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ABSTRACT 
In urban areas where the infrastructure is dense and construction of new structures is near 
existing and sensitive buildings, frequently vibrations, caused by human activities, occur. 
Generated waves in the soil may adversely affect surrounding buildings. These vibrations 
have to be predicted a priori by using currently available knowledge of the soil dynamics. 
Current research, conducted by Deltares research institute, showed that the reliability of 
methods for prediction of man-made vibrations is disappointingly low. Therefore the models 
for vibrations in the soil should be improved in order to get more accurate predictions.  
 
The main aim of this thesis is to increase the knowledge on dynamic soil behaviour with 
respect to the fundamental geotechnical aspects of the soil, like non-viscous damping, 
inhomogeneity, anisotropy, variable degree of saturation, etc. and to give an improved 
prediction method. 
 
The scientific investigations of this thesis started with the following setup: an oscillating plate 
on an elastic, homogeneous and isotropic half-space, where the plate oscillates harmonically 
in vertical direction and the soil is unsaturated. In this way, the geotechnical aspects have 
been left aside in order to check first whether it is possible to predict the vibration amplitudes 
of the oscillating plate and of the soil surface, without additional complexities. 
 
This setting allowed to compare the present analytical methods with the results, obtained 
from the finite element method (FEM) calculations, and showed that the analytical methods 
have their limitations. Therefore the wave-field near an oscillating plate had to be 
investigated more carefully. Unfortunately the state of the art in soil dynamics is such that 
only the particle vibration velocities are measured without knowing which part of the 
velocities/vibrations belongs to which type of basic wave (compressional, shear or Rayleigh 
wave). Therefore first of all, a technique to decompose the measured signal into its basic 
waves was developed. This new technique showed remarkably that all three basic waves have 
phase shifts and these phase shifts are all different from each other. The decomposition 
technique is an important tool for researching soil dynamics. Also a qualitative evaluation of 
the energy transmission between the basic waves near the vibration source was given, which 
showed that the R-wave energy starts at zero just at the source and grows in the near-field 
zone due to an energy transmission (body waves are transferring energy to the R-wave). This 
means that even without uncertainties in the soil body, there is a lack of understanding of the 
behaviour of the different waves. 
 
A real field test is performed with a shaker on a soft peaty site in the Netherlands, as an 
attempted to replicate the FE model experiments. It showed the limitations of the analytical 
methods and highlighted the indispensability of the FEM. Still, for engineering purposes, an 
improved analytical method is suggested, which is able to predict the geotechnical vibrations 
with good accuracy. Herein, one of the fundamental aspects, the material damping, was used 
and a hypothesis was made, that with a more correct physical model of the soil material 
damping, the vibration predictions with FEM can be improved.  
 
The 1D frictional damping model, first suggested by Van Baars (2011), was extended for the 
3D and incorporated into the FEM software Plaxis as a User Defined Soil Material model. 
The results are very interesting scientifically, but do not give much better results as the 
already existing Rayleigh damping model.  
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1 INTRODUCTION 

1.1 Background of the problem 

In urban areas where the infrastructure is dense and construction of new structures is near 
existing ones, frequently vibrations, caused by human activities, occur. Generated waves in 
the soil may adversely affect surrounding buildings. The most known sources of man-made 
vibrations are traffic (trains, buses, lorries) and civil construction activities (installation of 
piles or sheet piles, tunnelling, demolishing structures, etc.). 
 
Because of environmental requirements, the level of the vibrations should not exceed certain 
threshold values which are recommended (or prescribed depending on country regulations) in 
order to protect people from discomfort, existing structures from damage or technological 
processes (where vibration sensitive instruments are used) from disturbance. This means that 
the level of vibration must be predicted before the start of activities which cause vibrations. 
 
The prediction of vibrations is a complex task. The total vibrations system consists of three 
main components: source-soil, soil-soil and soil-structure. The vibration level is usually 
measured in the structure. These three main parts are presented in Figure 1-1. 
 

 
 

Figure 1-1. Complexity of the vibrations predictions (ThyssenKrupp brochure). 
 
According to research in Deltares (Hölscher & Waarts, 2003), the reliability of methods for 
prediction of environmental vibrations is disappointingly low and the uncertainty in the soil-
soil (transmission) part is larger than in the soil-structure system. In fact neither the soil 
models nor soil-structure models are accurate enough. Therefore the models for vibrations in 
the soil should be improved in order to get more accurate predictions. 
 
Generally four methods to predict the vibrations can be found in literature: expert judgment, 
analytical, ray trace and numerical methods (Van Baars, 2009). The latter method is the most 
accurate. Nevertheless according to the hypothesis (Van Baars & Hölscher, 2010), the current 
method of dynamic modelling neglects several fundamental geotechnical aspects such as 
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non-viscous damping, inhomogeneity, anisotropy, variable degree of saturation and others. 
Or maybe something else is fundamentally wrong or missing. In order to confirm or reject 
this hypothesis fundamental research in the field of soil dynamics should be done. All known 
aspects which can be a cause of low prediction reliability, are filled in the table below. 
 

Table 1-1. List of aspects causing problems in dynamic modelling. 
 

Aspect Discussed by 
Inhomogeneity Bodare, (1998), Andersen (2006),  Jones and Hunt (2012a), (2012b) 
Anisotropy Helbig (1993), Andersen (2006) 

Degree of saturation 
Biot (1941), (1955), (1956a), (1956b), Hölscher (1995), Nakagawa and Soga 
(1995), Carcione et al. (2004) 

Damping Masoumi et al. (2008) (2008b), Van Baars (2011) 
Air Content Smeulders (1992) 
Layering Auersch (1995), Kramer (1996), Baidya (2000), Andersen (2006) 
Non-Viscous damping Bolton & Wilson (1990), Van Baars (2011) 

 

1.2 Goals of this work 

The goal of this study is to make an improved method, which should be able to predict the 
vibrations of the soil more accurately. 
 
The first step to achieve the goal is to collect the knowledge on soil behaviour during 
dynamic loading with respect to fundamental soil mechanical aspects, and to find the main 
causes of the inaccuracy of the predictions, which might be related to the: 

⋅ inhomogeneity, 
⋅ anisotropy, 
⋅ variable degree of saturation, 
⋅ non-viscous damping, 
⋅ and layering 

of the soil. These main causes could be tested systematically by modelling and testing. 

1.3 Outline of the thesis 

The thesis consists of eight chapters. In the first chapter, called Introduction, the problem 
statement is made, goals are formed and this outline of the thesis is given. In the second 
chapter (Introduction into soil dynamics) a summary from the large field of soil dynamics is 
presented, with a focus on man-made geotechnical vibrations.  The investigation of man-
made geotechnical vibrations for probably the simplest case to start with, a harmonically 
vertically oscillating plate, is started in the 3rd chapter. In the 4th chapter, called 
Decomposition of waves, the problem is split into three different, smaller problems, by 
decomposing the superposed wave on the soil surface into different soil waves. In the 5th 
chapter real field tests of a shaker on the ground surface of real soil have been performed. 
The test results are discussed, by comparing them with the results obtained by analytical and 
numerical methods. In the 6th chapter an improved prediction method is developed. The 7th 
chapter deals with a frictional damping model, which was first suggested by Van Baars 
(2011) in one dimensional form. This model was extended for three dimensions and 
incorporated into finite element method (FEM) software calculation scheme. In the last, 8th 
chapter, the findings of the work are summarised, and conclusions are given. 
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2 INTRODUCTION INTO SOIL DYNAMICS 

2.1 Introduction 

There are many books where the fundamentals of the soil dynamics are described by Kramer 
(1996), Verruijt (2006), Van Baars (2009), Das & Ramana (2011). Unfortunately some of 
them focus more on applications to earthquake engineering or machine foundations and do 
not handle a lot, or at all, about man-made geotechnical vibrations. In this chapter a summary 
from the large field of soil dynamics is presented, with a focus on man-made geotechnical 
vibrations. 

2.2 Waves in a soil body 

Energy in the soil travels in a form of waves. The waves move the soil and we notice these as 
vibrations. There are different kinds of waves: body and surface waves. Analysing the 
simplest case, an elastic homogeneous isotropic half-space, there are three basic waves – the 
Compressional (P-wave), Shear (S-waves) and Rayleigh wave (Rayleigh, 1885) (R-wave) 
(Figure 1-1).  
 

 
 

Figure 2-1. Basic waves in a soil body a) Compressional wave b) Shear wave c) Rayleigh 
wave (Kramer, 1996). 

 
The first two are body waves, the last is a surface wave. Although for a homogeneous case 
these three basic waves are non-dispersive (wave velocity does not depend on a vibration 
frequency), these waves still have different attenuations, different propagation laws (wave 
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velocity) and different damping laws. Vibration caused by basic waves is a superposition of 
the individual behaviour of these basic waves.  
 
If an elastic half-space is not homogeneous (i.e. the soil is layered), then the R-wave becomes 
a dispersive wave (wave velocity depends on a vibration frequency). Also, if an upper layer 
of a half-space has a lower body wave velocity than the rest of the half-space below it, the 
Love wave (Love, 1927) can appear. L-waves are always dispersive. Moreover, layering 
causes reflection and refraction of waves (both phenomena are briefly introduced in the 
following subchapters). So, the total picture of waves in a layered soil, in terms of energy 
transformation between waves, is very complex.  

2.3 Damping 

The energy travels in a form of waves and in a real medium the total amount of energy is 
always damped. Material damping is a loss of vibration energy, because part of the energy of 
the travelling waves in a material is converted into heat. The heat is produced due to friction 
between soil particles or between soil particles and pore water. This energy loss per volume 
can also be seen as an absorption damping.  
 
A simple way to illustrate material damping mathematically is to use the Kelvin-Voigt model 
(Figure 2-2). The Kelvin–Voigt model, also called the Voigt model, can be represented by a 
purely viscous damper and purely elastic spring connected in parallel (Wikipedia). 
 
 
 
 
 
 
 
 
 

Figure 2-2. Kelvin-Voigt model. 
 

Total shear resistance is the sum of an elastic component (a spring) and a viscous component 
(a dashpot).  
 

 
 t

cG
∂
∂+= γγτ , (2-1)  

 
in which: 
 
 τ = shear stress, [N/m2] 
 G = shear modulus, [N/m2] 
 γ = shear strain, [-] 
 c = viscosity, [Ns/m2] 
 t = time. [s] 
 
For the harmonic shear strain of the form:  
 
 )sin(ˆ tωγγ = , (2-2) 

du 

dz 

c 

G 

τ 

τ τ 

τ 

z 

x 
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)cos(ˆ t
t

ωωγγ =
∂
∂

, (2-3) 

 
where:  
 
 γ̂  = shear strain amplitude, [-] 
 ω = angular frequency. [rad/s] 
 
The shear stress will be:  
 
 
 

( ) ( )tctG ωωγωγτ cosˆsinˆ += . (2-4)  

 
The dissipated energy ∆E with an elliptical stress-strain loop in a single cycle:  
 

 
 

2
/2

ˆ
0

0

γωπγτ
ωπ

cdt
t

E
t

t

=
∂
∂=∆ ∫

+

. (2-5)  

 
The equation above indicates that the dissipated energy is proportional to the frequency of 
loading ω. 
 
The peak energy Ep during a single cycle is calculated as follows:  
 

 
 

2ˆ
2

1 γGEp = . (2-6)  

 
And the damping ratio ξ will be:  
 

 
 G

c

E

E

p 24

1 ω
π

ξ =∆= . (2-7)  

 
There are other parameters to describe energy dissipation, like the quality factor, loss factor 
or the specific damping capacity. All these parameters are functions of the dissipated energy 
and the peak energy per cycle.  
 
Although viscous damping is rather simple to implement into constitutive soil material 
models, it is frequency depended. This is not the case for the physics of soils. Some 
researchers try to eliminate frequency dependence by using an equivalent viscosity. The 
problem is illustrated by considering a superposition of waves with multiple frequencies, for 
which there can be no equivalent viscosity for all waves at the same time (Van Baars, 2011). 
From cyclic tests on sand, it was concluded, that the stress-strain behaviour of the soil is 
hysteretic and its corresponding damping parameters are strain dependent, though they are 
independent of the frequency up to 100 Hz (Bolton & Wilson, 1990). 
 
Soil damping dependence from the cyclic shear strain amplitude is a known phenomenon. 
The bigger the shear strain amplitude, the bigger the amount of energy which is transformed 
into heat through friction (Figure 2-3). 
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Figure 2-3. Damping ratio dependence on cyclic shear strain amplitude of natural fine 
grained soils (Okur & Ansal, 2007). 

 
Therefore, for man-made geotechnical vibrations problems (where frequencies are usually 
rather low and shear amplitudes are small), the damping should be independent from 
frequency and shear strain amplitudes. 
 
One model was suggested by Van Baars – Frictional soil damping (Van Baars, 2011). The 
suggested damping model is based on a force-displacement curve that has an exponential 
form. The model is derived in a modified coordinates system τ' – γ'. The modified coordinates 
depend on the shear strain and shear stress amplitudes. The relationship can be defined as 
follows:  
 
 
 

γγγ ˆ' += , (2-8)  

 
 τττ ˆ' += , (2-9)  

 
where: 
 
 γ̂  = shear strain amplitude, [-] 
 τ̂  = shear stress amplitude. [N/m2] 
 
If the initial shear stress and shear strain in the τ' – γ' system of coordinates are zero, then the 
shear stress for loading, in a modified system of coordinates, is written in the form: 
 
 
 ( )X

modG '' γτ = , (2-10)  

  
where: 
 
 Gmod = modified shear modulus of soil, [N/m2] 
 X = dimensionless damping parameter (≤ 1). [-] 
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The shear stress for unloading depends on the peak point, where the shear stress amplitude 'τ̂  
and the shear strain amplitude 'γ̂  are reached, and is defined according to the following 
equation: 
 
 
 ( )X

modG ''ˆ'ˆ' γγττ −−= . (2-11)  

 
The modified shear modulus for this exponential damping model can be found when it is 
compared with the secant shear modulus Gsec. The secant shear modulus Gsec is a secant shear 
modulus during the full cycle (see Figure 2-4). Then the following equality is valid:  
 
 
 

'ˆ'ˆ secγτ G=   (2-12)  

 

At the same peak also the equity ( )X

modG 'ˆ'ˆ γτ =  is valid. Equating the latter two and having 

Equation (2-8) in mind, the relationship between Gmod and Gsec can be written as follows: 
 

 
 ( )X

mod

G

G

γ
γ
ˆ2

ˆ2

sec

= . (2-13)  

 
The area hatched with vertical lines (including the 
ellipse) is expressed as:  
 

( ) )1(

'

'ˆ
1

1
'' +

+
== ∫

X
modt G

X
dE γγτ

γ
.  

 
(2-14)  

 
The area of the ellipse, which represents the 
dissipated energy per cycle, is defined as:  
 

( ) .'ˆ
1

1
'ˆ'ˆ2 )1( +

+
−=−=∆ X

modt G
X

X
EE γγτ  

 
 

(2-15)  

 
The peak energy per cycle is:  
 

( ) )1('ˆ
8

1
'ˆ'ˆ

8

1
ˆˆ

2

1 +=== X

modp GE γγτγτ . 

 

 
 

(2-16)  

The ratio of the dissipated energy versus the peak energy ζ shows the energy loss per cycle:  
 

 
 X

X

E

E

p +
−=∆=

1
1

8ζ . (2-17)  

 
This energy loss per cycle ratio ζ is related to the damping ratio ξ as follows: ζ = 4πξ. With 
these parameters, the dimensionless damping parameter X can be defined:  
 

 
 
Figure 2-4. Energy loss of stress-
strain cycle (Van Baars, 2011). 
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 ζ

ζ
+
−=

8

8
X , or equally

πξ
πξ

+
−=

2

2
X . (2-18)  

 
Hysteretic damping is in fact a damping resulting from frictional shear deformation. Isotropic 
compression causes probably little or no damping. 
 
In P-waves there is a deformation due to mostly isotropic compression but also some shear 
deformation, in S-waves there is only pure shear deformation and in R-waves there is a 
combination of mostly shear deformation but also deformation due to isotropic compression. 
Therefore the energy will damp differently for each basic wave. This is still a subject of 
study. 
 
Because it is not clear yet how different the material damping is for the individual basic 
waves, in current vibration problems a combined empirical absorption coefficient km is used 
to represent the material damping of the soil. Usually the exponential decay attenuation law 
suggested by Bornitz (1931) is used: 
 
 
 

)-(- 0ˆ rrkmeu∝ , (2-19)  

 
in which: 
 
 û  = displacement amplitude, [m] 
 km = empirical absorption coefficient, [1/m] 
 r = radius (distance) from the source to the point of interest, [m] 
 r0 = radius (distance) from the source to the point where the 
   displacement amplitude is known. [m] 
 
Other sources of amplitude attenuation will be discussed in the following subchapter. 
 

Table 2-1. Summary of empirical absorption coefficients km (Amick & Gendreau, 2000). 
 

Researcher Soil type km [m-1] 

Frossblad  in 1965 Silty gravelly sand 0.13 

Richart 4-6 in concrete slab over compact granular fill 0.02 

Woods in 1967 Silty fine sand 0.26 

Barkan in 1962 

Saturated fine grain sand 0.1 

Saturated fine grain sand in frozen state 0.06 

Saturated sand with laminae of peat and organic silt 0.04 

Clayey sand, clay with some sand, and silt above water level 0.04 

Marly chalk 0.1 

Loess and loessial soil 0.1 

Saturated clay with sand and silt 0 - 0.12 

Dalmatov et al. in 1968 Sand and silts 0.026 - 0.36 

Clough and Chameau 
Sand fill over Bay Mud 0.05 - 0.2 

Dune sand 0.026 - 0.065 

Peng in 1972 Soft Bangkok clay 0.026 - 0.44 
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In Table 2-1 the summary of the empirical absorption coefficients proposed by different 
authors, depending on the soil type, is presented. The summary was published by Amick & 
Gendreau (2000). 

 
Auersch & Said (2010) noticed that it is not clear whether other attenuation laws, like 
geometrical attenuation, scattering and dispersion are included or excluded in this table. 

2.4 Attenuation 

In vibration problems, it is important to know the attenuation laws for the displacement, 
velocity or acceleration amplitudes. A theoretical and experimental study was performed by 
Auersch & Said (2010) in order to get a better insight in these attenuation laws. The authors 
concluded that the attenuation of vibration amplitudes is generally caused by: material 
damping, geometrical attenuation, scattering and dispersion. 
 
Geometrical attenuation (radiation) 
 
When waves are traveling in multiple directions, the total energy will be spread. Even when 
the elastic energy is conserved (no conversion to other forms of energy takes place), vibration 
amplitudes will decrease due to spreading of the total energy over a greater material volume. 
This principle is known as radiation damping, geometric damping or attenuation. 

