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ABSTRACT

In urban areas where the infrastructure is densecanstruction of new structures is near
existing and sensitive buildings, frequently vibmas, caused by human activities, occur.
Generated waves in the soil may adversely affenbsaoding buildings. These vibrations

have to be predicted a priori by using currentlpikable knowledge of the soil dynamics.
Current research, conducted by Deltares reseawstituie, showed that the reliability of

methods for prediction of man-made vibrations sagpointingly low. Therefore the models
for vibrations in the soil should be improved imer to get more accurate predictions.

The main aim of this thesis is to increase the Kadge on dynamic soil behaviour with
respect to the fundamental geotechnical aspectthefsoil, like non-viscous damping,
inhomogeneity, anisotropy, variable degree of saitbm, etc. and to give an improved
prediction method.

The scientific investigations of this thesis stdngth the following setup: an oscillating plate
on an elastic, homogeneous and isotropic half-spalcere the plate oscillates harmonically
in vertical direction and the soil is unsaturatkdthis way, the geotechnical aspects have
been left aside in order to check first whethés ppossible to predict the vibration amplitudes
of the oscillating plate and of the soil surfacghaut additional complexities.

This setting allowed to compare the present arwalytnethods with the results, obtained
from the finite element method (FEM) calculatioasd showed that the analytical methods
have their limitations. Therefore the wave-fieldanean oscillating plate had to be
investigated more carefully. Unfortunately the staf the art in soil dynamics is such that
only the particle vibration velocities are measuseithout knowing which part of the
velocities/vibrations belongs to which type of leasiave (compressional, shear or Rayleigh
wave). Therefore first of all, a technique to depose the measured signal into its basic
waves was developed. This new technique showedrkabig that all three basic waves have
phase shifts and these phase shifts are all diffdrem each other. The decomposition
technique is an important tool for researching dgilamics. Also a qualitative evaluation of
the energy transmission between the basic wavestmeaibration source was given, which
showed that the R-wave energy starts at zero jusgteasource and grows in the near-field
zone due to an energy transmission (body wavesansferring energy to the R-wave). This
means that even without uncertainties in the smilyb there is a lack of understanding of the
behaviour of the different waves.

A real field test is performed with a shaker onoft peaty site in the Netherlands, as an
attempted to replicate the FE model experimentshdiwed the limitations of the analytical
methods and highlighted the indispensability of E&M. Still, for engineering purposes, an
improved analytical method is suggested, whichble ¢ predict the geotechnical vibrations
with good accuracy. Herein, one of the fundameasglects, the material damping, was used
and a hypothesis was made, that with a more copiegsical model of the soil material
damping, the vibration predictions with FEM canito@roved.

The 1D frictional damping model, first suggestedMan Baars (2011), was extended for the
3D and incorporated into the FEM software Plaxisaddser Defined Soil Material model.
The results are very interesting scientificallyt llo not give much better results as the
already existing Rayleigh damping model.
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Introduction

1 INTRODUCTION
1.1 Background of the problem

In urban areas where the infrastructure is densecanstruction of new structures is near
existing ones, frequently vibrations, caused by &ractivities, occur. Generated waves in
the soil may adversely affect surrounding buildingse most known sources of man-made
vibrations are traffic (trains, buses, lorries) amdl construction activities (installation of
piles or sheet piles, tunnelling, demolishing dinues, etc.).

Because of environmental requirements, the levéhefvibrations should not exceed certain
threshold values which are recommended (or presttidepending on country regulations) in

order to protect people from discomfort, existingustures from damage or technological

processes (where vibration sensitive instrumergsuaed) from disturbance. This means that
the level of vibration must be predicted beforegtaat of activities which cause vibrations.

The prediction of vibrations is a complex task. To&l vibrations system consists of three
main components: source-soil, soil-soil and soikdure. The vibration level is usually
measured in the structure. These three main parisrasented in Figure 1-1.

Source — Soll Soil — Soil Soil truSture
(Emission) (Transmisgio (Immission)

Figure 1-1. Complexity of the vibrations predictsofT hyssenKrupp brochure).

According to research in Deltares (Holscher & Wsa2003), the reliability of methods for
prediction of environmental vibrations is disappmigly low and the uncertainty in the soil-
soil (transmission) part is larger than in the -stilicture system. In fact neither the soil
models nor soil-structure models are accurate dnoligerefore the models for vibrations in
the soil should be improved in order to get morugate predictions.

Generally four methods to predict the vibrations ba found in literature: expert judgment,

analytical, ray trace and numerical methods (Vaar8a2009). The latter method is the most
accurate. Nevertheless according to the hypotlieais Baars & Holscher, 2010), the current
method of dynamic modelling neglects several funelatiad geotechnical aspects such as

11



Introduction

non-viscous damping, inhomogeneity, anisotropyjade degree of saturation and others.
Or maybe something else is fundamentally wrong msimg. In order to confirm or reject

this hypothesis fundamental research in the fiélsbd dynamics should be done. All known
aspects which can be a cause of low predictioabiliy, are filled in the table below.

Table 1-1. List of aspects causing problems in dynanodelling.

Aspect Discussed by
Inhomogeneity Bodare, (1998), Andersen (2006),ed@nd Hunt (2012a), (2012b)
Anisotropy Helbig (1993), Andersen (2006)

Biot (1941), (1955), (1956a), (1956b), Holscherq3p Nakagawa and Soga

Degree of saturation (1995), Carcione et al. (2004)

Damping Masoumi et al. (2008) (2008b), Van Baafs (9
Air Content Smeulders (1992)
Layering Auersch (1995), Kramer (1996), Baidya @0@&ndersen (2006)

Non-Viscous damping  Bolton & Wilson (1990), Van Bag2011)

1.2 Goals of this work

The goal of this study is to make an improved méthwhich should be able to predict the
vibrations of the soil more accurately.

The first step to achieve the goal is to collea@ #nowledge on soil behaviour during
dynamic loading with respect to fundamental soichamical aspects, and to find the main
causes of the inaccuracy of the predictions, whaiht be related to the:

[0 inhomogeneity,

[0 anisotropy,

[0 variable degree of saturation,

0 non-viscous damping,

[0 and layering
of the soil. These main causes could be testedmydically by modelling and testing.

1.3 Outline of the thesis

The thesis consists of eight chapters. In the @ihstpter, called Introduction, the problem
statement is made, goals are formed and this eutdinthe thesis is given. In the second
chapter (Introduction into soil dynamics) a summiaoyn the large field of soil dynamics is
presented, with a focus on man-made geotechnitahtions. The investigation of man-
made geotechnical vibrations for probably the sesplcase to start with, a harmonically
vertically oscillating plate, is started in thé® chapter. In the @ chapter, called
Decomposition of waves, the problem is split intwee different, smaller problems, by
decomposing the superposed wave on the soil suifidcedifferent soil waves. In the™s
chapter real field tests of a shaker on the grasurthce of real soil have been performed.
The test results are discussed, by comparing thiémtle results obtained by analytical and
numerical methods. In thé"&hapter an improved prediction method is develofiés 7"
chapter deals with a frictional damping model, whigas first suggested by Van Baars
(2011) in one dimensional form. This model was medésl for three dimensions and
incorporated into finite element method (FEM) safter calculation scheme. In the last, 8
chapter, the findings of the work are summarised,@nclusions are given.

12



Introduction into soil dynamics

2 INTRODUCTION INTO SOIL DYNAMICS

2.1 Introduction

There are many books where the fundamentals adat@lynamics are described by Kramer
(1996), Verruijt (2006), Van Baars (2009), Das &nina (2011). Unfortunately some of
them focus more on applications to earthquake eeging or machine foundations and do
not handle a lot, or at all, about man-made geaiieahvibrations. In this chapter a summary
from the large field of soil dynamics is presentaith a focus on man-made geotechnical
vibrations.

2.2 Waves in a soil body

Energy in the soil travels in a form of waves. Tve/es move the soil and we notice these as
vibrations. There are different kinds of waves: ypahd surface waves. Analysing the
simplest case, an elastic homogeneous isotropiespate, there are three basic waves — the
Compressional (P-wave), Shear (S-waves) and Rayw@yve (Rayleigh, 1885) (R-wave)
(Figure 1-1).

COmMPpressions undisturbed medium

v Y v

r o7 G S S S T ¥ R D Z v -~ -~

a)

t dilatations 4 _wave length
t—>

undisturbed medium

b) particle movement
wave length
wave length
undisturbed medium
L

c) i ! 1
_T 5] [ particle movement

Saiil I ‘i 1
T T lnu|

waves propagation direction

ﬁ

Figure 2-1. Basic waves in a soil body a) Compassi wave b) Shear wave c) Rayleigh
wave (Kramer, 1996).

The first two are body waves, the last is a surf@age. Although for a homogeneous case

these three basic waves are non-dispersive (waleeityedoes not depend on a vibration
frequency), these waves still have different atiionms, different propagation laws (wave

13



Introduction into soil dynamics

velocity) and different damping laws. Vibration sad by basic waves is a superposition of
the individual behaviour of these basic waves.

If an elastic half-space is not homogeneous e sbil is layered), then the R-wave becomes
a dispersive wave (wave velocity depends on a wrdrdrequency). Also, if an upper layer
of a half-space has a lower body wave velocity ttienrest of the half-space below it, the
Love wave (Love, 1927) can appear. L-waves are yswdispersive. Moreover, layering
causes reflection and refraction of waves (bothnpheena are briefly introduced in the
following subchapters). So, the total picture ofvesin a layered solil, in terms of energy
transformation between waves, is very complex.

2.3 Damping

The energy travels in a form of waves and in a reedlium the total amount of energy is

always damped. Material damping is a loss of vibraenergy, because part of the energy of
the travelling waves in a material is converted inéat. The heat is produced due to friction
between soil particles or between soil particles pore water. This energy loss per volume
can also be seen as an absorption damping.

A simple way to illustrate material damping mathéoadly is to use the Kelvin-Voigt model

(Figure 2-2). The Kelvin—Voigt model, also calldgtVoigt model, can be represented by a
purely viscous damper and purely elastic springhected in parallel (Wikipedia).

Sdu . mr

z

\
bl
gj

Figure 2-2. Kelvin-Voigt model.

Total shear resistance is the sum of an elastigpooemt (a spring) and a viscous component
(a dashpot).

oy
r=Gy+c—, 2-1
S (2-1)
in which:

T = shear stress, [N/m?]

G = shear modulus, [N/m?]

y = shear strain, [-]

c = viscosity, [Ns/m?

t = time. [S]

For the harmonic shear strain of the form:

y=ysin@t), (2-2)
14



Introduction into soil dynamics

oy .
E = ) wCOoSut), (2-3)

where:

y

(6]

shear strain amplitude, [-]
angular frequency. [rad/s]

The shear stress will be:
r =Gpsin(at)+cjacodat). (2-4)

The dissipated energyE with an elliptical stress-strain loop in a singiele:

tot+27m w
AE= | ra—{[/dt:ﬂca);?z. (2-5)

to

The equation above indicates that the dissipatedggns proportional to the frequency of
loadingw.

The peak energlg, during a single cycle is calculated as follows:

1 ..
Ep :EGVZ (2'6)

And the damping ratig will be:
§=——=—7. (2-7)

There are other parameters to describe energypdiasi, like the quality factor, loss factor
or the specific damping capacity. All these pararsetaire functions of the dissipated energy
and the peak energy per cycle.

Although viscous damping is rather simple to impd@minto constitutive soil material
models, it is frequency depended. This is not theecfor the physics of soils. Some
researchers try to eliminate frequency dependencesing an equivalent viscosity. The
problem is illustrated by considering a superposif waves with multiple frequencies, for
which there can be no equivalent viscosity fomalves at the same time (Van Baars, 2011).
From cyclic tests on sand, it was concluded, that dtress-strain behaviour of the soil is
hysteretic and its corresponding damping parametersstrain dependent, though they are
independent of the frequency up to 100 Hz (Boltowd&son, 1990).

Soil damping dependence from the cyclic shearrst@anplitude is a known phenomenon.

The bigger the shear strain amplitude, the biggeramount of energy which is transformed
into heat through friction (Figure 2-3).

15



Introduction into soil dynamics

24
Okur & Ansal, 2007
%’A ans 84 8
20 @ o [T, PI=12,e=0.83, 5=150 kPa £
a & C10, PI=12, e=0.96, 5.=200 kPa 04g
< o o C1, P12, e=1.42, 7.=300 kPa 0 8°
I,; 16 uin
k) 020
£ 12
&n [
E n::l
E ¥
S Bo Van Baars, 2011
@
o L
m“-‘ﬂgg,» -
4 4 Aol ¥
== bo @ pid APARI e 2 - &=3%:; Gp=132MPa; 1p,=1 kPa
0
0.0001 0.001 0.01 0.1 I

Cyclic shear strain amplitude, 3 [%]

Figure 2-3. Damping ratio dependence on cyclic ststain amplitude of natural fine
grained soils (Okur & Ansal, 2007).

Therefore, for man-made geotechnical vibrationdlemms (where frequencies are usually
rather low and shear amplitudes are small), the pdagnshould be independent from
frequency and shear strain amplitudes.

One model was suggested by Van Baars — Frictiambldamping (Van Baars, 2011). The
suggested damping model is based on a force-dapkaat curve that has an exponential
form. The model is derived in a modified coordisasgstent’ —y'. The modified coordinates

depend on the shear strain and shear stress adeglithe relationship can be defined as
follows:

y=y+y, (2-8)
rI'=r+T7 , (2-9)
where:
y = shear strain amplitude, []
r = shear stress amplitude. [NFIm

If the initial shear stress and shear strain incthe' system of coordinates are zero, then the
shear stress for loading, in a modified systempofdinates, is written in the form:

r'= Gmod(y)x ! (2-10)
where:
Ginod = modified shear modulus of soil, [N
X = dimensionless damping parameted. [-]

16



Introduction into soil dynamics

The shear stress for unloading depends on thegmak where the shear stress amplitdde
and the shear strain amplitugé are reached, and is defined according to the \idtig
equation:

r'=1-Gol V- (2-11)

The modified shear modulus for this exponential piaigy model can be found when it is
compared with the secant shear mod@us The secant shear modul@s.cis a secant shear
modulus during the full cycle (see Figure 2-4). iitige following equality is valid:

A

fl = GsecV (2'12)

At the same peak also the equifty= Gmod(}/)x is valid. Equating the latter two and having
Equation (2-8) in mind, the relationship betwé&&R, andG..can be written as follows

C;mod 2;')
—med = 2-13
G.. () &)
7' T The area hatched with vertical lines (including the
A A ellipse) is expressed as:
| /)|
I ~ +
| /7%/ e IT dy ——Gmod(V ). (2-14)
| /L t
| AE /%4/ G
| \//// ! The area of the ellipse, which represents the
: ¥ / :’ y dissipated energy per cycle, is defined as:
|
|
| ' o 1= X e
| | OB =28 ~1' =1 oo 7). (2-15)
|
|
|
|
' RElpRREE _:_>y, The peak energy per cycle is:
Figure 2-4. Energy loss of stress-g zlfAzlf-V 1 (V)<><+1>
strain cycle (Van Baars, 2011). P2 8 8 Gos (2-16)

The ratio of the dissipated energy versus the peakgy, shows the energy loss per cycle:

(2-17)

This energy loss per cycle ratids related to the damping ratioas follows:{ = 4. With
these parameters, the dimensionless damping paaxhean be defined:
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x=8"< o equallyX :ﬂ.
8+¢ 2+ T

(2-18)

Hysteretic damping is in fact a damping resultirapf frictional shear deformation. Isotropic
compression causes probably little or no damping.

In P-waves there is a deformation due to mostlyragic compression but also some shear
deformation, in S-waves there is only pure shedordetion and in R-waves there is a
combination of mostly shear deformation but alstoaeation due to isotropic compression.
Therefore the energy will damp differently for edehsic wave. This is still a subject of

study.

Because it is not clear yet how different the matedtamping is for the individual basic
waves, in current vibration problems a combined ieog absorption coefficienk,, is used

to represent the material damping of the soil. Uguhe exponential decay attenuation law
suggested by Bornitz (1931) is used:

G0ekn o) (2-19)
in which:
a = displacement amplitude, [m]
Kn = empirical absorption coefficient, [1/m]
r = radius (distance) from the source to the pdimbterest, [m]
ro = radius (distance) from the source to the poimere the
displacement amplitude is known. [m]

Other sources of amplitude attenuation will be ussed in the following subchapter.

Table 2-1. Summary of empirical absorption coedfits k, (Amick & Gendreau, 2000).

Researcher Soil type ke [M™]
Frossblad in 1965 Silty gravelly sand 0.13
Richart 4-6 in concrete slab over compact grarillar 0.02
Woods in 1967 Silty fine sand 0.26

Saturated fine grain sand 0.1
Saturated fine grain sand in frozen state 0.06
Saturated sand with laminae of peat and orgartic sil 0.04
Barkan in 1962 Clayey sand, clay with some sand, and silt abovemavel 0.04
Marly chalk 0.1
Loess and loessial soil 0.1
Saturated clay with sand and silt 0-0.12
Dalmatov et al. in 1968 Sand and silts 0.026 - 0.36
Sand fill over Bay Mud 0.05-0.2
Clough and Chameau
Dune sand 0.026 - 0.065
Peng in 1972 Soft Bangkok clay 0.026 - 0.44

18



Introduction into soil dynamics

In Table 2-1 the summary of the empirical absorptemefficients proposed by different
authors, depending on the soil type, is preserited.summary was published by Amick &
Gendreau (2000).

Auersch & Said (2010) noticed that it is not clednether other attenuation laws, like
geometrical attenuation, scattering and disperaienincluded or excluded in this table.

2.4 Attenuation

In vibration problems, it is important to know tlatenuation laws for the displacement,
velocity or acceleration amplitudes. A theoretiaatl experimental study was performed by
Auersch & Said (2010) in order to get a betterghsin these attenuation laws. The authors
concluded that the attenuation of vibration ampis is generally caused by: material
damping, geometrical attenuation, scattering asgedsion.

Geometrical attenuation (radiation)

When waves are traveling in multiple directions thtal energy will be spread. Even when
the elastic energy is conserved (no conversiortiterdorms of energy takes place), vibration
amplitudes will decrease due to spreading of tke Bnergy over a greater material volume.
This principle is known as radiation damping, getrrm&lamping or attenuation.

source

A gj
e

P- or S- wavefront

Figure 2-5. Geometrical attenuation of differentwsa a) Body waves b) Surface waves
(Andersen, 2006).

The energy of body waves (see a) in Figure 2-Bjsibuted over an area that increases with
the square of the radius:

E'D riz (2-20)

in which:

El

energy per unit area. [N/m]

Knowing that the displacement amplitude is propori to the square root of the energy per
unit area, the amplitude will be inversely propamtl to the radius:

ant (2-21)
r
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The energy of surface waves (see b) in Figure i8-8)stributed over an area that increases
linearly with the radius:

ED % (2-22)

Knowing that the displacement amplitude is propori to the square root of the energy per
unit area, the amplitude will be inversely propaml to the square root of the radius:

ud—. (2-23)

Scattering in a heterogeneous medium

Scattering is a general physical process where somes of radiation, such as light, sound,
or moving patrticles, are forced to deviate frontraight trajectory by one or more paths due
to localized non-uniformities in the medium throughich they pass (Wikipedia). Soil waves
are scattered at random heterogeneities of thesdih part of the wave energy disappears in
the depth of the half-space. Scattering effect banexpressed in similar exponential
amplitude — distance relationship as the mateaaiging:

G |:| e_ksct(r —To) ' (2'24)

where:

ksct

empirical scattering coefficient. [1/m]

The attenuation must be a function of the ratioveen the scattering dimension and the
wave length. It can be proportional to the diamedtex cross section or the volume (Auersch
& Said, 2010).

Koo D1/A...11 2%, (2-25)

sct

where:
A = wave length. [m]

This means, that scattering attenuation may depéhdr linearly, or even very strongly on
the frequency. However, by measuring only vibration the soil surface it is hardly possible
to distinguish damping from scattering without aagditional information. Van Wijk and
Levshin (2004) investigated the influence of verttiscatterers to the dispersion of surface
waves. They concluded that a combination of isdlateatterers and layering in the sub-
surface creates dispersion of surface waves.

Dispersion

As mentioned before, if an elastic half-space i mmmogeneous, then R-waves become
dispersive waves (wave velocity depends on a vdndtequency).
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Therefore, a short pulse travelling from a sourogtpwill not arrive as a short pulse at an
observation point far away. Instead the pulse halspread over distance since the waves
with different frequencies travel with differentegms. Taking the conservation of energy into
account, the vibration amplitudes attenuate dukisoenergy spreading. This is illustrated in
Figure 2-6. In this case the total energy is coresrover space and time. However, an
additional attenuation due to the dispersive nabfig inhomogeneous soil occurs.

u(r,t) A ﬂ

vy

\j

N

\/

\j

rs3

Figure 2-6. Dispersion of an impulse excitation.

It was measured from impulsive excitations by Adgkrand Said (2010) that there is an

additional dispersion attenuation factérJr >° due to the dispersive nature of an
inhomogeneous soil. The authors state, that tatersient holds for the maximum of the time
records (maximum vibration component of 3 directjorfror their root mean square vibration
values (the square root of the sum of the squdresagimum values of the three vibration
components irx, y andz directions), which means the additional dispergtienuation was
weaker, than the latter.

Overall attenuation
Taking all the mentioned attenuation factors intwoaint (material damping, radiation,

scattering, and dispersion) the overall attenuatansurface waves, according to Auersch
and Said (2010), can be calculated as follows:

a,(r) = 00\/ie-km(r-ro)e-km(r—ro), (2-26)
]
in which:
a, = displacement amplitude of a Rayleigh wave, [m]
d, = displacement amplitude at known distance [m]

For the body waves only the radiation law wouldifgerent:
l’jb(r) - l’jo % e'km(r'ro)e'ksc!(r o) , (2'27)

in which:

~

U,

displacement amplitude of a body wave. [m]
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The dispersion relation in Equation (2-26) and HEiguma(2-27) could be introduced by
multiplying to by factor of . However, this attenuation law holds only for theximum of
the time records in three directions.

The attenuation of vibrations is frequently desedilby a linear log-log relationship where all
the discussed effects are lumped.

PPV =¢cO™, (2-28)
where:
PPV = peak particle velocity, [m/s]
¢ = empirical coefficient, B
m = attenuation rate (also the slope in a log-loyeu []

Equation (2-28) can be written in the following ésghmic form:
logPPV) =log) —mlogf). (2-29)

Particle velocities are usually measured in thiéferént directions. Therefore a peak particle
velocity (PPV) can be defined in different wayseidare at least three different methods to
define the PPV from the measurements data:

1. Peak component — the maximum of the vertical, trarsmal and radial components:
PPV = max(max(V,), max(v,), max(v,)) ;

2. True vector sum (TVS) — the maximum of the vectons
PPV =max{), wherev = (v, +V  +V,);

3. Root mean square method (RMS):
PPV = /(max(v,))* + (max(v,))’ + (max(v,))’ ,

where:

v velocity vector in direction. [m/s]
The PPV defined by the peak component method mayphte 25 % lower than defined by
the true vector sum method. Also the PPV definedRMS method may exceed the true

vector sum value by 50 % (Athanasopoulos & Pelek@$)0). It is also noted that the true
vector sum method can be over conservative (Akl.e2003).

From experimental studies of measurements of graiméhtions at nineteen different sites
and also induced by different sources (Auersch &,S2010), typical measured attenuation
values are presented in Table 2-2.

Differences of the attenuation ratein a source group (e.g. explosion) authors expbgin
different dynamite weight equivalents used for egpins, different drop masses, different
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train speeds i.e., different energy from the saufdso the influence of the different soils is
discussed. The measurements can be found graphicdigure 2-7.

The reported attenuation ratewas between 0.5
and 2.0. The upper value agrees well with the
measurements of Wiss (1981), where he reported
the attenuation rat@to be between.0 and 2.0.

The dissipation rate of pile-driving vibrations
was studied by Ali et al. (2003) in order to
determine the influence radius around vibration
sources. For this purpose Equation (2-28) was
used. The sources were two types - pile driving

1 2 3 . ..
100 10 10" and sheet-pile driving.
Distance from the source, [m]

PPV, [mm/s]

. : From the experimental data, it was concluded,
Figure 27 A'Ftenuatlon_rate_s from that the attenuation raten for that site was
technically '”duce.d vibrations between 0.88 and 1.02 which is in a good
(Auersch & Said, 2010). agreement with Auersch and Said (2010)
measurements for pile driving (Table 2-2).

Table 2-2. Attenuation rate m from experimentatiss (Auersch & Said, 2010).

Attenuation raten

Source . Number of sites
min average max

Road traffic 0.5 1

Metro train 0.5 1
Vibration compaction 0.7 1

Pile driving 1.1 1
Explosion 1.2 1.3 1.4 3

Mass drop 1 1.3 1.6 2
Passenger train 0.5 1 1.5 6
Hammer impulse 1.3 1.65 2 4

A comprehensive review of man-made ground vibratiamd measurements of ground
vibration caused by vibratory sheet-pile driving iecent soil deposits was made by
Athanasopoulos and Pelekis (2000). The resultsnoatsenuation rate of vibrations with
distance were compared with published results bgrostudies and satisfactory agreement
was found (Figure 2-8).

