We find, however, rather simple expression
foro=0and ¢ =,

ek, =0) = |J[cos(k) — 1] + B|

. _(B+ D)2 + J? cos(k)
ek, =m) = NGEST) (B9)

We see that e(k, ¢ = 0) is gapped for all B > 2J. In contrast,
€(k, ¢ = ) is gapped for all B > 0. These limits coincide with
Eq. (12) of the main text. To study the behavior for arbitrary ¢,
we observe by plotting the general function e(k, ) that when
increasing J for fixed B, the gap closing always occurs at k =
7. In this case, we also find a simple result

etk =m¢) = \J(B-2Jcosp)(B—J—Jcosp) (B10)

From this equation, one finds Eq. (12) as the condition for the
having a finite gap. Expanding e(k = x, ¢) close to this critical
field, i.e., using B = J(1 + cos ¢) + 6B, we find

e(k = 7, ¢, Bt + 0B) = \[(J — Jcos ) + 6B)6B  (B11)
For ¢ = 0, the gap opens indeed linearly, € cc 6 B. On the other
hand, for J(1 — cos ¢) > B, the gap opens with a square root
dependence.

Appendix C: Connection to bosonization

The helical gap for interacting systems was studied in
Ref. [35] based on Luttinger theory, and we would like to con-
nect to their results. Such a comparison is possible exactly at
the critical density, i.e., at chemical potential = 0, where the
chemical potential is exactly at the band crossing. In this case,
the effective magnetic field after removing the Rashba spin-
orbit coupling is just staggered, the critical field for opening a
gap vanishes, and we can compare the gap width as a function
of magnetic field.

To use bosonization for chemical potential ¢ = 0, we lin-
earize the spectrum around k = +kp = +2mag and k = 0 and
introduce left-moving and right-moving fermionic operators
by decomposing the physical fermions as,*’

Uy = Uy + €Yy
Y= e Y gy (CDH

We bosonize these according to o, = (2ma)~'/2e 1@br=0s),
where @« = R,L = +,—, o =T7,], and a denotes the short-
distance cutoff. Next, we introduce charge and spin modes,
bes = (Prx0))/ V2 and analogously for 6, ;. In the absence of
magnetic field, the resulting Luttinger Hamiltonian is charac-
terized by two Luttinger parameters, K. and Kj, for the charge
and spin sector, respectively. In the limit of strong repulsive
interactions, we have K. < 1, whereas K; = 1 is fixed by
SU(2) symmetry.

Next, we add the magnetic field term, which couples to a
linear combination of charge and spin modes,

Hy =B f dx [l (e, (x) + hee]

= B fdx cos[\/i((ﬁc - 95)] (C2)
na

In Ref. [35] it was found using an RG analysis that to leading
order the Zeeman term obeys the following scaling equation,

dB _ (3-K,)
a- 2 B
B(¢) = B(0)e”* (C3)

where y = (3 — K.)/2. Here, ¢ is the logarithmically scaled
cutoff, and is related to the physical cutoff as a(f) = age”t. Hp
is thus a relevant perturbation. At the end of the RG flow (say,
at £ = {*), Hgp dominates and generates a gap proportional to



B, hence A(¢*) = B({*). From this we can calculate the bare
gap,®

B(0)
B((*)

1/y
A(O):e"*A(f*)z( ) B(£*) « B(O)!/” (C4)

Therefore, at u = 0, we find in the limits of weakly interacting

and strongly interacting fermions, respectively,

A(B) < B
A(B) « B*3

forK. =1

C5
for K. = 0. ©3)

The exponent 1 for K. = 1 agrees with the trivial noninteract-
ing result, see Eq. (4). The exponent 2/3 in the strongly inter-
acting limit agrees with what we found from our Heisenberg
model from the DMRG solution at the staggered point and
from the bosonization solution of the corresponding Heisen-
berg model,*? see Eq. (13) and the following paragraph.
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