 
 

Figure 2-5. Geometrical attenuation of different waves a) Body waves b) Surface waves 
(Andersen, 2006). 

 
The energy of body waves (see a) in Figure 2-5) is distributed over an area that increases with 
the square of the radius:  
 
 
 2

1
'

r
E ∝ , (2-20)  

 
in which:  
 
 E' = energy per unit area. [N/m] 
 
Knowing that the displacement amplitude is proportional to the square root of the energy per 
unit area, the amplitude will be inversely proportional to the radius:  
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u
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The energy of surface waves (see b) in Figure 2-5) is distributed over an area that increases 
linearly with the radius:  
 
 
 r

E
1

'∝ . (2-22)  

 
Knowing that the displacement amplitude is proportional to the square root of the energy per 
unit area, the amplitude will be inversely proportional to the square root of the radius:  
 

 
 5.0

1
ˆ

r
u∝ . (2-23)  

 
Scattering in a heterogeneous medium 
 
Scattering is a general physical process where some forms of radiation, such as light, sound, 
or moving particles, are forced to deviate from a straight trajectory by one or more paths due 
to localized non-uniformities in the medium through which they pass (Wikipedia). Soil waves 
are scattered at random heterogeneities of the soil and a part of the wave energy disappears in 
the depth of the half-space.  Scattering effect can be expressed in similar exponential 
amplitude – distance relationship as the material damping:  
 
 
 

)( 0ˆ rrkscteu −−∝ , (2-24)  

where: 
 
 ksct = empirical scattering coefficient. [1/m] 
 
The attenuation must be a function of the ratio between the scattering dimension and the 
wave length. It can be proportional to the diameter, the cross section or the volume (Auersch 
& Said, 2010).  
 
 
 

3/1/1 λλ K∝sctk , (2-25)  

 
where: 
 
 λ = wave length. [m] 
 
This means, that scattering attenuation may depend either linearly, or even very strongly on 
the frequency. However, by measuring only vibrations on the soil surface it is hardly possible 
to distinguish damping from scattering without any additional information. Van Wijk and 
Levshin (2004) investigated the influence of vertical scatterers to the dispersion of surface 
waves. They concluded that a combination of isolated scatterers and layering in the sub-
surface creates dispersion of surface waves. 
 
Dispersion 
 
As mentioned before, if an elastic half-space is not homogeneous, then R-waves become 
dispersive waves (wave velocity depends on a vibration frequency).  
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Therefore, a short pulse travelling from a source point will not arrive as a short pulse at an 
observation point far away. Instead the pulse will be spread over distance since the waves 
with different frequencies travel with different speeds. Taking the conservation of energy into 
account, the vibration amplitudes attenuate due to this energy spreading. This is illustrated in 
Figure 2-6. In this case the total energy is conserved over space and time. However, an 
additional attenuation due to the dispersive nature of an inhomogeneous soil occurs. 

 

 
Figure 2-6. Dispersion of an impulse excitation. 

 
It was measured from impulsive excitations by Auersch and Said (2010) that there is an 

additional dispersion attenuation factor 5.0−∝ ru
)

 due to the dispersive nature of an 
inhomogeneous soil. The authors state, that this statement holds for the maximum of the time 
records (maximum vibration component of 3 directions). For their root mean square vibration 
values (the square root of the sum of the squares of maximum values of the three vibration 
components in x, y and z directions), which means the additional dispersion attenuation was 
weaker, than the latter. 
 
Overall attenuation 
 
Taking all the mentioned attenuation factors into account (material damping, radiation, 
scattering, and dispersion) the overall attenuation for surface waves, according to Auersch 
and Said (2010), can be calculated as follows: 
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in which: 
 
 rû  = displacement amplitude of a Rayleigh wave, [m] 

 0û  = displacement amplitude at known distance r0. [m] 

 
For the body waves only the radiation law would be different:  
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in which: 
 
 bû  = displacement amplitude of a body wave. [m] 
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The dispersion relation in Equation (2-26) and Equation (2-27) could be introduced by 
multiplying to by factor of r-0.5. However, this attenuation law holds only for the maximum of 
the time records in three directions. 
 
The attenuation of vibrations is frequently described by a linear log-log relationship where all 
the discussed effects are lumped.  
 
 
 

mrPPV −⋅= ς , (2-28)  

 
where: 
 
 PPV = peak particle velocity, [m/s] 
 ς = empirical coefficient, [s-1] 
 m = attenuation rate (also the slope in a log-log curve). [-] 
 
Equation (2-28) can be written in the following logarithmic form: 
 
 
 

)log()log()log( rmPPV −= ς . (2-29)  

 
Particle velocities are usually measured in three different directions. Therefore a peak particle 
velocity (PPV) can be defined in different ways. There are at least three different methods to 
define the PPV from the measurements data: 
 

1. Peak component – the maximum of the vertical, transversal and radial components: 
))max(),max(),max(max(PPV zyx vvv

rrr= ; 

 
2. True vector sum (TVS) – the maximum of the vector sum: 

)max(PPV v
r= , where )( zyx vvvv

rrrr ++= ; 

 
3. Root mean square method (RMS): 

222 ))(max())(max())(max(PPV zyx vvv
rrr ++= , 

 
where: 
 
 iv

r

 = velocity vector in i direction. [m/s] 

 
The PPV defined by the peak component method may be up to 25 % lower than defined by 
the true vector sum method. Also the PPV defined by RMS method may exceed the true 
vector sum value by 50 % (Athanasopoulos & Pelekis, 2000).  It is also noted that the true 
vector sum method can be over conservative (Ali, et al., 2003).   
 
From experimental studies of measurements of ground vibrations at nineteen different sites 
and also induced by different sources (Auersch & Said, 2010), typical measured attenuation 
values are presented in Table 2-2. 
Differences of the attenuation rate m in a source group (e.g. explosion) authors explain by 
different dynamite weight equivalents used for explosions, different drop masses, different 
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train speeds i.e., different energy from the source. Also the influence of the different soils is 
discussed. The measurements can be found graphically in Figure 2-7. 

 
The reported attenuation rate m was between 0.5 
and 2.0. The upper value agrees well with the 
measurements of Wiss (1981), where he reported 
the attenuation rate m to be between 1.0 and 2.0. 
 
The dissipation rate of pile-driving vibrations 
was studied by Ali et al. (2003) in order to 
determine the influence radius around vibration 
sources. For this purpose Equation (2-28) was 
used. The sources were two types - pile driving 
and sheet-pile driving.  
 
From the experimental data, it was concluded, 
that the attenuation rate m for that site was 
between 0.88 and 1.02 which is in a good 
agreement with Auersch and Said (2010) 
measurements for pile driving (Table 2-2). 

 
Table 2-2. Attenuation rate m from experimental studies (Auersch & Said, 2010). 

 

Source 
Attenuation rate m 

Number of  sites 
min average max 

Road traffic 
 

0.5 
 

1 
Metro train 

 
0.5 

 
1 

Vibration compaction 
 

0.7 
 

1 
Pile driving 

 
1.1 

 
1 

Explosion 1.2 1.3 1.4 3 
Mass drop 1 1.3 1.6 2 
Passenger train 0.5 1 1.5 6 
Hammer impulse 1.3 1.65 2 4 

 
A comprehensive review of man-made ground vibrations and measurements of ground 
vibration caused by vibratory sheet-pile driving in recent soil deposits was made by 
Athanasopoulos and Pelekis (2000). The results of an attenuation rate of vibrations with 
distance were compared with published results by other studies and satisfactory agreement 
was found (Figure 2-8).  
 
A summary table of the attenuation rates of different authors for various soil types was 
published by Ali, et al. (2003) (Table 2-3). Unfortunately no clear pattern can be seen. Some 
authors were looking into stiffness; others indicated just the name of the soil, from which an 
approximate size of the soil particle can be known. However the latter does not help while for 
only sand the attenuation rates still vary from 0.8 to 1.5.  
 

 
 

Figure 2-7. Attenuation rates from 
technically induced vibrations 

(Auersch & Said, 2010). 
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Figure 2-8. Attenuation of vibrations with distance from vibratory sheetpile driving 
(Athanasopoulos & Pelekis, 2000). 

 
Table 2-3. Published attenuation rates for pile-driving in various soil types (Ali, et al., 2003). 
 

Researcher Soil type m 

Amich and Unger Clay 1.5 

Attewell and Farmer Various soils, generally firm 1 

Brenner and Chittikuladiok 
Surface sands 1.5 

Sand fill, over soft clays 0.8 - 1.0 

Martin 
Clay 1.4 

Silt 0.8 

Nicholls, Johnson and Duvall Firm soils and rock 1.4 - 1.7 

Wiss 
Sands 1 

Clays 1.5 

Woods and Jedele 
Dense compacted sands (15<N<50) 1.1 

Most sands (5<N<15) 1.5 

 

2.5 Heterogeneity 

On micro level soil is clearly a heterogeneous material composed by different particles of 
minerals and/or organics. The particles vary significantly in size and shape (Figure 2-9).  
 
Similar as for inhomogeneity in the dynamics of structures, inhomogeneity in soils can be 
divided into local and global. Local inhomogeneity can be understood as the variation of 
material properties over a distance that is much smaller than the characteristic wave length 
(Andersen, 2006). If the wave length is many times longer than the characteristic dimension 
of the inhomogeneity, the material interacts as a homogeneous material to the wave. On the 
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contrary, if the wave length is many times smaller than the characteristic dimension of the 
inhomogeneity, the wave will be scattered in all directions into the material (Bodare, 1998). 
 

 
 

 Figure 2-9. Inhomogeneous soil (Andersen, 2006). 
 

Since the Rayleigh wave’s velocity is in most soils above 100 m/s, the wave length of the 
man-made vibrations is in the order of meters whereas the grain size of the soil is the order of 
millimetres or even smaller. Therefore the local variations of the density and the strength of 
material are of little importance to wave propagation in soil (Andersen, 2006). 
 
Global inhomogeneity can be understood as the variation of material properties over a 
distance close to or larger than the characteristic wave length. The global inhomogeneity 
exists in any real soil deposit because the stiffness, like the strength properties varies over 
depth due to a sedimentation process, a pre-stressing from overlaying soil or an over-
consolidation from ice.  
 
Models commonly assume ground to be homogeneous. Simplifying the soil as a 
homogeneous material adds a level of uncertainty to the predictions which is not well 
understood (Jones & Hunt, 2012a). The goal of Jones and Hunt work was to quantify the 
effect of the soil inhomogeneity on the surface vibration. They suggested that not only global, 
but also local soil heterogeneity can significantly affect surface velocity predictions. The 
effect of variability of the horizontal elastic modulus on the confidence interval appears to be 
negligible when modelling ground vibration from underground railways. 
 
In practice, usually a schematisation of one or two layers overlaying a homogeneous half-
space is sufficient for modelling wave propagation in soil (Andersen, 2006). 

2.6 Anisotropy 

Anisotropy is the material’s physical property 
dependence on the direction, as opposed to isotropy, 
which implies identical properties in all directions. 
Probably the best example of an anisotropic material 
in the field of civil engineering is timber, but it also 
applies to many kinds of rock and most sedimentary 
soil. Even sand shows an anisotropic behaviour, which 
is a result of the way in which the grains are initially 
deposited (Andersen, 2006). Graphical representation 

of an anisotropic material is found in Figure 2-10. 
 
It was also stated by Andersen, that the main difference in elastodynamics between isotropic 
and anisotropic materials is the fact that in isotropic materials, the wave speed is the same in 

 
 
Figure 2-10. An anisotropic 
material (Andersen, 2006).  
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all directions, whereas in anisotropic materials the wave speed varies. It can influence some 
or even all of the wave types in a medium. 
 
In geophysics the variation of the wave speed with direction is called seismic anisotropy and 
it is an indicator of long term order in a material. Even rock-forming minerals are anisotropic, 
including quartz and feldspar. The anisotropy of minerals can be seen in their optical 
properties. 
 
Actually, a real soil medium almost always displays some degree of elastic anisotropy, 
therefore the wave propagation has to be assumed to be anisotropic, unless the soil stiffness 
has been shown to be effectively isotropic (Helbig, 1993).  

2.7 Degree of saturation 

In soil dynamics, the soil is usually treated as an elastic (or viscoelastic) material. This type 
of modelling is acceptable for dry granular materials, which may adequately be described as a 
single-phase system. However in saturated porous materials the pore pressure in the fluid 
phase interacts with the stresses of the solid phase (effective stresses). This results in a second 
P-wave. Dynamical behaviour of the saturated porous media theory developed by Biot 
(1941), (1955), (1956a), (1956b) and the latter generalised to multi-phase systems (Carcione, 
et al., 2004). The second P-wave in a fully saturated porous medium propagates at a speed 
which is much lower than the usual P- and S-wave speeds. Therefore it is often referred to as 
the slow P-wave (Andersen, 2006). 
 
Paul Hölscher describes and discusses in his thesis “Dynamical response of saturated and dry 
soils” (Hölscher, 1995) the dynamics of porous media. The phenomena of wave-propagation 
and consolidation are solved by using non-linear behaviour of the soil. Analytical solutions 
near interfaces between solid and fluid are derived by using Fourier transformations. The 
author concludes that near the interface between water and soil particle, the effective stress is 
influenced by the second P-wave. This may lead to a decrease in the effective stress of up to 
70 %. The latter effect cannot be described by a single phase approach. This means that 
ground vibration predictions of saturated soil, modelled by a single-phase approach, can lead 
to an error of up to 70 %.  For shear waves only minor differences are to be expected by 
using a two-phase or single phase approach.  
 
Nakagawa and Soga (1995) measured the propagation of P- and S-waves in dry and saturated 
sand samples. A conventional triaxial soil testing system was combined with the pulse 
transmission method. The velocities of the second kind P-wave were only 1/10 to 1/3 of those 
measured for the first kind P-waves. The measured wave velocities agreed well with the 
theoretical values calculated using Biot's two-phase theory. 

 
The degree of saturation also effects pile drivability. The literature concerning this effect was 
overviewed by Viking (2002). Laboratory test of driving pile in a sand container, filled with 
non-cohesive soil, were performed and reported by Rao (1993) and Wang (1994). Two pore-
water pressure transducers were placed in the test cylinder at distances 1Dp and 2.25Dp from 
the pile shaft, where Dp is the pile diameter. The results were compared with a finite element 
analysis and it was concluded that the excess pore-pressure amplitude decayed very quickly 
with increasing radial distance from the oscillating shaft surface. Nevertheless the mean 
excess pore-pressure was found to be similar at different distances from the oscillating shaft 
surface. According to Viking (2002), the similarity in the value of the mean pore-pressure, 
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regardless of the distance to the pile, could also be related to improper boundary conditions 
(at the tank limits), due to fact that there was no dissipation of the excess pore-pressure in 
relation to the distance from the driven pile. Viking concluded that the degree of saturation is 
one of the primary subsoil-related factors affecting vibro-driveability, but not the most 
important. 

2.8 Air content 

Smeulders (1992) did research on wave propagation in saturated and partially saturated 
porous media. The propagation and damping of compressional waves in a porous medium 
was investigated, both theoretically and experimentally, in case the pore liquid contains a 
small volume fraction of gas. Close to gas bubble resonant frequencies, the compressional 
waves are very strongly damped. Even a minor gas fraction largely influences the dynamic 
fluid bulk modulus and also the wave propagation phenomena in a porous medium. 

2.9 Layering 

In general, layering in soil dynamics can be understood as a global inhomogeneity such as 
discussed in Chapter 2.5. Layers are formed during geological processes or formed by man 
(embankments, filled soils).  
 
When a wave meets a new layer it can reflect and/or refract. Reflection and refraction also 
occurs at the surface, which is in fact a layer of the soil interacting with the atmosphere, 
which is also an inhomogeneity. 
 
The path with a minimum travel time of a seismic pulse in the soil is called a ray (a vector) 
and a surface with rays of equal travel time is called a wave front. Snell considered the 
change of direction of ray paths at interfaces between materials (in this case two soil layers) 
with different wave propagation speed. Snell showed that the angle between the ray path and 
the normal to the interface and velocity of the wave is constant: 
 

 
 

const
sin =
v

i
, (2-30)  

 
where: 
 
 i = angle of incidence, [rad] 
 v = velocity. [m/s] 
 
This relationship holds for reflected and refracted (or transmitted when the angle of incidence 
is zero) waves. Different body waves, reflected and refracted at the interface of two layers, 
are presented graphically in Figure 2-11. In the figure P, SH and SV represents compression, 
horizontal shear and vertical shear waves respectively.  
 
Since an incident P- and SV- involve a particle motion perpendicular to the plane of the 
interface; they will each produce both reflected and refracted P- and SV-waves. An incident 
SH-wave does not involve any particle motion perpendicular to the interface; consequently, 
only SH-waves are reflected and refracted (Kramer, 1996). Following Snell’s law, the angle 
of incidence is equal to the angle of reflected wave. The sinus of the angle of the refracted 
wave is proportional to the wave velocity for both Layer 1 and Layer 2. 
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In geophysics, the refraction method uses a refracted wave with a critical angle of incidence 
to determine the layering of subsoil. The critical angle of incidence is defined as the smallest 
angle which produces a refracted wave that travels parallel to the interface (Kramer, 1996). 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-11. Reflection and refraction of incident body waves. 

 
If an incident SV-wave hits the free boundary at the angle smaller than the critical, the two 

body waves reflect: P-wave and SV-wave (as 
it can be seen in the middle sketch of 
Figure 2-11). However, if an incident SV-
wave hits the free boundary at the angle larger 
than the critical, only the SV-wave is 
reflected. The energy that for smaller angles is 
reflected as a P-wave is instead captured as a 
surface wave with exponential decay of the 
amplitude in the horizontal direction, as it is 
shown in Figure 2-12 (Andersen, 2006). 
 

Baidya (2000) observed that the dominant frequency, (the frequency at which an oscillating 
foundation-soil system is experiencing the highest displacements), of the layered soil system 
decreases due to presence of the soft layer at the top whereas it increases due to presence of 
stiff layer at the top. 

2.10 Amplitude of a harmonically oscillating plate 

Reissner’s method 
 
Lamb (1904) solved the response caused by a vertical or horizontal point load, suddenly 
applied onto the surface of an elastic half-space, in two and three dimensions. The latter is 
also known as the dynamic Boussinesq problem.  The solution is obtained by using the 
complex analysis, which is a branch of mathematical analysis, where the separate real and 
imaginary parts of any analytic function must satisfy Laplace’s equation. The equations of 
motion were casted into the Laplace-radial wave number domain. An inverse Laplace 
transform into the time domain was performed by contour integration, a method of evaluating 
certain integrals along paths in the complex plane. Unfortunately the final solution was an 
indefinite integral whereby the solution is not known and difficult to solve analytically and 
boundary limits are either plus or minus infinity or zero approaching the infinity (Chowdhury 
& Dasgupta, 2009). Therefore for practical purposes, calculation of the surface displacements 
from an applied force, this solution was not finished yet. 
 