A summary table of the attenuation rates of diffiérauthors for various soil types was
published by Ali, et al. (2003) (Table 2-3). Unfamtitely no clear pattern can be seen. Some
authors were looking into stiffness; others indecajfust the name of the soil, from which an
approximate size of the soil particle can be knoMmowever the latter does not help while for
only sand the attenuation rates still vary fromt0.8.5.
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PPV, [mm/s]

10k

Athanasopoulos
& Pelekis (2000)

T

0.1

= Linehan et al. (1992)
Clough and Chameau (1980)

P
10

At}ewell et al. (1992)

(mean +1S8D)

e

Distance from the source, [m]

Dowding (1996)

A A A A il

100

Figure 2-8. Attenuation of vibrations with distarfcem vibratory sheetpile driving
(Athanasopoulos & Pelekis, 2000).

Table 2-3. Published attenuation rates for pilevdrg in various soil types (Ali, et al., 2003).

Researcher Soil type m
Amich and Unger Clay 15
Attewell and Farmer Various soils, generally firm 1
Surface sands 15
Brenner and Chittikuladiok )
Sand fill, over soft clays 0.8-1.0
. Clay 1.4
Martin )
Silt 0.8
Nicholls, Johnson and Duvall Firm soils and rock 4417
) Sands 1
Wiss
Clays 15
Dense compacted sands (15<N<50) 1.1
Woods and Jedele
Most sands (5<N<15) 15

2.5 Heterogeneity

On micro level soil is clearly a heterogeneous neteomposed by different particles of
minerals and/or organics. The particles vary sigaiftly in size and shape (Figure 2-9).

Similar as for inhomogeneity in the dynamics olstures, inhomogeneity in soils can be
divided into local and global. Local inhomogenetign be understood as the variation of
material properties over a distance that is muchllemthan the characteristic wave length
(Andersen, 2006). If the wave length is many tinoeger than the characteristic dimension
of the inhomogeneity, the material interacts a®@dgeneous material to the wave. On the
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contrary, if the wave length is many times smallen the characteristic dimension of the
inhomogeneity, the wave will be scattered in alédiions into the material (Bodare, 1998).

Figure 2-9. Inhomogeneous soil (Andersen, 2006).

Since the Rayleigh wave’s velocity is in most sa@itmve 100 m/s, the wave length of the
man-made vibrations is in the order of meters wdethe grain size of the soil is the order of
millimetres or even smaller. Therefore the locaiations of the density and the strength of
material are of little importance to wave propagratin soil (Andersen, 2006).

Global inhomogeneity can be understood as the ti@miaof material properties over a
distance close to or larger than the characterigtige length. The global inhomogeneity
exists in any real soil deposit because the sgfnéke the strength properties varies over
depth due to a sedimentation process, a pre-sigegssdm overlaying soil or an over-
consolidation from ice.

Models commonly assume ground to be homogeneousipli8iing the soil as a
homogeneous material adds a level of uncertaintyhéo predictions which is not well
understood (Jones & Hunt, 2012a). The goal of JamesHunt work was to quantify the
effect of the soil inhomogeneity on the surfaceation. They suggested that not only global,
but also local soil heterogeneity can significardiyect surface velocity predictions. The
effect of variability of the horizontal elastic madds on the confidence interval appears to be
negligible when modelling ground vibration from @nground railways.

In practice, usually a schematisation of one or tayers overlaying a homogeneous half-
space is sufficient for modelling wave propagaitiosoil (Andersen, 2006).

2.6 Anisotropy

; Anisotropy is the material’'s physical property
’ ‘ dependence on the direction, as opposed to isqtropy
which implies identical properties in all directin
3 Probably the best example of an anisotropic materia
in the field of civil engineering is timber, but also
applies to many kinds of rock and most sedimentary
. . . soil. Even sand shows an anisotropic behaviourghvhi
Figure 2-10.  An  anisoropic g 4 regylt of the way in which the grains areidti
material (Andersen, 2006). deposited (Andersen, 2006). Graphical represemtatio
of an anisotropic material is found in Figure 2-10.

It was also stated by Andersen, that the main mdiffee in elastodynamics between isotropic
and anisotropic materials is the fact that in goic materials, the wave speed is the same in
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all directions, whereas in anisotropic materiaks Wave speed varies. It can influence some
or even all of the wave types in a medium.

In geophysics the variation of the wave speed ditéction is called seismic anisotropy and
it is an indicator of long term order in a materi&ven rock-forming minerals are anisotropic,
including quartz and feldspar. The anisotropy ohenals can be seen in their optical
properties.

Actually, a real soil medium almost always displaamme degree of elastic anisotropy,
therefore the wave propagation has to be assumbd &misotropic, unless the soil stiffness
has been shown to be effectively isotropic (Helti@03).

2.7 Degree of saturation

In soil dynamics, the soil is usually treated aselastic (or viscoelastic) material. This type
of modelling is acceptable for dry granular matsrizvhich may adequately be described as a
single-phase system. However in saturated porousria@a the pore pressure in the fluid
phase interacts with the stresses of the solidepfedfective stresses). This results in a second
P-wave. Dynamical behaviour of the saturated ponmeslia theory developed by Biot
(1941), (1955), (19564a), (1956b) and the latteregairsed to multi-phase systems (Carcione,
et al., 2004). The second P-wave in a fully satargiorous medium propagates at a speed
which is much lower than the usual P- and S-waeedp. Therefore it is often referred to as
the slow P-wave (Andersen, 2006).

Paul Holscher describes and discusses in his tHegismical response of saturated and dry
soils” (Hoélscher, 1995) the dynamics of porous raedihe phenomena of wave-propagation
and consolidation are solved by using non-linedrab®ur of the soil. Analytical solutions
near interfaces between solid and fluid are deribgdusing Fourier transformations. The
author concludes that near the interface betweeeraad soil particle, the effective stress is
influenced by the second P-wave. This may leaddeaease in the effective stress of up to
70 %. The latter effect cannot be described bynglsiphase approach. This means that
ground vibration predictions of saturated soil, mléetl by a single-phase approach, can lead
to an error of up to 70 %. For shear waves onlgamidifferences are to be expected by
using a two-phase or single phase approach.

Nakagawa and Soga (1995) measured the propagdti®namd S-waves in dry and saturated
sand samples. A conventional triaxial soil testsygtem was combined with the pulse
transmission method. The velocities of the secaond R-wave were only 1/10 to 1/3 of those
measured for the first kind P-waves. The measuradewelocities agreed well with the

theoretical values calculated using Biot's two-ghth®gory.

The degree of saturation also effects pile drivighiThe literature concerning this effect was
overviewed by Viking (2002). Laboratory test ofwuiing pile in a sand container, filled with
non-cohesive soil, were performed and reported &y @993) and Wang (1994). Two pore-
water pressure transducers were placed in theybstler at distancesi, and 2.2®, from

the pile shaft, wherB, is the pile diameter. The results were comparet wifinite element
analysis and it was concluded that the excess pessure amplitude decayed very quickly
with increasing radial distance from the oscillgtishaft surface. Nevertheless the mean
excess pore-pressure was found to be similar frdift distances from the oscillating shaft
surface. According to Viking (2002), the similarity the value of the mean pore-pressure,
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regardless of the distance to the pile, could bksaelated to improper boundary conditions
(at the tank limits), due to fact that there wasdmsipation of the excess pore-pressure in
relation to the distance from the driven pile. Vidgiconcluded that the degree of saturation is
one of the primary subsoil-related factors affegtwvibro-driveability, but not the most
important.

2.8 Air content

Smeulders (1992) did research on wave propagatiosaturated and partially saturated
porous media. The propagation and damping of cosspmeal waves in a porous medium

was investigated, both theoretically and experimgntin case the pore liquid contains a

small volume fraction of gas. Close to gas bubkkonant frequencies, the compressional
waves are very strongly damped. Even a minor gagidn largely influences the dynamic

fluid bulk modulus and also the wave propagatioer@mena in a porous medium.

2.9 Layering

In general, layering in soil dynamics can be unme$ as a global inhomogeneity such as
discussed in Chapter 2.5. Layers are formed dwgewogical processes or formed by man
(embankments, filled soils).

When a wave meets a new layer it can reflect anafoact. Reflection and refraction also
occurs at the surface, which is in fact a layeth&f soil interacting with the atmosphere,
which is also an inhomogeneity.

The path with a minimum travel time of a seismit¢spun the soil is called a ray (a vector)

and a surface with rays of equal travel time idecalb wave front. Snell considered the

change of direction of ray paths at interfaces betwmaterials (in this case two soil layers)
with different wave propagation speed. Snell shothad the angle between the ray path and
the normal to the interface and velocity of the @vés/constant:

SLLRS const (2-30)
v
where:
i = angle of incidence, [rad]
% = velocity. [m/s]

This relationship holds for reflected and refragtedtransmitted when the angle of incidence
is zero) waves. Different body waves, reflected egfcacted at the interface of two layers,
are presented graphically in Figure 2-11. In tigerie P, SH and SV represents compression,
horizontal shear and vertical shear waves respygtiv

Since an incident P- and SV- involve a particle iootperpendicular to the plane of the
interface; they will each produce both reflected agfracted P- and SV-waves. An incident
SH-wave does not involve any particle motion pedoeuar to the interface; consequently,
only SH-waves are reflected and refracted (Krarh@96). Following Snell’s law, the angle

of incidence is equal to the angle of reflected evalhe sinus of the angle of the refracted
wave is proportional to the wave velocity for bathyer 1 and Layer 2.
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In geophysics, the refraction method uses a refdaatave with a critical angle of incidence
to determine the layering of subsoil. The critiaagle of incidence is defined as the smallest
angle which produces a refracted wave that trgyeiallel to the interface (Kramer, 1996).

refracted SV refracted SV
no no no
rm rm rm|
al al al
refracted P refracted P refracted SH
Layer 1 Layer 1 Layer 1
Layer 2 reflected P Layer 2 reflectedP Layer 2
incident P incident SV reflected SV incident SH reflected SH

reflected SV

Figure 2-11. Reflection and refraction of incidématdy waves.

If an incident SV-wave hits the free boundary a& #mgle smaller than the critical, the two
body waves reflect: P-wave and SV-wave (as
it can be seen in the middle sketch of
Figure 2-11). However, if an incident SV-
wave hits the free boundary at the angle larger
than the critical, only the SV-wave is
reflected. The energy that for smaller angles is
reflected as a P-wave is instead captured as a
surface wave with exponential decay of the
Figure 2-12. Reflected P-waves are @mplitude in the horizontal direction, as it is
captured at the surface. shown in Figure 2-12 (Andersen, 2006).

Surface P-wave

Baidya (2000) observed that the dominant freque(tbg, frequency at which an oscillating
foundation-soil system is experiencing the higlisplacements), of the layered soil system
decreases due to presence of the soft layer dopherhereas it increases due to presence of
stiff layer at the top.

2.10 Amplitude of a harmonically oscillating plate

Reissner’'s method

Lamb (1904) solved the response caused by a Medichorizontal point load, suddenly
applied onto the surface of an elastic half-spatéwo and three dimensions. The latter is
also known as the dynamic Boussinesq problem. d&dietion is obtained by using the
complex analysis, which is a branch of mathematicellysis, where the separate real and
imaginary parts of any analytic function must dgtisaplace’s equation. The equations of
motion were casted into the Laplace-radial wave mermdomain. An inverse Laplace
transform into the time domain was performed bytgonintegration, a method of evaluating
certain integrals along paths in the complex plasfortunately the final solution was an
indefinite integral whereby the solution is not Wmoand difficult to solve analytically and
boundary limits are either plus or minus infinityzero approaching the infinity (Chowdhury
& Dasgupta, 2009). Therefore for practical purposeafculation of the surface displacements
from an applied force, this solution was not fi@dtyet.
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Reissner (1936) used the same Lamb’s approachsbutreed a uniform stress distribution (or
uniformly loaded flexible circular area) insteadapoint load on an elastic half-space and
determined the vertical steady state responsevétigeal displacements at the centre of the
flexible loaded area are given by:

RE“Y /. .
u(t) =——(f, +if, ), (2-31)
Gr,
where:

u = displacement, [m]

Fo = amplitude of vertically exciting force, [N]

Mol = radius of a plate, [m]

fi, o = displacement (compliance) functions. [-]

The displacement functions are functions of theedigionless frequencyg, and Poisson’s
ratiov.

The dimensionless frequenayis calculated as follows:

_ p _a)rp,
a, —a)l’pl\/g —T, (2-32)

in which:
p = density of the medium. [kgAh

Reissner was able to deduce the displacement éunsctwhich were needed to obtain data of
engineering interest, for= 0,v = 0.25 and = 0.5. Because he left Germany and moved to
USA, he was not aware that his solution did noeagrith experimental data. Only a number
of years later it was discovered by others thatetiveas a sign mistake in one of the terms of
his half space solution (Reissner, 1996). Hereley dbrrected displacement functions are
given:

f =-0319(1- 029122 + 0023a" +...

! ( 13 % ) forv=0 (2-33)
f, = 0282J, (1145a,)+ 0.0516a, (L- 005632 +...

f. = —023901- 025a2 + 0.0175a" +...

! ( % o ) forv=0.25 (2-34)
f, = 0.1835J, (109a,) + 00483, (1- 0063a; +..)

f. =—0159|1- 025a +0.0153a% +...

! ( % o ) forv=0.5 (2-35)
f, = 0109J,(1047a,)+ 00464, (1- 006542 +..)

where:
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dimensionless frequency, [-]
Bessel function of the first kind, first order. []

Qo
Ji

The displacement functions graphically are reprieseim Figure 2-13.
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Figure 2-13. Reissner’s displacement functionsaffiexible ciruclar plate.

Reissner’s solution for the displacement amplitafiescillator motion is given by:

0= Ry o+ f, (2-36)
Grpl (1+ baé f1)2 + (baé fz)2 |

whereb is a dimensionless mass ratio:

I'-nvib

b= ey (2-37)
in which:
M = mass of a vibrating object. [kq]
The phase shithp between an exciting force and the soil respongeven by:
A¢:tan‘1( ;fzz . J (2-38)
f1+baﬂ(f1 +f, )

Reissner’s solution was derived for uniform veitisaesses (or a flexible plate). Knowing
that different stiffness of a plate causes differeontact vertical stresses in the soill,
researches were working on derivation of correspundisplacement functions.

Lysmer’s method

Reissner and Sagoci (1944) developed a methodhdaiotsional mode of vibration of a rigid
circular footing resting on the surface of an etalsalf-space.
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Sung (1953) and Quinlan (1953) independently solvg@doblem of the dynamic response of
a circular footing resting on an elastic half-spémrethree probable contact vertical stresses:
uniform, parabolic and rigid base approximation.

Arnold et al. (1955) computed the dynamic respaooisa rigid circular foundation on an
elastic half-space not only for the vertical vilwatmode but also for the rocking and sliding
motion.

Bycroft (1956) noted that contact vertical stressesd by Sung (1953) and Quinlan (1953)
are the equivalent dynamic stresses of their statimterparts. Beneath the rigid footing the
uniform displacement distribution is not alwaysreetly predicted because it varies with the
frequency. Therefore a weighted average of thelatisments beneath the footing and an
average magnitude of displacement (compliance)tioumg f, and f, were evaluated. The
solution was valid only for small frequency ratiqas < 1.5). Therefore later Bycroft (1977)
extended the solution for large frequencies. Valtieorizontal, rocking and yawing (rotation
around the vertical axis) vibration modes were extd.

Meanwhile Hsieh (1962) attempted to modify the ioad solution of Reissner. The aim was
to develop a mechanical analogue in a form of shugigree of freedom system. Hsieh was
the first who showed that the elastic half spacelma converted into a mechanical analogue
of a spring and a dashpot (Chowdhury & Dasgupt@920

The equation of the vertical vibration of a rigidcalar footing with a mass,;, resting on an
elastic half-space is as follows:

am,, +cv+ku= PRe'“, (2-39)
in which:
a = acceleration of the footing, [Mls
Y = velocity of the footing, [m/s]
C = coefficient, analogues to viscous damping, [Ns/m
k = coefficient, analogues to spring stiffness, [N/m
Po = amplitude of the soil reaction force. [KN]

Hsieh (1962) calculated the coefficients for anaksyspring and dashpot:

f

k= Grp| Tlfz , (2'40)
1 2
Gr, -f
1 2

The advantage of the spring — dashpot analoguthatsone can use the standard single
degree of freedom system, which has classical isakitfor amplitudes and displacements.
The only difference is that in this case, the egl@mt damping and stiffness are given by the
coefficientsk andc and these are frequency and Poisson’s ratio depénd
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Lysmer (1965) used Reissner’s solution but he @msk into account the work of Hsieh, who
demonstrated that an elastic half space can beedmaVvinto a mechanical analogue of a
spring and dashpot, as well as the work of Bycwftp was able to define the displacement
functions for rigid circular foundation, and propdsa simplified model for a vertical motion
of a rigid circular foundation. Lysmer treated staistribution under the foundation as a
function of frequency: for low frequencies the strés similar to the stress distribution for the
static case, whereas for high frequencies the sstlestribution approach the solution for
uniformly loaded half space. The rings method (spp&tion of uniformly loaded rings) was
used to solve the response of different stressilalisions. For that Lysmer used IBM 7090
computer. Finally he simplified the solution andveleped frequency independent
expressions for the coefficierksaandc for a rigid plate case:

_ 4Gr ,

k T (2-42)
34r?
c= T;',/Gp : (2-43)

Amongst different methods developed in the pastvibratory response of foundations,
Lysmer's method is quite popular because of itspoity. This methodology has been
proved to be quite accurate for the analysis adumdation in a low to medium frequency
range (Baidya, 2000). Nevertheless it is worth &ntion that it is an approximate method,
because the damping is taken such, that it would best fit for a dimensionless frequency
0.3 <&, < 0.8. Lysmer found that an error for small freggiesa, < 0.8 does not exceed 8 %
and for larger values @k and small values @ the relative error might be as great as 35 %.

Lysmer used a slightly different dimensionless nrasie than Reissner:

1-v, _1-v my

B= b : -
) ) pr; (2-44)
The displacement amplitude according to Lysmearisutated as follows:
G= F, /K
- ) 2-45
V- Ba;)" + (0852 N
And the phase shift between an exciting force aediynamic response:
Ap= tan‘l(_ O?anj. (2-46)
Ba; -1

Hall (1967) followed Lysmer’s success and developgdivalent static springs for both the
sliding and rocking mode and a solution for coupiacking and sliding motion.

Confined elasticity approach

Another approximate solution was suggested by Ver(R006). The author suggests to
neglect horizontal displacements (while they argy wmall compared to the vertical ones)
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and to use a confined elasticity. This approach fwsisproposed by Westergraad (1938) and
generalised for elastodynamics by Barends (1980@nTthe coefficientk andc for a rigid
circular plate on a confined elastic half space ld/doe:

(/T+2G)7TI‘pI wl @,

= , (2'47)
m  tane/w)
1
C :Eﬂmcrrfm/pG , (2-48)
in which:
A = Lamé's first parameter, = Ev [(1+v)(1-2v)] [N/m?]
m = material constant)f = 2(1— V) /(1—2V) [-]
We = characteristic angular frequenefy = 4G/ (,or; ) [rad/s]
The displacement amplitude according to the codfelasticity theory is given by:
2 -1
~_|| wexplwl w,) 16B w N
u=|—— - N Ustar » (2-49)
w, sinw/w,) mm.A-v)\ w
where:
Uy = static displacement. [m]
The static displacement is defined as follows:
~ - I:0 mc
ustat - ar I +ZG ! (2‘50)

pl

The characteristic frequency is given by:

/ 4G
W, = m (2-51)
pl

The phase shift between the exciting force andiffmamic response yields:

Ap =% =% : (2-52)

S

2.11 Surface vibrations near a harmonically oscillatingplate

According to Barkan (1962), vertical displacemesftthe surface at small distances from the
source of waves can be calculated by:
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c
|

v FOg [/ fie + f55 sin(at -Ag), (2-53)

\Y

in which:

shear wave velocity, [m/s]
displacement (compliance) functions for the acefvibration. [-]

Vs
flSl fZS

The phase shifthg between loading and displacements is calculated by

Ap = tan-l%. (2-54)

2s

The compliance functions usually are expanded anseries. These are the recommenfged
andf,s functions for Poisson’s ratiw= 0.25 and for small values kfr:

f=- 0119k_1r + 00895k r —0.0104{k.r | + 0.00046€k.r °

_ 7
0.0000109k.r)" +... (2-55)

f,. =—0.0988 J,(1.0877%_r )+ 0.0484- 0.00595.r }’ + 0.000240(k.r )*
- 0.00000484kr )° +

in which:
Ks = shear wave’s number, th
Jo = Bessel function of the first kind, zero order.

Displacements of the surface at large distanceas ffte wave source can be calculated as
follows:

K Fy k(k kz_z\/kz Ko \/k2 ) 2 sin(ai—krr_%j'

AT agk KT (2-56)
k21/ k> — k2
u k F co a-Kr——
' agk (2-57)
in which:
ko = compressional wave’s number, []
K = Rayleigh wave’s number. [-]
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The Rayleigh functiom, (which has one real positive root, which gives tth&o betweervs
andyv;) is defined as follows:

g, = (27 -k, -4k k2 - K2 k2 - K2 (2-58)

Here the assumption is made, that displacementargeé distances are caused only by
R-waves.

Barkan suggests to distinguish two different fieldtee near-field and the far-field, where

vibrations follow different laws. This is remarkabkince the material is elastic and linear so,
there should be no reason for a change of the \wewgagation laws. Therefore this issue
will be discussed and checked in Chapter 4.

For the near-field Barkan confined himself only tiee investigation of the vertical
components of vibration. Barkan explained that thibecause of practical interest. He also
solved, for the far-field the equations for bothtieal and horizontal displacements, but not
the horizontal component for the near-field.

2.12 Waves field under a harmonically oscillating plate

Miller and Pursey (1955) analysed the energy distibn between waves in the far-field.
Because it is a far-field situation, amplitudestioé body waves are rather small on the
surface, and are taken as zero.

circular footing

r‘z geometrical r" 7'0'5
- damping law _ - — -
- =

2N
RA/YLEIGH WAVE

relative amplitude

r
geometrical
damping law

Figure 2-14. Distribution of displacement waveaiira circular footing on a homogeneous,
isotropic, elastic half-space (Woods, 1968).

Miller and Pursey calculated the distribution oé ttotal energy between the P-, S- and R-
waves for homogenous half-space for 0.25. They found a distribution of: 67.4 % of R-
waves, 25.8 % of S-waves and 6.9 % of P-waves.eftwe approximately 2/3 of the input
energy goes to a surface (Rayleigh) wave and 1fBedody waves (S- and P-wave) for this
Poisson’s ratio.
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The variation of the displacement amplitudes of Bhe S- and R-waves was presented by
Woods (1968) in a well-known figure, see Figure £2-The wave-fronts have spacing
between them according to the velocities of thepagating waves. The shaded zones along
the wave fronts of the body waves indicate thetiredaamplitude of particle displacement as
a function of the dip angle. The Rayleigh wave’stical and horizontal components are also
shown on the leftward- and rightward-propagatinggaf the wave respectively. The region
in the figure of the shear-wave front in which taeger amplitudes occur is called the shear-
window.

This solution was the first step to investigateasafe wave types and their laws causing the
superposed vibration on the surface.

In Figure 2-14 there is a mistake regarding theybmdves’ attenuation law on the surface:
the attenuation law of body waves on the surfacehswvn to ber and in the body™.
Maybe this is a misinterpretation of Lamb’s findi(&uersch & Said, 2010), because as it is
already mentioned in Chapter 2.4, itTsat both surface and body.

2.13 Conclusions

Even in the simplest case, when the soil is homeges and isotropic and with the surface as
boundary, energy will travel with at least threesibavaves. The basic waves travel with
different propagation, radiation and material damgplaws. For man-made geotechnical

vibrations (where the shear strain amplitydés smaller than 0.01 %) the material damping

for each basic wave is expected to be nearly constinfortunately a distribution of the
individual material damping laws in these basic &sis unknown yet.

If the solil is heterogeneous, additional effectl @gcur, like scattering, dispersion, reflection
and/or refraction. This makes the vibration predits far more complex.

Also the existence of additional phases in the swkes the predictions of the vibrations
even more complex. For instance gas bubbles withplaibrations considerably and pore
water will create a second kind of P-wave.

Therefore it is decided to start this research ibnation prediction from the simplest case —

an oscillating plate on an elastic, homogeneous isotiopic half-space, where the plate
oscillates harmonically in vertical direction ame tsoil is unsaturated.
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3 HARMONICALLY OSCILLATING PLATE

3.1 Introduction

The simplest case to start with the investigatibman-made geotechnical vibrations near the
surface is a case of a plate on an elastic homogsneon-saturated isotropic half-space,
harmonically oscillating in vertical direction. Alytical methods, which were discussed in
the previous chapter will be compared to the FEMuation results.

3.2 Theory versus FEM

In order to check the analytical solutions desdiloe Chapter 2.10 and Chapter 2.11 the
finite element method software Plaxis 2D is used.

Soil and FE model properties

The used geometry of the model can be found inrEiged.

Osc1llatmg weightless disc
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Figure 3-1. Geometry of the FE model for vibrations

The general force-displacement is based on thevally equation:

[MI{C} +[CH{a} +[KKu} ={F}, (3-1)
in which:

[M] = mass matrix, [kq]
[C] = damping matrix, [N/(m/s)]
[K] = stiffness matrix, [N/m]
{F} = force vector, [N]
{u} = displacements vector, [m]
{u,{up = velocities and accelerations vectors. [m/s] sfin/
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The mesh was updated for the surface vibrationutations depending on the frequency.
This was done in order to make sure that there aeleast 5 elements per wave length. Also
the time step was controlled in order to prevemtaae to travel more than one element per

time step.

The modelled area is 50 m in both length and deptinface calculation points for vibration
recordings were placed from radius 1 m to 20 ni, it distance from each other. The soil is

modelled with 15-node triangle elements (Figure.3-2

An element with 15-nodes provides a fourth ordéerjpolation for displacements and the
numerical integration involves twelve Gauss po(stgess points).

The model’'s elastic properties are the Young’s nugle = 50 MPa and the Poisson’s ratio
v =0.25. Unit weight of the soil medium= 20 kN/n?. The weightless rigid plate has a
radiusr, = 1.0 m. The interface between the plate and @llessmodelled as rigid. The plate

is loaded by a harmonical vertical stregs which has an amplitude of 10 kPa. Different

loading frequencies are used.

>\<

Nodes

|

- a -
3 [ L] .
." J > x J X'- T -

<

Stress points ‘ x>
x ~° -
el X X Xy
b)

a)
Figure 3-2. a) Axisymmetric problem b) 15-noderigalar soil elements (Plaxis bv, 2015).

The damping matrix@] represents the material damping. In Plaxis 2Dyl&gh damping is
used, where(] is a function of the mass and stiffness matrieesprding:

[C]=a[M]+ BIK], (3-2)
where:
a = determines the influence of mass in the systelarsping, [-]
S = determines the influence of stiffness in theeyss damping. [-]

The coefficientsa. and  were kept zero in this simulation, to avoid anpeyof material
damping.
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Results: amplitude of the shaker

All analytical methods, described to evaluate tlgaagnic amplitude of an oscillating rigid
plate, were compared with the results of Finitentdat simulations performed by Plaxis 2D
software.

The ratio of the dynamic displacement to the stdisgplacement (Boussinesq solution) is
used in the vertical axis, and the dimensionlesxjuency in the horizontal axis in
Figure 3-3 a). The figure shows, that Reissnepisiton with Sung’s (1953) displacement
functions f; and f, for a weightless rigid plate oscillating on ansti@a half space with
Poisson’s ratior = 0.25, as well as the Confined Elasticity apphoacacceptable for very
small dimensionless frequenciag but for higher frequencies rapidly becomes inaaieu
But Lysmer’s solution corresponds to the FEM resuéiry accurately.

12 : — 2
------- Sung (rigid base) ) .
— 13 = = Lysmer — _ 151 e _..°_‘,._'...Q3o’-.o‘
= ’}‘\ Confined Elasticity ERRE ..,-‘.,.’
S08 1 = R
= s i
= 'S s 0.5 ’0’
F06 A \ £ 0 - — T
N b8 T [ e Sung (rigid base)
= 04 A ? g,j'OQ 1| = — Lysmer
= 55 1 Confined Elasticity
202 - ] e FEM
[ 1S 4 7
() T T T T T -2
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Dimensionless frequency a; [-] Dimensionless frequency a, [-]
a) b)

Figure 3-3. Comparison of analytical solutions tBM: weightless rigid plate a) Relative
displacement amplitudes; b) Phase shifts.

The displacement functions deduced by Sung (19&3)e calculated as follows:

f, = —(0.1875 - 0.0703131a2 + 0.006131a?),

3 5 (3-3)
f, = 0.148594 a, - 0.023677 a: + 0.001291a] .

Also a comparison between the analytical and nuwakyi obtained phase shifts has been
made and showed in Figure 3-3 b). Here Lysmer’atgol also shows the best match with
the FEM results.

Verruijt noticed that in practice only in case dadry rapid fluctuations the dimensionless
frequency may be larger than one. An example oh suphenomenon is pile driving, by
hammering or by high frequency vibrating (Verruig006). Therefore for an oscillating
plate’s problem any of the solutions can be usederiheless the Lysmer’s solution has the
lowest error over a total range of dimensionlesguencies.

The amplitudes of the rigid plate also checked dovibrating rigid plate with mass. The

calculations were performed with four different nfdl mass ratio® = 0.5, 1.0, 2.0 and 5.0
and the results can be seen in Figure 3-4.
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As it can be seen from the figure below, Lysmepgraach is the most accurate, and the
others two over predict the amplitudes of vibration

3 6
|L§‘Slner Vs. FEM| —e—FEM (B=0.5) | Confined Elasticity vs. FEM

25 —&— FEM (B=1.0) — 5 _
= —=—TFEM (B=2.0) = B=5 —e— FEM (B=0.5)
s, ——FEM B=50)|| 5 4 | W\ —a&—FEM (B=1.0)
< < —2—FEM (B=2.0)
=15 T3 / \ —o—FEM (B=5.0)
3 g
Bl B2
705 R €

() T T T T T () T T T T T %

0 025 05 075 1 1.25 1.5 0 025 05 075 1 125 15
Dimensionless frequency a; [-] Dimensionless frequency «; [-]
3.5

| Reissner (Sung's f}. f5) vs. FEM

3 4
s=s [ —6—FEM (B=03)
—e=— FEM (B=1.0)
—+—FEM (B=2.0)
—+— FEM (B=5.0)

Displ. ratio uy,/11 g, [-]
0

0 025 05 075 1 1.25 15
Dimensionless frequency a; [-]

Figure 3-4. Comparison of analytical solutions tBM¥: rigid plate with mass.
Results: amplitudes on the surface

Barkan’s solution for the vibration amplitudes ¢ tsoil surface is also compared with the
results of FE modelling. The vibration frequencyswenanged in order to compare different
dimensionless frequencies. Figure 3-5 shows, that the vertical displacemeduots a
weightless rigid plate in the near-field (up toal4 m, depending oa,) can be rather well
represented by the Barkan near-field equation.

Nevertheless the far-field solution for the vertieanplitudes of displacements provides
comparable results only for low dimensionless fegtpies (probably fog, < 0.3).

From Figure 3-6 it can be seen, that Barkan’s iidfsolution for horizontal displacement
amplitudes is also only correct for small dimenfssa frequenciesa{ < 0.3). For the higher
dimensionless frequencies, just like the far-fietdution for the vertical amplitudes, the far-
field solution for the horizontal amplitudes prosglvalues, very different from the FEM
results.

The sudden jumps of the near-field solution, whegoes to infinity, come from the fact that
this solution was derived for small values lafr only. After this jump, Barkan (1962)
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suggested to use a far-field solution, in whichyaihle R-wave is taken into account. This
shows that the solution itself is not continuous.
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Figure 3-5. Vertical displacement amplitudes ongheface at different dimensionless
frequencies @

It is worth mentioning, that the shape of the fatef solutions (both vertical and horizontal)
is quite good, but the positioning of the curvevi®ng. In other words, it might be possible
to use the far-field solution’s curve by correctingpy an additional frequency dependent
variable. Frequency dependence is required, becthesevertical position of the curve

changes with different frequencies (as can be seEmgure 3-5 and Figure 3-6).
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Figure 3-6. Horizontal displacement amplitudes ba surface at different dimensionless
frequencies @

3.3 Conclusions

Analytical solutions, for a harmonically oscillagiplate on an elastic homogeneous isotropic
half-space, have been compared with the FEM cdlonlaesults. There are quite a few
solutions to calculate vibration amplitudes andgghshifts of the plate itself, but there is only
Barkan’s method, to calculate the amplitudes arabelshifts of the surface vibration, further
away from the source.

The comparison of the analytical solutions with thEM showed that for the vertical
vibration amplitude of an oscillating rigid plateysmer’s analytical solution demonstrates
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similar results as the FEM calculations. The cadirelasticity solution as well as the
Reissner’s solution (with Sung’s displacement fiomg) could be used for very low
dimensionless frequencies only.

The comparison of Barkan’s solution, which is utidoately for weightless plates only, and
FEM showed similar results only for the near-figldne, whereas the far-field zone gave
similar results for the FEM calculations only foml dimensionless frequencieg € 0.3).

Barkan’s far-field solution still could be useditifwould be modified in such a way, that it
becomes a smooth continuation of the near-fieldutgwi. This could be achieved by
introducing an additional frequency dependent \deia

Barkan’s division of the wave field into the neand far-field was unexpected, because the
problem is linear. This, and the disagreements é&tmsome analytical solutions and FEM
results, encouraged to investigate the problemnobscillating circular rigid plate more
carefully, by inspecting the wave-field itself. $hs done in the following chapter.
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4 DECOMPOSITION OF WAVES

4.1 Introduction

A wave on the soil surface can be seen as a sugiggooof several types of waves with each
its own behaviour. Therefore to have a bettemimsinto the propagation of vibrations in a
soil medium, the measured signal has to be decasdpiogo the basic waves and analysed
separately. A main problem in the field is thatidgrharmonic oscillations, the different
types of waves cannot be measured independently, thhe superposed velocities or
accelerations. So, in order to study the measurtsnanway to decompose the superposed
waves into basic waves, should be found first.

4.2 Decomposition technique

The problem has been solved for a homogenousjcetasd isotropic soil, which is disturbed
by a harmonically oscillating plate on the surfé€mgure 4-1). It is assumed that there is no
material damping.

£ - Vibration measurement points
1 L
| Y~ R ~ I an

3
1
l X

y X1

Figure 4-1. Sketch of an oscillating plate and mgesent points.

The displacement of each point on the soil surfiacelirectioni can be described as a
superposition of the displacements of the threelveaves in that point:

ui (r1t) = up,i (r1t) + us,i (r,t) +ur,i (r’t) ' (4'1)

in which:
u,(rt = displacement of thewave in time and space, [m]
. = index indicating the x or y direction, [-]
j = index indicating the wave type (P-, S- or R-wave [-]

By taking into account the propagation laws of gemeral waves, Equation (4-1) can be
rewritten for any measurement point as follows:

u (r,t)y =a,,sin(at -k r —Ag ) + 0, sin(at —kyr —Ag,)
-0, cosat —k,r —Ag,), (4-2)

u,(r,t)=u, sin(at -k r —Ag )+, sin(at -k —Ag,)

+0, , sin(at —k,r —Ag,), (4-3)

where:
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d;; = amplitude of th¢ wave ini direction, [m]

) = angular frequency, [m]

K = wave number, [m]

. = index indicating the x or y direction, [-]
= index indicating the wave type. [-]

In order to relate the measured vibrations to chfiié points with different distances, the
attenuation laws of the basic waves will be usdte amplitudes of the body waves (P-waves
and S-waves) attenuate proportional ¥4 and the surface wave (R-wave) attenuates
proportional tax®>, wherex is the distance from the axis of symmetry, whickthie middle of
the plate (Figure 4-1). For high distances or &y small platex= r. Now the vibration in
any measurement poilt= 1...m can be expressed as a function of amplitudes yrotrer
point, for example the®ipoint:

Uy (1 8) =0, sinad =K f, —Ag)) L+, sin(et K, —Ad,) L
' o Xk o X

X (4-4)
—U,,, coswt —k.r, —Ad,) f— :
X«
A . X | om . X
U, (r,t)y=u,  sin(at -k r —Ag )—+U,, , sin(at -k, —Ad )—
X X
k k (4_5)

+Gr’yylsin(wt -k, r, —Ag, )\/z .
Xy

The idea is that, if one measures at more indepgrideations (measurement points), then
the number of unknowns (the amplitudes of the basiges) can be found.

The phase shiftag, of the basic waves are assumed to be zero (whictbe checked), with
this, a system of equations can be assembled dwetisas follows:

[ A{x} ={u}, (4-6)
in which:
[A] = coefficient matrix, []
{x} = vector of unknowns (the amplitudes), [m]
{u} = vector of known values (vibration displaceme@nts [m]

In this case, there are more equations than unksidgwhich is made intentionally in order to
represent the surface more accurate), the systesveis determined and can be solved by
using the least squares method. For that both siidse Equation (4-6) is multiplied by the
transpose matrix of coefficientd\]['. In this way, the system becomes a standard square
system of linear equations, which are called threnab equations:
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[AITTA X} =[AT{u}, (4-7)
where:

{x} = the least squares solution. [m]

The standard square system of linear equationbeaolved as follows.

(R AT AT (4-8)

Nevertheless if the phase shifig; of the basic waves are found not to be zero, then
system of equations cannot be solved directly bygughe same approach. This is, because
the system of equations is not linear anymore.nGother words, the phase shifts cannot be
separated from the coefficient matri] [and to be put into vectox}. The solution has to be
found by using the least squares method in antikeravay. This is an optimisation problem,
where the objective function minimises the sumhefsquares of differences.

To evaluate the precision of the soluti®,value (often referred to as the goodness ofit) i
calculated, where 0 means no correlation at alllanteans the perfect fit.

R?=1- —, (4-9)
Z (uk - Uk)
where:
R = correlation factor, [-]
Uk = measured displacements, [m]
Uy = back-calculated displacements, [m]
U, = average of the measured displacements. [m]

In this way, not only the unknown amplitudes of tesic waves are found, but also their
phase shifts (which must be zero, according toctiveent theory). The technique described
above, can be used to decompose a measured wauiarnhree basic waves and to check if
the superposition of the basic waves correlateh thié measurements. For example — the
back-calculated superposed signal can be usedchsck, as well as the theoretical ratio of
the R-wave’'s amplitudes on the surfagg, /d, . A Matlab code for the decomposition

technique is provided in O.

4.3 Numerical simulation

In order to check this technique, for decomposirsyigerposed wave into its basic waves, a
2-dimensional, axial symmetrical numerical simuatiwas performed using the Finite
Element Method software Plaxis 2D. The same FE inads used, which is described in
Chapter 3.2. The material damping was also ket @ehich is assumed in this technique).

Ten calculation points, for recording the displaeets, were placed on the soil surface from
radius 15 m to 24 m, at 1 m distance from eachroffiee soil is modelled with 15-node
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triangle elements. The oscillating plate has ausdif 0.2 m. In Plaxis 2D there is no rigid
plate option and prescribed displacements are $ed in order to stay closer to the practical
problems, where the force is controlled. Therethee plate is modelled with plate elements
with the bending stiffnes&l = 24 MNnf/m (which is practically rigid for this problem)h&
interface between the plate and the soil is modele rigid. First the plate is loaded with a
static load of 20 kPa and later a harmonic loatil®f kPa at 10 Hz is introduced. Unit weight
of the soil mediuny = 20 kN/n?.

4.4 Simulation results

The displacements were first used after about 3syso that the starting up effect of the
harmonic load has vanished. The time window forcdleulations was also selected such that
are no reflections yet from the absorbing boundas@ce they do not absorb perfectly.

First attempt: Peak displacements

The idea of the first attempt was to use only tlgpldcements which were calculated at a
selected time when the displacement reached a(seakred dots at peak of the dashed line
in Figure 4-2). It was assumed that the three basies were in phase (phase shifisare
zero) with the original/superposed wave, similairashe analytical solution of Miller and
Pursey (1955). Therefore an assembled system atieqa was solved with the least squares
method according to Equation (4-8).

From the calculated basic waves, the total/supexpaisplacement can be back-calculated
(when three basic waves are superposed) and cothpatie the original total wave, see
Figure 4-2. The correlation factors between FEMwattion and back-calculated superposed
wave are very low. The factor of the vertical comgat even becomes negative, which
means there is no good solution. Also the ratithefR-wave’s amplitudes ,, /d, ,, = 373,

which is much greater than the theoretidg|, /d, ,, = 0682.

1 2

£ ux Back Cale. | | &
=05 1 - — —ux FEM /| = 1
= =
5 0 2 0
S .05 A E -1 ——uy Back Calc. |
= = :
< 0]
s > - = —uy FEM

-1 -2

0.4 042 044 046 048 0.5 0.4 042 044 046 048 0.5
Time [s] Time [s]

Figure 4-2. First attempt: back-calculated results FEM (Plaxis) for point No. 1.

Only for the selected time (the peak of the dadime] the solution almost fitted, but clearly
not for the rest of the wave.
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Second attempt: Phase shifts are not zero & multigel time points

A new attempt was made, but this time with allowihg basic waves to have different
phases as the original/superposed wave. This l@adie unknowns (six amplitudes and
three phase shifts). Since the phases of the basies are now unknowns, the system of
equations is not linear anymore, so the solutioth feabe found by using the least square
method in an iterative way. In this attempt notyothle peak values of the time-displacement
graph, but all time points of one cycle were uddte periodl = 0.1 s. The calculations were

performed with a time step oht=0.001 s, which gives 100 time points in a time-
displacement graph. Since there are 10 field powith each 2 degrees of freedom

(horizontal and vertical); there is a system of @@guations. The horizontal and vertical
displacements of the basic waves were solved andrerwn in Figure 4-3.

0.8 1
— — —P-wave =l — —P-wave
=1 TN | e S_wave S N | e S_wave
2 0.4 - R-wave E 0.5 1 ——R-wave
@ =
5 e T b Nl _—1 8 VPR DUpUSyp Ry
§ 0 = - N"N_\ P é N e . T ——
= 8
2 32
< 04 1 —=-0.5 1
¥ 0.4 = 5
T >

-0.8 -1

0.4 042 044 046 048 0.5 0.4 042 044 046 048 0.5
Time [s] Time [s]

Figure 4-3. Phase shifts: horizontal and verticaplacements of the basic waves for
calculation point No. 1.

This time a perfect fit of the wave displacemenésiound for the back calculated wave with
the recorded wave of Plaxis. The correlation fa&bis equal to 0.9986 for the combined
displacements.

Figure 4-4 shows the displacements on the surfaome cycle of the three basic waves in
point 1. Interesting is to note that both the P-evand the S-wave do not act completely flat
(there is a vertical component for the P-wave ahdr&ontal one for the S-wave).

— 02 I 1 I
E = = P-wave =l —R-wave
g 01 || eeeee S-wave g 05 =
= 0 e 2 9
T — T ;: T T
: T===C
5 = .
£ 0.1 1 S 05 |
o . . . =
> Propagation direction >5
-0.2 I -1
-0.2 -0.1 0 0.1 0.2 -1 -0.5 0 0.5 1
Horizontal displacement [pm] Horizontal displacement [pum]

Figure 4-4. Phase shifts: displacements on theaserbf one cycle of the three basic waves.
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Also interesting is the ratio of the R-wave’s arhles is found to bé, ,, /G, ,, = 0.655,
which is in a quite good agreement with the thecaetatiod, ,, /d, ,, = 0.682.

r,x,k

Third attempt: Flat basic body waves

The same attempt was done, but this time with fiseraption that the body waves are flat, so
the horizontal amplitude of the S-wave and theie&itamplitude of the P-wave are zero.

Also the ratio of the theoretical R-wave’s ampli#sdvas used, so rati ,, /d, , = 0.682.

This reduces the amount of unknowns back to sreétlamplitudes + three phase shifts).
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Figure 4-5.Flat waves: horizontal and vertical displacementshe basic waves for
calculation point No. 1.

The horizontal and vertical displacements of theidbaaves were solved and are shown in
Figure 4-5.
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Figure 4-6.Flat waves: displacements on the surface of onke ®fahe three basic waves.

Figure 4-6 shows the displacements on the surfaome cycle of the three basic waves in
calculation point 1. As prescribed both the P-wae the S-wave act completely flat
(horizontal for the P-wave and vertical for the 8wa) and the ratio of the R-wave’s
amplitudes is the theoretical ong:,, /4G, ,, = 0.682.
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1.0 —— -
Disc Load

0.5 --=-=--R-wave x
— — S-wavey
— - =R-wavey

0.0

05 |
> /

Normalised amplitude [-]

-1.0 B= =

0.5 -0.25 0 0.25
Cycle
Figure 4-7.Phase shifts of the basic waves (flat waves).

The prescription for the body waves to be flat forxdhe amplitudes ratio of R-wave to be as
the theoretical one, does not change the corralat@tor much. The combined mean
correlation factor for the horizontal and verticdisplacements remains very high
R? = 0.9982. The amplitudes and phase shifts are stiomthe 3% and 3 attempt in Table
4-1. Mostly the difference between the two attenptsther small. For the phase shift of the
S-wave, the difference was found to be biggers = -96.1° versudgps = -71.1°.

Table 4-1. Effect of the reduction of unknowns.

Unknown 9 unknowns 6 unknowns Units
P-wave amplitude (horizontal direction) 0.117 0.113 [um]
S-wave amplitude (vertical direction) 0.031 0.039 um[
R-wave amplitude (horizontal direction) 0.595 0.614 [um]
P-wave amplitude (vertical direction) -0.034 - und]
S-wave amplitude (horizontal direction) 0.03 - un
R-wave amplitude (vertical direction) 0.908 fronioa [um]
P-wave phase shift -8.7 -12.1 [deg]
S-wave phase shift -96.1 -71.1 [deg]
51.9 53.5 [deg]

R-wave phase shift

Ratio of the R-wave amplitudes

horizontal / vertical: 0.655 0.682 [-]
average correlation fact&®: 0.9986 0.9982 [-1]

4.5 Energy balance

Since the wave is now decomposed, the energy balzart be checked. In the finite element
model there is no material damping, therefore théted energy from the oscillating plate on
the surface and the energy carried by the basiesvahould be in balance (principle of

energy conservation).
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Total energy

First the energy emitted from the source was catedl For displacement recordings one
point on the plate was selected. One point is gefit, because the plate is stiff enough, so its

own deformations are negligible.

The emitted energy per cycle from the oscillatingtep was calculated from the load
displacement ellipse, which represents the worlkcgele (Figure 4-8).

AE = 7F,(sin(Ag), (4-10)
where:
Fo = amplitude of vertically exciting force, [N]
a = displacement amplitude of the plate vibration, m] [
Ap = phase shift between the exciting force andresibonse. [rad]
1500
| Funax = 1256.6 N
1000 |
500
=
= 0] ]
= 500 [ur=5.710"m
-1000
‘ Aellipse ST Fmax *Up=0 = 0.0225 Nm
-1500
-6.E-05 -4 E-05 -2.E-05 0.E+00 2.E-05 4.E-05 6.E-05

Vertical displacement [m]
Figure 4-8.Total emitted energy per cycle.

In Equation (4-10) the amplitude of the verticadyciting force is known. The displacement
amplitude and the phase shift between the excitinrge and soil response can be found using
the analytical methods discussed in Chapter 1 amjuU-EM calculations. Calculations of
the vibration amplitudes and phase shifts accordmwell as the total emitted energy can be

seen in Table 4-2.

Table 4-2. Amplitudes, phase shifts and the totatted energy per cycle.

Method Displacement amplitudgri] Phase shift [rad] Energy [Nm]
FEM (Plaxis) 53.2 0.1071 0.0225
Reissner (Sungfs, f,) 57.7 0.0996 0.0226
Lysmer 57.4 0.1064 0.0241
Confined Elasticity 57.8 0.0628 0.0143

The total emitted energy in the finite element gllttons was found to be 0.0225 Nm per
cycle. As it can be seen in Table 4-2, from thelydital solutions, the Lysmer’s solution

gives the closest match.
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Energy in the basic waves

The kinetic and potential energy are in balancevaéume in a wave. Therefore, the total
energy per volume can be expressed by either aoh.thEhe total energy per volume,
expressed by the kinetic energy per volume, fonexdimensional wave, is:

Eo = 2B, :%,0(4’202 , (4-11)
where:
E o = total energy per volume, [NAin
E «in = kinetic energy per volume, [NAin
P = density of the medium, [kgAh
a = displacement amplitude. [m]

The energy in the R-wave was calculated by usiegathalytical solution of the R-wave’s
amplitudes in depth. These functions are publisimediterature of soil mechanics, like
Kramer (1996). In order to estimate the total eperythe R-wave per cycl&y:,, the
functions of the squared amplitudes (according qadfon (4-11) energy is proportional to
the squared of the amplitudes) are integrated depth for one wave length:

1 T ~2 ~2
Etot,r = E,OC(JZ (ZnAr) _[( rX + ur,y)dy- (4‘12)
y=0
where:
Ar = length of the R-wave, [m]
G, | = amplitude of the R-wave indirection. [m]

Unfortunately the analytical amplitude functionstbé P- and S-waves, used by Miller and
Pursey (1955), exist only for a very large radiusere the amplitudes of the P- and S-waves
are equal to zero on the surface. This is cleady the case here. Therefore first the
amplitude functions of the P- and S-waves havestodnstructed.