 
Figure 2-12. Reflected P-waves are 

captured at the surface. 
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Reissner (1936) used the same Lamb’s approach but assumed a uniform stress distribution (or 
uniformly loaded flexible circular area) instead of a point load on an elastic half-space and 
determined the vertical steady state response. The vertical displacements at the centre of the 
flexible loaded area are given by: 
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where: 
 
 u = displacement, [m] 
 F0 = amplitude of vertically exciting force, [N] 
 rpl = radius of a plate, [m] 
 f1, f2 = displacement (compliance) functions. [-] 
 
The displacement functions are functions of the dimensionless frequency a0 and Poisson’s 
ratio ν.  
 
The dimensionless frequency a0 is calculated as follows: 
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in which: 
 
 ρ = density of the medium. [kg/m3] 
 
Reissner was able to deduce the displacement functions, which were needed to obtain data of 
engineering interest, for ν = 0, ν = 0.25 and ν = 0.5. Because he left Germany and moved to 
USA, he was not aware that his solution did not agree with experimental data. Only a number 
of years later it was discovered by others that there was a sign mistake in one of the terms of 
his half space solution (Reissner, 1996). Hereby the corrected displacement functions are 
given: 
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where: 
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 a0 = dimensionless frequency, [-] 
 J1 = Bessel function of the first kind, first order.  [-] 
 
The displacement functions graphically are represented in Figure 2-13. 
 

 
 

Figure 2-13. Reissner’s displacement functions for a flexible ciruclar plate. 
 
Reissner’s solution for the displacement amplitude of oscillator motion is given by:  
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where b is a dimensionless mass ratio: 
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in which: 
 
 mvib = mass of a vibrating object. [kg] 
 
The phase shift ∆φ between an exciting force and the soil response is given by: 
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Reissner’s solution was derived for uniform vertical stresses (or a flexible plate). Knowing 
that different stiffness of a plate causes different contact vertical stresses in the soil, 
researches were working on derivation of corresponding displacement functions. 
 
Lysmer’s method 
 
Reissner and Sagoci (1944) developed a method for the torsional mode of vibration of a rigid 
circular footing resting on the surface of an elastic half-space. 
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Sung (1953) and Quinlan (1953) independently solved a problem of the dynamic response of 
a circular footing resting on an elastic half-space for three probable contact vertical stresses: 
uniform, parabolic and rigid base approximation. 
 
Arnold et al. (1955) computed the dynamic response of a rigid circular foundation on an 
elastic half-space not only for the vertical vibration mode but also for the rocking and sliding 
motion. 
 
Bycroft (1956) noted that contact vertical stresses used by Sung (1953) and Quinlan (1953) 
are the equivalent dynamic stresses of their static counterparts. Beneath the rigid footing the 
uniform displacement distribution is not always correctly predicted because it varies with the 
frequency. Therefore a weighted average of the displacements beneath the footing and an 
average magnitude of displacement (compliance) functions f1 and f2 were evaluated. The 
solution was valid only for small frequency rations (a0 < 1.5). Therefore later Bycroft (1977) 
extended the solution for large frequencies. Vertical, horizontal, rocking and yawing (rotation 
around the vertical axis) vibration modes were evaluated. 
 
Meanwhile Hsieh (1962) attempted to modify the original solution of Reissner. The aim was 
to develop a mechanical analogue in a form of single-degree of freedom system. Hsieh was 
the first who showed that the elastic half space can be converted into a mechanical analogue 
of a spring and a dashpot (Chowdhury & Dasgupta, 2009). 
 
The equation of the vertical vibration of a rigid circular footing with a mass mvib resting on an 
elastic half-space is as follows: 
 
 
 

ti
vib ePkucvam ω

0=++ , (2-39)  

 
in which: 
 
 a = acceleration of the footing, [m/s2] 
 v = velocity of the footing, [m/s] 
 c = coefficient, analogues to viscous damping, [Ns/m] 
 k = coefficient, analogues to spring stiffness, [N/m] 
 P0 = amplitude of the soil reaction force. [kN] 
 
Hsieh (1962) calculated the coefficients for analogues spring and dashpot: 
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The advantage of the spring – dashpot analogue, is that one can use the standard single 
degree of freedom system, which has classical solutions for amplitudes and displacements. 
The only difference is that in this case, the equivalent damping and stiffness are given by the 
coefficients k and c and these are frequency and Poisson’s ratio dependent. 
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Lysmer (1965) used Reissner’s solution but he also took into account the work of Hsieh, who 
demonstrated that an elastic half space can be converted into a mechanical analogue of a 
spring and dashpot, as well as the work of Bycroft, who was able to define the displacement 
functions for rigid circular foundation, and proposed a simplified model for a vertical motion 
of a rigid circular foundation. Lysmer treated stress distribution under the foundation as a 
function of frequency: for low frequencies the stress is similar to the stress distribution for the 
static case, whereas for high frequencies the stress distribution approach the solution for 
uniformly loaded half space. The rings method (superposition of uniformly loaded rings) was 
used to solve the response of different stress distributions. For that Lysmer used IBM 7090 
computer. Finally he simplified the solution and developed frequency independent 
expressions for the coefficients k and c for a rigid plate case: 
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Amongst different methods developed in the past for vibratory response of foundations, 
Lysmer’s method is quite popular because of its simplicity. This methodology has been 
proved to be quite accurate for the analysis of a foundation in a low to medium frequency 
range (Baidya, 2000). Nevertheless it is worth to mention that it is an approximate method, 
because the damping is taken such, that it would be a best fit for a dimensionless frequency 
0.3 < a0 < 0.8. Lysmer found that an error for small frequencies a0 < 0.8 does not exceed 8 % 
and for larger values of a0 and small values of B the relative error might be as great as 35 %. 
 
Lysmer used a slightly different dimensionless mass ratio than Reissner:  
 

 
 34

1

4

1

pl

vib

r

m
bB

ρ
νν −=−= . (2-44)  

 
The displacement amplitude according to Lysmer is calculated as follows:  
 

 
 ( ) ( )2

0

22
0

0

85.01

/
ˆ

aBa

kF
u

+−
= . (2-45)  

 
And the phase shift between an exciting force and the dynamic response:  
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Hall (1967) followed Lysmer’s success and developed equivalent static springs for both the 
sliding and rocking mode and a solution for coupled rocking and sliding motion.  
 
Confined elasticity approach 
 
Another approximate solution was suggested by Verruijt (2006). The author suggests to 
neglect horizontal displacements (while they are very small compared to the vertical ones) 
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and to use a confined elasticity. This approach was first proposed by Westergraad (1938) and 
generalised for elastodynamics by Barends (1980). Then the coefficients k and c for a rigid 
circular plate on a confined elastic half space would be: 
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in which: 
 

 λ  = Lamé's first parameter, ( )( )[ ]νννEλ 2-1+1/=  [N/m2] 

 mc = material constant, ( ) ( )νν 21/122 −−=cm  [-] 

 ωc = characteristic angular frequency ( )22 /4 plc rG ρω = . [rad/s] 

 
The displacement amplitude according to the confined elasticity theory is given by: 
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where: 
 
 statû  = static displacement. [m] 

 
The static displacement is defined as follows: 
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The characteristic frequency is given by: 
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The phase shift between the exciting force and the dynamic response yields: 
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2.11 Surface vibrations near a harmonically oscillating plate 

According to Barkan (1962), vertical displacements of the surface at small distances from the 
source of waves can be calculated by: 



Introduction into soil dynamics 
 

34 
 

 

 
 

)sin(2
2

2
1

0 ϕωω ∆−+⋅−= tff
Gv

F
u ss

s
v , (2-53)  

 
in which: 
 
 vs = shear wave velocity, [m/s] 
 f1s, f2s = displacement (compliance) functions for the surface vibration. [-] 
 
The phase shift ϕ∆  between loading and displacements is calculated by: 
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The compliance functions usually are expanded into a series. These are the recommended f1s 
and f2s functions for Poisson’s ratio ν = 0.25 and for small values of ks·r: 
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in which: 
 
 ks = shear wave’s number, [m-1] 
 J0 = Bessel function of the first kind, zero order. [-] 
 
Displacements of the surface at large distances from the wave source can be calculated as 
follows: 
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in which: 
 
 kp = compressional wave’s number, [-] 
 kr = Rayleigh wave’s number. [-] 
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The Rayleigh function gk (which has one real positive root, which gives the ratio between vs 
and vr) is defined as follows: 
 
 
 ( ) 222222 42 srprrsrk kkkkkkkg −−−−= . (2-58)  

 
Here the assumption is made, that displacements at large distances are caused only by 
R-waves.  
 
Barkan suggests to distinguish two different fields, the near-field and the far-field, where 
vibrations follow different laws. This is remarkable, since the material is elastic and linear so, 
there should be no reason for a change of the wave propagation laws. Therefore this issue 
will be discussed and checked in Chapter 4. 
 
For the near-field Barkan confined himself only to the investigation of the vertical 
components of vibration. Barkan explained that this is because of practical interest. He also 
solved, for the far-field the equations for both vertical and horizontal displacements, but not 
the horizontal component for the near-field. 

2.12 Waves field under a harmonically oscillating plate 

Miller and Pursey (1955) analysed the energy distribution between waves in the far-field. 
Because it is a far-field situation, amplitudes of the body waves are rather small on the 
surface, and are taken as zero. 

 

 
 

Figure 2-14. Distribution of displacement waves from a circular footing on a homogeneous, 
isotropic, elastic half-space (Woods, 1968). 

 
Miller and Pursey calculated the distribution of the total energy between the P-, S- and R-
waves for homogenous half-space for ν = 0.25. They found a distribution of: 67.4 % of R-
waves, 25.8 % of S-waves and 6.9 % of P-waves. Therefore approximately 2/3 of the input 
energy goes to a surface (Rayleigh) wave and 1/3 to the body waves (S- and P-wave) for this 
Poisson’s ratio.  
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The variation of the displacement amplitudes of the P-, S- and R-waves was presented by 
Woods (1968) in a well-known figure, see Figure 2-14. The wave-fronts have spacing 
between them according to the velocities of the propagating waves. The shaded zones along 
the wave fronts of the body waves indicate the relative amplitude of particle displacement as 
a function of the dip angle. The Rayleigh wave’s vertical and horizontal components are also 
shown on the leftward- and rightward-propagating parts of the wave respectively. The region 
in the figure of the shear-wave front in which the larger amplitudes occur is called the shear-
window. 
 
This solution was the first step to investigate separate wave types and their laws causing the 
superposed vibration on the surface.  
 
In Figure 2-14 there is a mistake regarding the body waves’ attenuation law on the surface: 
the attenuation law of body waves on the surface is shown to be r-2 and in the body r-1. 
Maybe this is a misinterpretation of Lamb’s finding (Auersch & Said, 2010), because as it is 
already mentioned in Chapter 2.4, it is r-1 at both surface and body. 

2.13 Conclusions 

Even in the simplest case, when the soil is homogeneous and isotropic and with the surface as 
boundary, energy will travel with at least three basic waves. The basic waves travel with 
different propagation, radiation and material damping laws. For man-made geotechnical 
vibrations (where the shear strain amplitude γ̂  is smaller than 0.01 %) the material damping 
for each basic wave is expected to be nearly constant. Unfortunately a distribution of the 
individual material damping laws in these basic waves is unknown yet. 
 
If the soil is heterogeneous, additional effects will occur, like scattering, dispersion, reflection 
and/or refraction. This makes the vibration predictions far more complex. 
 
Also the existence of additional phases in the soil makes the predictions of the vibrations 
even more complex. For instance gas bubbles will damp vibrations considerably and pore 
water will create a second kind of P-wave. 
 
Therefore it is decided to start this research on vibration prediction from the simplest case – 
an oscillating plate on an elastic, homogeneous and isotropic half-space, where the plate 
oscillates harmonically in vertical direction and the soil is unsaturated. 
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3 HARMONICALLY OSCILLATING PLATE 

3.1 Introduction 

The simplest case to start with the investigation of man-made geotechnical vibrations near the 
surface is a case of a plate on an elastic homogeneous, non-saturated isotropic half-space, 
harmonically oscillating in vertical direction. Analytical methods, which were discussed in 
the previous chapter will be compared to the FEM calculation results. 

3.2 Theory versus FEM 

In order to check the analytical solutions described in Chapter 2.10 and Chapter 2.11 the 
finite element method software Plaxis 2D is used. 
 
Soil and FE model properties 
 
The used geometry of the model can be found in Figure 3-1.  
 

 
 

Figure 3-1. Geometry of the FE model for vibrations. 
 
The general force-displacement is based on the following equation: 
 
 
 

}{}]{[}]{[}]{[ FuKuCuM =++ &&& , (3-1)  

in which: 
 
 [M] = mass matrix, [kg] 
 [C] = damping matrix, [N/(m/s)] 
 [K] = stiffness matrix, [N/m] 
 {F} = force vector, [N] 
 {u} = displacements vector, [m] 
 },{ u& }{ u&&  = velocities and accelerations vectors. [m/s], [m/s2] 
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The mesh was updated for the surface vibration calculations depending on the frequency. 
This was done in order to make sure that there were at least 5 elements per wave length. Also 
the time step was controlled in order to prevent a wave to travel more than one element per 
time step.  
 
The modelled area is 50 m in both length and depth. Surface calculation points for vibration 
recordings were placed from radius 1 m to 20 m, at 1 m distance from each other. The soil is 
modelled with 15-node triangle elements (Figure 3-2).  
 
An element with 15-nodes provides a fourth order interpolation for displacements and the 
numerical integration involves twelve Gauss points (stress points).  
 
The model’s elastic properties are the Young’s modulus E = 50 MPa and the Poisson’s ratio 
ν = 0.25. Unit weight of the soil medium γ = 20 kN/m3. The weightless rigid plate has a 
radius rpl = 1.0 m. The interface between the plate and the soil is modelled as rigid. The plate 
is loaded by a harmonical vertical stress σy , which has an amplitude of 10 kPa. Different 
loading frequencies are used. 

 

 
 

Figure 3-2. a) Axisymmetric problem b) 15-node triangular soil elements (Plaxis bv, 2015). 
 
The damping matrix [C] represents the material damping. In Plaxis 2D, Rayleigh damping is 
used, where [C] is a function of the mass and stiffness matrices, according: 
 
 ][][][ KMC βα += , (3-2)  

 
where: 
 
 α = determines the influence of mass in the system’s damping, [-] 
 β = determines the influence of stiffness in the system’s damping. [-] 
 
The coefficients α and β were kept zero in this simulation, to avoid any type of material 
damping. 
 
 
 



Harmonically oscillating plate 

39 
 

Results: amplitude of the shaker 
 
All analytical methods, described to evaluate the dynamic amplitude of an oscillating rigid 
plate, were compared with the results of Finite Element simulations performed by Plaxis 2D 
software.  
 
The ratio of the dynamic displacement to the static displacement (Boussinesq solution) is 
used in the vertical axis, and the dimensionless frequency in the horizontal axis in 
Figure 3-3 a).  The figure shows, that Reissner’s solution with Sung’s (1953) displacement 
functions f1 and f2 for a weightless rigid plate oscillating on an elastic half space with 
Poisson’s ratio ν = 0.25, as well as the Confined Elasticity approach is acceptable for very 
small dimensionless frequencies a0, but for higher frequencies rapidly becomes inaccurate.  
But Lysmer’s solution corresponds to the FEM results very accurately.  
 

 
 

Figure 3-3. Comparison of analytical solutions to FEM: weightless rigid plate a) Relative 
displacement amplitudes; b) Phase shifts. 

 
The displacement functions deduced by Sung (1953) can be calculated as follows: 
 

 
 

( )4
0

2
01 006131.00703131.01875.0 aaf +−−= , 

5
0

3
002 001291.0023677.0148594.0 aaaf +−= . 

(3-3)  

 
Also a comparison between the analytical and numerically obtained phase shifts has been 
made and showed in Figure 3-3 b). Here Lysmer’s solution also shows the best match with 
the FEM results. 
 
Verruijt noticed that in practice only in case of very rapid fluctuations the dimensionless 
frequency may be larger than one. An example of such a phenomenon is pile driving, by 
hammering or by high frequency vibrating (Verruijt, 2006). Therefore for an oscillating 
plate’s problem any of the solutions can be used, nevertheless the Lysmer’s solution has the 
lowest error over a total range of dimensionless frequencies.  
 
The amplitudes of the rigid plate also checked for a vibrating rigid plate with mass. The 
calculations were performed with four different modified mass ratios B = 0.5, 1.0, 2.0 and 5.0 
and the results can be seen in Figure 3-4.  
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As it can be seen from the figure below, Lysmer’s approach is the most accurate, and the 
others two over predict the amplitudes of vibration. 
 

 
 

Figure 3-4. Comparison of analytical solutions to FEM: rigid plate with mass. 
 
Results: amplitudes on the surface 
 
Barkan’s solution for the vibration amplitudes on the soil surface is also compared with the 
results of FE modelling. The vibration frequency was changed in order to compare different 
dimensionless frequencies a0. Figure 3-5 shows, that the vertical displacements for a 
weightless rigid plate in the near-field (up to 1 to 4 m, depending on a0) can be rather well 
represented by the Barkan near-field equation.  
 
Nevertheless the far-field solution for the vertical amplitudes of displacements provides 
comparable results only for low dimensionless frequencies (probably for a0 < 0.3).  

 
From Figure 3-6 it can be seen, that Barkan’s far-field solution for horizontal displacement 
amplitudes is also only correct for small dimensionless frequencies (a0 < 0.3).  For the higher 
dimensionless frequencies, just like the far-field solution for the vertical amplitudes, the far-
field solution for the horizontal amplitudes provides values, very different from the FEM 
results.  
 
The sudden jumps of the near-field solution, when it goes to infinity, come from the fact that 
this solution was derived for small values of ks·r only. After this jump, Barkan (1962) 
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suggested to use a far-field solution, in which only the R-wave is taken into account. This 
shows that the solution itself is not continuous. 
 

 
 

Figure 3-5. Vertical displacement amplitudes on the surface at different dimensionless 
frequencies a0. 

 
It is worth mentioning, that the shape of the far-field solutions (both vertical and horizontal) 
is quite good, but the positioning of the curve is wrong. In other words, it might be possible 
to use the far-field solution’s curve by correcting it by an additional frequency dependent 
variable. Frequency dependence is required, because the vertical position of the curve 
changes with different frequencies (as can be seen in Figure 3-5 and Figure 3-6). 
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Figure 3-6. Horizontal displacement amplitudes on the surface at different dimensionless 
frequencies a0. 