For that, the displacements were recorded in 1&iaddl points, placed in the soil volume
(see Figure 4-9 on the left). By using the ampbkdf the R-wave at the surface and the
theoretical amplitude functions in depth, the dispinents of the R-wave were calculated for
the same 19 points. These displacements in timbeR-wave were subtracted from the
recorded total displacements. The residual disptecés in x and y directions were projected
onto the x’ and y’ axis (see Figure 4-9 on the tigihich are regarded to be the directions of
the motion of an individual particle of the P- aBewvaves, respectively. In this way, for the
P- and S-waves, the amplitudes of the displacenienxtand yaxes were calculated.

Displacement amplitudes of the P- and S-waves dowprto the solution of Miller and
Pursey for the far-field can be seen in Figure 484vave amplitudes change their sign,
which means that points in different zones of tigm snove to the different directions (they
are shifted by 1809).
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Displacement amplitudes of the P- and S-waves fteerdecomposed waves, obtained from
the Plaxis calculations, are presented in Figuld 4Here it should be noted, that the phase
shifts of the body waves in the soil body were etéht from the ones calculated on the

surface. Because of that, the amplitudes in thiebsaly could not be found using only a one

dimensional wave equation.

Coordinate system x'-y' at any point &

Displacements in x'-y' coordinate system
g (ro0) = u,, (r,0)-sin(8,)+u,,(r,1)-cos(6,)

U, (r.t)=-u,,(r1) cos(8, )+ u,,(r,0)-sin (6,)

Figure 4-9. Additional points for the amplitudesSsfand P-waves.

The amplitudes were calculated just by taking aeraye of the maximum and minimum

displacements of a body wave with not taking a phstsft into account. Although it has

hardly any influence on the energy balance, itvislent that the wave behaviour is much
more complicated in depth. Reasons for this co@dthe plate diameter makes a curved
wave-front (not a half-sphere), but probably marpartant is that the function of the R-

wave amplitudes may not be applicable for the fiedd; where some additional calculation

points were placed, while the R-wave needs timéjsiance, to develop in depth.
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Figure 4-10. Amplitudes of the P- and S-waves @vifl Pursey, 1955).
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The reasons for differences between Figure 4-10Faauare 4-11, which show the functions
of amplitudes for P- and S-waves, are explaingdhapter 4.6.

The total energy in the P- (or S-wave) per cyElgys) can be calculated by integrating the
squared functions of the amplitudes (energy is @rignal to the squared of the amplitudes)
over a surface of a half ball for one wave length:

O=r/

1 2
=0
where:
Ap(s) = length of the P-wave (S-wave). [m]
Horizontal distance [m] Horizontal distance [m]
0O 2 4 o6 8 10 12 14 16 0O 2 4 o6 8 10 12 14 16
() 1 1 1 1 1 1 1 () 1 1 1 1 1 1 1
5 —CircleR=15m , CircleR=15m
—P-wave lamplitudes| - 102 ) = S-wave |amplitudes| - 10'2

4 .
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Figure 4-11. Amplitudes of the P- and S-waves olethirom the Plaxis calculations.

The total amount of energy carried by the basic esawas summed and found to be
0.0224 Nm per cycle, which is the same as the eotatted energy of 0.0224 Nm per cycle.

This fact that the emitted energy is the same asnfiegrated in waves at a distance of 15 m
away from the source, shows that the numerical dagngaf FE model is negligible.

Distribution of Energy in Waves

With this the distribution of the total energy ihet basic waves can be checked. This
distribution was solved analytically by Miller aidirsey (1955), for soil with Poisson’s ratio
v = 0.25, but this has never been checked numeyicliie percentages of the total energy
distribution in the basic waves can be found inl&a&b3.

As can be seen from this table, the distributiothefenergy based on the analytical solution

of Miller and Pursey fits reasonably well to themerical solution, despite the fact that Miller
and Pursey were not aware of the phase shiftsedbalsic waves.
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Table 4-3. Distribution of the total energy in thasic waves.

Solution P-wave [%] S-wave [%] R-wave [%0]
Analytical 6.9 25.8 67.4
FEM 10.8 28.5 60.7

The small differences can maybe be explained bytifierent initial conditions between the
solutions. First, in the analytical solution no phashifts were considered. Second, a very
small and flexible plate with infinite small radiuas used; while in the numerical simulation
a rigid plate was used. Third, numerical methodsgs have residual errors.

4.6 Near-field problem

After the superposed wave is decomposed into basies, it is possible to use their
propagation and attenuation laws to calculate deghents at any point and any time. By
superposing the displacements of the decomposedsnme gets a back-calculated vibration
signal. This signal can be compared with the odabimave. This has been done for the same
FE model calculations. The amplitudes of the baaktdated signal were compared with the
FEM output. The comparison can be found in Figule 4
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Figure 4-12. Back calculated and superposed amgdisuof the decomposed waves.

The figure shows, that close to the source the doatidulated signal amplitudes differ from
the Plaxis calculations. This close distance camdmeed the near-field. It looks as if in the
near-field the total signal has a different attéimmalaw. One reason for this can be that the
basic waves (or at least one of them) have alsthanattenuation law than is prescribed (
for the body waves amd* for the surface wave).

Having the superposed signal amplitudes back-catiedIclose to the plate, it is possible also
to look into the back-calculated signals of theibagves separately, just on the edge of the
plate. This is shown in Figure 4-13. The bold bléok represents the vertical movement of
the plate. Other sine curves represent differesicb@aves. When the vertical movement of
the plate is compared to the elasto-static Bousgirs®lution for the settlement of a rigid
plate (the highest purple line in the figure) ihdae seen that the elasto-static solution is very
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close to the vertical movement of the plate. Thisans that the biggest part of the plate
displacement is caused by the static movementt &mibe assumed, that all the points, close
to the plate, are also influenced by this phenome@f course, the elasto-static solution
would be not so close to the dynamic displacemetiteoplate if higher frequencies would be
used. However, this property could be used to sfynghle dynamic calculations.

This phenomenon can also be explained by an enenggfer from one wave to another. That
could explain the results of the superposed sign#éihe near-field. The most likely energy
transfer is from the P- and S-waves to the R-wavéhe source there is no R-wave and this
wave is formed gradually, because it needs to reache depth to get its full shape. This
hypothesis is also supported by other researclhi&es,Wolf (1994), who uses a scenic
explanation: “to understand the essence of Rayleighes, a biological analogy is helpful.
The Rayleigh wave is “conceived” at the source i@t the far-field boundary, and “lives”
in the far-field. The near-field is the “pregnancyégion, in which the Rayleigh wave
gradually develops”.

This also explains the differences between Figui® 4nd Figure 4-11. In the far- and near-
fields the amplitude functions are different be@aakthe near-field phenomenon.
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Figure 4-13. Back calculated basic waves on theeaxfghe rigid plate.

If there is no horizontal displacement, then thisreno R-wave just below the oscillating
plate, and then the functions of P- and S-wave &nags should look like shown in Figure
4-14.

For these distributions the energy balance carhbeked. The total energy in the P-wave is:

1 O=ml2 20 2
Etot,p = Epa)z(Zle/]p) J. ((U _70j 3in@ UledH (4_14)

0=0

The total energy in the S-wave is:

1 0=m/2 20 2
S 3 oW’ (2n p|/‘s) J' [(7 Hj BinoL, Jdé’ : (4-15)
©=0
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Using the vertical displacement amplitudeas it was calculated by using FEM, it is found
thatEorp = 0.0094 Nm anéo:s = 0.0132 Nm. In total this gives, = 0.0226 Nm.

The total calculated energy at the source wherey dhke P- and S-wave exist,
Ewt = 0.0226 Nm. This is almost equal to the totalteadi energy per cycle 0.0225 Nm (see
Chapter 4.5). The difference is negligible and cefnem the assumption, that the movement
of the plate causes the same effect as the movesh#ém¢ surface of the half-sphere with the
same radius as the plate.
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Figure 4-14. P- and S-wave amplitudes under théepla

The calculations above shows, that the S-wave H8ds % and the P-wave holds 41.5 % of
the total energy just below the plate, where thed®e does not exist yet. Chapter 4.5 shows,
that in the far-field P-, S-, and R-waves carri@es81%, 28.5 % and 60.7 % of the total energy
respectively.
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Figure 4-15. Energy transmission between the basizes.
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A possible way to illustrate the energy transmissie by using a gradual law, see
Figure 4-15. The idea is that the lack of confinetred the surface for the compressional and
shear waves creates additional movements at tfecsuwvhich results in Rayleigh waves.

Because of this energy transmission, the lawshiraimplitude functions will change as well.
Graphically they might look like shown in Figurel8-
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Figure 4-16. Amplitude functions in the Near- arat-field.

4.7 Conclusions

The finite element model example in this chaptecdéses a harmonically oscillating plate
on a homogeneous half-space. A method has beerlogedeto decompose a recorded
superposed soil wave into its basic waves when iphellgeophones are used. From the
recorded data a system of non-linear equations lm@nassembled with six unknown
parameters (three amplitudes and three phase)sHiftese six parameters can be solved by
using an iterative way of the least square metfibd leads to a decomposition into the three
basic waves, with each its own amplitude and plsasie The superposition of only these
basic waves describes very accurately the recosigxkrposed soil wave, proving the
existence of only these three basic waves. Thenfysdprove also that all three basic waves
have phase shifts (in the far-field) and these glsdsfts are all different from each other.
Both facts were not known before.

The energy balance shows that the amount of ensftedgy by the load on the plate is the
same as of the sum of energies of the basic waves.is another type of evidence that only
three basic waves exist. The distribution of thergn over the three basic waves based on
the analytical solution of Miller and Pursey (1958% reasonably well to the numerical
solution shown in this chapter, despite the faat Miller and Pursey were not aware of the
phase shifts of the basic waves. The major parhefenergy (more than 60 %) from a
vertically oscillating plate on the surface gods ithe R-wave.
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Near the vibrating plate, the displacement ampditudo not follow the same attenuation law
such as further away from the source. This proves éxistence of the near-field
phenomenon. It must be concluded that the R-wageggrstarts at zero just at the source and
grows in the near-field zone due to an energy tréssion (body waves are transferring
energy to the R-wave). After some distance (in fdrefield), the R-wave becomes fully
developed. This phenomenon is not understood cateiplyet, but it does explain existence
of the phase shifts of the basic waves.

60



Shaker test

5 SHAKER TEST

5.1 Introduction

Real field tests of a shaker on the ground surgdceal soil have been performed in order to
compare real vibrations with analytical and FEMcoédtions. First of all, the shaker design
will be explained. Secondly the test site will b&roduced, and finally the test results will be
presented and discussed and conclusions will hendra

5.2 Shaker design

In order to produce harmonic vibrations on the gebaurface, a particular shaker should be
made. The requirements for it are as follows:

It should produce sine (or close to sine) vibragion the surface;

It should be frequency controlled;

It should be powerful enough, to create sufficigraund vibrations in the range of
limitations of the geophones;

It should be transportable.

To fulfil the last two requirements together ishext difficult. The more powerful the shaker,
the more difficult it is to transport.

It was decided to use two counter rotating electifizators (with rotating eccentric masses)
to produce a vertically oscillating force. This éypf vibrator is frequently used in
geotechnical engineering (sheet pile driving, seihsification). The vibrators are connected
to a plate of 400 mm in diameter and 20 mm in théds. Additional square plates are used
to vary the total mass of the system. Everythingpistened together with bolts (Figure 5-1).

Front view Top view
Bolts 1] il Base plate
\ _Om s oh Square plates
R L HH | L
- — LT HH LT
— L | FIE| Ll
. i i i .
B I | COmis | f
20 + 20 20 |20 =
£ A :
Base plate |
% ?
Counter-rotating vibrators Y
A— 125 —1404— 125—

400

Figure 5-1. Shaker drawings.
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Electric 4-poles vibrators (model A10-9.0-4 fromify more information can be found in
Appendix B.) were selected for the shaker. Suclibeator with a grid frequency of 50 Hz
rotates 1500 times per minute (25 Hz). By havinmaximum eccentric moment of 8.32
kg-.cm, the shaker can reach a maximum vertical ofiadjdorce of 2.06 kN. In this shaker
test, the total mass of the shaker was 287.4 kigshwdorresponds to 2.82 kN.

A frequency inverter (Hitachi L200) was also foresein order to vary the frequency from 0
to 25 Hz. For data acquisition NI USB-6218 acqiositbox from National Instruments was
used. It has 32 analog inputs. On top of the shakeaccelerometer was placed, in order to
measure the exact frequency of shaker. All the aomapts for the vibration tests, including
the shaker, accelerometer, frequency inverter, lgmogs, data acquisition box, power
generator and laptop can be seen in a sketch @-g@).

Shaker

H Geophones
G

00110101 LR
Accelerometer /<( loiooro|  Data acquisition

01001001 bOX
N Frequency inverter 00100011

Power generator
(50 Hz)

-«/\’/ Laptop
=

Figure 5-2. Vibration test setup scheme.

After preliminary tests, it was noticed, that thwalker was not powerful enough to produced
sufficient ground vibrations. A bigger oscillatifigrce had to be used. In order to produce a
sine vibration and avoid a loose contact with tiheugd, the deadweight must be always

bigger than the oscillating force. Therefore it wesessary to add more deadweight on the
shaker. For that, the shaker was slightly updatedritling centre holes in the square plates,

and by adding a centre rod. This rod was usedritreextra steel plates (extra deadweight).
The extra steel plates were tightened betweendinars plates (Figure 5-3).

Figure 5-3. Updated shaker.
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Analysing the output data of the first tests, isweticed, that more than 3 meters away from
the vibrating plate, the measurements show a ceradite noise. Also there was no dominant
frequency anymore. The vibrations were not harmamd the amplitudes for the geophones
could not be determined anymore. This is shownguare 5-4.

Measured Signal

Z
g ] :
g ) W ) W NN W
= r i 0 I I/ n ! Al
5 \ |
€ |
> 1 1 i .
12 12.2 12.4 12.6 12.8 13 13.2 134 13.6 13.8 14
Time [s]
_ 15
;\-lf /=103 Hz == Power Spectrum |
21
Py
.?}
<

Frequency [Hz]

Figure 5-4. Geophone 3 m away from the source.

Several reasons were considered. The most likedg avere 1) the noise from the generator
(which vibrates while its engine is working) or@pblems in the electricity circuit. The first
one was checked with a longer cord and rejected.|dtter appeared to be true. The problem
was in the wiring of the data acquisition box. &kle channels were prepared to read signals
from the geophones and minuses in the channels livded to the ground and between

themselves (Figure 5-5).

% < il . .
A Channel minuses are linked to the ViV
ground and between themselves 'S

Digital /0 /
1 & Analog Output 16 7 A g 3 {

Figure 5-5. Data acquisition box channels linkedhe ground and between themselves.

The problem appeared when one of the channels sexkfor the accelerometer, because the
accelerometer is using an additional external poseerce (where the geophones do not).
This external alternating power source was leakingughout the links in the acquisition box
to all the geophones. Two problem solutions weresitctered — 1) to unlink the channel
which was used for the accelerometer or 2) to ugeophone on top of the shaker instead of
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the accelerometer. The latter solution was chosecause on site it was easier and faster to
do. Also the geophone on top of the shaker didgoatut of its range.

5.3 Information about the site

A potential site for tests should have two majoguieements: it should be rather
homogeneous and rather soft. Therefore a peatyirsitte Netherlands was chosen. The
chosen test site is located about 10 km North-ast Amsterdam (area A in Figure 5-6).
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Figure 5-6. Location of the test site (GoogleMapad2014).

Near the test area, other research has been mdaole,beslated to the strength of peat
(Zwanenburg, 2013). The area used for the peatgitreesearch is marked by letter “B” in
Figure 5-6. In there, geological investigationsénbeen carried out in May 2012.
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Figure 5-7. Data from previous geological investigas (Zwanenburg, 2013).
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Three boreholes have been drilled and they are edably “cl”, “c2” and “c3”. The
stratigraphy and soil density can be found in FegbH7. The reference level for the depth of
the soil is NAP, which is approximately main seeele The ground level is approximately
NAP -1.4 m. The top layer is a thin clayey layethaa thickness varying between 0.2 m and
0.5 m. Below this layer there is a peat layer & #h thick. It was reported that the bulk
density of the peat layer= 0.98 t/mi. The ground water table was about 40 cm below the
ground surface.
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Figure 5-8. P-wave velocity measurements (velacitigadial direction).

In order to determine small strain stiffness paranseof the soil, pressure (P) and shear (S)
wave velocity measurements were carried out. Tlas done by hitting the shaker with a
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hammer and measuring the arrival times at the gaogsh The geophone on top of the shaker
records the input wave. Average of four such tests used for the velocities determination.
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Figure 5-9. S-wave velocity measurements (velacitievertical direction).
The P-wave velocity was measured from the arriiaktdifferences between of the first
radial vibration peaks and the S-wave velocity Eny but of the biggest vertical vibration
peaks.
From arrival times at the geophones, placed at kndistances (with 1 meter in between), P-

and S-wave velocities were determined respectiwgly: 66.9 m/s ands = 17.4 m/s. Here it
should be noted that it is impossible to distingu®& and R-wave in Figure 5-9. There are
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two possibilities here: a) = 17.4 m/s and, = 16.5 m/s or bys = 18.3 m/s and; = 17.4 m/s.

In both cases, the difference between the arrirredg of these two waves in distance of 6 m
would be approximately 0.02 s. Having this timefatgnce in mind, it can be seen from
Figure 5-9 that S- and R-wave are overlapping. Alscapproximation made by drawing a
straight line throughout the peaks of arrival tingg®uld be mentioned. Because of these
reasons it is very hard to say to which of the tvaves the measurement should be assigned.
Here a recommendation of Das & Ramana (2011) whlewied, which says that for all
practical purposes measurements could be treatSednae velocity.

The water table in the test site was very highs(tkinormal, because it is a polder), so the
soil was saturated. For the saturated soil thesBois ratio is expected to be close te 0.5.

The Poisson’s ratio can be calculated by:

2 - —
((vp/vs) 2_(669174F -2 _ .00 (5-1)

=05
g v, /v,f -1 (669/17.4) -1

The R-wave velocity can be calculated from the &8s ratio and S-wave velocity:
v; = 16.5 m/s. Figure 5-7 shows that the natural itieis$ the soil is p =1000 kg/n?. With

this the small strain stiffness shear modulus efdhil on site can be determined:

G, = pv2 =1000 [107° [17.4% = 303 kN/m". (5-2)
And the Young’s modulus:

E =2G,(1+Vv) = 213031+ 0464) = 886 kN/m’. (5-3)

These properties are determined under the assumthti the soil can be treated as an elastic
homogeneous isotropic half-space. This assumpsionrong a priori, because it is known
that there is a thin clay cover on the surface amather clay layer at the depth of -6.5 m
NAP. Nevertheless it will be used in order to chbokv good the solutions, discussed earlier,
can predict vibrations on this site.

5.4 Vibration measurements

The test setup was the same as described in Chlaptand shown in Figure 5-2, except for a
small change: the geophone on top of the shakemused instead of the accelerometer. The
other geophones were placed with 1 meter distametween their centres. The first
geophone on the soil surface was placed with 1 magtance from the edge of the plate.

The measured signals were transformed into theiénrecy domain by using the Fast Fourier
Transform (FFT). In the frequency domain, the signaere filtered, by removing all the
components of higher frequencies than 50 Hz. Afseds the filtered signals were inverted
back to the time domain. The measured signal, p@pectrum and the inverted filtered
signal of the shaker vibrations can be seen inrEigu10. The same data for th dnd the
last (8") geophone can be seen in Figure 5-11 and Figur2 fespectively. In Appendix A
vibration signals for all seven geophones can bhado
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The shaker was oscillating harmonically with a treqcy of 24 Hz. The measured and
filtered signal shows that the amplitude of velpaitbrations isv = 44 mm/s. From this, the
displacement amplitude can be calculated as follows

u= Z\AI) 0292mm=292um. (5-4)
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Figure 5-10. Shaker vibrations.

The measured signal of the vibrations velocity friia ' geophone (placed 1 meter away
from the edge of the plate) can been seen in Figtg. The vibrations are also harmonic,
and the frequency is the same as it was produceatidoghaker - 24 Hz. The signal shows

that the amplitude of the vibrations velocity 1 miag is aboutv = 9.3 mm/s. From this the
displacement amplitude can be calculatée:V/ =62 um.

In the same manner, Figure 5-12 shows that the uredsignal of the vibrations velocity
from the &' geophone (placed 6 meter away) has the amplittitteeavibrations velocity of/
= 0.30 mm/s, this gives the displacement ampdituig V/ & = 2.0um.

The fact, that in the "6geophone the vibrations were still harmonic and doeninant
frequency remained the same shows, that the goardduce and to measure harmonic
oscillations on site was achieved. Now the measengsncan be compared with analytical

and FEM calculations.
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Figure 5-11. Vertical vibrations at geophone 1 magvrom the shaker.
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Figure 5-12. Vertical vibrations at geophone 6 magMrom the shaker.
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5.5 Measurements vs. Analytical and FEM calculations

The measured displacement amplitudes of the shaakeon the ground surface are compared
to the analytical and FEM calculations. The homegeis half-space assumption with the
determined elastic material values from P- and Seweelocity measurements is used for the
analytical methods.

For the FEM the same model as described in Ch&8f®ds used. Elasticity properties defined
from the P- and S-wave velocity measurements agd tar the calculations. The shaker is
defined as a plate element with the axial stiffn€%=21 GN/m, bending stiffness
El =17.5 MN/m and weightv = 21.94 kN/m/m. The selected weight correspondbedaotal
vibrating masamn,:.. Because it is a real soil and real measuremémsmaterial damping
must be evaluated. A material damping ratio fortigea 1 % is selected. It is weaker than
showed in Figure 2-3, where damping ratio for fynained soils = 3 % was presented, and
corresponds to the damping ratios for peat sugdesye Coelho (2010) and Moreno &
Rodriguez (2004).

The relationship between the Rayleigh damping cweffts o and g (which are used in
Plaxis to determine a material damping) and thepilagratio is:

a + Bar = 2wE . (5-5)

Solving Equation (5-5) for two target frequenciesl &awo target damping ratios yields:

- @S, ~ oS,
a = 2ww, Fw e
18:2“1{1_“252 0)
o ~a

Nevertheless in this simulation (as well as in thgeriment on site) there is only one
frequencyw = w; = w, and one damping ratib= ¢, = ¢,, therefore Equations (5-6) can be
simplified and the Rayleigh damping coefficienta t& defined by:

a=¢a,
B=< (5-7)
w

In this case, the vibration frequenty 24 Hz, so the angular frequeney= 150.8 rad/s,
which givess = 1.508 angb = 6.63- 10°.

The dimensionless mass ratio, according to Equdfe®i/), isb = myip / (p - rp|3). For this
shaker tesb = 287.4 / (110° - 0.2°) = 35.9. The modified dimensionless mass ratiopeting
to Equation (2-44)B=(1—v)/4-b=(1-0.464) / 435.9 = 4.81.

Plate vibration amplitude

The analytical methods for the calculation of datihg plate vibration amplitudes were
already discussed in Chapter 2.10. Here, by udinget methods, Predicted and Measured
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amplitude ratios (P/M) are calculated in ordervaleate how good the predictions are made
using the described methods.

For the Reissner’s solution, approximate complidnoetions for Poisson’s ratiw= 0.5, for
a rigid circular foundation and for large valuestloé frequencyg, > 1.5, which is also the
case in this experiment), according to KruijtzedQ@) were used:

3

f,=—, -
'4a? (5-8)

fz .3 (5-9)

Table 5-1 shows that Confined Elasticity methodhhigover-predicted the amplitude of
vibration (this property of the method was alreadyiced in Chapter 3.2). However by using
the other methods, the amplitude of the shakeatiton has been predicted with at least 94 %
accuracy. It is also worth to mention that all noeth over-predicted the vibration amplitude.

Table 5-1. Comparison between the predicted andnba@sured shaker vibration amplitudes.

Method Amplitude fum] P/M ratio [-]
Measured 292 1
Reissner (Kruijtzer's,, f,) 292 1
Lysmer 309 1.06
Confined Elasticity 510 1.75
FEM 302 1.03

Surface vibration amplitudes using only Barkan’s stution

Barkan’'s near- and far-field solutions for the agd vibration amplitudes were already
discussed in Chapter 2.11. Nevertheless the sokigwe derived for an elastic half-space,
without material damping. In this case the mated@hping must be taken into account. The
solutions are multiplied to the exponential law,iethrepresents the material damping
(Bornitz, 1931), described by Equation (2-19),@ktvs:

=0, & ) (5-10)
where:
Uy = Barkan’s solution for the displacement amplitude [m]
Kn = empirical absorption coefficient, [1/m]
r—ro = distance between two vibrating points. [m]

According to the Equation (5-10), a ratio betwega amplitudes at distancesandr, can be
expressed asi,/(, = exp[-k, (r,-r)], or G,/0, =expk,(r,-r)]. Now the absorption
coefficientk,, can be expressed as follows:
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0, (5-11)

where O is a logarithmic damping decrement. For small dagpatios, the logarithmic
damping decrement can be approximately relatedchéodbmping ratio with the following
relationship:

5=27% . (5-12)

It is already assumed, that the material dampinigp far peat = 1 %. Furthermore by
assuming, that most of the vibrations on the samifage are caused by R-waves (this was
shown in Chapter 4.5), the absorption coefficientan be expressed from Equations (5-11)
and (5-12), (taking the distance between two vibrgpeaks at distancesandr; equal to the
length of the R-wave,) as follows:

K =& — sy (5-13)
21T

For the vibration frequendy= 24 Hz the empirical absorption coefficidgt= 0.09 m'. The
P/M ratios between the predicted and the measwddcg vibration amplitudes for the
far-field can be seen in Table 5-2. The measuredpmeadicted vibration amplitudes on the
surface are shown in Figure 5-13.

Table 5-2. Comparison between the predicted anantbasured surface vibration

amplitudes.
Distance from the Predicted / Measured Ratio
shaker centre axis [m] Barkan-Bornitz far-field{ = 1 %) FEM € =1 %)
1.2 4.2 0.6
2.2 6.6 0.9
3.2 8.7 1
4.2 314 4.5
5.2 36.5 55
6.2 48.9 7.2

The near-field of Barkan-Bornitz method ends befdhe first measurement point
(Figure 5-13), therefore only P/M values for the-fiald are calculated. The analytical
approach strongly over-predicts the vertical vilmrat, whereas the FEM calculations are
much better, but still under-predicts for the fidsineters, and over-predicts further away the
vibration amplitudes. For both methods the tendescthe same — P/M is for a growing
distance from the shaker.

Figure 5-13 shows weaker damping than expectechgidtto the shaker and higher damping
than expected further away from the shaker. Thiskm explained as there is less vibration
caused by the Rayleigh waves closer to the shahkérnaore vibrations caused by the
Rayleigh waves further away from the shaker. Thgplies a different damping per basic
waves.
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Figure 5-13. Comparison of different solutions floe surface vibration amplitude.

5.6 Conclusions

The shaker vibration amplitudes can be predictékderaaccurately with two of the three

(except Confined elasticity) analytical approacthaissner’s or Lysmer’s approach and with
numerical (FEM) calculations. The accuracy depesrdshe method used for the prediction,
and ranges from 94 % to 100 % (having in mind thedieted/Measured ratios of 1.00 to

1.06). This means that the amplitude of the shakerbe predicted accurately enough for
geotechnical purposes.

The soil surface vibration amplitudes can be ptedicwith Barkan-Bornitz's analytical
approach and with numerical (FEM) calculations. e TBarkan-Bornitz approach over-
predicted the amplitudes between 4.2 and 48.9 tinMiée FEM under-predicted the
amplitudes for the first three meters and over-oted up to 7.2 times for the last three
meters. This means that the amplitudes of the sairfannot be predicted accurately. The
tendency of increasing P/M ratios suggest that natdamping ratio of the peat at the test
site is higher than 1 %.

The weaker damping than expected just next tolthkes and higher damping than expected
further away from the shaker can be explained mkihg, that there is less vibration caused
by the Rayleigh waves closer to the shaker and mimetions caused by the Rayleigh

waves further away from the shaker. This impliedifeerent material damping per basic

waves.

This confirms the conclusion made by Hdlscher angaMé (2003), that the reliability of
man-made vibration prediction methods is disapjaiht low.
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6 DEVELOPED VIBRATION PREDICTION METHOD

6.1 Introduction

The previous chapter showed that in order to makmal prediction of the soil surface

vibration, it is necessary to perform calculatiovith FEM. The disadvantages of the FEM

are that it requires a special software packagel@mgltime for modelling and calculations.

Therefore it would be very useful to derive a sienpilodel for engineering purposes, which
could be used to predict geotechnical vibratiorsselto the source without a need of a
special software and long calculations.

Such a method is suggested in this chapter. Theaues$ derived by having results from the
shaker test. The predictions of the developed nietve compared with the measurements
and calculations of FEM.

6.2 Derivation of the method

By analysing Figure 5-13, it can be seen that #egr-field zone in the shaker experiment is
rather short, only 0.73 m. This is very close ® lgngth of R-waves, which can be calculated
as follows:A, =v, /f=16.5/24 = 0.688 m.

Also from Figure 5-13 it can be seen, that thenaiion rate of the measured amplitudes is
much higher just in the first meter. From thisgcan be concluded that in the near-field zone
amplitudes attenuate much stronger, and in thédhltzone the attenuation is not so strong
anymore.

At this point, the findings from Chapter 4.6 cascabe recalled, where in Figure 4-13 was
shown, that a big part of the dynamic displacenoérhe rigid plate could be explained by
the elasto-static Boussinesq solution for a ridadep

In the experiment on site, the amplitude of theigally oscillating force can be calculated if
the eccentric momenitle and the frequenc§ are known:Fo = Me - ( 2xf ) 2 = 0.0832
(2n-24 ¥ = 1.89 kN. If it would be a static load on a rigithte, according to the elasto-static
solution of Boussinesq, the vertical displacemenia be calculated as follows:

1 5\ F
u =—1-v o_, -
v-plate 2( )rpl (E (6-1)

Having Poisson’s ratio = 0.464, the vertical forcé, = 1.89 kN, the radius of the plate
roi = 0.2 m and the modulus of elasticiy= 886 kPa, the vertical static displacement of the
rigid plate would beu piae = 4185um. This is 14.3 times higher, than the dynamic atilon
amplitude of the plate, measured during the shidst(292um).

The factor 14.3 here comes from the soil-foundafimeraction, which is similar to the

behaviour of a mass-spring-dashpot system. Theagpiays a static role and the wave
propagation determines a dashpot (analogy of cdivilyg.
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At this point it is assumed that the attenuationtloé vertical dynamic displacement
amplitudes near the oscillating plate (in the rfedd) has the same attenuation as a half-
space surface deformed by a vertically loaded pégatie under static conditions.

For the static case, soil surface displacements thearigid plate can be calculated using a
solution from the theory of elasticity:

_ 2 el Mo
U, (r) = U, pae ;arcsm - | (6-2)

For the dynamic case, the dynamic vertical amplitude of an atswglrigid plate should be
used instead of the vertical static displacem&he dynamic amplitude of the plate can be
calculated by Lysmer's method, as discussed in Chapter 2.10. iBy tigs vertical
displacement amplitudes in the near-field are found as follows:

n n 2 (T
a,.(r) =10, .. —arcsin 2 |. (6-3)
’ PR T r

In the far-field, mostly the R-wave dominates. Therefore the attenuddé of the
amplitudes is known to be proportionalrt®®. Taking the material damping, according to the
law, suggested by Bornitz (1931), into account, the far-field iaundgls will be:

~ ~ r r-r
U5 (r) = Oy () %e*m( ﬁ), (6-4)
where
I = start of the far-field~4,), [m]
U (rg) = vertical amplitude from the near-field estimation. [m]

If Lysmer’s solution is used for the dynamic plate displacenaemplitude, Boussinesq'’s
elasto-static solution is used for the amplitudes in the neardreddthe R-wave attenuation
law together with the material damping law, suggested by Bofb®31), is used for the far-
field, the vertical vibration amplitudes can be calculated as follows

FOZ/ K : forr <r, (Plate)
V-B,a7)" +(085%)
a,(r)=< 0,(r,)—= arcsu’(r ] , forr, <r<r, (Near-Field), (6-5)
a,(r, )\/7 alo) forr >r, (Far- Field).
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6.3 Post-diction of the shaker test vibrations

This approach was used for the post-diction of the measured ateglituin site. The same
value of the absorption coefficiekt = 0.09 m' for the far-field was used as in Chapter 5.5.
This corresponds to the material damping ratio for geatl %, see Equation (5-13). The
comparison between the post-diction and the measured verticaionbaaplitudes can be
seen in Figure 6-1.

350

Fylk = [ ysmer (plate amplitude)

\/ (1 ~B.a} )2 + (0.85513 ) = - =Boussinesq shape (near-field)

300
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Figure 6-1. Comparison between post-dicted and the measunedietbamplitudes.

Predicted and measured (P/M) ratios are compared with the Barkan-Bonfigtdiaolution
and FEM calculations in below. It can be seen that withsilmgle method the amplitudes of
vibration for the shaker test can be calculated as good as with theahfsis.

Table 6-1. Comparison between the predicted and the measufadesuibration
amplitudes.

Distance from the Predicted / Measured Ratio

shaker centre axis  Barkan-Bornitz far-field FEM Developed Method
[m] (€=1%) (€=1%) (€=1%)
1.2 4.2 0.6 0.7
2.2 6.6 0.9 1.0
3.2 8.7 1 1.3
4.2 31.4 4.5 4.2
5.2 36.5 55 4.5
6.2 48.9 7.2 55

6.4 Comparison with FEM calculations

Because this method gives very close results to the measurementiedided to investigate
it further by comparing the vibration amplitudes calculated bygu§iBEM and with this
developed method, for different frequendiesd different modified mass ratiBs
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The amplitudes of the rigid plate, calculated by using FEM, weead compared to the
analytical solutions in Chapter 3.2. The results of the surfdm@ation from the same FE
models will be used here to validate the improved prediction methsehould be noted that
in the FE models, differently than in the post-diction, theas wo material damping used,
therefore in the improved prediction method the Bornitz expongudraiwill not be used.

Another difference is the size of the near-field. In the postetidtie distance;, where the
near-field ends and the far-field begins, was assumed to be edthal length of R-waves:
r« = 4. However analysing the FE modelling results it was noticedrdsatlts have better
match by using half the distange= 0.54,.

The calculations were performed with four different modified mass r8tie<s0.5, 1.0, 2.0
and 5.0 and ten different frequencies. This gives 40 plots spiladiement amplitudes at
different distances. The vibrations were calculated on nine differemtceupbints (from 1 m
to 9 m away from the centre of the plate).

Full matrix of the numerical calculations can be seen in Table 6-2.

Table 6-2. Matrix of the numerical calculations with corresgiog figure numbers of
Appendix A, where the plots can be found.

% 0179 0269 0359 0449 0538 0.628 0718 0.897 77L.0 1.346

B

0.5 D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9 D-10
1 D-11 D-12 D-13 D-14 D-15 D-16 D-17 D-18 D-19 D-20
2 D-21 D-22 D-23 D-24 D-25 D-26 D-27 D-28 D-29 D-30
5 D-31 D-32 D-33 D-34 D-35 D-36 D-37 D-38 D-39 D-40

P/M ratio can be expressed as error in percentages as follows:
Do =| PIMF1 105, (6-6)

Average and maximum errors were calculated for all forty FEM calculataman average
for 9 surface points) and presented in Table 6-3 and Table 6-4 respectivel

Table 6-3. Matrix of the average errors in percentages.

% 0179 0269 0359 0.449 0538 0.628 0.718 0.897 771.0 1.346

B

0.5 4.9 5 4.3 5.6 4.7 5.5 5.9 8.3 14.3 8
1 4.7 5.8 5 6.7 5.2 6.1 6.2 7.5 9.5 4.7
2 4.8 5.5 6.2 8.3 6.1 53 3.7 5.6 6.6 6
5 5 6.7 10.9 4.9 13.7 9.8 9.2 5.3 4.7 5.5

The biggest average error for 9 calculation points on the surfa@t.ls %, where
dimensionless frequen@y = 1.077 and modified mass raio= 0.5.

In Figure 6-2 and Figure 6-3, plots for mass ratibs 0.5, B=5 and dimensionless
frequency ratios, = 1.08,8, = 0.449 can be seen. All 40 plots can be found in Appendix A
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Table 6-4. Matrix of the maximum errors in percentages.

% 0179 0269 0359 0.449 0538 0.628 0.718 0.897 771.0 1.346

B
0.5 10.6 10 9.7 12.8 9.6 11 13 19.9 24.1 22.3
1 10 10.5 10.9 13.6 10.8 14.4 14.6 18.7 20.3 11.9
2 11.5 9.6 13.9 15.3 11.9 10.8 7.7 12.6 24.1 12.7
5 10.7 13.3 19.1 9.8 22 19.1 15.9 13.2 14.4 14.4
3
Fylk = [ ysmer (for the plate amplitude)
g 25 > = - =DBoussinesq shape (for the Near-Field)
= ¢ \/ (1—32613) +(0.85a§) = ===R-wave (for the Far-Field)
g 5 | O FEM
é rpl
=
2154 2 (m
g . u,,(r,)—arcsin —
SR U r
= N i, (rg )y
205 1 S~ r
. 1y =0.54, O===-g----0- il et bl DL
0 | 2 3 4 5 6 7 8 9 10

Distance from the shaker's axis of centre [m]

Figure 6-2. Comparison between vibration amplitudes caledldy using FEM and by
improved prediction method for B = 0.5a1.08.

8
Fylk = [ ysmer (for the plate amplitude)

g 7 ;, Ry 5 = - =Boussinesq shape (for the Near-Field)
6 ] \/(1 —-B.a; ) + (0.85610 ) = ===R-wave (for the Far-Field)
s | o FEM
§ 5 4l
o,
g
< 4 T 2 7
= ‘ i, (r,) —arcsi 2L
23 1 ‘4/ 7 r B=5
3 . . r
=2 11,5057 i, (rp )y ay = 0.449
2 . . r
A1 - . /

0 O -0t —@--— @@= -
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Figure 6-3. Comparison between vibration amplitudes caledldy FEM and by improved
prediction method for B = 5,a 0.449.
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6.5 Conclusions

For engineering purposes, an improved analytical method is dedelopestimate the
vibration amplitudes next to a harmonically oscillating rigictular plate on an elastic half-
space.

This solution consists of three parts: 1) the analytical Lysmethod for the plate
displacement amplitude 2) the shape of the vertical surface displaceshémtselasto-static
Boussinesq solution in the near-field and 3) the R-wave atienu&w r%° with the
exponential material damping law (exXpjfr-r«)]) in the far-field. It can be assumed, that the
near-field ends at a distance, which is equal to about a half terogté of the R-wave.

It was found, that this approach gives good predictions, whencompared to the field
measurements and FEM calculations.

However, the problem of the weaker damping than expected just née tshaker and

higher damping than expected further away from the shaker did raqpeisr, because this
method cannot reflect a different material damping per basic waves.
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/ FRICTIONAL DAMPING MODEL

7.1 Introduction

The measurements from the shaker tests indicated different dampingxjusd the plate and

further away from the plate. The hypothesis was made, that thibecalue to different

damping per basic waves. In order to reflect this phenomenonijdtienfal damping method,

first suggested by Van Baars (2011), was decided to use. Fpthhatuggested 1D method
had to be extended to 3D and incorporated into FEM calculati@msth

7.2 1D state

The original frictional damping model was briefly described in @vap.3. However more
detailed explanations will be presented hereafter.

’ ’

; ; Vertically hatched area: ; ; 4

L ____/ﬂl Etzjr'dy virgin '

[ | o7 damping line\

I JE /| Dissipated energy: [

| N/ AE=2E - jouter JG/

: \ / // | Peak energy: I line sec

| / -7 1., 1., | + > 7

: E, I E,= DA : /

I T N : Energy ratio: Damping ratio: | o )

| | AE | N\ virgin damping

| [ {=— E= < I line
Ly £, 4z = -
a) b)

Figure 7-1. 1D frictional damping law.

The frictional damping law, in & —y' coordinate system, is defined as follows:

Tl: Gmod(y)x ' (7_1)

wheret' is the shear stress, since the start, or the last change of dir€gtigrs the modified
shear modulusy' is the shear strain amplitude since the start, or the last chadgedaion
andX is the dimensionless damping parameter. The latter is related tamping ratid or

to the energy ratid, which can be measured directly by using various types of lalbprato
tests (cyclic simple shear test, cyclic torsional simple slesardyclic triaxial test or resonant
column test):

w.8-¢ _2-7

8+ 2+7F (7-2)

For the damping rati¢ = 0, the dimensionless damping parameter 1, so the shear stress
can be calculated as= Gmnogy'. And in this cas&smeg = Gsee However if¢ > 0, then the
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modified shear moduluS,.qdepends on the shear strain amplitude (see b) in Figure 7-1), so
Gmod# Gsee As it is showed in Chapter 2.3, the modified shear modblg can be related
to Ggecas follows:

(2A)x ' (7'3)

The relationship betwed®@n,,q andGgecfor different damping ratios and different shear strain
ranges can be seen in Figure 7-2.

1 1

c=1%

K $=2%

0.8 - 08 A

- 0.6 A = 10" — 0.6
o =107 S

<04 - ! <04
S y=10° S

0.2 1 0.2 1
() T T T T () ! ! !
0 5 , 6 g 10 0 0.00025 0.0005 0.00075 0.001
Damping Ratio ¢[-] Shear Strain Amplitude 7 [-]

Figure 7-2. The relationship between the modified and maxisigar moduli.

In order to form a constitutive model, the stresses and straingdéeedefined in the - y
coordinate system, rather than in the y'. From Figure 7-1, it can be seen, that for multiple

constant cycles,p'=2y and 7'=27. Therefore, the virgin damping line in the y
coordinate system, can be expressed as follows:

X
Tvir - Gmod (2y) , (7_4)
2
where:
Tir = virgin shear stress of the soill, [NFIm
Ginod = modified shear modulus of the soil, [NFm
y = shear strain of the soil, [-]
X = dimensionless damping parameter. [-]

Here it should be noted, that for the virgin line y .

In order to calculate the outer line (see b) in Figure 7-1) i the coordinate system, the
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direction of the shear-strain path must be known as well apaalks of the last direction
change. Then the shear stresses of the outer line are calculated as follows

X
Toui;up = Thin + Gm0d|y_ ymin| ' (7'5)
_ X
Tout,down - Tmax - C-:'mod |y_ ymax| (7'6)
where:

Toutup = shear stresses of the rising outer line, [{i/m
Toutdown = shear stresses of the descending outer line, AN/m
Tmin Tmax = stored minimum and maximum shear stresses, IN/m
Pminy Ymax = stored minimum and maximum shear strains. [-]

The outer lines draw an ellipse shaped figurer ir y coordinates, which represents the
dissipated energy per volume, per cycle. By using thistlavdissipated shear strain energy
ratio { and the damping ratipare independent from the shear strain amplitude.

7.3 3D state

Before being able to extend this 1D frictional damping model t® an®del, it should be
rewritten. In 1D there is only a pure shear stress and straienkra, shear strains change
only the shape, but not the volume.

The linear stress-strain relationship, or Hook’s law, for 3D howeseexpressed by the
modulus of elasticitf and the Poisson’s ratig as follows:

1-v v v 0 0 0
O v 1-v v 0 0 0 xx
Ty v v 1-v 0 0 0 vy
Tul____ E o o o &2 g 0 |/%= 7-7)
o, @+v)i-2v) 2 (1-2) Vi
o, 0 0 0 0 5 0 Y.
g, 0 0 0 0 0 (1 _22V) Vo

Whereg; ande; are normal stresses and strains respectivglgindy; are shear stresses and
strains respectively, in whicky = x,y or zand i # j. The sign convention for stresses and
strains, according to Plaxis Material Models Manual (Plaxis bv5R0& presented in
Figure 7-3.

This can be written in a matrix form:

{o}=[Dfe}, (7-8)
where:
{0} = stress vector, IN/m?]
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[D]
{¢}

elasticity matrix, [N/m?]
strain vector. [-]

a) strains b) stresses

Figure 7-3. The sign convention for the three dimensionassés and strains.

In a 3D case, there are three pure shear strains and three correspomeisgear stresses.
However they are not the only ones, responsible for the chantipe shape. This can be
illustrated by decomposing Hook’s law into two parts: the atevic part, controlled by the
shear modulu&, and the volumetric part, controlled by the bulk mod#us

4 2 2
o, §'§_§OOOXX 1 1 1 0 0 0lfe,
o, _gg_éoooew 1110 0 0jl¢g,
o 1 11 0 0 Off¢
2z :G _g _g ﬂ O O O zz + K z . (7'9)
O,y 3 3 3 Vi 0 0 0 0 0 Ofy
g, 0 0 0 10 0y, 0000 O0 0|y,
O 0 0 0 010/y) |0o0000 0]y,
0 0 0 0 0 1
This can be written in a matrix form:
{o}=[D:Je} +[DcKeb (7-10)
where:
[Dg] = elasticity matrix of the shape change, [KYm
[Dk] = elasticity matrix of the volume change. [NFm

From the equations above it can be seen, that for the change of Itileeyavhich is
controlled byK, the three normal stresses or strains are responsible. Howeveg &bratige
of the shape, which is controlled By all six strains or stresses are responsible.
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The deviatoric strains, which are responsible for the change of the shapde expressed
as follows:

3 (7-11)
€ = Vi
in whiche,, = exx + &y + &, 1S the volumetric strain,j = X,y or zand i # |.

The corresponding deviatoric stresses may be calculated by:

o, ’
° (7-12)

l; =0; ~
I, =0y,
where g, =:—3 (UXX to,+ UZZ) is the isotropic stresgj = x,y orzand i #j.

The frictional damping law for a 3D case can be applied by usingtiBgu@-1) inz' - €
coordinates:

[ ;X
Iy = Gmod(eii ) ,
. ( \ )x (7-13)
T =Ghoal€ )
where
T = normal deviatoric stress ih- € coordinates, [N/}
T = tangential deviatoric stressdn € coordinates. [N/}
€i = normal deviatoric strain ifi - € coordinates, [-]
€ = tangential deviatoric strain th- € coordinates. [-]

With this, the Cartesian stresses can be calculated

g; =21, +Ke¢
O =T;.

vol 1

(7-14)

7.4 Damped energy in a 3D state

The damped energy in a three dimensional case taenso easily demonstrated graphically
as it was done for the one dimensional case inrEigtL.

The full potential strain energy per volume camimhematically expressed as follows:

E =05(U I +0yy£yy+0 £ +axyyxy+ayzyyz+azxyzx)' (7-15)

p XX XX 7z~ 77
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The full potential strain energy per volume is than of the potential strain energy which
changed the volumg,y (related toK) and the potential strain energy which changed the
shapeE,s (related taG).

Therefore Equation (7-15) may be rewritten:
E,=E, +E- (7-16)

The potential strain energy per volume, responsible the change of the volume, is
expressed as:

E, = 056,0,. (7-17)
The potential strain energy per volume, respongidyléhe change of the shape:

EpS=0.5(re tr,e, +7,8,+t7,,6, +7,€ +re). (7-18)

XX XX 722-72 Xy Xy yzyz X~z

The potential strain energy, responsible for thange of the volume, may be called the
volumetric potential strain energy. In the same whg potential strain energy, responsible
for the change of the shape, may be called theattaic potential strain energy.

Due to the frictional damping, a part of the demiat potential strain energy is dissipated.
The ratio of the dissipated deviatoric strain egeigthe deviatoric potential strain energy
can be called the dissipated deviatoric straingneatio = 4Es/ Eps With this the frictional
damping ratia® can be expressed as:

1 1 AE
§=—(=—"5.
ar 4 E ¢

(7-19)

Here it should be noted, that in the frictional gémg model, the frictional damping ratio is
not related to the full potential strain energy baly to its deviatoric part.

7.5 User defined soil material model

This frictional damping law is implemented into tREM software of Plaxis 2D, as a user
defined soil model (UDSM).

During the first iteration of a loading step, PEvprovides strains which are calculated

assuming linear elasticity. Then, using these piedistrains, the stresses are determined
according to the user provided constitutive modéle external forces are known and the

internal are calculated from the constitutive stess As a next step, the unbalance between
these internal and external forces is checkedhdf d@rror is bigger than tolerated, a new

(Newton-Raphson) iteration process is started. (Nevton-Raphson) iteration processes is

repeated for a loading step, until the tolerancehef unbalance error is reached (usually
0.01). This calculation process is schematicallywgd in Table 7-1.
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Table 7-1. FEM calculation process in Plaxiaxis bv, 2015)

Form stiffness matrix:

New step

Form new load vector

Form reaction vector

Calculate unbalance
Reset displacement increment

New iteration
Solve displacements

Update displacement increments

Calculate strain increments

Calculate stresses: Elastic
Equilibrium
Constitutive

Form reaction vector

Calculate unbalance

Calculate error

Accuracy check

Update displacements

Write output data (results)

If not finished — new step

[K]= [[B]"[D°][B]dV

i -1+l «
{to} ={r=}"+{ar~}
{t"}=]iBr{o°} "av

{at}={r=} -{r"}
{ad}=0

- ]+l <

{od} = [ ]"{af}

{ad} ={ad} " +{od}
{ae}=[Bfad}

{ce}=[B[{od}

fou}={oc}" +[ofae}
fo=}={o}" +[pofae}
{7} defined according to UDSM
{tn}=JB1{oc} av

ey ={r -{r)

__ {a1)
G

it > e ... — New iteration

{d} ={d}"" +{ad}

—»!