 

3.3 Conclusions 

Analytical solutions, for a harmonically oscillating plate on an elastic homogeneous isotropic 
half-space, have been compared with the FEM calculation results. There are quite a few 
solutions to calculate vibration amplitudes and phase shifts of the plate itself, but there is only 
Barkan’s method, to calculate the amplitudes and phase shifts of the surface vibration, further 
away from the source. 
 
The comparison of the analytical solutions with the FEM showed that for the vertical 
vibration amplitude of an oscillating rigid plate, Lysmer’s analytical solution demonstrates 
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similar results as the FEM calculations. The confined elasticity solution as well as the 
Reissner’s solution (with Sung’s displacement functions) could be used for very low 
dimensionless frequencies only. 
 
The comparison of Barkan’s solution, which is unfortunately for weightless plates only, and 
FEM showed similar results only for the near-field zone, whereas the far-field zone gave 
similar results for the FEM calculations only for low dimensionless frequencies (a0 < 0.3). 
 
Barkan’s far-field solution still could be used if it would be modified in such a way, that it 
becomes a smooth continuation of the near-field solution. This could be achieved by 
introducing an additional frequency dependent variable. 
 
Barkan’s division of the wave field into the near- and far-field was unexpected, because the 
problem is linear. This, and the disagreements between some analytical solutions and FEM 
results, encouraged to investigate the problem of an oscillating circular rigid plate more 
carefully, by inspecting the wave-field itself. This is done in the following chapter. 
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4 DECOMPOSITION OF WAVES 

4.1 Introduction 

A wave on the soil surface can be seen as a superposition of several types of waves with each 
its own behaviour.  Therefore to have a better insight into the propagation of vibrations in a 
soil medium, the measured signal has to be decomposed into the basic waves and analysed 
separately. A main problem in the field is that during harmonic oscillations, the different 
types of waves cannot be measured independently, only the superposed velocities or 
accelerations. So, in order to study the measurements, a way to decompose the superposed 
waves into basic waves, should be found first. 

4.2 Decomposition technique 

The problem has been solved for a homogenous, elastic and isotropic soil, which is disturbed 
by a harmonically oscillating plate on the surface (Figure 4-1). It is assumed that there is no 
material damping. 

 

 
 

Figure 4-1. Sketch of an oscillating plate and measurement points. 
 

The displacement of each point on the soil surface in direction i can be described as a 
superposition of the displacements of the three basic waves in that point: 
 
 
 

),(),(),(),( ,,, trutrutrutru irisipi ++= , (4-1)  

 
in which: 
 
 ),(, tru ij  = displacement of the j-wave in time and space, [m] 

 
i
 = index indicating the x or y direction, [-] 

 j  = index indicating the wave type (P-, S- or R-wave). [-] 

 
By taking into account the propagation laws of the general waves, Equation (4-1) can be 
rewritten for any measurement point as follows: 
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(4-2)  
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           )sin(ˆ , rryr rktu ϕω ∆−−+ , 
(4-3)  

 
where: 
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 iju ,ˆ  = amplitude of the j wave in i direction, [m] 

 ω = angular frequency, [m] 
 kj = wave number, [m] 
 

i
 = index indicating the x or y direction, [-] 

 j  = index indicating the wave type. [-] 

 
In order to relate the measured vibrations to different points with different distances, the 
attenuation laws of the basic waves will be used. The amplitudes of the body waves (P-waves 
and S-waves) attenuate proportional to x-1 and the surface wave (R-wave) attenuates 
proportional to x-0.5, where x is the distance from the axis of symmetry, which is the middle of 
the plate (Figure 4-1). For high distances or relatively small plates x ≈ r. Now the vibration in 
any measurement point k = 1…m can be expressed as a function of amplitudes in any other 
point, for example the 1st point: 
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(4-5)  

 
The idea is that, if one measures at more independent locations (measurement points), then 
the number of unknowns (the amplitudes of the basic waves) can be found.  
 
The phase shifts ∆φj of the basic waves are assumed to be zero (which can be checked), with 
this, a system of equations can be assembled and solved as follows:  
 
 
 

}{}]{[ uxA = , (4-6)  

 
in which: 
 
 [A] = coefficient matrix, [-] 
 {x} = vector of unknowns (the amplitudes), [m] 
 { u} = vector of known values (vibration displacements). [m] 
 
In this case, there are more equations than unknowns (which is made intentionally in order to 
represent the surface more accurate), the system is over determined and can be solved by 
using the least squares method. For that both sides of the Equation (4-6) is multiplied by the 
transpose matrix of coefficients [A]T. In this way, the system becomes a standard square 
system of linear equations, which are called the normal equations: 
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 }{][}']{[][ TT uAxAA = , (4-7)  

 
where: 
 
 {x'} = the least squares solution. [m] 
 
The standard square system of linear equations can be solved as follows.  
 
 
 ( ) }{][][][}'{ T1-T uAAAx = . (4-8)  

 
Nevertheless if the phase shifts ∆φj of the basic waves are found not to be zero, then the 
system of equations cannot be solved directly by using the same approach. This is, because 
the system of equations is not linear anymore. Or in other words, the phase shifts cannot be 
separated from the coefficient matrix [A] and to be put into vector {x}.  The solution has to be 
found by using the least squares method in an iterative way. This is an optimisation problem, 
where the objective function minimises the sum of the squares of differences. 
 
To evaluate the precision of the solution, R2 value (often referred to as the goodness of fit) is 
calculated, where 0 means no correlation at all and 1 means the perfect fit.  
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where:  
 
 R2 = correlation factor, [-] 
 uk = measured displacements, [m] 
 uk' = back-calculated displacements, [m] 
 ku  = average of the measured displacements. [m] 

 
In this way, not only the unknown amplitudes of the basic waves are found, but also their 
phase shifts (which must be zero, according to the current theory). The technique described 
above, can be used to decompose a measured wave into the three basic waves and to check if 
the superposition of the basic waves correlates with the measurements. For example – the 
back-calculated superposed signal can be used as a check, as well as the theoretical ratio of 
the R-wave’s amplitudes on the surface kyrkxr uu ,,,, ˆ/ˆ . A Matlab code for the decomposition 

technique is provided in 0. 

4.3 Numerical simulation 

In order to check this technique, for decomposing a superposed wave into its basic waves, a 
2-dimensional, axial symmetrical numerical simulation was performed using the Finite 
Element Method software Plaxis 2D. The same FE model was used, which is described in 
Chapter 3.2. The material damping was also kept zero (which is assumed in this technique).  
 
Ten calculation points, for recording the displacements, were placed on the soil surface from 
radius 15 m to 24 m, at 1 m distance from each other. The soil is modelled with 15-node 
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triangle elements. The oscillating plate has a radius of 0.2 m. In Plaxis 2D there is no rigid 
plate option and prescribed displacements are not used in order to stay closer to the practical 
problems, where the force is controlled. Therefore the plate is modelled with plate elements 
with the bending stiffness EI = 24 MNm2/m (which is practically rigid for this problem). The 
interface between the plate and the soil is modelled as rigid. First the plate is loaded with a 
static load of 20 kPa and later a harmonic load of ±10 kPa at 10 Hz is introduced. Unit weight 
of the soil medium γ = 20 kN/m3. 

4.4 Simulation results 

The displacements were first used after about 3 cycles, so that the starting up effect of the 
harmonic load has vanished. The time window for the calculations was also selected such that 
are no reflections yet from the absorbing boundaries, since they do not absorb perfectly. 
 
First attempt: Peak displacements 
 
The idea of the first attempt was to use only the displacements which were calculated at a 
selected time when the displacement reached a peak (see red dots at peak of the dashed line 
in Figure 4-2). It was assumed that the three basic waves were in phase (phase shifts ∆φ are 
zero) with the original/superposed wave, similar as in the analytical solution of Miller and 
Pursey (1955). Therefore an assembled system of equations was solved with the least squares 
method according to Equation (4-8). 
 
From the calculated basic waves, the total/superposed displacement can be back-calculated 
(when three basic waves are superposed) and compared with the original total wave, see 
Figure 4-2. The correlation factors between FEM calculation and back-calculated superposed 
wave are very low. The factor of the vertical component even becomes negative, which 
means there is no good solution. Also the ratio of the R-wave’s amplitudes ,73.3ˆ/ˆ ,,,, =kyrkxr uu  

 

which is much greater than the theoretical 682.0ˆ/ˆ ,,,, =kyrkxr uu .  

 

 
 

Figure 4-2. First attempt: back-calculated results vs. FEM (Plaxis) for point No. 1. 
 

Only for the selected time (the peak of the dashed line) the solution almost fitted, but clearly 
not for the rest of the wave. 
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Second attempt: Phase shifts are not zero & multiple time points 
 
A new attempt was made, but this time with allowing the basic waves to have different 
phases as the original/superposed wave. This leads to nine unknowns (six amplitudes and 
three phase shifts). Since the phases of the basic waves are now unknowns, the system of 
equations is not linear anymore, so the solution had to be found by using the least square 
method in an iterative way. In this attempt not only the peak values of the time-displacement 
graph, but all time points of one cycle were used. The period T = 0.1 s. The calculations were 
performed with a time step of ∆t = 0.001 s, which gives 100 time points in a time-
displacement graph. Since there are 10 field points with each 2 degrees of freedom 
(horizontal and vertical); there is a system of 2000 equations. The horizontal and vertical 
displacements of the basic waves were solved and are shown in Figure 4-3. 

 

 
 

Figure 4-3. Phase shifts: horizontal and vertical displacements of the basic waves for 
calculation point No. 1. 

 
This time a perfect fit of the wave displacements was found for the back calculated wave with 
the recorded wave of Plaxis. The correlation factor R2 is equal to 0.9986 for the combined 
displacements. 
 
Figure 4-4 shows the displacements on the surface of one cycle of the three basic waves in 
point 1. Interesting is to note that both the P-wave and the S-wave do not act completely flat 
(there is a vertical component for the P-wave and a horizontal one for the S-wave). 

 

 
 

Figure 4-4. Phase shifts: displacements on the surface of one cycle of the three basic waves. 
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Also interesting is the ratio of the R-wave’s amplitudes is found to be kyrkxr uu ,,,, ˆ/ˆ = 0.655, 

which is in a quite good agreement with the theoretical ratio kyrkxr uu ,,,, ˆ/ˆ = 0.682. 

 
Third attempt: Flat basic body waves 
 
The same attempt was done, but this time with the assumption that the body waves are flat, so 
the horizontal amplitude of the S-wave and the vertical amplitude of the P-wave are zero. 
Also the ratio of the theoretical R-wave’s amplitudes was used, so ratio kyrkxr uu ,,,, ˆ/ˆ = 0.682. 

This reduces the amount of unknowns back to six (three amplitudes + three phase shifts). 
 

 
 

Figure 4-5. Flat waves: horizontal and vertical displacements of the basic waves for 
calculation point No. 1. 

 
The horizontal and vertical displacements of the basic waves were solved and are shown in 
Figure 4-5.  

 

 
 

Figure 4-6. Flat waves: displacements on the surface of one cycle of the three basic waves. 
 

Figure 4-6 shows the displacements on the surface of one cycle of the three basic waves in 
calculation point 1. As prescribed both the P-wave and the S-wave act completely flat 
(horizontal for the P-wave and vertical for the S-wave) and the ratio of the R-wave’s 
amplitudes is the theoretical one: kyrkxr uu ,,,, ˆ/ˆ = 0.682. 
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Figure 4-7. Phase shifts of the basic waves (flat waves). 

 
The prescription for the body waves to be flat and for the amplitudes ratio of R-wave to be as 
the theoretical one, does not change the correlation factor much. The combined mean 
correlation factor for the horizontal and vertical displacements remains very high 
R2 = 0.9982. The amplitudes and phase shifts are shown for the 2nd and 3rd attempt in Table 
4-1. Mostly the difference between the two attempts is rather small. For the phase shift of the 
S-wave, the difference was found to be bigger: ∆φs = -96.1° versus ∆φs = -71.1°. 

 
Table 4-1. Effect of the reduction of unknowns. 

 
Unknown 9 unknowns 6 unknowns Units 

P-wave amplitude (horizontal direction) 0.117 0.113 [µm] 
S-wave amplitude (vertical direction) 0.031 0.039 [µm] 
R-wave amplitude (horizontal direction) 0.595 0.614 [µm] 

    
P-wave amplitude (vertical direction) -0.034 - [µm] 
S-wave amplitude (horizontal direction) 0.03 - [µm] 
R-wave amplitude (vertical direction) 0.908 from ratio [µm] 

    
P-wave phase shift -8.7 -12.1 [deg] 
S-wave phase shift -96.1 -71.1 [deg] 
R-wave phase shift 51.9 53.5 [deg] 

    
Ratio of  the R-wave amplitudes 

    
horizontal / vertical: 0.655 0.682 [ - ] 

average correlation factor R2: 0.9986 0.9982 [ - ] 

 

4.5 Energy balance 

Since the wave is now decomposed, the energy balance can be checked. In the finite element 
model there is no material damping, therefore the emitted energy from the oscillating plate on 
the surface and the energy carried by the basic waves should be in balance (principle of 
energy conservation). 
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Total energy 
 
First the energy emitted from the source was calculated. For displacement recordings one 
point on the plate was selected. One point is sufficient, because the plate is stiff enough, so its 
own deformations are negligible. 
 
The emitted energy per cycle from the oscillating plate was calculated from the load 
displacement ellipse, which represents the work per cycle (Figure 4-8).  
 
 
 

( )ϕπ ∆≈∆ sinˆ0uFE , (4-10)  

 
where: 
 
 F0 = amplitude of vertically exciting force, [N] 
 û  = displacement amplitude of the plate vibration, [m] 
 ∆φ = phase shift between the exciting force and soil response. [rad] 

 

 
 

Figure 4-8. Total emitted energy per cycle. 
 

In Equation (4-10) the amplitude of the vertically exciting force is known. The displacement 
amplitude and the phase shift between the exciting force and soil response can be found using 
the analytical methods discussed in Chapter 1 and using FEM calculations. Calculations of 
the vibration amplitudes and phase shifts according as well as the total emitted energy can be 
seen in Table 4-2. 
 

Table 4-2. Amplitudes, phase shifts and the total emitted energy per cycle. 
 

Method Displacement amplitude [µm]   Phase shift  [rad] Energy  [Nm]  
FEM (Plaxis) 53.2 0.1071 0.0225 
Reissner (Sung's f1, f2) 57.7 0.0996 0.0226 
Lysmer 57.4 0.1064 0.0241 
Confined Elasticity 57.8 0.0628 0.0143 

 
The total emitted energy in the finite element calculations was found to be 0.0225 Nm per 
cycle. As it can be seen in Table 4-2, from the analytical solutions, the Lysmer’s solution 
gives the closest match. 
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Energy in the basic waves 
 
The kinetic and potential energy are in balance per volume in a wave. Therefore, the total 
energy per volume can be expressed by either of them. The total energy per volume, 
expressed by the kinetic energy per volume, for a one-dimensional wave, is: 
 

 
 

22** ˆ
2

1
2 uEE kintot ρω== , (4-11)  

 
where: 
 
 E*

tot = total energy per volume, [N/m2] 
 E*

kin = kinetic energy per volume, [N/m2] 
  ρ = density of the medium, [kg/m3] 
 û  = displacement amplitude. [m] 
 
The energy in the R-wave was calculated by using the analytical solution of the R-wave’s 
amplitudes in depth. These functions are published in literature of soil mechanics, like 
Kramer (1996). In order to estimate the total energy in the R-wave per cycle Etot,r, the 
functions of the squared amplitudes (according to Equation (4-11) energy is proportional to 
the squared of the amplitudes) are integrated over depth for one wave length: 
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where: 
 
 λr = length of the R-wave, [m] 
 iru ,ˆ  = amplitude of the R-wave in i direction. [m] 

 
Unfortunately the analytical amplitude functions of the P- and S-waves, used by Miller and 
Pursey (1955), exist only for a very large radius, where the amplitudes of the P- and S-waves 
are equal to zero on the surface. This is clearly not the case here. Therefore first the 
amplitude functions of the P- and S-waves have to be constructed.  
 
For that, the displacements were recorded in 19 additional points, placed in the soil volume 
(see Figure 4-9 on the left). By using the amplitudes of the R-wave at the surface and the 
theoretical amplitude functions in depth, the displacements of the R-wave were calculated for 
the same 19 points. These displacements in time of the R-wave were subtracted from the 
recorded total displacements. The residual displacements in x and y directions were projected 
onto the x’ and y’ axis (see Figure 4-9 on the right), which are regarded to be the directions of 
the motion of an individual particle of the P- and S-waves, respectively. In this way, for the 
P- and S-waves, the amplitudes of the displacements in x' and y' axes were calculated. 

 
Displacement amplitudes of the P- and S-waves according to the solution of Miller and 
Pursey for the far-field can be seen in Figure 4-10. S-wave amplitudes change their sign, 
which means that points in different zones of the sign move to the different directions (they 
are shifted by 180º). 
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Displacement amplitudes of the P- and S-waves from the decomposed waves, obtained from 
the Plaxis calculations, are presented in Figure 4-11. Here it should be noted, that the phase 
shifts of the body waves in the soil body were different from the ones calculated on the 
surface. Because of that, the amplitudes in the soil body could not be found using only a one 
dimensional wave equation. 
 

 
 

Figure 4-9. Additional points for the amplitudes of S- and P-waves. 
 
The amplitudes were calculated just by taking an average of the maximum and minimum 
displacements of a body wave with not taking a phase shift into account. Although it has 
hardly any influence on the energy balance, it is evident that the wave behaviour is much 
more complicated in depth. Reasons for this could be: the plate diameter makes  a curved 
wave-front (not a half-sphere), but probably more important is that the function of the R-
wave amplitudes may not be applicable for the near-field, where some additional calculation 
points were placed, while the R-wave needs time, or distance, to develop in depth. 
 

 
 

Figure 4-10. Amplitudes of the P- and S-waves (Miller & Pursey, 1955). 
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The reasons for differences between Figure 4-10 and Figure 4-11, which show the functions 
of amplitudes for P- and S-waves, are explained in Chapter 4.6. 
 
The total energy in the P- (or S-wave) per cycle Etot,p(s) can be calculated by integrating the 
squared functions of the amplitudes (energy is proportional to the squared of the amplitudes) 
over a surface of a half ball for one wave length: 
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where:  
 
 λp(s) = length of the P-wave (S-wave). [m]  

 

 
 

Figure 4-11. Amplitudes of the P- and S-waves obtained from the Plaxis calculations. 
 