Finish

\ 4
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The UDSM consists of the following steps:

1) calculation of the deviatoric strains accordffigble 7-2);
2) checking the stress-strain path direction (Tab8);

3) checking the stress-strain amplitudes (Tablg; 7-4

4) calculation of the deviatoric stresses (Tab®;7-

5) calculation of the Cartesian stresses (Tablg 7-6

Step 4 separates two parts of deformation: the patk and the deviatoric part. Because of
this, the model becomes in depended from axesaHotates.

In the first step, the deviatoric strains are cal@d from the linear step. In this step also the
volumetric deformation is defined.

Table 7-2. Step 1: deviatoric strains.

{d"'{} "¢ A //Cartesian strains for thé"istep
B =€, FE) FEL /IVolumetric strain

fork =1to 3 do

e,i( = gli( - lg /[Deviatoric strains for normal part
3 vol
e =gl ) ) .
k+3 k+3 /[Deviatoric strains for the shear part

In the second step, the stress-strain paths directare indicated. It is checked whether a
stress-strain path goes up or down.

Table 7-3. Step 2: stress-strain path direction.

fork=1to 6 do
if e, >¢" /IThe stress-strain goes up
thendir, - 1
elseife, <e™ /[The stress-strain goes down
thendir, - -1
elsedir, - 0 /[The stress-strain point does not move

When the stress-strain path direction is indicatieddas to be checked whether the direction
has changed from the previous step or not.

If the direction has changed, the starting poiotstiie calculation of the deviatoric stresses
(amplitudes of the stress and strain) have to laagéd to the previous stress-strain points.
This is performed in the®step. Once the starting points are defined, tiviatteic stresses
can be calculated in thd"4tep by using the frictional damping law. Theess$estrain paths
can follow either a virgin loading line, or a loaistory line.
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Table 7-4. Step 3: the amplitudes of the stressdsstrains.

fork=1to0 6

if dir, = 0then
dir, = dir,™ //Removing the stopovers

else if dir,| < dir,™* then IIAfter going up — goes down
rt =t //Maximum deviatoric stress was the previoulis
= - //Minimum deviatoric stress
eyt =g //Maximum deviatoric strain was the previous
e = gl //Minimum deviatoric strain

else if dir,| > dir ™' then /IAfter going down — goes up
r™ =t //Minimum deviatoric stress was the previous
e = - //Maximum deviatoric stress
e = e //Minimum deviatoric strain was the previous
ey = —g" //Maximum deviatoric stress

Table 7-5. Step 4: calculation of the deviatoriesses.

fork=1to 6 do

if dir, =1 ande, > ™' then //Going up on the virgin loading line
if e, >0 then //IGoing up in the positive side
Tli< - Gmod 26:( *
2
else //IGoing up in the negative side
Tli< - _ Gmod (_ 26:( )X
2
else ifdir,| = -1 ande, <e™ "' then  //Going down on the virgin line
if e, >0 then //Going down in the positive side
Tli< = Gmod 2ell< X
2
else //Going down in the negative side
Tli< - _ Gmod (_ 26:( )X
2
elseif dir| =1 then /IGoing up on the history line
. - . X
=10 +Gel, ™
elseif dir /| = -1 then //IGoing down on the history line
. . . X
N =T+ Gpggl€ — €0
else //Standing
T|i< - T:iSt Ji
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Finally, the deviator stresses are known and th#e€ian stresses can be easily defined and
provided to the Plaxis outer iteration loop.

Table 7-6. Step 5: calculation of the Cartesiaesses.

fork=1t03
o, =21, +Ke,, /INormal stresses
Oris = Thus /[Tangential stresses

In this way, the UDSM calculates and provides s&ssand strains according to the frictional
damping law. Therefore, the displacements, compaoedhe linear elastic stress state,
change. The change will be caused only by the temuof the deviatoric strains, while the
volumetric strains will be kept equal to the linegaistic stress state. A code in Pascal for the
frictional damping UDSM can be found Appendix A.iFltode can be compiled into a dll
file, which later can be used as a user definedainodPlaxis.

7.6 Verification tests

In order to verify if the UDSM behaves accordingthe analytical frictional damping law,
two verification tests are performed:

1) a cyclic simple shear test, and
2) a cyclic triaxial test.

The cyclic simple shear test is modelled in pldrais conditions, and the cyclic triaxial test
— in axisymmetric conditions. The following soilgperties for the verification tests are
chosen: the modified shear moduluSmneg=100 kN/nf and the bulk modulus
K = 166.67 kN/m. Two different damping ratios are usetk=5 % and 10 %. Such high
damping ratios are selected in order to have watgys in the plots. The verification tests are
performed with the quasi-static loading.

Cyclic simple shear test

The simple shear test scheme, for a quarter otk cig presented in Figure 7-4.

¥ y _ y

A A Ux Uy Uy Uy Au\
N T ——»
~ N — — p— —1
Vix
nE | Yy = Uy /Ay
BT + | .
| | Oyx = f(1x)
> e e e e -
I/ 1m I/ X Lf’ -+ T T T X I/ dx |/ X
A A A Al
a) Dimensions b) Boundary Conditions ¢) Deformed Scheme

Figure 7-4. Scheme of the simple shear test ifrEhenodel.
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The horizontal displacements on top of the sampdecantrolled, which in this particular

case causes only pure shear deformations and mmnetic change. One cycle with the
horizontal displacemeni of 1 mwas initiated by equal stepsi, of 0.10 m. The shear strain

amplitude was 1 (or 100 %). The results of the FEdculations are the same as the
analytical solution. The comparison can be sedfigare 7-5 a).

100 - — 150
Analytical (§=5 %) || — Analytical (& =10 %)
75 ——-A11111§'t}cal_(‘g= 10 %) G 120 ° FEM (£=10%)
o FEM (E=5%) 4 90 ]
50 o FEM (£=10%) e '
_ ? = 60 ]
s g
& 25 = 30
5 < .
% 0 T é 0 y y §f T T
= 72 30 F 4
.25 g 7
3 g :
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Figure 7-5. Cyclic shear test: analytical soluties. UDSM results.

The same approach is used to simulate the calonlatith double amplitude of a horizontal
displacementi (2 m) in the second cycle. The shear strain aog#itin the second cycle, is
2 (or 200 %). In order to have a better view, thguits are shown only for the damping ratio
¢of 10 % in Figure 7-5 b).

It can be seen, that in the second cycle, thesssteain curve first of all follows the virgin
line until it reaches the peak and later it folloasnew stress history line. Both cycles
represent the same damping rafie 10 %, but have different shear stress and stteain
amplitudes.

Cyclic triaxial test

The triaxial test of a soil sample of 10 m in léngnd 5 m in diameter is modelled in FEM
software as an axisymmetric problem. In the cytii@xial test a deformed state is created
such, that there is a distortional deformationassed by normal stresses only whereas the
shear stresses are zero. This is reached by usisgriiped displacements on top and on the
right edge of the sample.

Because it is an axisymmetric problem, the horiabdisplacements in the middle are zero.
Also the vertical displacements at the bottom baumpdre zero. These make the horizontal
displacements on top of the sample and the vertlslacements along the side of the
sample to be linear functions. On the contrary, \beical displacements on top of the
sample and the horizontal displacements along ithe of the sample are constant. The
prescribed displacements schematically are illtedran Figure 7-6 b). The subsequent
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deformed scheme, together with a script of calautatfor stresses and strains, is presented
in Figure 7-6 c).
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Figure 7-6. Scheme of the triaxial test in the Faded.

Figure 7-7 shows the stress-strain history for hlogizontal (left side of the figure) and
vertical (right side of the figure) directions, whiare also the principal directions in this
case, for a damping ratibof 5 %. The calculations are performed for twolegcwhere in
the second cycle the strain amplitude was doubled.
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Figure 7-7. Cyclic triaxial test: two cycle§= 5 % analytical solution vs. UDSM results.
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Accordingly, for two cycles and for a damping rafiof 10 %, are presented in Figure 7-8. It
can be seen, that the match between the analgticeFEM user defined soil material model

calculations is good.
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Figure 7-8. Cyclic triaxial test: two cycle§= 10 % analytical solution vs. UDSM results.

The damping ratio can be checked directly, by méaguhe area of the ellipses, which
represent the dissipated shear energy per ey€deand by checking the maximum potential
shear strain energy per volurggs Having these two quantities, the damping ratio be
calculated by using Equation (7-19). This is domretlfie material with the damping ratiaf

10 %, for the smaller loading cycle.

In order to measure the total dissipated energycpele AEs, the ellipses should be used in
the deviatoric coordinates-e. This is can be seen in Figure 7-9.
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Figure 7-9. Dissipation of the shear strain energge cycle = 10 %.
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In a triaxial test, stresses and straing amdz directions are equal, so the dissipated energy in
x direction and z directions is also equ&aEs xx= AEs ,; The dissipated shear strain energy
per cycleAEs = X(AEsx+ AEsyy+ AEs ;;+ AEsyy + AEsy, + AEs 7). Using the areas of the
ellipses in Figure 7-9 it can be calculated, thét = (2.53 + 10.12 + 253 + 0+ 0 + 0) =
15.2 kPa.

In the same manner, the potential deviatoric stexiergy per volume can be calculated
according to Equation (7-18F,s= 0.5@x@&x + 1@« + T2£22 + TnyYxy + Ty2lyz + Tox¥xz), Which is
in this casdeps= 0.5(32.3:0.125 + 64.5-0.250 + 32.3:0.125 + O+0D= 12.1 kPa.

Finally, the damping ratio is checked accordindetation (7-19)¢ = AEs/ (4zE,9), which
gives the damping ratio of 0.10 or 10 %. This masckhe input damping ratio and also
confirms that the UDSM works well.

7.7 Validation tests

Just like any other constitutive model, the frineab damping model has to be validated. The
validation is used to check how good a constitutivedel can represent the reality (real
tests). The real tests, shaker tests, were alrdadgribed in Chapter 1. Here the frictional
damping model will be used to simulate the shagsist

Soil and FE-model properties

The dynamic soil properties, for the shaker testendefined in Chapter 5.3 from the P- and
S-wave velocities and the earlier geological ingagtons. The measured small strain shear
modulus Gy = 303 kN/nf is assigned to be equal to the shear secant moMglu= Go.
Other defined parameters are as follows: Poissoat® v = 0.464, Young's modulus
E = 886 kN/nf and the natural density of the soilgs= 1000 kg/m®.
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Figure 7-10. FEM geometry and mesh.

From modelling with elastic parameters it was meaduthat average shear strain amplitude
(in the domain of interest) is in the range of'1The frictional damping ratié = 1 % will be
used (however this is different from the Rayleigtmging ratioZ = 1 %, because here only
the deviatoric part is damped). This results inftllewing three parameters for the frictional
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damping model: 1) the dimensionless damping caeffic according to Equation (7-2),
X = 0.969, 2) the modified shear modulus, accordm@quation (7-3)Gmod= 232.8 kN/M
and 3) the bulk modulus, obtained from the compoess and shear wave velocities,
K = 4102 kN/m. An axisymmetric mesh with length and depth o8 used as it is shown
in Figure 7-10. 15-node elements used to modetadiie

Vibration amplitudes vs. distance

In Chapter 5.5 the vibration amplitudes of the @mnatests were already measured and
presented in Figure 5-13. The tests results warsented together with the FE model, where
a Rayleigh damping rati@of 1 % was used. This figure is updated with trsiits obtained
by using the frictional damping model, see now Feg-11 which shows that both damping
methods: the Rayleigh damping and the frictionahpimg model, demonstrate close results.
However they still do not agree well with the measuents.
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Plate ORayleigh Damping (& =1 %)
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Figure 7-11. Measured vertical vibration amplitsdes. calculated by FEM.

The calculated vertical vibration amplitudes hawéeggood match with the measured ones.
However, the difference between the frictional damgpmethod and the commonly used
Rayleigh damping method is very small. This medrst, tthe frictional damping model
works as good as the Rayleigh damping method ferh@rmonic oscillations. But it also
means that to use a more conventional method oputynRayleigh damping, is enough for
harmonic oscillations. This conclusion is not apsise, because the damping ratio in the
Rayleigh damping method can, for harmonic oscdladi be selected precisely for the applied
frequency, because in harmonic oscillations thenly one frequency.

Checking the horizontal vibration amplitudes, segufe 7-12, it can be seen, that in the first
three meters the measured horizontal amplitudesnaich bigger than the calculated. The
differences, between the measured and calculatedontal vibration amplitudes, might be
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caused by the reflected waves from a deeper s@t.|dhis additional energy reflecting from
the deeper layer is causing higher horizontal vibng (also slightly changing the vertical
vibrations in the first meter, see Figure 7-11, vt vertical vibrations are, in general, higher
so the influence of the reflection is smaller). Alsere the assumption should be recalled,
which had been made in Chapter 5.3, that the si®mogeneous even though it was known
a priori, from the earlier geological investigatsrthat it is not fully homogeneous. Other
aspects than layering were also discussed in Gh&ptdike anisotropy, saturation, air-
content, etc. From these, the degree of saturaibahd have caused a second P-wave to
appear. The second P-wave could not be capture&HWM, because it is a product of
multiphase behaviour.

60

o OMeasured Vibrations
50 A © Without Damping (& =0 %)
E o DORayleigh Damping (=1 %)
2 40 - AFrictional Damping (=1 %)
e
2 30 A o
= o °
Z 20 - o o o
S A A °
= B
T 10 1 Plate 8 < o
o @
@
() T T T T T T
0 | 2 3 4 5 6 7

‘Distance [m]
Figure 7-12. Measured horizontal vibration ampliasdvs. calculated by FEM.

The values of the vibration amplitudes of FEM cldtions and measurements can be better
seen in the following tables.

Table 7-7. Vertical vibration amplitudes: FEM vseasurements.

Distance Vertical vibration amplitudesmi]
[m] No damping Rayleigh dampirig= 1 % Frictional damping =1 % Measured
0 305.3 302.7 301.9 292
0.2 305.3 302.7 301.9 292
1.2 43.71 35.04 38.07 61.01
2.2 29.13 22.55 21.81 27.32
3.2 25.73 20.32 18.21 16.84
4.2 25.50 16.98 15.01 4.05
5.2 24.72 15.11 13.61 3.12
6.2 24.29 14.30 12.50 2.12

As it can be seen from Figure 7-13, the calculatiamith damping tend to follow the linear
elastic solution (without damping) and similarlydemestimate the vibrations closer to the
source, and overestimate further away from thecgo(with respect to the measurements).

From the validation results, it can be concludeat the frictional damping model can predict
the geotechnical vibrations caused by harmonicllasons with at least the accuracy of
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Rayleigh damping. And as it was stated earliers ibecause for the harmonic oscillations
(only one frequency) — correct Rayleigh dampindficients can be selected.

Table 7-8. Horizontal vibration amplitudes: FEM wseasurements.

Distance Horizontal vibration amplitudasi]

[m] No damping Rayleigh dampirig= 1 % Frictional damping =1 % Measured
0 0 0 0 0

0.2 0 0 0 0

1.2 24.39 21.74 16.80 55.70
2.2 24.48 19.33 16.75 46.42

3.2 19.56 14.16 13.6 31.83

4.2 14.99 10.50 9.81 5.17

5.2 10.65 7.13 6.51 6.30

6.2 7.57 4.42 4.37 3.58

However, for an impact pulse, the differences betwihe two damping methods should be
more visible. The advantage of the frictional damgpinay be apparent, because the frictional
damping damps all the frequencies equally.
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Vertical vs. Horizontal velocity amplitudes
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Figure 7-13. Velocity trajectories.
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7.8 Pulse load — Rayleigh damping versus frictional daping

In order to check the differences between Raylalgimping and the frictional damping
methods for pulse loading, a numerical simulatiba pulse signal was performed.

Soil and FE model properties

The Rayleigh damping (available in Plaxis), is unhfoately frequency dependent and also
damps deformations of all wave types, instead ¢y tme deviatoric part. Because of this,
this, Rayleigh damping will be compared to thetfocal damping model, which does not
have these problems. For this a pulse load oncalair area on the soil surface is modelled
numerically. The pulse load of 2 kN is modellechasaximum vertical stress of 63.66 kN/m
over the area on the soil surface with a diameté m. The vertical stress is introduced in
a time period from 0 to 0.005 s, with its peak 8025 s (Figure 7-14).
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Figure 7-14. Input pulse load.

An axisymmetric mesh with a length and depth ofnb@s used. The geometry and mesh is
presented Figure 7-15.
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The dynamic problem is calculated first without gbémg, second with Rayleigh damping and
third with frictional damping. A damping ratio wile used of = 3 %. The compressional
wave velocity of the soil mediuw, = 200 m/s, the shear wave velooity= 60 m/s and the
density p=1.5 t/ni. From this follows the small strain stiffness shemodulus

Go = p-\& = 5400 kN/ni and the Poisson’s ratio of 0.451. Here the secant shear modulus
Gseclis set to be equal to the small strain stiffnémsas modulu$se.

In this case, for the Rayleigh damping, the tadganhping ratios are equédl = & = 3 %.
Unfortunately, there is no other way than selectimg different target frequencies. From the
undamped calculations it was measured, that mosthef pulse energy travels in the
frequency range betwedn= 5 Hz andf, = 25 Hz, then the angular frequencies= 2xf; =
31.42 rad/s and, = 2xf;, = 157.08 rad/s. So the damping coefficients adngrtb Equation
(5-6) are respectivelys = 1.571 angbs = 3.183-10.

For the frictional damping model, the average slséin amplitude is in the range of10
The frictional damping ratia® = 3 %, results in the following three parameters tioe

frictional damping model: 1) the dimensionless damgp coefficient, according to
Equation (7-2)X = 0.910, 2) the modified shear modulus, accordiogEquation (7-3),
Gmoa= 2039 kN/mi and 3) the bulk modulus, obtained from the comgicesl and shear
wave velocitieskK = 52 800 kN/r.

Results
Figure 7-16 shows the peak displacements verstsndis from the centre. The left side of

the figure shows the horizontal peak displacemantsthe right side shows the vertical peak
displacements.
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Figure 7-16. Peak displacement at different diseanc

From Figure 7-16 follows that by applying frictidndamping, the peak displacements
(horizontal and vertical) are higher than by apmijyRayleigh damping, especially closer to
the source. This can be explained by the fact, thedr the source, there are only
compressional and shear waves and the Rayleigh vimveot yet developed. The
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compressional waves change mostly the volume ardiyhthe shape. On the contrary, the
shear waves change only the shape. The frictioadpthg damps only the changes of the
shape, so only the shear waves and a small paineafompressional waves. In contrary the
Rayleigh damping damps all waves equally, so dlsodisplacements of the compressional
waves.

Further away from the source, the Rayleigh waveneerging and starts to dominate. It
causes more changes of the shape rather than lin@ejotherefore the differences between
the peak displacements, obtained by the two diftedlamping models, are getting smaller.

Atg> Atg AN Atg &

Frictional damping (R =5 m)
----- Rayleigh damping (R = 10 m)
— - = Frictional damping (R =10 m)

Peak vertical displacement [pm]

Time [s]
Figure 7-17. Vertical vibration records at 5 m ah@d m distances.

In Figure 7-17, the vertical vibration records dsnseen for two different distances from the
centre of the source: at 5 m and at 10 m. The oduliclines show the results obtained with
the frictional damping, and the green lines — viRtetyleigh damping.

The arrival times of the peak displacements arey w@ose, but not exactly the same.
Comparing the time differenced between the red and the green peaks, it can Ine e

the signal travels faster with the frictional danmgpmodel. This is because the modified shear
modulusGmoqis selected for average shear strain amplitudd€idfwhereas the shear strain
amplitudes become smaller for larger distances.shear strain amplitudes decrease because
of both the radiation damping and the material damprhis result in a stiffer behaviour of
the deviatoric term, therefore the pulse travedseia

7.9 Conclusions

A 3D frictional damping model has been developed iacorporated into the FEM software
Plaxis as a user defined soil model. The verifarattyclic simple shear and cyclic triaxial
tests showed good agreement with analytical saiatidhis confirms that the 3D frictional
damping law was correctly incorporated into the FEdde as UDSM.

The validation tests proved, that the frictionahgieng model can predict the geotechnical
vibrations caused by harmonic oscillations witHeatst the accuracy of Rayleigh damping.
Even though the measured vibration amplitudes wetexactly the same as the numerically
predicted, the numerical predictions are more ateuthan analytical ones by using the
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analytical method of Barkan-Bornitz. On the othemdh the results obtained with the
frictional damping model and Rayleigh damping ageywlose. This means that the frictional
damping model did not solve the problem of theedldht amount of damping just next to the
plate and further away from the plate.

Despite this, the advantage of the frictional dargpinodel becomes clear in the case of a
pulse load, in which a lot of different frequenciase generated. The frictional damping

model demonstrates a different physical behaviddhe soil, in comparison to the Rayleigh

damping, because it is able to damp only deviatgtriins and its damping remains constant
for all frequencies. Closer to the source, the paigaklacements are bigger, due to the fact
that only the deviatoric part of the strains is gach This means all basic waves

(compressional, shear, Rayleigh) are damped diftgreFurther away from the source, the

peak displacements are almost the same, reganrdleish model is used. However, the

arrival times obtained by the frictional damping dab are shorter in comparison to the

Rayleigh damping. This is due to increasing stéBm the far-field.

In the frictional damping model, the energy disigraiis a result of the non-linearity of the

soil. Because of this non-linear behaviour, thi#rgss matrix is a function of the strains and
solved by an iterative Newton-Raphson procedureingicalculations, the stiffness matrix is

updated during each incremental load step. Thisga® costs much calculation time. In the
Rayleigh damping model however, the same stiffmeasix is used during the calculation,

therefore it is considerably faster.

The shaker test showed that for problems with hainmscillations, with only one
frequency, Rayleigh damping can be used, instedteofrictional damping, and almost the
same results can be obtained. And at the samedicunsiderable amount of calculation
time can be saved.

Also, the frictional damping model is very senstito the damping ratio. This follows from
the fact that a power law is used. The FEM codediifisulties to converge for very high
damping ratios{ > 5 %). But on the other hand, this model is idezh for man-made
vibrations, where the damping is constant and s@all3 %).
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8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

There are a few analytical methods to calculatevtheation amplitudes and phase shifts of
an oscillating plate on an elastic, homogeneousisatdopic half-space. The comparison of
the analytical solutions with the FEM showed thatthe vertical vibration amplitude of an
oscillating rigid plate, Lysmer’s analytical soluti demonstrates similar results as the FEM
calculations. The confined elasticity solution asllvas the Reissner’s solution (with Sung’s
displacement functions) could be used for very thavensionless frequencies only.

For the amplitudes of the soil surface there iy @me analytical method, Barkan’s method,
to calculate the amplitudes and phase shifts. Tmeparison of Barkan’s solution, which is

unfortunately for weightless plates only, and FEMWed similar results only for the near-

field zone, whereas the far-field zone gave simiégults for the FEM calculations only for

low dimensionless frequencies, < 0.3). However, the far-field solution could bdl sised

for higher dimensionless frequencies if it is athdsby removing a jump between the near-
and far-fields.

The disagreements between some analytical solutamts FEM results, encouraged to
investigate the problem of an oscillating circuligid plate more carefully, by inspecting the
wave-field itself. For a better understanding isweeeded to decompose the wave signal into
three basic waves (P-wave, S-wave and R-wave).

A wave decomposition method has been developed hwhan decompose a recorded
superposed soil wave into its basic waves when iphellgeophones are used. From the
recorded data a system of non-linear equations lm@nassembled with six unknown
parameters (three amplitudes and three phase)sHiftese six parameters can be solved by
using an iterative way of the least square metfibd leads to a decomposition into the three
basic waves, with each its own amplitude and plsasie The superposition of only these
basic waves describes very accurately the recoslgxkrposed soil wave, proving the
existence of only these three basic waves. Thenfysdprove also that all three basic waves
have phase shifts (in the far-field) and these plsasts are all different from each other.

The energy balance shows that the amount of ensaftedgy by the load on the plate is the
same as of the sum of energies of the basic waves.is another type of evidence that only

three basic waves exist. Near the vibrating pldie,displacement amplitudes do not follow

the same attenuation law such as further away fr@source. This proves the existence of
the near-field phenomenon. The R-wave energy sairzero just at the source and grows in
the near-field zone due to an energy transmisdiody waves are transferring energy to the
R-wave). After some distance (in the far-field)e tR-wave becomes fully developed. This

phenomenon is not understood completely yet, ke explain the phase shifts of the basic
waves.

A real field test of a shaker on the surface otkal 1s0il has been performed in order to
compare the vibrations with analytical and FEM gkdtons. In this case, one of the soil
mechanical aspects is introduced — the materialpdegn The shaker test showed, that the
vibration amplitudes of the plate can be predicigith Reissner's or Lysmer’s approach or
with numerical (FEM) calculations. The accuracy elgs on the method used for the
prediction, and ranges from 94 % to 100 % (whichregponds to Predicted/Measured ratio
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of 1.06 and 1.00 respectively). This means thatatmelitude of the shaker can be predicted
accurately enough for geotechnical purposes.

The soil surface vibration amplitudes can be ptedicwith Barkan-Bornitz’s analytical

approach and with numerical (FEM) calculations. e TBarkan-Bornitz approach over-
predicted the amplitudes between 4.2 and 48.9 tiniége FEM under-predicted the
amplitudes for the first three meters and over-oted up to 7.2 times for the last three
meters. This means that the amplitudes of the seirfannot be predicted with higher than
25 % accuracy.

The measurements from the shaker test indicatéereiiit amount of damping just next to the
plate and further away from the plate. This is te&oally possible in case of different

damping per basic waves. There is a method rdfigctihis phenomenon, which is the

frictional damping method, first suggested by Vamai (2011). In order to be able to use
this 1D method, it had to be extended to 3D andrparated into the FEM calculation

scheme.

This 3D frictional damping model has been developed incorporated into the FEM
software Plaxis as a user defined soil model. Adfigation, cyclic simple shear and cyclic
triaxial tests have been modelled. The results shood agreement with analytical solutions,
confirming that the 3D frictional damping law wasriectly incorporated into the FEM code.
As a validation test, the shaker test was usednBheugh the numerically calculated
amplitudes are not exactly the same as the measursie, they are still more accurate than
the analytically ones, calculated by Barkan-Boreigpproach. On the other hand, the results
obtained with the frictional damping model and Ré&yh damping are very close. This means
that the frictional damping model did not solve thblem of the different amount of
damping just next to the plate and further awaynftbe plate.

Despite this, the advantage of the frictional dargpmodel becomes clear in the case of a
pulse load, in which a lot of different frequenciase generated. The frictional damping
model demonstrates a different physical behaviddhe soil, in comparison to the Rayleigh
damping, because it is able to damp only deviatstrains and its damping remains constant
for all frequencies. Closer to the source, the p#iaklacements are bigger, due to the fact
that only the deviatoric part of the strains is gach This means all basic waves
(compressional, shear, Rayleigh) are damped diftgreFurther away from the source, the
peak displacements are almost the same, regardleish model is used. However, the
arrival times obtained by the frictional damping dab are shorter in comparison to the
Rayleigh damping. This is due to increasing stggm the far-field.

In the frictional damping model, the energy distgoais a result of the non-linearity of the

soil. Because of this non-linear behaviour, the#rgss matrix is a function of the strains and
solved by an iterative Newton-Raphson procedureingicalculations, the stiffness matrix is

updated during each incremental load step. Thisga® costs much calculation time. In the
Rayleigh damping model however, the same stiffmeasix is used during the calculation,

therefore it is considerably faster.

The shaker test showed that for problems with harn®scillations, with only one
frequency, Rayleigh damping can be used, instealeofrictional damping, and almost the
same results can be obtained. And at the samedicensiderable amount of calculation
time can be saved.
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Conclusions and recommendations

Also, the frictional damping model is very senstito the damping ratio. This follows from
the fact that a power law is used. The FEM codediifisulties to converge for very high
damping ratios{ > 5 %). But on the other hand, this model is id&h for man-made
vibrations, where the damping is constant and s@all3 %).

8.2 Recommendations

For calculations of the vertical vibration amplieu@f an oscillating rigid circular plate,
Lysmer’s analytical solution may be used. Howewerd plate with different stiffness or non-
circular shape, the more general, Reissner's swmlutbgether with corresponding and
unknown displacement functiofisandf, should be used.

In order to predict the surface displacements ofoanillating rigid circular plate, an
improved solution for the vibration predictions da@ used. This solution consists of three
parts: 1) the analytical Lysmer method for the gldisplacement amplitude 2) the shape of
the vertical surface displacements of the elastbesBoussinesq solution in the near-field
and 3) the R-wave attenuation laf° with the exponential material damping law (ekp(F-
rg)]) in the far-field. It is recommended to end thear-field at a distance, equal to about a
half to one length of the R-wave. This approactegigood predictions, if compared to the
measurements or FEM calculations.

For future research on vibrating plates, it is reotended to use a bigger shaker than
described in the thesis. The tests on sites, waiehstiffer than the peaty test site, showed
that the vibration amplitudes are damped very fgmdd cannot be measured after the first
two meters anymore because the ambient noise bedoigiger than the vibrations. However

using a bigger shaker means also bigger transportptoblems, as well as the possibility of

plastic deformations under the plate. Also a degserof measurement points, especially in

the first meter away from the shaker, should beluse

The frictional damping model is recommended to $edufor impulse load problems, but first
it should be validated with an impulse load tedte Tmodel is designed for small strain
problems where the damping is small and constaerty \¢lose to the load source, close to a
pile or just under a dropped mass, a soil body miighdeformed with much higher shear
strains. Therefore, close to the source, wheredémeping is high and not constant, the soill
should be modelled by using another model, for gptarthe Hardening Soil model for small

strains.
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MATLAB code for decomposition of waves

APPENDIX A. MATLAB code for decomposition of waves

The wave decomposition technique consists of tfifes: wave _decomp.m, amplitudes.m

and constraint.m. The scripts of the files are gmé=d in the following Boxes.

Box A-1. Main calculation file wave_decomp.m.

%
%% PART | - DECOMPOSITION
%
clear all ;close all ;clc;
%
set(0, ‘'DefaultFigureWindowStyle'
%
global wtkc ks krrrauxuydd
%
nu = 0.25;
alfa = sqgrt((1-2*nu)/(2-2*nu));
ro = 20000/9.81;
%
% Calculation of the Rayleigh wave speed to Shear w
%
€33 = 0.000001;
f33 =1,
b33 = (1-nu)/8;
%
if nu>0.1;
while f33>e33;
a33=b33;
b33=(1-nu)/(8*(1+a33)*(nu+a33));
f33=abs(b33-a33);
e33=e33+e33;
end
%
else

, 'docked'

while f33>e33;
a33=b33;
b33=sqrt((1-nu)/(8*(1+a33)*(1+nu/a33)));
f33=abs(b33-a33);
e33=e33+e33;
end
end
%
beta = 1./sgrt(1+a33);
%
cc=173.2;
cs = cc*alfa;
cr = cs*beta;
%
f=10;
w = 2*pi*f;
%
% Ratio of the R-wave amplitudes on the surface Arx
%
dd = 2*sgrt(1-beta”2)/beta’2 - 2/(sqrt(1-alfa™2*bet
+ 1/(sqrt(1-alfa*2*beta”2));
%
kc = wi/cc;
ks = wi/cs;
kr = w/cr;
%

%%%%%% %% %% %% %% %% %% %% %% %% %% %% wave_decoripas

‘l.. (X

)

% Introducing global variables
% Poisson's ratio

% Ratio between cs and cc

% density kg/m3

ave speed ratio (cr/cs)

% Ratio between cr and cs

% Compressional (P) wave velocity
% Shear (S) wave velocity

% Rayleigh (R) wave velocity

% Frequency
% Angular frequency

/Ary
a’2)*beta2)
% Compressional (P) wave number

% Shear (S) wave number
% Rayleigh (R) wave number

%%%%%%%%%%94%% %
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MATLAB code for decomposition of waves

Continuation of Box A-1.

Ic = ccff; % Compression wave length

Is = cs/f; % Shear wave length

Ir = crlf; % Rayleigh wave length

%

ra = 15:1:24; % Distance from the centre axis to the measurement points
rpl = 0.2; % Radius of the plate

r =ra-rpl; % Distance from the edge of the plate to the measur ement p.
%

% Reading Plaxis output data from excel file plaxis _outputl.xlsx

%

for i=1:10

t(:,i) = xIsread( ‘plaxis_outputl.xIsx' , 'K402:K502" ); % time values
uxr(:,i) = xIsread( 'plaxis_outputl.xlsx' i, 'L402:L502" ); % horiz. displ.
uyr(:,i) = xIsread( ‘plaxis_outputl.xIsx' , 'P402:P502"' ); % vert. displ.
end

%

ux=uxr*10"6; % Converting to micro-meters

uy=-uyr*10°6; % Converting to micro-meters and changing the sign ofy
%

% Decomposing waves by using an optimisation techni que

%

options = optimset( 'Display’ , 'iter' , '‘Algorithm’ , 'active-set' );

%

x0=[000000]j; % initial quess for the unknowns

%

[x,fval] = fmincon(@amplitudes,xO0,[1.[1,[.[I.[1.[] ,@constraint,options);

%
% Back-Calculation of the superposed wave
%

Upx=x(1); % Horizontal amplitude of the P-wave
Urx=x(2); % Horizontal amplitude of the R-wave
Usy=x(3); % Vertical amplitude of the S-wave
Ury=x(2)/(-dd); % Vertical amplitude of the R-wave
%

FyC=x(4); % Phase shift of the P-wave
FyS=x(5); % Phase shift of the S-wave
FyR=x(6); % Phase shift of the R-wave

%
% Total back-calculated signals
%

for i=1:10
uxb(:,i) = Upx*sin(w*t(:,i)-kc*r(i)-FyC)*(ra(1) Ira(i))"1 -
Urx*cos(w*t(:,i)-kr*r(i)-FyR)*(ra(1) Ira(i))\(1/2);
uyb(:,i) = Usy*sin(w*t(:,i)-ks*r(i)-FyS)*(ra(1) fra(i))"1 +
Ury*sin(w*t(:,i)-kr*r(i)-FyR)*(ra(1) Ira(i))\(1/2);
end

%
% Back-calculated P-wave
%
for i=1:10
uxbp(:,i) = Upx*sin(w*t(:,i)-kc*r(i)-FyC)*(ra(1 Yra(i))™1;
end
%
% Back-calculated S-wave
%
for i=1:10
uybs(:,i) = Usy*sin(w*t(:,i)-ks*r(i)-FyS)*(ra(1 Yra(i))™1;
end
%
% Back-calculated R-wave
%

for i=1:10
uxbr(:,i) = - Urx*cos(w*t(:,i)-kr*r(i)-FyR)*(ra D/ra(i))N1/2);
uybr(:,i) = Ury*sin(w*t(:,i)-kr*r(i)-FyR)*(ra Q)/ra(i))N1/2);
end
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MATLAB code for decomposition of waves

Continuation of Box A-1.

%

% Figures of the total back-calculated signal vs. t
%

figure

plot(t(:,1),uyb(:,1),t(:,1),uy(:,1))

figure

plot(t(:,1),uxb(:,1),t(:,1),ux(:,1))

figure

plot(t(:,10),uyb(:,10),t(:,10),uy(:,10))

figure

plot(t(:,10),uxb(:,10),t(:,10),ux(:,10))

%

% Calculation of the Correlation coefficients at al
%

for i=1:10
uxp = ux(:,i); % Plaxis ux
uyp = uy(:,i); % Plaxis uy
uxbb = uxb(:,i); % Plaxis ux
uybb = uyb(:,i); % Plaxis uy
%
R2x = 1 - sum((uxp - uxbb).*2) / sum((uxp-mean( uxp)).*2);
R2y = 1 - sum((uyp - uybb).~2) / sum((uyp-mean( uyp)).*2);
%
Rx(i) = R2x; % Correlation at ith measurement point in x directi on
Ry(i) = R2y; % Correlation at ith measurement point in y directi on
end
%
% Figure of the Correlation factors at different di stances
%
figure
plot(ra, Rx, ra, Ry)
xlabel( 'Distance, [m]' );
ylabel( 'Correlation factor, [-] );
legend( 'R"2x' ‘RA2y");
ylim([0 1]);
%
% Mean Correlation for all the directions and all p oints

%

meanRx = mean(Rx);
meanRy = mean(Ry);
meanR = mean([Rx Ry]);
%

%% PART Il - FUNCTIONS OF AMPLITUDES OF THE WAVES O N ADDITIONAL POINTS

%

Upx=x(1)*10"-6;
Urx=x(2)*10"-6;
Usy=x(3)*10"-6;
Ury=x(2)/(-dd)*10"-6;
%

FyC=x(4); % Phase shift of the P-wave
FyS=x(5); % Phase shift of the S-wave
FyR=x(6); % Phase shift of the R-wave
%

ro = 15;

%

g = sqrt(kr*2-w"2/cc"2);

s = sqrt(kr*2-w"2/cs"2);

%

% R-wave relative amplitude function in depth

%

depth_hor = @(v) (kr*(-exp(-g*v)+2*q*s/(s"2+kr"2)*e
(kr*(-exp(-g*0)+2*q*s/(s"2+kr"2)*e

depth_ver = @(v) (g*(-exp(-g*v)+2*kr*2/(s"2+kr"2)*e

(a*( - exn( - a*0)+2*kr2/(s"2+kr*2)*exn(

% Mean Correlation factors for horizontal direction
% Mean Correlation factors for vertical direction
% Mean Correlation factors for h. and v. directions

% Horizontal amplitude of the P-wave in meters
% Horizontal amplitude of the R-wave in meters
% Vertical amplitude of the S-wave in meters
% Vertical amplitude of the R-wave in meters

% Radius of a sphere on which the additional
% points were placed

% Coefficient of the R-wave amplitude function
% Coefficient of the R-wave amplitude function

he Plaxis output

% uy for the 1st measurement point
% ux for the 1st measurement point
% uy for the 10th measurement p.
% ux for the 10th measurement p.

| the measurement points

Xp(-s*v))) /

Xp(-s*0)));

Xp(-s*v))) /
- s*O)N):
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Continuation of Box A-1.

%
width = @(h) sqrt(r0./h);
%

% Reading the coordinates of the measurement points on a circle
%
h = xlsread( ‘plaxis_output2.xIsx’ ,21,  'F2:F21' ), % Horizontal distance
v = xlIsread( 'plaxis_output2.xlIsx' ,21,  'G2:G21' ); % Vertical distance
%
teta=atan(h./v); % Angle with vertical line of the point
rad=sqrt(h."2+v."2); % Radial distance of the point
%
Arx = depth_hor(v).*Urx; % R-wave amplitudes x in depth
Ary = depth_ver(v).*Ury; % R-wave amplitudes y in depth
%
% Time vector which coresponds with time in plaxis_ output2.xlsx
%
tt = xIsread( 'plaxis_output2.xIsx’ .1,  'A2:A102' );
%
for j=1:20
% R-wave displacements in x axis of "j" point
urxt = - Arx(j)*cos(w*tt-kr*h(j)-FyR)*(ra(1)/h( NI2);

%
% R-wave displacements in y axis of "j" point
uryt = Ary(j)*sin(w*tt-kr*h(j)-FyR)*(ra(1)/h( DNL/2);
%
%
% Plaxis output for "j" point in x axis

utotx = xlsread( 'u_total_15.xIsx’ v 'B2:B102' );
%
% Plaxis ouktput for "j" point in y axis
utoty = -xlIsread( 'u_total 15.xlIsx' 2 'C2:C102" );
%
uresx = utotx-urxt; % Residual displ. in x axis (Plaxis ux - R ux)
uresy = utoty-uryt; % Residual displ. in y axis (Plaxis uy - R uy)
%
% Projecting residual displacements into the direct ions of P- and
% S-waves

%
for i=1l:length(tt),

u_compr(i,j)= uresx(i) * sin(teta(j)) + ur esy(i)*cos(teta(j));
u_shear(i,j)= -uresx(i) * cos(teta(j)) + ur esy(i)*sin(teta()));
end
end
%
% Calculating the amplitudes of the P- and S-waves on the "j" points
%
for j=1:20
amp_c(j) = (max(u_compr(:,j))-min(u_compr(:,j))) 12;
amp_s(j) = (max(u_shear(:,j))-min(u_shear(:,j))) 12;
end
%
% Checing the back-calculated P- and S-waves on a " j" point

%
j=7; % Selecting a desirable points "j"

u_back_c=amp_c(j)*sin(w*tt-kc*rad(j)-FyC); % Back-calculated P-wave
u_back_s=amp_s(j)*sin(w*tt-ks*rad(j)-FyS); % Back-calculated S-wave
%

figure

plot(tt,u_shear(:,j),tt,u_back_s);

figure

plot(tt,u_compr(:,j),tt,u_back_c);

%

%% PART Ill - CALCULATION OF THE ENERGY IN WAVES
Y%
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Continuation of Box A-1.

pc_Ar=polyfit(teta,amp_c',6); % 6th order polynomial fit for the P-wave
pc_At=polyfit(teta,amp_s',6); % 6th order polynomial fit for the S-wave

%

% Functions of the P, S and R-wave on the radius rO

%

funC = @(x) ((pc_Ar(1).*x."6 + pc_Ar(2).*x."5 + pc_
pc_Ar(4).*x."3 + pc_Ar(5).*x."2 + pc_
pc_Ar(7))).~2.*sin(x)*r0;

funS = @(x) ((pc_At(1).*x."6 + pc_At(2).*x."5 + pc__
pc_At(4).*x."3 + pc_At(5).*x."2 + pc_
pc_At(7))).”2.*sin(x)*r0;

funR = @(y) ((kr*(-exp(-g*y)+2*q*s/(s"2+kr*2)*exp(-
(kr*(-exp(-g*0)+2*q*s/(s"2+kr"2)*exp(-
((g*(-exp(-g*y)+2*kr 2/(s"2+kr2)*exp(
(q*(-exp(-g*0)+2*kr"2/(s"2+kr 2)*exp(-

%

tta=0:0.01:pi/2; % Step of the angle

%

C=funC(tta); % P-wave amplitudes
S=funS(tta); % S-wave amplitudes
EC=C."2; % P-wave amplitudes”2
ES=S.72; % S-wave amplitudes”2

%

[yc,xc] = sph2cart(tta, 0, 15);

[ys,xs] = sph2cart(tta, O, 15);

%

[cyl,cx1] = sph2cart(tta, 0, 10"12*C+15);
[sy2,sx2] = sph2cart(tta, 0, 10"12*S+15);

%

[ecyl,ecx1] = sph2cart(tta, 0, 10"24*EC+15);
[esy2,esx2] = sph2cart(tta, 0, 10"24*ES+15);
%

plot(xc,-yc,cx1,-cyl);

xlabel( 'Horizontal distance, [m]' );
ylabel( 'Vertical distance, [m]' ;
legend( '15m' , 'P-wave |amplitudes|* 10"1/2'
%

figure

plot(xs,-ys,sx2,-sy2);

xlabel( 'Horizontal distance, [m]' );
ylabel( 'Vertical distance, [m]' ;
legend( '15m' , 'S-wave |amplitudes|* 107172
%

figure

plot(xc,-yc,ecx1,-ecyl);

xlabel( 'Horizontal distance, [m]' );
ylabel( 'Vertical distance, [m]' );
legend( '15m' , 'P-wave |amplitudes|*2 * 10724
%

figure

plot(xs,-ys,esx2,-esy?2);

xlabel( 'Horizontal distance, [m]' );
ylabel( 'Vertical distance, [m]' );
legend( '15m' , 'S-wave |amplitudes|*2 * 10724

%

% Energy in the basic waves

%

Ec = 0.5*ro*w"2*quad(funC,0,(pi/2))*(2*pi*r0*Ic);
Es = 0.5*ro*w"2*quad(funsS,0,(pi/2))*(2*pi*r0*Is);
Er = 0.5*ro*w"2*quad(funR,0,3*Ir)*(2*pi*rO*Ir);
%

E = Er + Es + Egc; % Total energy

%

Ar(3).*x."4 +
Ar(6).*x +

At(3).*x.M4 +
At(6).*x +

s*y))) / v
s*0))).*Urx)."2 +
-s*y) |
s*0))).*Ury)."2;

% P-wave energy
% S-wave energy
% R-wave energy

%%%%%% %% %% %% % %% %% %% %% %% End of wave_decomp. i PePeehasiasias/o % % %% %% %% % % % % %% %
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MATLAB code for decomposition of waves

Box A-2. Optimisation function amplitudes.m.

function  f=amplitudes(x)

%

global wtkc ks krrrauxuydd
%

for i=1l:length(t)

%

for j=1:10

ux_c(i,j) = x(L)*sin(w*t(i)-kec*r(j)-x(4))*( ra(1)/ra(j))"1 -
X(2)*cos(w*t(i)-kr*r(j)-x(6))*(ra(1)/ra MNH™Na/2);

end

%

for j=1:10

uy_c(i,j) = x(3)*sin(w*t(i)-ks*r(j)-x(5))*( ra(1)/ra(j))"1 +
X(2)/(-dd)*sin(w*t(i)-kr*r(j)-x(6))*(ra Q)/ra())N1/2);

end

end
%
f=(sum(sum((ux-ux_c).*2)) + sum(sum((uy-uy_c).*2)))

Box A-3. Optimisation constrains function consttam

function  [c, ceq] = constraint(x)
%

ceq=l;

c=1I
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Technical data of vibrators and geophones

APPENDIX B. Technical data of vibrators and geophones

Two electric 4-poles vibrators (model A10-9.0-4nfrdeviro) were used for the shaker. An
exploded view is presented in the figure below.

Figure B-1. Exploded view of A10-90-4 vibrator (evtom).

The properties of the vibrator can be found infdll®wing table.

Table B-1. Technical data sheet for A10-9.0-4 ilarérom Eviro.

Technical feature Marking Dimensions Value

Max. eccentric moment Me [kgcm] 8,32
Max. centrifugal force F [kN] 1,03
Rated voltage Uy V] 400
Power consumption P [kw] 0,18
Rated current In [A] 0,34
Power factor Cco [-] 0,78
Ratio starting / Rated current IA/ln [-] 2,3
Rated mains frequency fn [Hz] 50
Max. speed (at rated mains frequency) Ny [rpm] 1500
Number of poles - [-] 4
Total mass M [kg] 8,1
Motor length X [mm] 281

Seven 3D geophones were used (showed in a) ofd-Bg#), which consist of three seismic
detectors: one DS11-4.5-VT (vertical) and two DR13-HT (horizontal) (showed in b) of
Figure B-2).

The technical data of the DS11-4.5 can be fouriainle B-2. Output vs. Frequency respons
chart is presented in Figure B-3.
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Technical data of vibrators and geophones

a) b)

Figure B-2. a) three dimensional geophone; b) smigtatector GS-11D; (not to scale).
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Figure B-3. GS-11D seismic detector response cuuput vs. frequency chart.
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Technical data of vibrators and geophones

Table B-2. Technical data sheet for A10-9.0-4 vibrdrom Eviro.

Technical feature Dimensions Value
Natural frequency [Hz] 45+0.75
Coil Resistance @ 25° C (= 5 %) [Ohm] 380
Intrinsic Voltage Sensitivity with 380 Ohm Coil D26 [Viem/s] 0.32
Normalised Transduction Constant [V/in/s] 0.42rsmt of Rc
Open Circuit Damping [-] 0.34+20%
Damping Constant with 380 Ohm Caoil [-] 762
Optional Coil Resistances £+ 5 % [Ohm] 4000
Moving Mass £ 5 % [0] 23.6
Typical Case to Coil Motion P-P [cm] 0.18
Height [cm] 3.35
Diameter [cm] 3.18
Weight [0] 111
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Vibration measurements on peat site

APPENDIX C. Vibration measurements on peat site

Hereby the radial and vertical vibrations (from thbration tests on a peaty site) of every
geophone are presented. For the first two geoph@neseter and 2 meters away from the
shaker respectively) also the measurements ofdiheversal vibrations are showed.

50
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Figure C-1. Shaker Vibrations.
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Figure C-2. Surface vibrations 1 m away from thaksn.

123



nts on peat site
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Figure C-3. Surface vibrations 2 m away from thakg.
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Vibration measurements on peat site
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Figure C-5. Surface vibrations 4 m away from thaksn.
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Developed vibration prediction method comparisothWdEM results

APPENDIX D. Developed vibration prediction method
comparison with FEM results

Hereby all forty plots (according to the table lweJaf the comparison between the vertical
vibrations obtained by FE modelling and the caltotes by the improved prediction method
are presented.

Table D-1. Matrix of the numerical calculations witumbers of the corresponding figures.

% 0179 0269 0359 0449 0538 0.628 0718 0.897 77L.0 1.346

B

0.5 D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9 D-10
1 D-11 D-12 D-13 D-14 D-15 D-16 D-17 D-18 D-19 D-20
2 D-21 D-22 D-23 D-24 D-25 D-26 D-27 D-28 D-29 D-30
5 D-31 D-32 D-33 D-34 D-35 D-36 D-37 D-38 D-39 D-40

Table D-2. Matrix of the average errors in perceyga.