The total amount of energy carried by the basic waves was summed and found to be 
0.0224 Nm per cycle, which is the same as the total emitted energy of 0.0224 Nm per cycle. 
 
This fact that the emitted energy is the same as the integrated in waves at a distance of 15 m 
away from the source, shows that the numerical damping of FE model is negligible.  
 
Distribution of Energy in Waves 
 
With this the distribution of the total energy in the basic waves can be checked. This 
distribution was solved analytically by Miller and Pursey (1955), for soil with Poisson’s ratio 
ν = 0.25, but this has never been checked numerically. The percentages of the total energy 
distribution in the basic waves can be found in Table 4-3. 
 
As can be seen from this table, the distribution of the energy based on the analytical solution 
of Miller and Pursey fits reasonably well to the numerical solution, despite the fact that Miller 
and Pursey were not aware of the phase shifts of the basic waves. 
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Table 4-3. Distribution of the total energy in the basic waves. 
 

Solution P-wave [%] S-wave [%] R-wave [%] 

Analytical 6.9 25.8 67.4 

FEM 10.8 28.5 60.7 

 
The small differences can maybe be explained by the different initial conditions between the 
solutions. First, in the analytical solution no phase shifts were considered. Second, a very 
small and flexible plate with infinite small radius was used; while in the numerical simulation 
a rigid plate was used. Third, numerical methods always have residual errors. 

4.6 Near-field problem 

After the superposed wave is decomposed into basic waves, it is possible to use their 
propagation and attenuation laws to calculate displacements at any point and any time. By 
superposing the displacements of the decomposed waves one gets a back-calculated vibration 
signal. This signal can be compared with the original wave. This has been done for the same 
FE model calculations. The amplitudes of the back-calculated signal were compared with the 
FEM output. The comparison can be found in Figure 4-12. 
 

 
 

Figure 4-12. Back calculated and superposed amplitudes of the decomposed waves. 
 

The figure shows, that close to the source the back-calculated signal amplitudes differ from 
the Plaxis calculations. This close distance can be named the near-field. It looks as if in the 
near-field the total signal has a different attenuation law. One reason for this can be that the 
basic waves (or at least one of them) have also another attenuation law than is prescribed (r-1 
for the body waves and r-0.5 for the surface wave).  
 
Having the superposed signal amplitudes back-calculated close to the plate, it is possible also 
to look into the back-calculated signals of the basic waves separately, just on the edge of the 
plate. This is shown in Figure 4-13. The bold black line represents the vertical movement of 
the plate. Other sine curves represent different basic waves. When the vertical movement of 
the plate is compared to the elasto-static Boussinesq solution for the settlement of a rigid 
plate (the highest purple line in the figure) it can be seen that the elasto-static solution is very 
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close to the vertical movement of the plate. This means that the biggest part of the plate 
displacement is caused by the static movement. So it can be assumed, that all the points, close 
to the plate, are also influenced by this phenomenon. Of course, the elasto-static solution 
would be not so close to the dynamic displacement of the plate if higher frequencies would be 
used. However, this property could be used to simplify the dynamic calculations. 

 
This phenomenon can also be explained by an energy transfer from one wave to another. That 
could explain the results of the superposed signal in the near-field. The most likely energy 
transfer is from the P- and S-waves to the R-wave. In the source there is no R-wave and this 
wave is formed gradually, because it needs to reach some depth to get its full shape. This 
hypothesis is also supported by other researchers, like Wolf (1994), who uses a scenic 
explanation: “to understand the essence of Rayleigh waves, a biological analogy is helpful. 
The Rayleigh wave is “conceived” at the source, “born” at the far-field boundary, and “lives” 
in the far-field. The near-field is the “pregnancy” region, in which the Rayleigh wave 
gradually develops”. 
 
This also explains the differences between Figure 4-10 and Figure 4-11. In the far- and near-
fields the amplitude functions are different because of the near-field phenomenon. 
 

 
 

Figure 4-13. Back calculated basic waves on the edge of the rigid plate. 
 
If there is no horizontal displacement, then there is no R-wave just below the oscillating 
plate, and then the functions of P- and S-wave amplitudes should look like shown in Figure 
4-14. 

 
For these distributions the energy balance can be checked. The total energy in the P-wave is: 
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The total energy in the S-wave is: 
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Using the vertical displacement amplitude û  as it was calculated by using FEM, it is found 
that Etot,p = 0.0094 Nm and Etot,s = 0.0132 Nm. In total this gives Etot = 0.0226 Nm. 
 
The total calculated energy at the source where only the P- and S-wave exist, 
Etot = 0.0226 Nm. This is almost equal to the total emitted energy per cycle 0.0225 Nm (see 
Chapter 4.5). The difference is negligible and comes from the assumption, that the movement 
of the plate causes the same effect as the movement of the surface of the half-sphere with the 
same radius as the plate. 
 

 
 

Figure 4-14. P- and S-wave amplitudes under the plate. 
 

The calculations above shows, that the S-wave holds 58.5 % and the P-wave holds 41.5 % of 
the total energy just below the plate, where the R-wave does not exist yet. Chapter 4.5 shows, 
that in the far-field P-, S-, and R-waves carries 10.8 %, 28.5 % and 60.7 % of the total energy 
respectively. 

 

 
 

Figure 4-15. Energy transmission between the basic waves. 
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A possible way to illustrate the energy transmission is by using a gradual law, see 
Figure 4-15. The idea is that the lack of confinement at the surface for the compressional and 
shear waves creates additional movements at the surface which results in Rayleigh waves. 
 
Because of this energy transmission, the laws for the amplitude functions will change as well. 
Graphically they might look like shown in Figure 4-16. 
 

 
 

Figure 4-16. Amplitude functions in the Near- and Far-field. 
 

4.7 Conclusions 

The finite element model example in this chapter discusses a harmonically oscillating plate 
on a homogeneous half-space. A method has been developed to decompose a recorded 
superposed soil wave into its basic waves when multiple geophones are used. From the 
recorded data a system of non-linear equations can be assembled with six unknown 
parameters (three amplitudes and three phase shifts). These six parameters can be solved by 
using an iterative way of the least square method. This leads to a decomposition into the three 
basic waves, with each its own amplitude and phase shift. The superposition of only these 
basic waves describes very accurately the recorded superposed soil wave, proving the 
existence of only these three basic waves. The findings prove also that all three basic waves 
have phase shifts (in the far-field) and these phase shifts are all different from each other. 
Both facts were not known before. 
 
The energy balance shows that the amount of emitted energy by the load on the plate is the 
same as of the sum of energies of the basic waves. This is another type of evidence that only 
three basic waves exist. The distribution of the energy over the three basic waves based on 
the analytical solution of Miller and Pursey (1955) fits reasonably well to the numerical 
solution shown in this chapter, despite the fact that Miller and Pursey were not aware of the 
phase shifts of the basic waves. The major part of the energy (more than 60 %) from a 
vertically oscillating plate on the surface goes into the R-wave. 
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Near the vibrating plate, the displacement amplitudes do not follow the same attenuation law 
such as further away from the source. This proves the existence of the near-field 
phenomenon. It must be concluded that the R-wave energy starts at zero just at the source and 
grows in the near-field zone due to an energy transmission (body waves are transferring 
energy to the R-wave). After some distance (in the far-field), the R-wave becomes fully 
developed.  This phenomenon is not understood completely yet, but it does explain existence 
of the phase shifts of the basic waves. 
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5 SHAKER TEST 

5.1 Introduction 

Real field tests of a shaker on the ground surface of real soil have been performed in order to 
compare real vibrations with analytical and FEM calculations. First of all, the shaker design 
will be explained. Secondly the test site will be introduced, and finally the test results will be 
presented and discussed and conclusions will be drawn. 

5.2 Shaker design 

In order to produce harmonic vibrations on the ground surface, a particular shaker should be 
made. The requirements for it are as follows: 
 

- It should produce sine (or close to sine) vibrations on the surface; 
- It should be frequency controlled; 
- It should be powerful enough, to create sufficient ground vibrations in the range of 

limitations of the geophones; 
- It should be transportable. 

 
To fulfil the last two requirements together is rather difficult. The more powerful the shaker, 
the more difficult it is to transport. 
 
It was decided to use two counter rotating electric vibrators (with rotating eccentric masses) 
to produce a vertically oscillating force. This type of vibrator is frequently used in 
geotechnical engineering (sheet pile driving, soil densification). The vibrators are connected 
to a plate of 400 mm in diameter and 20 mm in thickness. Additional square plates are used 
to vary the total mass of the system. Everything is tightened together with bolts (Figure 5-1). 

 

 
 

Figure 5-1. Shaker drawings. 
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Electric 4-poles vibrators (model A10-9.0-4 from Eviro, more information can be found in 
Appendix B.) were selected for the shaker. Such a vibrator with a grid frequency of 50 Hz 
rotates 1500 times per minute (25 Hz). By having a maximum eccentric moment of 8.32 
kg·cm, the shaker can reach a maximum vertical oscillating force of 2.06 kN.  In this shaker 
test, the total mass of the shaker was 287.4 kg, which corresponds to 2.82 kN. 
 
A frequency inverter (Hitachi L200) was also foreseen, in order to vary the frequency from 0 
to 25 Hz. For data acquisition NI USB-6218 acquisition box from National Instruments was 
used. It has 32 analog inputs.  On top of the shaker an accelerometer was placed, in order to 
measure the exact frequency of shaker. All the components for the vibration tests, including 
the shaker, accelerometer, frequency inverter, geophones, data acquisition box, power 
generator and laptop can be seen in a sketch (Figure 5-2). 

 

 
 

Figure 5-2. Vibration test setup scheme. 
 

After preliminary tests, it was noticed, that the shaker was not powerful enough to produced 
sufficient ground vibrations. A bigger oscillating force had to be used. In order to produce a 
sine vibration and avoid a loose contact with the ground, the deadweight must be always 
bigger than the oscillating force. Therefore it was necessary to add more deadweight on the 
shaker. For that, the shaker was slightly updated by drilling centre holes in the square plates, 
and by adding a centre rod. This rod was used to centre extra steel plates (extra deadweight). 
The extra steel plates were tightened between the square plates (Figure 5-3). 

 

 
 

Figure 5-3. Updated shaker. 
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Analysing the output data of the first tests, it was noticed, that more than 3 meters away from 
the vibrating plate, the measurements show a considerable noise. Also there was no dominant 
frequency anymore. The vibrations were not harmonic, and the amplitudes for the geophones 
could not be determined anymore. This is shown in Figure 5-4. 

 

 
 

Figure 5-4. Geophone 3 m away from the source. 
 

Several reasons were considered. The most likely ones were 1) the noise from the generator 
(which vibrates while its engine is working) or 2) problems in the electricity circuit. The first 
one was checked with a longer cord and rejected. The latter appeared to be true. The problem 
was in the wiring of the data acquisition box. All the channels were prepared to read signals 
from the geophones and minuses in the channels were linked to the ground and between 
themselves (Figure 5-5). 

 

 
 

Figure 5-5. Data acquisition box channels linked to the ground and between themselves. 
 

The problem appeared when one of the channels was used for the accelerometer, because the 
accelerometer is using an additional external power source (where the geophones do not). 
This external alternating power source was leaking throughout the links in the acquisition box 
to all the geophones. Two problem solutions were considered – 1) to unlink the channel 
which was used for the accelerometer or 2) to use a geophone on top of the shaker instead of 



Shaker test 
 

64 
 

the accelerometer. The latter solution was chosen, because on site it was easier and faster to 
do. Also the geophone on top of the shaker did not go out of its range. 

5.3 Information about the site 

A potential site for tests should have two major requirements: it should be rather 
homogeneous and rather soft. Therefore a peaty site in the Netherlands was chosen. The 
chosen test site is located about 10 km North-East from Amsterdam (area A in Figure 5-6). 

 

 
 

Figure 5-6. Location of the test site (GoogleMap data, 2014). 
 

Near the test area, other research has been made before, related to the strength of peat 
(Zwanenburg, 2013). The area used for the peat strength research is marked by letter “B” in 
Figure 5-6. In there, geological investigations have been carried out in May 2012.  
 

 
 

Figure 5-7. Data from previous geological investigations (Zwanenburg, 2013). 
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Three boreholes have been drilled and they are marked by “c1”, “c2” and “c3”. The 
stratigraphy and soil density can be found in Figure 5-7. The reference level for the depth of 
the soil is NAP, which is approximately main sea level. The ground level is approximately 
NAP -1.4 m. The top layer is a thin clayey layer with a thickness varying between 0.2 m and 
0.5 m. Below this layer there is a peat layer of 4.5 m thick. It was reported that the bulk 
density of the peat layer ρ = 0.98 t/m3. The ground water table was about 40 cm below the 
ground surface.  

 

 
 

Figure 5-8. P-wave velocity measurements (velocities in radial direction). 
 

In order to determine small strain stiffness parameters of the soil, pressure (P) and shear (S) 
wave velocity measurements were carried out. This was done by hitting the shaker with a 
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hammer and measuring the arrival times at the geophones. The geophone on top of the shaker 
records the input wave. Average of four such tests was used for the velocities determination. 

 

 
 

Figure 5-9. S-wave velocity measurements (velocities in vertical direction). 
 

The P-wave velocity was measured from the arrival time differences between of the first 
radial vibration peaks and the S-wave velocity similarly but of the biggest vertical vibration 
peaks.  
 
From arrival times at the geophones, placed at known distances (with 1 meter in between), P- 
and S-wave velocities were determined respectively: vp = 66.9 m/s and vs = 17.4 m/s. Here it 
should be noted that it is impossible to distinguish S- and R-wave in Figure 5-9. There are 
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two possibilities here: a) vs = 17.4 m/s and vr = 16.5 m/s or b) vs = 18.3 m/s and vr = 17.4 m/s. 
In both cases, the difference between the arrival times of these two waves in distance of 6 m 
would be approximately 0.02 s. Having this time difference in mind, it can be seen from 
Figure 5-9 that S- and R-wave are overlapping. Also an approximation made by drawing a 
straight line throughout the peaks of arrival times should be mentioned. Because of these 
reasons it is very hard to say to which of the two waves the measurement should be assigned. 
Here a recommendation of Das & Ramana (2011) was followed, which says that for all 
practical purposes measurements could be treated as S-wave velocity. 
 
The water table in the test site was very high (this is normal, because it is a polder), so the 
soil was saturated. For the saturated soil the Poisson’s ratio is expected to be close to ν = 0.5. 
 
The Poisson’s ratio can be calculated by:  
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The R-wave velocity can be calculated from the Poison’s ratio and S-wave velocity: 
vr = 16.5 m/s. Figure 5-7 shows that the natural density of the soil is 1000≈ρ  kg/m3. With 
this the small strain stiffness shear modulus of the soil on site can be determined: 
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And the Young’s modulus:  
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These properties are determined under the assumption that the soil can be treated as an elastic 
homogeneous isotropic half-space. This assumption is wrong a priori, because it is known 
that there is a thin clay cover on the surface and another clay layer at the depth of -6.5 m 
NAP. Nevertheless it will be used in order to check how good the solutions, discussed earlier, 
can predict vibrations on this site. 

5.4 Vibration measurements 

The test setup was the same as described in Chapter 5.2 and shown in Figure 5-2, except for a 
small change: the geophone on top of the shaker was used instead of the accelerometer. The 
other geophones were placed with 1 meter distances between their centres. The first 
geophone on the soil surface was placed with 1 meter distance from the edge of the plate. 
 
The measured signals were transformed into the frequency domain by using the Fast Fourier 
Transform (FFT). In the frequency domain, the signals were filtered, by removing all the 
components of higher frequencies than 50 Hz. Afterwards the filtered signals were inverted 
back to the time domain.  The measured signal, power spectrum and the inverted filtered 
signal of the shaker vibrations can be seen in Figure 5-10. The same data for the 1st and the 
last (6th) geophone can be seen in Figure 5-11 and Figure 5-12 respectively. In Appendix A 
vibration signals for all seven geophones can be found. 
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The shaker was oscillating harmonically with a frequency of 24 Hz. The measured and 
filtered signal shows that the amplitude of velocity vibrations is mm/s44ˆ =v . From this, the 
displacement amplitude can be calculated as follows:  
 
 
 

µm 292  mm 292.0
ˆ

ˆ ===
ω
v

u . (5-4)  

 

 
 

Figure 5-10. Shaker vibrations. 
 

The measured signal of the vibrations velocity from the 1st geophone (placed 1 meter away 
from the edge of the plate) can been seen in Figure 5-11. The vibrations are also harmonic, 
and the frequency is the same as it was produced by the shaker - 24 Hz.  The signal shows 
that the amplitude of the vibrations velocity 1 m away is about v̂ = 9.3 mm/s. From this the 
displacement amplitude can be calculated: 62/ˆˆ == ωvu  µm.  
 
In the same manner, Figure 5-12 shows that the measured signal of the vibrations velocity 
from the 6th geophone (placed 6 meter away) has the amplitude of the vibrations velocity of v̂
 = 0.30 mm/s, this  gives the displacement amplitude ω/ˆˆ vu=  = 2.0 µm.  
 
The fact, that in the 6th geophone the vibrations were still harmonic and the dominant 
frequency remained the same shows, that the goal to produce and to measure harmonic 
oscillations on site was achieved. Now the measurements can be compared with analytical 
and FEM calculations.  
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Figure 5-11. Vertical vibrations at geophone 1 m away from the shaker. 
 

 
 

Figure 5-12. Vertical vibrations at geophone 6 m away from the shaker. 
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5.5 Measurements vs. Analytical and FEM calculations  

The measured displacement amplitudes of the shaker and on the ground surface are compared 
to the analytical and FEM calculations. The homogeneous half-space assumption with the 
determined elastic material values from P- and S-wave velocity measurements is used for the 
analytical methods. 
 
For the FEM the same model as described in Chapter 3.2 is used. Elasticity properties defined 
from the P- and S-wave velocity measurements are used for the calculations. The shaker is 
defined as a plate element with the axial stiffness EA = 21 GN/m, bending stiffness 
EI = 17.5 MN/m and weight w = 21.94 kN/m/m. The selected weight corresponds to the total 
vibrating mass mtot. Because it is a real soil and real measurements, the material damping 
must be evaluated. A material damping ratio for peat ξ = 1 % is selected. It is weaker than 
showed in Figure 2-3, where damping ratio for fine grained soils ξ = 3 % was presented, and 
corresponds to the damping ratios for peat suggested by Coelho (2010) and Moreno & 
Rodriguez (2004).  
 
The relationship between the Rayleigh damping coefficients α and β (which are used in 
Plaxis to determine a material damping) and the damping ratio is: 
 
 
 

ωξβωα 22 =+ . (5-5)  

 
Solving Equation (5-5) for two target frequencies and two target damping ratios yields: 
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(5-6)  

 
Nevertheless in this simulation (as well as in the experiment on site) there is only one 
frequency ω = ω1 = ω2 and one damping ratio ξ = ξ 1 = ξ 2, therefore Equations (5-6) can be 
simplified and the Rayleigh damping coefficients can be defined by: 
 

 
 

ξωα = , 

ω
ξβ = . (5-7)  

 
In this case, the vibration frequency f = 24 Hz, so the angular frequency ω = 150.8 rad/s, 
which gives α = 1.508 and β = 6.63 · 10-5. 
 
The dimensionless mass ratio, according to Equation (2-37), is b = mvib / (ρ · rpl

3). For this 
shaker test b = 287.4 / (1·103 · 0.23) = 35.9. The modified dimensionless mass ratio, according 
to Equation (2-44), B = (1 – ν) / 4 · b = (1 – 0.464) / 4 · 35.9 = 4.81. 
 
Plate vibration amplitude 
  
The analytical methods for the calculation of oscillating plate vibration amplitudes were 
already discussed in Chapter 2.10. Here, by using those methods, Predicted and Measured 
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amplitude ratios (P/M) are calculated in order to evaluate how good the predictions are made 
using the described methods.  
 
For the Reissner’s solution, approximate compliance functions for Poisson’s ratio ν = 0.5, for 
a rigid circular foundation and for large values of the frequency (a0 > 1.5, which is also the 
case in this experiment), according to Kruijtzer (2006) were used: 
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Table 5-1 shows that Confined Elasticity method highly over-predicted the amplitude of 
vibration (this property of the method was already noticed in Chapter 3.2). However by using 
the other methods, the amplitude of the shaker vibration has been predicted with at least 94 % 
accuracy. It is also worth to mention that all methods over-predicted the vibration amplitude. 
 
Table 5-1. Comparison between the predicted and the measured shaker vibration amplitudes. 
 

Method Amplitude [µm] P/M ratio [-] 

Measured 292 1 

Reissner (Kruijtzer’s f1, f2) 292 1 

Lysmer 309 1.06 

Confined Elasticity 510 1.75 

FEM 302 1.03 

 
Surface vibration amplitudes using only Barkan’s solution 
 
Barkan’s near- and far-field solutions for the surface vibration amplitudes were already 
discussed in Chapter 2.11. Nevertheless the solutions are derived for an elastic half-space, 
without material damping. In this case the material damping must be taken into account. The 
solutions are multiplied to the exponential law, which represents the material damping 
(Bornitz, 1931), described by Equation (2-19), as follows: 
  
 
 

)( 0ˆˆ rrk
B

meuu −−⋅= , (5-10)  

 
where: 
 
 Bû  = Barkan’s solution for the displacement amplitude, [m] 
 km = empirical absorption coefficient, [1/m] 
 r – r0 = distance between two vibrating points. [m] 
 
According to the Equation (5-10), a ratio between two amplitudes at distances r1 and r2 can be 
expressed as [ ])(expˆ/ˆ 1212 rrkuu m −−= , or [ ])(expˆ/ˆ 1221 rrkuu m −= . Now the absorption 

coefficient km can be expressed as follows: 
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where δ  is a logarithmic damping decrement. For small damping ratios, the logarithmic 
damping decrement can be approximately related to the damping ratio with the following 
relationship: 
 
 
 

πξδ 2= . (5-12)  

 
It is already assumed, that the material damping ratio for peat ξ = 1 %. Furthermore by 
assuming, that most of the vibrations on the soil surface are caused by R-waves (this was 
shown in Chapter 4.5), the absorption coefficient km can be expressed from Equations (5-11) 
and (5-12), (taking the distance between two vibration peaks at distances r2 and r1 equal to the 
length of the R-wave λr) as follows: 
 

 
 r

r
m vk /

2
ωξ

π
λξ == . (5-13)  

 
For the vibration frequency f = 24 Hz the empirical absorption coefficient km = 0.09 m-1. The 
P/M ratios between the predicted and the measured surface vibration amplitudes for the 
far-field can be seen in Table 5-2. The measured and predicted vibration amplitudes on the 
surface are shown in Figure 5-13. 
 

Table 5-2. Comparison between the predicted and the measured surface vibration 
amplitudes. 

 
Distance from the 

shaker centre axis [m] 
Predicted / Measured Ratio 

Barkan-Bornitz far-field (ξ = 1 %) FEM (ξ = 1 %) 

1.2 4.2 0.6 

2.2 6.6 0.9 

3.2 8.7 1 

4.2 31.4 4.5 

5.2 36.5 5.5 

6.2 48.9 7.2 

 
The near-field of Barkan-Bornitz method ends before the first measurement point 
(Figure 5-13), therefore only P/M values for the far-field are calculated. The analytical 
approach strongly over-predicts the vertical vibrations, whereas the FEM calculations are 
much better, but still under-predicts for the first 3 meters, and over-predicts further away the 
vibration amplitudes. For both methods the tendency is the same – P/M is for a growing 
distance from the shaker.  
 
Figure 5-13 shows weaker damping than expected just next to the shaker and higher damping 
than expected further away from the shaker. This can be explained as there is less vibration 
caused by the Rayleigh waves closer to the shaker and more vibrations caused by the 
Rayleigh waves further away from the shaker. This implies a different damping per basic 
waves. 



Shaker test 

73 
 

 
 

Figure 5-13. Comparison of different solutions for the surface vibration amplitude. 
 

5.6 Conclusions 

The shaker vibration amplitudes can be predicted rather accurately with two of the three 
(except Confined elasticity) analytical approaches: Reissner’s or Lysmer’s approach and with 
numerical (FEM) calculations. The accuracy depends on the method used for the prediction, 
and ranges from 94 % to 100 % (having in mind the Predicted/Measured ratios of 1.00 to 
1.06). This means that the amplitude of the shaker can be predicted accurately enough for 
geotechnical purposes.  
 
The soil surface vibration amplitudes can be predicted with Barkan-Bornitz’s analytical 
approach and with numerical (FEM) calculations.  The Barkan-Bornitz approach over-
predicted the amplitudes between 4.2 and 48.9 times. The FEM under-predicted the 
amplitudes for the first three meters and over-predicted up to 7.2 times for the last three 
meters. This means that the amplitudes of the surface cannot be predicted accurately. The 
tendency of increasing P/M ratios suggest that material damping ratio of the peat at the test 
site is higher than 1 %. 
 
The weaker damping than expected just next to the shaker and higher damping than expected 
further away from the shaker can be explained by thinking, that there is less vibration caused 
by the Rayleigh waves closer to the shaker and more vibrations caused by the Rayleigh 
waves further away from the shaker. This implies a different material damping per basic 
waves. 
 
This confirms the conclusion made by Hölscher and Waarts (2003), that the reliability of 
man-made vibration prediction methods is disappointingly low.  
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6 DEVELOPED VIBRATION PREDICTION METHOD 

6.1 Introduction 

The previous chapter showed that in order to make a good prediction of the soil surface 
vibration, it is necessary to perform calculations with FEM. The disadvantages of the FEM 
are that it requires a special software package and long time for modelling and calculations. 
Therefore it would be very useful to derive a simple model for engineering purposes, which 
could be used to predict geotechnical vibrations close to the source without a need of a 
special software and long calculations. 
 
Such a method is suggested in this chapter. The method is derived by having results from the 
shaker test. The predictions of the developed method are compared with the measurements 
and calculations of FEM.  

6.2 Derivation of the method 

By analysing Figure 5-13, it can be seen that the near-field zone in the shaker experiment is 
rather short, only 0.73 m. This is very close to the length of R-waves, which can be calculated 
as follows: λr = vr / f = 16.5 / 24 = 0.688 m.  
 
Also from Figure 5-13 it can be seen, that the attenuation rate of the measured amplitudes is 
much higher just in the first meter. From this, it can be concluded that in the near-field zone 
amplitudes attenuate much stronger, and in the far-field zone the attenuation is not so strong 
anymore.  
 
At this point, the findings from Chapter 4.6 can also be recalled, where in Figure 4-13 was 
shown, that a big part of the dynamic displacement of the rigid plate could be explained by 
the elasto-static Boussinesq solution for a rigid plate. 
 
In the experiment on site, the amplitude of the vertically oscillating force can be calculated if 
the eccentric moment Me and  the frequency f are known: F0 = Me · ( 2π·f ) 2 = 0.0832 · 
( 2π·24 )2 = 1.89 kN. If it would be a static load on a rigid plate, according to the elasto-static 
solution of Boussinesq, the vertical displacement could be calculated as follows:  
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2

1 ν . (6-1)  

 
Having Poisson’s ratio ν = 0.464, the vertical force F0 = 1.89 kN, the radius of the plate 
rpl = 0.2 m and the modulus of elasticity E = 886 kPa, the vertical static displacement of the 
rigid plate would be uv,plate = 4185 µm. This is 14.3 times higher, than the dynamic vibration 
amplitude of the plate, measured during the shaker test (292 µm). 
 
The factor 14.3 here comes from the soil-foundation interaction, which is similar to the 
behaviour of a mass-spring-dashpot system. The spring plays a static role and the wave 
propagation determines a dashpot (analogy of conductivity).  
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At this point it is assumed that the attenuation of the vertical dynamic displacement 
amplitudes near the oscillating plate (in the near-field) has the same attenuation as a half-
space surface deformed by a vertically loaded rigid plate under static conditions. 
 
For the static case, soil surface displacements near the rigid plate can be calculated using a 
solution from the theory of elasticity:  
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For the dynamic case, the dynamic vertical amplitude of an oscillating rigid plate should be 
used instead of the vertical static displacement. The dynamic amplitude of the plate can be 
calculated by Lysmer’s method, as discussed in Chapter 2.10. By using this vertical 
displacement amplitudes in the near-field are found as follows: 
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In the far-field, mostly the R-wave dominates. Therefore the attenuation law of the 
amplitudes is known to be proportional to r-0.5. Taking the material damping, according to the 
law, suggested by Bornitz (1931), into account, the far-field amplitudes will be:  
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where  
 
 r ff    = start of the far-field (≈ λr), [m] 
 )(ˆ , ffnfv ru     = vertical amplitude from the near-field estimation. [m] 

 
If Lysmer’s solution is used for the dynamic plate displacement amplitude, Boussinesq’s 
elasto-static solution is used for the amplitudes in the near-field and the R-wave attenuation 
law together with the material damping law, suggested by Bornitz (1931), is used for the far-
field, the vertical vibration amplitudes can be calculated as follows: 
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6.3 Post-diction of the shaker test vibrations 

This approach was used for the post-diction of the measured amplitudes on site. The same 
value of the absorption coefficient km = 0.09 m-1 for the far-field was used as in Chapter 5.5. 
This corresponds to the material damping ratio for peat ξ = 1 %, see Equation (5-13). The 
comparison between the post-diction and the measured vertical vibration amplitudes can be 
seen in Figure 6-1. 

 
 

Figure 6-1. Comparison between post-dicted and the measured vibration amplitudes. 
 
Predicted and measured (P/M) ratios are compared with the Barkan-Bornitz far-field solution 
and FEM calculations in below. It can be seen that with this simple method the amplitudes of 
vibration for the shaker test can be calculated as good as with the FE-analysis. 
 

Table 6-1. Comparison between the predicted and the measured surface vibration 
amplitudes. 

 

Distance from the 
shaker centre axis 

[m] 

Predicted / Measured Ratio 

Barkan-Bornitz far-field  
(ξ = 1 %) 

FEM  
(ξ = 1 %) 

Developed Method 
(ξ = 1 %) 

1.2 4.2 0.6 0.7 

2.2 6.6 0.9 1.0 

3.2 8.7 1 1.3 

4.2 31.4 4.5 4.2 

5.2 36.5 5.5 4.5 

6.2 48.9 7.2 5.5 

 

6.4 Comparison with FEM calculations 

Because this method gives very close results to the measurements, it is decided to investigate 
it further by comparing the vibration amplitudes calculated by using FEM and with this 
developed method, for different frequencies f and different modified mass ratios B.  
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The amplitudes of the rigid plate, calculated by using FEM, were already compared to the 
analytical solutions in Chapter 3.2. The results of the surface vibration from the same FE 
models will be used here to validate the improved prediction method. It should be noted that 
in the FE models, differently than in the post-diction, there was no material damping used, 
therefore in the improved prediction method the Bornitz exponential part will not be used.  
 
Another difference is the size of the near-field. In the post-diction the distance r ff, where the 
near-field ends and the far-field begins, was assumed to be equal to the length of R-waves: 
r ff = λr. However analysing the FE modelling results it was noticed that results have better 
match by using half the distance r ff = 0.5·λr. 
 
The calculations were performed with four different modified mass ratios B = 0.5, 1.0, 2.0 
and 5.0 and ten different frequencies. This gives 40 plots of displacement amplitudes at 
different distances. The vibrations were calculated on nine different surface points (from 1 m 
to 9 m away from the centre of the plate).   
 
Full matrix of the numerical calculations can be seen in Table 6-2. 
 

Table 6-2. Matrix of the numerical calculations with corresponding figure numbers of 
Appendix A, where the plots can be found. 

 
            a0  
     B 

0.179 0.269 0.359 0.449 0.538 0.628 0.718 0.897 1.077 1.346 

0.5 D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9 D-10 
1 D-11 D-12 D-13 D-14 D-15 D-16 D-17 D-18 D-19 D-20 
2 D-21 D-22 D-23 D-24 D-25 D-26 D-27 D-28 D-29 D-30 
5 D-31 D-32 D-33 D-34 D-35 D-36 D-37 D-38 D-39 D-40 

 
P/M ratio can be expressed as error in percentages as follows: 
 
 
 

%1001P/M ⋅−=∆Error . (6-6)  

 
Average and maximum errors were calculated for all forty FEM calculations (as an average 
for 9 surface points) and presented in Table 6-3 and Table 6-4 respectively. 
 

Table 6-3. Matrix of the average errors in percentages. 
 
            a0  
     B 

0.179 0.269 0.359 0.449 0.538 0.628 0.718 0.897 1.077 1.346 

0.5 4.9 5 4.3 5.6 4.7 5.5 5.9 8.3 14.3 8 
1 4.7 5.8 5 6.7 5.2 6.1 6.2 7.5 9.5 4.7 
2 4.8 5.5 6.2 8.3 6.1 5.3 3.7 5.6 6.6 6 
5 5 6.7 10.9 4.9 13.7 9.8 9.2 5.3 4.7 5.5 

 
The biggest average error for 9 calculation points on the surface is 24.1 %, where 
dimensionless frequency a0 = 1.077 and modified mass ratio B = 0.5. 
 
In Figure 6-2 and Figure 6-3, plots for mass ratios B = 0.5, B = 5 and dimensionless 
frequency ratios a0 = 1.08, a0 = 0.449 can be seen. All 40 plots can be found in Appendix A.  
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Table 6-4. Matrix of the maximum errors in percentages. 
 
            a0  
     B 

0.179 0.269 0.359 0.449 0.538 0.628 0.718 0.897 1.077 1.346 

0.5 10.6 10 9.7 12.8 9.6 11 13 19.9 24.1 22.3 
1 10 10.5 10.9 13.6 10.8 14.4 14.6 18.7 20.3 11.9 
2 11.5 9.6 13.9 15.3 11.9 10.8 7.7 12.6 24.1 12.7 
5 10.7 13.3 19.1 9.8 22 19.1 15.9 13.2 14.4 14.4 

 
 

 
 

Figure 6-2. Comparison between vibration amplitudes calculated by using FEM and by 
improved prediction method for B = 0.5 a0 = 1.08. 

 

 
 

Figure 6-3. Comparison between vibration amplitudes calculated by FEM and by improved 
prediction method for B = 5 a0 = 0.449. 
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6.5 Conclusions 

For engineering purposes, an improved analytical method is developed to estimate the 
vibration amplitudes next to a harmonically oscillating rigid circular plate on an elastic half-
space.  
 
This solution consists of three parts: 1) the analytical Lysmer method for the plate 
displacement amplitude 2) the shape of the vertical surface displacements of the elasto-static 
Boussinesq solution in the near-field and 3) the R-wave attenuation law r-0.5 with the 
exponential material damping law (exp[-km(r-r ff)]) in the far-field. It can be assumed, that the 
near-field ends at a distance, which is equal to about a half to one length of the R-wave.  
 
It was found, that this approach gives good predictions, when it is compared to the field 
measurements and FEM calculations. 
 
However, the problem of the weaker damping than expected just next to the shaker and 
higher damping than expected further away from the shaker did not disappear, because this 
method cannot reflect a different material damping per basic waves. 
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7 FRICTIONAL DAMPING MODEL 

7.1 Introduction 

The measurements from the shaker tests indicated different damping just next to the plate and 
further away from the plate. The hypothesis was made, that this can be due to different 
damping per basic waves. In order to reflect this phenomenon, the frictional damping method, 
first suggested by Van Baars (2011), was decided to use. For that, the suggested 1D method 
had to be extended to 3D and incorporated into FEM calculation scheme. 

7.2 1D state 

The original frictional damping model was briefly described in Chapter 2.3. However more 
detailed explanations will be presented hereafter.  

 

 
 

Figure 7-1. 1D frictional damping law. 
 

The frictional damping law, in a τ' – γ' coordinate system, is defined as follows: 
 
 
 ( )X

modG '' γτ = , (7-1)  

 
where τ' is the shear stress, since the start, or the last change of direction, Gmod is the modified 
shear modulus, γ' is the shear strain amplitude since the start, or the last change of direction 
and X is the dimensionless damping parameter. The latter is related to the damping ratio ξ or 
to the energy ratio ζ, which can be measured directly by using various types of laboratory 
tests (cyclic simple shear test, cyclic torsional simple shear test, cyclic triaxial test or resonant 
column test): 
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For the damping ratio ξ = 0, the dimensionless damping parameter X = 1, so the shear stress 
can be calculated as τ' = Gmod·γ'. And in this case Gmod = Gsec. However if ξ > 0, then the 
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modified shear modulus Gmod depends on the shear strain amplitude (see b) in Figure 7-1), so 
Gmod ≠ Gsec. As it is showed in Chapter 2.3, the modified shear modulus Gmod can be related 
to Gsec as follows: 
 

 
 ( )X

mod

G

G

γ
γ
ˆ2

ˆ2

sec

= . (7-3)  

 
The relationship between Gmod and Gsec for different damping ratios and different shear strain 
ranges can be seen in Figure 7-2. 

 

 
 

Figure 7-2. The relationship between the modified and maximum shear moduli. 
 