% 0179 0269 0359 0449 0538 0.628 0718 0.897 77L.0 1.346

B
0.5 4.9 5 4.3 5.6 4.7 55 5.9 8.3 14.3 8
1 4.7 5.8 5 6.7 5.2 6.1 6.2 7.5 9.5 4.7
2 4.8 5.5 6.2 8.3 6.1 5.3 3.7 5.6 6.6 6
5 5 6.7 10.9 4.9 13.7 9.8 9.2 5.3 4.7 5.5
Table D-3. Matrix of the maximum errors in percejyds.
B % 0179 0269 0359 0449 0538 0.628 0718 0.897 77L.0 1.346
0.5 10.6 10 9.7 12.8 9.6 11 13 19.9 24.1 22.3
1 10 10.5 10.9 13.6 10.8 14.4 14.6 18.7 20.3 11.9
2 11.5 9.6 13.9 15.3 11.9 10.8 7.7 12.6 24.1 12.7
5 10.7 13.3 19.1 9.8 22 19.1 15.9 13.2 14.4 14.4
iy
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—_ o B=0.5 S , -
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E \
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A 0.5 o
Bl - T N N G
O 1 T ? ?* ?---ol---?---#----g -----
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Distance from the shaker's axis of centre [m]
Figure D-1. Vertical vibration amplitudes of theriace (B = 0.5, a= 0.179).
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Figure D-2. Vertical vibration amplitudes of theriace (B = 0.5, a= 0.269).
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Figure D-3. Vertical vibration amplitudes of theriace (B = 0.5, a= 0.359).

3
gl e ysmer (for the plate amplitude)

=95 = -+ =Boussinesq shape (for the Near-Field)
= —
A= a = 0.449 == ==R-wave (for the Far-Field)
S 5] 4, =258m o FEM
= - I'pl
= 1
S154 -
= \
Q
g 14
8 \
,a . rff = 051,
2054 o

0 T -0 -0 ---0----0----@----@----@----1

0 1 2 3 4 5 6 7 8 9 10
Distance from the shaker's axis of centre [m]

Figure D-4. Vertical vibration amplitudes of thergace (B = 0.5, a= 0.449).
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Figure D-5. Vertical vibration amplitudes of theriace (B = 0.5, a= 0.538).
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Figure D-6. Vertical vibration amplitudes of theriace (B = 0.5, a= 0.628).
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Figure D-7. Vertical vibration amplitudes of thergace (B = 0.5, 3= 0.718).
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Displacement amplitude [mm]

Displacement amplitude [mm]

Displacement amplitude [mm]
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Figure D-8. Vertical vibration amplitudes of theriace (B = 0.5, a= 0.897).
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Figure D-9. Vertical vibration amplitudes of theriace (B = 0.5, a= 1.077).
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Displacement amplitude [mm]
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Figure D-11. Vertical vibration amplitudes of therace (B = 1, 3= 0.179).
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Figure D-12. Vertical vibration amplitudes of therace (B = 1, 3= 0.269).
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Figure D-13. Vertical vibration amplitudes of therface (B = 1, a= 0.359).
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Displacement amplitude [mm]

Displacement amplitude [mm]

Displacement amplitude [mm]
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Figure D-14. Vertical vibration amplitudes of therace (B = 1, 3= 0.449).

I‘ H = [_ysmer (for the plate amplitude)

= - =Boussinesq shape (for the Near-Field)

a9=0.538 = ===R-wave (for the Far-Field)

11 4 =215m o [FEM

. Tpl
10
T
7 \ I"j'/':O.S/J»r
_ \tL-__

Rl SLDL TEETY TR YR Sy Sy S

0 1 2 3 4 5 6 7 8 9 10

Distance from the shaker's axis of centre [m]

Figure D-15. Vertical vibration amplitudes of therace (B = 1, 3= 0.538).
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Figure D-16. Vertical vibration amplitudes of therface (B = 1, 3= 0.628).
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Figure D-17. Vertical vibration amplitudes of therace (B = 1, 3= 0.718).
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Figure D-18. Vertical vibration amplitudes of theriace (B = 1, 3= 0.897).
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Figure D-19. Vertical vibration amplitudes of therace (B = 1, a= 1.077).
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Figure D-20. Vertical vibration amplitudes of therace (B = 1, 3= 1.346).
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Figure D-21. Vertical vibration amplitudes of therace (B = 2, 3= 0.179).
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Figure D-22. Vertical vibration amplitudes of therace (B = 2, 3= 0.269).

134



Developed vibration prediction method comparisothWdEM results
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Figure D-23. Vertical vibration amplitudes of therace (B = 2, 3= 0.359).
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Figure D-24. Vertical vibration amplitudes of therace (B = 2, 3= 0.449).
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Figure D-25. Vertical vibration amplitudes of therace (B = 2, 3= 0.538).

135



Developed vibration prediction method comparisothWAEM results

Displacement amplitude [mm]

Displacement amplitude [mm]

Displacement amplitude [mm]

136

< — o e +
O U = D W B U

r‘ = [_ysmer (for the plate amplitude)
= - =Boussinesq shape (for the Near-Field)
i a9 =0.628 = ===R-wave (for the Far-Field)
IR J,=1.84m o FEM
V'pl
1\
1\
1 N _ry=054,
1 \o“‘-o-
--'O'-"-'O'-‘-'O'---—e————e-—-—e-—--° —————
0 1 2 3 4 5 6 7 8 9 10
Distance from the shaker's axis of centre [m]

Figure D-26. Vertical vibration amplitudes of therace (B = 2, 3= 0.628).
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Figure D-27. Vertical vibration amplitudes of therace (B = 2, 3= 0.718).
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Figure D-28. Vertical vibration amplitudes of therace (B = 2, 3= 0.897).
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Figure D-29. Vertical vibration amplitudes of therace (B = 2, 3= 1.077).
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Figure D-30. Vertical vibration amplitudes of therace (B = 2, 3= 1.346).
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Figure D-31. Vertical vibration amplitudes of therace (B = 5, 3= 0.179).
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Figure D-32. Vertical vibration amplitudes of therace (B = 5, 3= 0.269).
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Figure D-33. Vertical vibration amplitudes of therace (B = 5, 3= 0.359).
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Figure D-34. Vertical vibration amplitudes of therace (B = 5, 3= 0.449).
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Figure D-35. Vertical vibration amplitudes of therace (B = 5, 3= 0.538).
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Figure D-36. Vertical vibration amplitudes of therace (B = 5, 3= 0.628).
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Figure D-37. Vertical vibration amplitudes of therace (B = 5, 3= 0.718).
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Figure D-38. Vertical vibration amplitudes of therace (B = 5, 3= 0.897).

e ysmer (for the plate amplitude)
= -+ =Boussinesq shape (for the Near-Field)

== ==R-wave (for the Far-Field)

| 4,=1.07m © FEM

o }"pl

11

11

1 V=05

\\ “

3 4 6
Distance from the shaker's axis of centre [m]

Figure D-39. Vertical vibration amplitudes of therace (B = 5, a= 1.077).
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Pascal code for UDSM of Frictional damping model

APPENDIX E. Pascal code for UDSM of Frictional damping
model

Hereby a Pascal code is provided, which can be imsertler to generate a DLL file. The file

is made to be used as a User Defined Soil Modé&tlaxis software. Free Pascal Lazarus

(v. 1.2.6) was used for programming the DLL filedaRlaxis 2D v9.02 was used for soill
vibration calculations.

Box E-1. Pascal Code for UDSM of Shear damping.

library FricDamp;

/I Two Soil models:

Il

/I 1. Linear Elastic Soil Model
/I 2. Shear Damping Soil Model
Il

{$mode Delphi{$H+}
{$calling stdcall}

uses
[IShareMem,
SysUtils,
Classes,
Math;

const NumbVar = 48;
incr = 1e-10;

type vector = array[1..6] of double; // Sigma
epsvector = array[1..12] of double; //dEps

mediumvector = array[1..20] of double; //Sig 0
matrix = array[1..6,1..6] of double; //D
longvector = array[1..50] of double; //Pro ps
statevector = array[1l..NumbVar] of double; //[Statvar { from 1 to
NumbVar }
var Xd,G,v,E,Fac,Term1,Term2,Term3,K,dz:double; /l Parameters(Props,iMod);
EpsVol:double; /I Cal cGamma
Gamma:vector; /I CalcGa mma,;
Eps,GammaHist,GammaMax,GammaMin, TauHist,TauM ax,TauMin,DirHist:vector;
/[CallHistory(StVar0,dEps)
Dir:vector; /I CalcDir
Tau:vector; /I CalcTau
{$R *.res}
procedure GetModelCount(var C:longint);stdcall;expo rt;
begin
CcC:=2;

end;

procedure GetModelName(var iModel:longint;

var Name:shortstring);stdcal l;export;
begin
case iModel of
1 : Name :='Linear Elastic’;
2 : Name :='Shear Damping';
else
Name :=";
end;
end;
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Pascal code for UDSM of Frictional damping model

Continuation of Box E-1.

procedure GetParamCount(var iModel:longint;
var C:longint);stdcall;expo rt;
begin
case iModel of
1:C:=2
2:C:=4;
else
C:=0;
end ;
end;

procedure GetParamName(var iModel,iParam:longint;
var Name:shortstring);stdcal l;export;
begin
case iModel of
1: case iParam of

1: Name :="E";
2 : Name :='@n";
else
Name :=";
end;
2 : case iParam of
1: Name :='@x’;
2 : Name :='G_mod#;
3 : Name = 'K}
4 : Name :='@z";
end;
else
Name = ";
end;
end;

procedure GetParamUnit(var iModel,iParam:longint;
var Units:shortstring);stdca Il;export;
begin
case iModel of
1: case iParam of
1: Units := '[FIL"2#],
2 : Units :="[-]}
else
Units :=";
end;
2: case iParam of
1 : Units :='[%)]";
2 : Units := "[FIL"2#];
3 : Units := '[FIL"2#]';
4 : Units :="[-];
else
Units :=";
end;
else
Units :=";
end;
end;

procedure GetStateVarCount(var iModel:longint;
var C:longint);stdcall;e Xport;
begin
case iModel of
1:C:=1;
2:C:=48;
else
C:=0;
end;
end;
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Continuation of Box E-1.

procedure GetStateVarName(var iModel,iParam:longint ;
var Name:shortstring);std call;export;
begin
case iModel of
1: case iParam of
1: Name :="p";
else
Name :=
end;
2: case iParam of

/I Current Strains
: Name :='@e_xx#',
: Name :='@e_yy#;
: Name :='@e_zz#',
: Name :='@e_xy#';
: Name :='@e_yz#',
: Name :='@e_xz#',
/I History of the deviatoric strains
7 : Name :='@g_hist.xx#";
8 : Name :='@g_hist.yy#'
9 : Name :='@g_hist.zz#,
10: Name :='@g_hist.xy#,
11: Name :='@g_hist.yz#",
12: Name :='@g_hist.xz#',
/I History of the max deviatoric strains

SOUhWN P

13: Name :='@g_max.xx#';

14: Name :='@g_max.yy#';

15: Name :='@g_max.zz#";

16: Name :='@g_max.xy#';

17: Name :='@g_max.yz#';

18: Name :='@g_max.xz#";

/l History of the min deviatoric strains
19: Name :='@g_min.xx#";

20: Name :='@g_min.yy#;

21: Name :='@g_min.zz#';

22: Name :='@g_min.xy#;

23: Name :='@g_min.yz#';

24: Name = @g min.xz#";

// History of the deviatoric stresses
25: Name :'@t hist. xx#';

26: Name :='@t_hist.yy#'

27: Name :='@t_hist.zz#';

28: Name :='@t_hist.xy#";

29: Name :='@t_hist.yz#';

30: Name :='@t_hist.xz#,

// History of the max deviatoric stresses
31: Name :='@t_max.xx#';

32: Name = '@t_max.yy#;

33: Name :='@t_max.zz#';

34: Name = '@t_max.xy#;

35: Name :='@t_max.yz#';

36: Name = @t max.xz#"

// History of the min deviatoric stresses
37: Name = '@t min.xXx#'";

38: Name :='@t_min.yy#';

39: Name :='@t_min.zz#',

40: Name :='@t_min.xy#";

41: Name = '@t_min.yz#"

42: Name :='@t_min.xz#";

// History of the deviatoric strains' direct ions
43: Name := 'dir_xx#';

44: Name := 'dir_yy#';

45: Name := 'dir_zz#";

46: Name := 'dir_xy#';
47: Name = 'dir_yz#',
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Continuation of Box E-1.

48: Name := 'dir_xz#';
else
Name = ";
end;
else
Name :=
end;
end;
procedure GetStateVarUnit(var iModel,iParam:longint ;
var Units:shortstring);st dcall;export;
begin
case iModel of
1: case iParam of
1: Units := "F/L"2#';
else
Units :=
end;
2: case iParam of
/l Current Strains
1: Units :="[-]}
2 : Units :="[-]}
3 : Units := -]}
4 : Units :="[-];
5: Units := -]}
6 : Units :="[-]
/I History of the deviatoric strains
7 : Units :="[-]}
8 : Units :="[-]};
9 : Units := -]}
10: Units :="[-]}
11: Units :="[-]}
12: Units :="[-]}
/I History of the max deviatoric strains
13: Units :="[-]}
14: Units :='[-]}
15: Units :="[-]}
16: Units :="[-]}
17: Units :="[-]}
18: Units :="[-]}
// History of the min deviatoric strains
19: Units :="[-]}
20: Units :="[-]}
21: Units :="[-]}
22: Units :="[-]}
23: Units :=[-]}
24: Units :="[-]}
/Il History of the deviatoric stresses
25: Units := "[F/L"2#]';
26: Units := '[F/IL"2#];
27: Units :="[F/L"2#];
28: Units := '[F/L"2#];
29: Units := "[F/L"2#]';
30: Units := "[F/L"2#];
// History of the max deviatoric stresses
31: Units := "[F/L"2#];
32: Units := '[F/L"2#];
33: Units :="[F/L"2#];
34: Units := '[F/IL"2#];
35: Units :="[F/L"2#];
36: Units := '[F/L"2#];
/I History of the min deviatoric stresses
37: Units :="[F/L"2#]';
38: Units :="[F/L"2#];
39: Units := '[F/L"2#]";
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40: Units := "[F/L"2#];
41: Units := '[F/L"2#];
42: Units := "[F/L"2#];
// History of the deviatoric strains' direct ions
43: Units :="[-]
44: Units
45: Units
46: Units
47: Units
48: Units
else
Units :=";
end;
else
Units :=";
end;
end;

|[_
|[_
|[_
|[_
|[_

— e e —

procedure Parameters(var Props:longvector;
var iMod:longint);
var DP:double;

begin
case iMod of
1:begin
if Props[1] < 0 then Props[1] := -Props [1; N E
E := max(Props[1],incr);
if Props[2] < 0 then Props[2] := -Props [2]; /v

v := min(Props[2],0.495);
G := 0.5*E/(1.0+V);

Fac := 2*G/(1.0-2*v);
Terml := Fac*(1-v);
Term2 := Fac*v;

end;

2:begin
if Props[1] < 0 then Props[1] := -Props [1]; /1 D [%]
DP := max(Props[1],0);
Xd := (8-4*pi*(DP/100)) / (8+4*pi*(DP/1 00)); // Xd [-]
if Props[2] < 0 then Props[2] := -Props [2]; // Gmod
G := max(Props|[2],incr);
if Props[3] < 0 then Props[3] := -Props [3]; 1 K
K := max(Props[3],incr);
if Props[4] <= 0 then Props[4] := 1; // dz

dz := max(Props[4],1);
V= (3*K - 2*G) / (2*(3*K+Q));
E := 2*G*(1+v);
Fac := 2*G/(1.0-2*v);
Terml := Fac*(1-v);
Term2 := Fac*v;
end;
end;
end;

procedure makeD(var D:matrix);

begin
D[1,1] := Term1;
D[1,2] := Term2;
D[1,3] := Term2;
D[2,1] := Term2;
D[2,2] := Term1;
D[2,3] := Term2;
D[3,1] := Term2;
D[3,2] := Term2;
D[3,3] := Term1;
D[4,4] :=G;

D[5,5] .= G;
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D[6,6] := G;
end;

procedure makeDStiffer(var D:matrix);

begin
D[1,1] := Term1*dz;
D[1,2] := Term2*dz;
D[1,3] := Term2*dz;
D[2,1] := Term2*dz;
D[2,2] := Term1*dz;
D[2,3] := Term2*dz;
D[3,1] := Term2*dz;
D[3,2] := Term2*dz;
D[3,3] := Term1*dz;

D[4,4] := G*dz;

D[5,5] := G*dz;

D[6,6] := G*dz;
end;

procedure CallHistory(var StVarO:statevector;
var dEps:epsvector);
var izlongint;
begin
fori:=1to 6 do
begin
Epsli] := StVarO0[i] + dEps]i]; // 1..6
GammaHist[i] := StVarO[i+6]; // 7..12
GammaMax([i] := StVarQ[i+12]; //13..18
GammaMin[i] := StVarOQ[i+18]; // 19..24
TauHist[i] := StvarQ[i+24]; // 25..30
TauMax(i] := StVarQ[i+30]; // 31..36
TauMin[i] := StVarQ[i+36]; // 37..42
DirHist[i] := StVarQ[i+42]; // 43..48
end;
end;

procedure CalcGamma();

begin
EpsVol := Eps[1]+Eps[2]+Eps[3];
Gamma[1] := Eps[1] - EpsVol/3;
Gamma[2] := Eps[2] - EpsVol/3;
Gamma|[3] := Eps[3] - EpsVol/3;
Gammal[4] := Eps[4];
Gamma|5] := Eps|[5];
Gamma][6] := Eps|[6];

end;

procedure CalcDir();
var izlongint;
begin
fori:=1to6do
begin
if Gamma]i] > GammaHist[i] then  // Going U P
Dirfi] :=1
else
begin
if Gammali] < GammaHist[i] then // Going D OWN
Dir[i] :=-1
else
Dir[i] ;=0 / / Standing
end;
end;
end;
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procedure MinMax();
var izlongint;
st:longint;
begin
fori:=1to 6 do
begin
if Dir[i] = 0 then Dir[i] := DirHist[i]; // Rem
if Dir[i] = DirHist[i] /I Kee
keep standing
thenst:=1
else if Dir[i] < DirHist[i] // After going Up,
then st := 2
else if Dir[i] > DirHist[i] // After going Down
then st :=3
else st :=4;
case st of
1:
begin
TauMax(i] := TauMax([i];
TauMin[i] := TauMin[i];
GammaMax(i] := GammaMax(iJ;
GammaMin[i] := GammaMin[i];

end;
2:
begin
TauMax(i] := TauHist][i]; /I Maxi
TauMin[i] := -TauMax{i];
GammaMax[i] := GammaHist[i]; /I Max
GammaHist[i];
GammaMin[i] := -GammaMax{i]; Il Min
-GammaHist[i]
end;
3:
begin
TauMin[i] := TauHist][i]; /I Min
TauMax(i] := -TauMin[i];
GammaMin[i] := GammaHist[i]; /I Min

GammaHist][i];
GammaMax(i] := -GammaMin[i]; /I Max
-GammaHist[i]

end;
4:
begin
TauMax[i] :=999;  // Error
TauMin[i] :=999;  // Error

GammaMax(i] := 999; // Error
GammaMin[i] :=999; // Error
end;
end;
end;
end;

procedure CalcTau();
var izlongint;
std:longint;
begin
fori:=1to3do
begin
if (Dir[i] = 1) and (Gamma]i] > GammaMax{i]) th
std := 1 // Virgin UP
else
begin if (Dir[i] = -1) and (Gamma][i] < Gamm
std ;= 2 // Virgin DOWN

ove stopovers
ping the same direction or

Goes Down

, Goes Up

mum Stress Reset TauHist[i]
imum Strain Reset

imum Strain Reset acc. to Max

imum Stress Reset TauHist][i]
imum Strain Reset

imum Strain Reset acc. to Min

en

aMin[i]) then
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Continuation of Box E-1.

else begin
if Dir[i] = 1 then
std := 3 // History UP
else begin
if Dir[i] = -1 then
std := 4 // History DOWN
else std:=5;// Standing
end;
end;
end;

case std of
1:if Gamma]i] >= 0 then
Tau[i] := (G*power((2*Gammali]),Xd))
else
Taul[i] := (-1*G*power((-2*Gammali]),
2 . if Gamma]i] >= 0 then
Taul[i] := (G*power((2*Gammali]),Xd))
else
Tau[i] := (-1*G*power((-2*Gammali]),
3 : Tau[i] := TauMin[i] + 2*G*power((abs(Gam
4 : Tauli] := TauMax([i] - 2*G*power((abs(Gam
5 : Tau[i] := TauHist[i];
end;
end;

fori:=4to6do
begin
if (Dir[i] = 1) and (Gammali] > GammaMax{i]) th
std := 1 // Virgin UP
else
begin if (Dir[i] = -1) and (Gamma]i] < Gamm
std := 2 // Virgin DOWN
else begin
if Dir[i] = 1 then
std := 3 // History UP
else begin
if Dir[i] = -1 then
std := 4 // History DOWN
else std:=5;// Standing
end;
end;
end;

case std of
1:if Gamma]i] >= 0 then
Tau[i] := (G*power((2*Gammali]),Xd))/
else
Tau[i] := (-1*G*power((-2*Gammali]),
2 . if Gamma]i] >= 0 then
Taul[i] := (G*power((2*Gammali]),Xd))
else
Taul[i] := (-1*G*power((-2*Gammali]),
3 : Tau[i] := TauMin[i] + G*power((abs(Gamma
4 : Tauli] := TauMax([i] - G*power((abs(Gamma
5 : Tau[i] := TauHist[i];
end;
end;

end;

procedure CalcDampStress(var Sig:vector);
var izlongint;

begin

fori:=1to3do

Xd));

Xd));
mali] - GammaMin[i])),Xd);
ma[i] - GammaMax([i])),Xd);

en

aMin[i]) then

2
Xd))/2;
12

Xd))/2;

[ - GammaMin([i])),Xd);
[ - GammaMax]i])),Xd);
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Continuation of Box E-1.

begin
Sig[i] := Tau[i] + K*EpsVol;
Sig[i+3] := Taul[i+3];
end;

end;

procedure SaveHist(var StVar:statevector);

var ilongint;

begin
fori:=1to 6 do
begin
StVarli] := Eps|i]; Il 1..6
StVar[i+6] := Gammali]; // 7..12
StVar[i+12] := GammaMax{i]; // 13..18
StVar[i+18] := GammaMin[i]; // 19..24
StVvar[i+24] := Tau[i];, // 25..30
StVar[i+30] := TauMax[i]; // 31..36
StVar[i+36] := TauMin[i]; // 37..42
StVar[i+42] := Dir[i];  // 43..48
end;

end;

procedure CalcStress(var Sig:vector;
var dEps:epsvector;
var Sig0:mediumvector;
var D: matrix);
var i,j : longint;
begin
fori:=1to 6 do
begin
Sig[i]:= SigOl[i];
forj:=1to6do
begin
Sig[i] := Sig[i]+D[i,j]*(dEps(i]);
end;
end;
end;

procedure User_Mod(var IDTask,
iMod,
IsUndr,
iStep,
iTer,
lel,
Int:longint;
var X,
Y,
Z:double;
var TimeO,
dTime:double;
var Props:longvector;
var Sig0:mediumvector;
var Swp0:double;
var StVarQ:statevector;
var dEps:epsvector;
var D:matrix;
var Bulk_W:double;
var Sig:vector;
var Swp:double;
var StVar:statevector;
var ipl,
nStat,
NonSym,
iStrsDep,
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iTimeDep,
iTang,
iPrjDir,
iPrjLen,
iAbort:longint);stdcall;expo rt;
var pp: double;
var i,j:longint;
begin
case IDtask of
1:begin
{initialise state variables StVar0}
case iMod of
1: begin
{Linear Elastic Model}
pp := (Sig0[1] + Sig0[2] + Sig0[3])/3;
StVar0[1] := Min(StVar0[1],pp);
end;
end; {iMod}
end; {of IDTask = 1}

2:begin

{calc constitutive stresses Sig}

case iMod of

1: begin
Parameters(Props,iMod);
makeD(D);
CalcStress(Sig,dEps,Sig0,D);

end;

2: begin
Parameters(Props,iMod);
CallHistory(StVar0,dEps);
CalcGamma,;

CalcDir;
MinMax;
CalcTau;
CalcDampStress(Sig);
SaveHist(StVar);
end;

end; {of iMod}

end; {of IDTask = 2}

3:begin
case iMod of
1:

begin

Parameters(Props,iMod);

makeD(D);

end;

2:
begin
Parameters(Props,iMod);
makeDStiffer(D);
end;

end;
end; {of IDTask = 3}

4:begin
{state variables nstat}
nStat := 48;
end; {of IDTask =4}

5:begin
{matrix attributes}
case iMod of
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1: begin
NonSym := 0;
iStrsDep := 0;
iTimeDep :=0;
iTang := 0;
end;

2: begin
NonSym := 1;
iStrsDep := 1;
iTimeDep :=1;
iTang := 0;
end;

end; {of iMod}

end; {of IDTask =5}

6:begin
{elastic matrix De}
case iMod of
1:

begin

Parameters(Props,iMod);

makeD(D);

end;

2:
begin
Parameters(Props,iMod);
makeDStiffer(D);
end;

end;
end; {of IDTask = 6}
end;{of case}

end; {of User_Mod}

exports
User_Mod name 'USER_MOD',
GetModelCount,
GetModelName,
GetParamCount,
GetParamName,
GetParamUnit,
GetStateVarCount,
GetStateVarName,
GetStateVarUnit;

end.
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