In order to form a constitutive model, the stresses and strains have to be defined in the τ - γ 
coordinate system, rather than in the τ' – γ'. From Figure 7-1, it can be seen, that for multiple 
constant cycles, γγ ˆ2'ˆ =  and ττ ˆ2'ˆ = . Therefore, the virgin damping line in the τ - γ 
coordinate system, can be expressed as follows: 
 

 
 

( )
2

2 X
mod

vir

G γτ = , (7-4)  

 
where: 
 
 τvir = virgin shear stress of the soil, [N/m2] 
 Gmod = modified shear modulus of the soil, [N/m2] 
 γ = shear strain of the soil, [-] 
 X = dimensionless damping parameter. [-] 
 
Here it should be noted, that for the virgin line γγ =ˆ .  
 
In order to calculate the outer line (see b) in Figure 7-1) in the τ – γ coordinate system, the 



Frictional damping model 

83 
 

direction of the shear-strain path must be known as well as the peaks of the last direction 
change. Then the shear stresses of the outer line are calculated as follows: 
 
 
 

X

minmodminupout G γγττ −+=, , (7-5) 

 
 

X

maxmodmaxdownout G γγττ −−=, , (7-6) 

 
where: 
 
 τout,up = shear stresses of the rising outer line, [N/m2] 
 τout,down = shear stresses of the descending outer line, [N/m2] 
 τmin, τmax = stored minimum and maximum shear stresses, [N/m2] 
 γmin, γmax = stored minimum and maximum shear strains. [-] 
 
The outer lines draw an ellipse shaped figure in τ – γ coordinates, which represents the 
dissipated energy per volume, per cycle. By using this law, the dissipated shear strain energy 
ratio ζ and the damping ratio ξ are independent from the shear strain amplitude. 

7.3 3D state 

Before being able to extend this 1D frictional damping model to a 3D model, it should be 
rewritten. In 1D there is only a pure shear stress and strain. In general, shear strains change 
only the shape, but not the volume.  
 
The linear stress-strain relationship, or Hook’s law, for 3D however, is expressed by the 
modulus of elasticity E and the Poisson’s ratio ν, as follows: 
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Where σii and εii are normal stresses and strains respectively, σij and γij are shear stresses and 
strains respectively, in which i,j = x,y or z and  i ≠ j. The sign convention for stresses and 
strains, according to Plaxis Material Models Manual (Plaxis bv, 2015), is presented in 
Figure 7-3.  
 
This can be written in a matrix form: 
 
 { } [ ]{ }εσ D= , (7-8)  

 
where: 
 
 { σ} = stress vector, [N/m2] 
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 [D] = elasticity matrix, [N/m2] 
 { ε} = strain vector. [-] 

 

 
 

Figure 7-3. The sign convention for the three dimensional stresses and strains. 
 

In a 3D case, there are three pure shear strains and three corresponding pure shear stresses. 
However they are not the only ones, responsible for the change of the shape. This can be 
illustrated by decomposing Hook’s law into two parts: the deviatoric part, controlled by the 
shear modulus G, and the volumetric part, controlled by the bulk modulus K: 
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 (7-9)  

 
This can be written in a matrix form: 
 
 
 

{ } [ ]{ } [ ]{ }εεσ KG DD += , (7-10)  

 
where: 
 
 [DG] = elasticity matrix of the shape change, [N/m2] 
 [DK] = elasticity matrix of the volume change. [N/m2] 
 
From the equations above it can be seen, that for the change of the volume, which is 
controlled by K, the three normal stresses or strains are responsible. However, for the change 
of the shape, which is controlled by G, all six strains or stresses are responsible.  
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The deviatoric strains, which are responsible for the change of the shape, may be expressed 
as follows: 
 

 
 

,

,
3

1

ijij

voliiii

e

e

γ

εε

=

−=
 (7-11)  

 
in which εvol = εxx + εyy + εzz is the volumetric strain, i,j = x,y or z and  i ≠ j.  
 
The corresponding deviatoric stresses may be calculated by: 
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 (7-12)  

 

where ( )zzyyxx σσσσ ++=
3
1

0  is the isotropic stress, i,j = x,y or z and  i ≠ j.  

 
The frictional damping law for a 3D case can be applied by using Equation (7-1) in τ' - e' 
coordinates:  
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 (7-13)  

 
where  
 
 τ'ii = normal deviatoric stress in τ' - e' coordinates, [N/m2] 
 τ'ij = tangential deviatoric stress in τ' - e' coordinates. [N/m2] 
 e'ii = normal deviatoric strain in τ' - e' coordinates, [-] 
 e'ij = tangential deviatoric strain in τ' - e' coordinates. [-] 
 
With this, the Cartesian stresses can be calculated: 
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 (7-14)  

 

7.4 Damped energy in a 3D state 

The damped energy in a three dimensional case cannot be so easily demonstrated graphically 
as it was done for the one dimensional case in Figure 7-1.  
 
The full potential strain energy per volume can be mathematically expressed as follows: 
 
 
 

( )zxzxyzyzxyxyzzzzyyyyxxxxpE γσγσγσεσεσεσ +++++= 5.0 . (7-15)  
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The full potential strain energy per volume is the sum of the potential strain energy which 
changed the volume EpV (related to K) and the potential strain energy which changed the 
shape EpS (related to G). 
 
Therefore Equation (7-15) may be rewritten:  
 
 pSpVp EEE += . (7-16)  

 
The potential strain energy per volume, responsible for the change of the volume, is 
expressed as:  
 
 
 05.0 σε volpVE = . (7-17)  

 
The potential strain energy per volume, responsible for the change of the shape:  
 
 
 

( )zxzxyzyzxyxyzzzzyyyyxxxxpS eeeeeeE ττττττ +++++= 5.0 . (7-18)  

 
The potential strain energy, responsible for the change of the volume, may be called the 
volumetric potential strain energy. In the same way, the potential strain energy, responsible 
for the change of the shape, may be called the deviatoric potential strain energy. 
 
Due to the frictional damping, a part of the deviatoric potential strain energy is dissipated. 
The ratio of the dissipated deviatoric strain energy to the deviatoric potential strain energy 
can be called the dissipated deviatoric strain energy ratio ζ = ∆ES / EpS. With this the frictional 
damping ratio ξ can be expressed as: 
 

 
 pS
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E

E∆==
π

ζ
π

ξ
4

1

4

1
. (7-19)  

 
Here it should be noted, that in the frictional damping model, the frictional damping ratio is 
not related to the full potential strain energy but only to its deviatoric part. 

7.5 User defined soil material model 

This frictional damping law is implemented into the FEM software of Plaxis 2D, as a user 
defined soil model (UDSM).  
 
During the first iteration of a loading step, Plaxis provides strains which are calculated 
assuming linear elasticity. Then, using these provided strains, the stresses are determined 
according to the user provided constitutive model. The external forces are known and the 
internal are calculated from the constitutive stresses. As a next step, the unbalance between 
these internal and external forces is checked. If the error is bigger than tolerated, a new 
(Newton-Raphson) iteration process is started. The (Newton-Raphson) iteration processes is 
repeated for a loading step, until the tolerance of the unbalance error is reached (usually 
0.01). This calculation process is schematically showed in Table 7-1. 
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Table 7-1. FEM calculation process in Plaxis (Plaxis bv, 2015). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Form stiffness matrix:  ∫= dVBDBK eT ]][[][][  

 
 New step 1+→ ii  
 
 Form new load vector { } { } { }exiexiex fff ∆+= − 1  

 

 Form reaction vector { } { } dVBf
icTin

∫
−= 1

][ σ  

 
 Calculate unbalance { } { } { }iniex fff −=∆  

 
 Reset displacement increment { } 0=∆d  

 
  New iteration 1+→ jj  

 
  Solve displacements { } [ ] { }fKd ∆= −1δ  

 
  Update displacement increments { } { } { }ddd jj δ+∆=∆ −1  

 
  Calculate strain increments { } [ ]{ }dB ∆=∆ε  

 
   { } [ ]{ }dB δδε =  

 
  Calculate stresses:  Elastic { } { } [ ]{ }εσσ ∆+= − eicel D

1  

 
   Equilibrium { } { } [ ]{ }δεσσ ejiceq D+= − 1,  

 
   Constitutive { } jic ,σ defined according to UDSM 

 

  Form reaction vector { } { } dVBf
jicTin

∫= ,
][ σ   

 
  Calculate unbalance { } { } { }iniex fff −=∆   

 

  Calculate error  { }
{ }iexf

f
e

∆=   

 
  Accuracy check  if →> toleratedee new iteration 

 
 Update displacements  { } { } { }ddd ii ∆+= −1   

 
 Write output data (results) 
 
 If not finished → new step 
 
Finish 
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The UDSM consists of the following steps:  
 

1) calculation of the deviatoric strains according (Table 7-2);  
2) checking the stress-strain path direction (Table 7-3);  
3) checking the stress-strain amplitudes (Table 7-4);  
4) calculation of the deviatoric stresses (Table 7-5);  
5) calculation of the Cartesian stresses (Table 7-6). 

 
Step 4 separates two parts of deformation: the bulk part and the deviatoric part. Because of 
this, the model becomes in depended from axes of coordinates. 
 
In the first step, the deviatoric strains are calculated from the linear step. In this step also the 
volumetric deformation is defined.  
 

Table 7-2. Step 1: deviatoric strains. 
 

 
 
 
 
 
 
 
 
 
 
In the second step, the stress-strain paths directions are indicated. It is checked whether a 
stress-strain path goes up or down.  
 

Table 7-3. Step 2: stress-strain path direction. 
 
 
 
 
 
 
 
 

 
 
When the stress-strain path direction is indicated, it has to be checked whether the direction 
has changed from the previous step or not.  
 
If the direction has changed, the starting points for the calculation of the deviatoric stresses 
(amplitudes of the stress and strain) have to be changed to the previous stress-strain points. 
This is performed in the 3rd step. Once the starting points are defined, the deviatoric stresses 
can be calculated in the 4th step by using the frictional damping law.  The stress-strain paths 
can follow either a virgin loading line, or a load history line. 
 
 

{ } { } { }εεε
ii

∆+= 1     //Cartesian strains for the ith step 
iii

vol εεεε 321 ++=      //Volumetric strain 

 
for k = 1 to 3 do  

vol
i
k

i
ke εε

3

1−=    //Deviatoric strains for normal part 

i
k

i
ke 33 ++ = ε     //Deviatoric strains for the shear part 

for k = 1 to 6 do 
if 1−> i

k
i
k ee      //The stress-strain goes up 

then 1→i
kdir    

else if 1−< i
k

i
k ee     //The stress-strain goes down 

then 1−→i
kdir   

else 0→i
kdir     //The stress-strain point does not move 
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Table 7-4. Step 3: the amplitudes of the stresses and strains. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 7-5. Step 4: calculation of the deviatoric stresses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for k = 1 to 6 
if 0=i

kdir then 
1−= i

k
i

k dirdir    //Removing the stopovers 

else if 1−< i
k

i
k dirdir  then   //After going up – goes down 

1, −= i
k

imax
k ττ    //Maximum deviatoric stress was the previous 

max,i
k

imin
k ττ −=,    //Minimum deviatoric stress 

 1, −= i
k

imax
k ee    //Maximum deviatoric strain was the previous 

imax
k

imin
k ee ,, −=    //Minimum deviatoric strain 

 
else if 1, −> imax

k
i

k dirdir  then  //After going down – goes up 
1, −= i

k
imin

k ττ    //Minimum deviatoric stress was the previous 
imin

k
max,i
k

,ττ −=    //Maximum deviatoric stress 
1, −= i

k
imin

k ee    //Minimum deviatoric strain was the previous 
imin

k
imax

k ee ,, −=    //Maximum deviatoric stress 

 

 
for k = 1 to 6 do      

  
  if 1=i

kdir  and imax
k

i
k ee ,>  then  //Going up on the virgin loading line 

   if 0≥i
ke  then   //Going up in the positive side 

( )
2

2 Xi
kmodi

k

eG=τ   

else     //Going up in the negative side 
( )
2

2 Xi
kmodi

k

eG −−=τ   

  else if 1−=i
kdir  and imin

k
i
k ee ,<  then //Going down on the virgin line 

   if 0≥i
ke  then   //Going down in the positive side 

    ( )
2

2 Xi
kmodi

k

eG=τ   

else    //Going down in the negative side 
( )
2

2 Xi
kmodi

k

eG −−=τ   

  elseif 1=i
kdir  then   //Going up on the history line 

Ximin
k

i
kmod

imin
k

i
k eeG ,, −+= ττ  

elseif 1−=i
kdir  then    //Going down on the history line 

Ximax
k

i
kmod

imax
k

i
k eeG ,, −+= ττ  

else     //Standing 
ihist

k
i
k

,ττ =  
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Finally, the deviator stresses are known and the Cartesian stresses can be easily defined and 
provided to the Plaxis outer iteration loop. 
 

Table 7-6. Step 5: calculation of the Cartesian stresses. 
 
 
 
 
 
 
In this way, the UDSM calculates and provides stresses and strains according to the frictional 
damping law. Therefore, the displacements, compared to the linear elastic stress state, 
change. The change will be caused only by the reduction of the deviatoric strains, while the 
volumetric strains will be kept equal to the linear elastic stress state. A code in Pascal for the 
frictional damping UDSM can be found Appendix A. This code can be compiled into a dll 
file, which later can be used as a user defined model in Plaxis. 

7.6 Verification tests 

In order to verify if the UDSM behaves according to the analytical frictional damping law, 
two verification tests are performed:   
 

1) a cyclic simple shear test, and  
2) a cyclic triaxial test.   

 
The cyclic simple shear test is modelled in plain strain conditions, and the cyclic triaxial test 
– in axisymmetric conditions. The following soil properties for the verification tests are 
chosen: the modified shear modulus Gmod = 100 kN/m2 and the bulk modulus 
K = 166.67 kN/m2. Two different damping ratios are used: ξ = 5 % and 10 %. Such high 
damping ratios are selected in order to have wider loops in the plots. The verification tests are 
performed with the quasi-static loading.  
 
Cyclic simple shear test 
 
The simple shear test scheme, for a quarter of a cycle, is presented in Figure 7-4. 

 

 
 

Figure 7-4. Scheme of the simple shear test in the FE model. 

for k = 1 to 3 

vol
i
k

i
k K ετσ += 2     //Normal stresses 

i
k

i
k 33 ++ = τσ     //Tangential stresses 
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The horizontal displacements on top of the sample are controlled, which in this particular 
case causes only pure shear deformations and no volumetric change. One cycle with the 
horizontal displacement ux of 1 m was initiated by equal steps ∆ux of 0.10 m.  The shear strain 
amplitude was 1 (or 100 %). The results of the FEM calculations are the same as the 
analytical solution. The comparison can be seen in Figure 7-5 a). 
 

 
 

Figure 7-5. Cyclic shear test: analytical solution vs. UDSM results. 
 

The same approach is used to simulate the calculation with double amplitude of a horizontal 
displacement ux (2 m) in the second cycle. The shear strain amplitude, in the second cycle, is 
2 (or 200 %). In order to have a better view, the results are shown only for the damping ratio 
ξ of 10 % in Figure 7-5 b). 
 
It can be seen, that in the second cycle, the stress-strain curve first of all follows the virgin 
line until it reaches the peak and later it follows a new stress history line. Both cycles 
represent the same damping ratio ξ = 10 %, but have different shear stress and shear strain 
amplitudes.  
 
Cyclic triaxial test 
 
The triaxial test of a soil sample of 10 m in length and 5 m in diameter is modelled in FEM 
software as an axisymmetric problem. In the cyclic triaxial test a deformed state is created 
such, that there is a distortional deformation is caused by normal stresses only whereas the 
shear stresses are zero. This is reached by using prescribed displacements on top and on the 
right edge of the sample.   
 
Because it is an axisymmetric problem, the horizontal displacements in the middle are zero. 
Also the vertical displacements at the bottom boundary are zero. These make the horizontal 
displacements on top of the sample and the vertical displacements along the side of the 
sample to be linear functions. On the contrary, the vertical displacements on top of the 
sample and the horizontal displacements along the side of the sample are constant. The 
prescribed displacements schematically are illustrated in Figure 7-6 b). The subsequent 
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deformed scheme, together with a script of calculations for stresses and strains, is presented 
in Figure 7-6 c). 
 

 
 

Figure 7-6. Scheme of the triaxial test in the FE model. 
 

Figure 7-7 shows the stress-strain history for the horizontal (left side of the figure) and 
vertical (right side of the figure) directions, which are also the principal directions in this 
case, for a damping ratio ξ of 5 %. The calculations are performed for two cycles, where in 
the second cycle the strain amplitude was doubled. 

 

 
 

Figure 7-7. Cyclic triaxial test: two cycles, ξ = 5 %; analytical solution vs. UDSM results. 
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Accordingly, for two cycles and for a damping ratio ξ of 10 %, are presented in Figure 7-8. It 
can be seen, that the match between the analytical and FEM user defined soil material model 
calculations is good.   
 

 
 

Figure 7-8. Cyclic triaxial test: two cycles, ξ = 10 %; analytical solution vs. UDSM results. 
 
The damping ratio can be checked directly, by measuring the area of the ellipses, which 
represent the dissipated shear energy per cycle ∆ES and by checking the maximum potential 
shear strain energy per volume EpS. Having these two quantities, the damping ratio can be 
calculated by using Equation (7-19). This is done for the material with the damping ratio ξ of 
10 %, for the smaller loading cycle.  
 
In order to measure the total dissipated energy per cycle ∆ES, the ellipses should be used in 
the deviatoric coordinates τ – e. This is can be seen in Figure 7-9. 
 

 
 

Figure 7-9. Dissipation of the shear strain energy: one cycle, ξ = 10 %. 
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In a triaxial test, stresses and strains in x and z directions are equal, so the dissipated energy in 
x direction and z directions is also equal: ∆ES,xx = ∆ES,zz. The dissipated shear strain energy 
per cycle ∆ES = Σ(∆ES,xx + ∆ES,yy + ∆ES,zz + ∆ES,xy + ∆ES,yz + ∆ES,zx). Using the areas of the 
ellipses in Figure 7-9 it can be calculated, that ∆ES = (2.53 + 10.12 + 2.53 + 0 + 0 + 0) = 
15.2 kPa. 
 
In the same manner, the potential deviatoric strain energy per volume can be calculated 
according to Equation (7-18): EpS = 0.5(τxxexx + τxxexx + τzzezz + τxyγxy + τyzγyz + τzxγxz), which is 
in this case EpS = 0.5(32.3·0.125 + 64.5·0.250 + 32.3·0.125  + 0 + 0 + 0) = 12.1 kPa. 
 
Finally, the damping ratio is checked according to Equation (7-19): ξ = ∆ES / (4πEpS), which 
gives the damping ratio of 0.10 or 10 %. This matches the input damping ratio and also 
confirms that the UDSM works well. 

7.7 Validation tests 

Just like any other constitutive model, the frictional damping model has to be validated. The 
validation is used to check how good a constitutive model can represent the reality (real 
tests). The real tests, shaker tests, were already described in Chapter 1. Here the frictional 
damping model will be used to simulate the shaker tests. 
 
Soil and FE-model properties 
 
The dynamic soil properties, for the shaker test, were defined in Chapter 5.3 from the P- and 
S-wave velocities and the earlier geological investigations. The measured small strain shear 
modulus G0 = 303 kN/m2 is assigned to be equal to the shear secant modulus Gsec =  G0. 
Other defined parameters are as follows: Poisson’s ratio ν = 0.464, Young’s modulus 
E = 886 kN/m2 and the natural density of the soil is 1000≈ρ  kg/m3.  
 

 
 

Figure 7-10. FEM geometry and mesh. 
 

From modelling with elastic parameters it was measured, that average shear strain amplitude 
(in the domain of interest) is in the range of 10-4. The frictional damping ratio ξ = 1 % will be 
used (however this is different from the Rayleigh damping ratio ξ = 1 %, because here only 
the deviatoric part is damped). This results in the following three parameters for the frictional 
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damping model: 1) the dimensionless damping coefficient, according to Equation (7-2), 
X = 0.969, 2) the modified shear modulus, according to Equation (7-3), Gmod = 232.8 kN/m2 
and 3) the bulk modulus, obtained from the compressional and shear wave velocities, 
K = 4102 kN/m2. An axisymmetric mesh with length and depth of 30 m is used as it is shown 
in Figure 7-10. 15-node elements used to model the soil.  
 
Vibration amplitudes vs. distance 
 
In Chapter 5.5 the vibration amplitudes of the shaker tests were already measured and 
presented in Figure 5-13. The tests results were presented together with the FE model, where 
a Rayleigh damping ratio ξ of 1 % was used. This figure is updated with the results obtained 
by using the frictional damping model, see now Figure 7-11 which shows that both damping 
methods: the Rayleigh damping and the frictional damping model, demonstrate close results. 
However they still do not agree well with the measurements. 
 

 
 

 Figure 7-11. Measured vertical vibration amplitudes vs. calculated by FEM. 
 
The calculated vertical vibration amplitudes have quite good match with the measured ones. 
However, the difference between the frictional damping method and the commonly used 
Rayleigh damping method is very small. This means that, the frictional damping model 
works as good as the Rayleigh damping method for the harmonic oscillations. But it also 
means that to use a more conventional method of damping, Rayleigh damping, is enough for 
harmonic oscillations. This conclusion is not a surprise, because the damping ratio in the 
Rayleigh damping method can, for harmonic oscillations, be selected precisely for the applied 
frequency, because in harmonic oscillations there is only one frequency. 
 
Checking the horizontal vibration amplitudes, see Figure 7-12, it can be seen, that in the first 
three meters the measured horizontal amplitudes are much bigger than the calculated. The 
differences, between the measured and calculated horizontal vibration amplitudes, might be 
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caused by the reflected waves from a deeper soil layer. This additional energy reflecting from 
the deeper layer is causing higher horizontal vibrations (also slightly changing the vertical 
vibrations in the first meter, see Figure 7-11, but the vertical vibrations are, in general, higher 
so the influence of the reflection is smaller). Also here the assumption should be recalled, 
which had been made in Chapter 5.3, that the site is homogeneous even though it was known 
a priori, from the earlier geological investigations, that it is not fully homogeneous. Other 
aspects than layering were also discussed in Chapter 2, like anisotropy, saturation, air-
content, etc. From these, the degree of saturation could have caused a second P-wave to 
appear. The second P-wave could not be captured by FEM, because it is a product of 
multiphase behaviour. 

 

 
 

Figure 7-12. Measured horizontal vibration amplitudes vs. calculated by FEM. 
 
The values of the vibration amplitudes of FEM calculations and measurements can be better 
seen in the following tables. 
 

Table 7-7. Vertical vibration amplitudes: FEM vs. measurements. 
 
Distance Vertical vibration amplitudes [µm] 

[m] No damping Rayleigh damping ξ = 1 % Frictional damping ξ = 1 % Measured 
0 305.3 302.7 301.9 292 

0.2 305.3 302.7 301.9 292 
1.2 43.71 35.04 38.07 61.01 
2.2 29.13 22.55 21.81 27.32 
3.2 25.73 20.32 18.21 16.84 
4.2 25.50 16.98 15.01 4.05 
5.2 24.72 15.11 13.61 3.12 
6.2 24.29 14.30 12.50 2.12 

 
As it can be seen from Figure 7-13, the calculations with damping tend to follow the linear 
elastic solution (without damping) and similarly underestimate the vibrations closer to the 
source, and overestimate further away from the source (with respect to the measurements). 
 
From the validation results, it can be concluded that the frictional damping model can predict 
the geotechnical vibrations caused by harmonic oscillations with at least the accuracy of 
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Rayleigh damping. And as it was stated earlier, it is because for the harmonic oscillations 
(only one frequency) – correct Rayleigh damping coefficients can be selected.  
 

Table 7-8. Horizontal vibration amplitudes: FEM vs. measurements. 
 
Distance Horizontal vibration amplitudes [µm] 

[m] No damping Rayleigh damping ξ = 1 % Frictional damping ξ = 1 % Measured 
0 0 0 0 0 

0.2 0 0 0 0 
1.2 24.39 21.74 16.80 55.70 
2.2 24.48 19.33 16.75 46.42 
3.2 19.56 14.16 13.6 31.83 
4.2 14.99 10.50 9.81 5.17 
5.2 10.65 7.13 6.51 6.30 
6.2 7.57 4.42 4.37 3.58 

 
However, for an impact pulse, the differences between the two damping methods should be 
more visible. The advantage of the frictional damping may be apparent, because the frictional 
damping damps all the frequencies equally. 
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Vertical vs. Horizontal velocity amplitudes 
 

 
 

Figure 7-13. Velocity trajectories. 
 
 



Frictional damping model 

99 
 

7.8 Pulse load – Rayleigh damping versus frictional damping 

In order to check the differences between Rayleigh damping and the frictional damping 
methods for pulse loading, a numerical simulation of a pulse signal was performed. 
 
Soil and FE model properties 
 
The Rayleigh damping (available in Plaxis), is unfortunately frequency dependent and also 
damps deformations of all wave types, instead of only the deviatoric part. Because of this, 
this, Rayleigh damping will be compared to the frictional damping model, which does not 
have these problems. For this a pulse load on a circular area on the soil surface is modelled 
numerically. The pulse load of 2 kN is modelled as a maximum vertical stress of 63.66 kN/m2 
over the area on the soil surface with a diameter of 0.1 m. The vertical stress is introduced in 
a time period from 0 to 0.005 s, with its peak at 0.0025 s (Figure 7-14). 
 

 
 

Figure 7-14. Input pulse load. 
 
An axisymmetric mesh with a length and depth of 50 m is used. The geometry and mesh is 
presented Figure 7-15. 
 

 
 

Figure 7-15. Geometry and mesh of a pulse load FE model. 
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The dynamic problem is calculated first without damping, second with Rayleigh damping and 
third with frictional damping. A damping ratio will be used of ξ = 3 %. The compressional 
wave velocity of the soil medium vp = 200 m/s, the shear wave velocity vs = 60 m/s and the 
density ρ = 1.5 t/m3. From this follows the small strain stiffness shear modulus 
G0 = ρ·vs

2 = 5400 kN/m2 and the Poisson’s ratio ν of 0.451. Here the secant shear modulus 
Gsec is set to be equal to the small strain stiffness shear modulus G0. 
 
In this case, for the Rayleigh damping, the target damping ratios are equal ξ1 = ξ2 = 3 %. 
Unfortunately, there is no other way than selecting two different target frequencies. From the 
undamped calculations it was measured, that most of the pulse energy travels in the 
frequency range between fI = 5 Hz and fII = 25 Hz, then the angular frequencies: ω1 = 2πfI = 
31.42 rad/s and ω2 = 2πfII = 157.08 rad/s. So the damping coefficients according to Equation 
(5-6) are respectively αR = 1.571 and βR = 3.183·10-4.  
 
For the frictional damping model, the average shear strain amplitude is in the range of 10-5. 
The frictional damping ratio ξ = 3 %, results in the following three parameters for the 
frictional damping model: 1) the dimensionless damping coefficient, according to 
Equation (7-2) X = 0.910, 2) the modified shear modulus, according to Equation (7-3), 
Gmod = 2039 kN/m2 and 3) the bulk modulus, obtained from the compressional and shear 
wave velocities, K = 52 800 kN/m2. 
 
Results 
 
Figure 7-16 shows the peak displacements versus distance from the centre. The left side of 
the figure shows the horizontal peak displacements and the right side shows the vertical peak 
displacements. 
 

 
 

Figure 7-16. Peak displacement at different distances. 
 

From Figure 7-16 follows that by applying frictional damping, the peak displacements 
(horizontal and vertical) are higher than by applying Rayleigh damping, especially closer to 
the source. This can be explained by the fact, that near the source, there are only 
compressional and shear waves and the Rayleigh wave is not yet developed. The 
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compressional waves change mostly the volume and hardly the shape. On the contrary, the 
shear waves change only the shape. The frictional damping damps only the changes of the 
shape, so only the shear waves and a small part of the compressional waves. In contrary the 
Rayleigh damping damps all waves equally, so also the displacements of the compressional 
waves.  
 
Further away from the source, the Rayleigh wave is emerging and starts to dominate. It 
causes more changes of the shape rather than the volume; therefore the differences between 
the peak displacements, obtained by the two different damping models, are getting smaller. 
 

 
 

Figure 7-17. Vertical vibration records at 5 m and 10 m distances. 
 
In Figure 7-17, the vertical vibration records can be seen for two different distances from the 
centre of the source: at 5 m and at 10 m. The red colour lines show the results obtained with 
the frictional damping, and the green lines – with Rayleigh damping. 
 
The arrival times of the peak displacements are very close, but not exactly the same. 
Comparing the time differences ∆t between the red and the green peaks, it can be seen, that 
the signal travels faster with the frictional damping model. This is because the modified shear 
modulus Gmod is selected for average shear strain amplitudes of 10-5, whereas the shear strain 
amplitudes become smaller for larger distances. The shear strain amplitudes decrease because 
of both the radiation damping and the material damping. This result in a stiffer behaviour of 
the deviatoric term, therefore the pulse travels faster. 

7.9 Conclusions 

A 3D frictional damping model has been developed and incorporated into the FEM software 
Plaxis as a user defined soil model. The verification cyclic simple shear and cyclic triaxial 
tests showed good agreement with analytical solutions. This confirms that the 3D frictional 
damping law was correctly incorporated into the FEM code as UDSM.   
 
The validation tests proved, that the frictional damping model can predict the geotechnical 
vibrations caused by harmonic oscillations with at least the accuracy of Rayleigh damping. 
Even though the measured vibration amplitudes were not exactly the same as the numerically 
predicted, the numerical predictions are more accurate than analytical ones by using the 
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analytical method of Barkan-Bornitz. On the other hand, the results obtained with the 
frictional damping model and Rayleigh damping are very close. This means that the frictional 
damping model did not solve the problem of the different amount of damping just next to the 
plate and further away from the plate. 
 
Despite this, the advantage of the frictional damping model becomes clear in the case of a 
pulse load, in which a lot of different frequencies are generated. The frictional damping 
model demonstrates a different physical behaviour of the soil, in comparison to the Rayleigh 
damping, because it is able to damp only deviatoric strains and its damping remains constant 
for all frequencies. Closer to the source, the peak displacements are bigger, due to the fact 
that only the deviatoric part of the strains is damped. This means all basic waves 
(compressional, shear, Rayleigh) are damped differently. Further away from the source, the 
peak displacements are almost the same, regardless which model is used.  However, the 
arrival times obtained by the frictional damping model are shorter in comparison to the 
Rayleigh damping. This is due to increasing stiffness in the far-field.  
 
In the frictional damping model, the energy dissipation is a result of the non-linearity of the 
soil. Because of this non-linear behaviour, the stiffness matrix is a function of the strains and 
solved by an iterative Newton-Raphson procedure. During calculations, the stiffness matrix is 
updated during each incremental load step. This process costs much calculation time. In the 
Rayleigh damping model however, the same stiffness matrix is used during the calculation, 
therefore it is considerably faster. 
 
The shaker test showed that for problems with harmonic oscillations, with only one 
frequency, Rayleigh damping can be used, instead of the frictional damping, and almost the 
same results can be obtained.  And at the same time a considerable amount of calculation 
time can be saved. 
 
Also, the frictional damping model is very sensitive to the damping ratio. This follows from 
the fact that a power law is used. The FEM code has difficulties to converge for very high 
damping ratios (ξ > 5 %). But on the other hand, this model is intended for man-made 
vibrations, where the damping is constant and small (ξ < 3 %). 
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8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

There are a few analytical methods to calculate the vibration amplitudes and phase shifts of 
an oscillating plate on an elastic, homogeneous and isotropic half-space. The comparison of 
the analytical solutions with the FEM showed that for the vertical vibration amplitude of an 
oscillating rigid plate, Lysmer’s analytical solution demonstrates similar results as the FEM 
calculations. The confined elasticity solution as well as the Reissner’s solution (with Sung’s 
displacement functions) could be used for very low dimensionless frequencies only.  
 
For the amplitudes of the soil surface there is only one analytical method, Barkan’s method, 
to calculate the amplitudes and phase shifts. The comparison of Barkan’s solution, which is 
unfortunately for weightless plates only, and FEM showed similar results only for the near-
field zone, whereas the far-field zone gave similar results for the FEM calculations only for 
low dimensionless frequencies (a0 < 0.3). However, the far-field solution could be still used  
for higher dimensionless frequencies if it is adjusted by removing a jump between the near- 
and far-fields. 
 
The disagreements between some analytical solutions and FEM results, encouraged to 
investigate the problem of an oscillating circular rigid plate more carefully, by inspecting the 
wave-field itself. For a better understanding it was needed to decompose the wave signal into 
three basic waves (P-wave, S-wave and R-wave). 
 
A wave decomposition method has been developed which can decompose a recorded 
superposed soil wave into its basic waves when multiple geophones are used. From the 
recorded data a system of non-linear equations can be assembled with six unknown 
parameters (three amplitudes and three phase shifts). These six parameters can be solved by 
using an iterative way of the least square method. This leads to a decomposition into the three 
basic waves, with each its own amplitude and phase shift. The superposition of only these 
basic waves describes very accurately the recorded superposed soil wave, proving the 
existence of only these three basic waves. The findings prove also that all three basic waves 
have phase shifts (in the far-field) and these phase shifts are all different from each other.  
 
The energy balance shows that the amount of emitted energy by the load on the plate is the 
same as of the sum of energies of the basic waves. This is another type of evidence that only 
three basic waves exist. Near the vibrating plate, the displacement amplitudes do not follow 
the same attenuation law such as further away from the source. This proves the existence of 
the near-field phenomenon. The R-wave energy starts at zero just at the source and grows in 
the near-field zone due to an energy transmission (body waves are transferring energy to the 
R-wave). After some distance (in the far-field), the R-wave becomes fully developed.  This 
phenomenon is not understood completely yet, but it does explain the phase shifts of the basic 
waves. 
 
A real field test of a shaker on the surface of a real soil has been performed in order to 
compare the vibrations with analytical and FEM calculations. In this case, one of the soil 
mechanical aspects is introduced – the material damping. The shaker test showed, that the 
vibration amplitudes of the plate can be predicted with Reissner’s or Lysmer’s approach or 
with numerical (FEM) calculations. The accuracy depends on the method used for the 
prediction, and ranges from 94 % to 100 % (which corresponds to Predicted/Measured ratio 
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of 1.06 and 1.00 respectively). This means that the amplitude of the shaker can be predicted 
accurately enough for geotechnical purposes. 
 
The soil surface vibration amplitudes can be predicted with Barkan-Bornitz’s analytical 
approach and with numerical (FEM) calculations.  The Barkan-Bornitz approach over-
predicted the amplitudes between 4.2 and 48.9 times. The FEM under-predicted the 
amplitudes for the first three meters and over-predicted up to 7.2 times for the last three 
meters. This means that the amplitudes of the surface cannot be predicted with higher than 
25 % accuracy. 
 
The measurements from the shaker test indicated different amount of damping just next to the 
plate and further away from the plate. This is theoretically possible in case of different 
damping per basic waves. There is a method reflecting this phenomenon, which is the 
frictional damping method, first suggested by Van Baars (2011). In order to be able to use 
this 1D method, it had to be extended to 3D and incorporated into the FEM calculation 
scheme. 
 
This 3D frictional damping model has been developed and incorporated into the FEM 
software Plaxis as a user defined soil model. As verification, cyclic simple shear and cyclic 
triaxial tests have been modelled. The results show good agreement with analytical solutions, 
confirming that the 3D frictional damping law was correctly incorporated into the FEM code. 
As a validation test, the shaker test was used. Even though the numerically calculated 
amplitudes are not exactly the same as the measured on site, they are still more accurate than 
the analytically ones, calculated by Barkan-Bornitz’s approach. On the other hand, the results 
obtained with the frictional damping model and Rayleigh damping are very close. This means 
that the frictional damping model did not solve the problem of the different amount of 
damping just next to the plate and further away from the plate. 
 
Despite this, the advantage of the frictional damping model becomes clear in the case of a 
pulse load, in which a lot of different frequencies are generated. The frictional damping 
model demonstrates a different physical behaviour of the soil, in comparison to the Rayleigh 
damping, because it is able to damp only deviatoric strains and its damping remains constant 
for all frequencies. Closer to the source, the peak displacements are bigger, due to the fact 
that only the deviatoric part of the strains is damped. This means all basic waves 
(compressional, shear, Rayleigh) are damped differently. Further away from the source, the 
peak displacements are almost the same, regardless which model is used.  However, the 
arrival times obtained by the frictional damping model are shorter in comparison to the 
Rayleigh damping. This is due to increasing stiffness in the far-field.  
 
In the frictional damping model, the energy dissipation is a result of the non-linearity of the 
soil. Because of this non-linear behaviour, the stiffness matrix is a function of the strains and 
solved by an iterative Newton-Raphson procedure. During calculations, the stiffness matrix is 
updated during each incremental load step. This process costs much calculation time. In the 
Rayleigh damping model however, the same stiffness matrix is used during the calculation, 
therefore it is considerably faster. 
 
The shaker test showed that for problems with harmonic oscillations, with only one 
frequency, Rayleigh damping can be used, instead of the frictional damping, and almost the 
same results can be obtained.  And at the same time a considerable amount of calculation 
time can be saved. 
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Also, the frictional damping model is very sensitive to the damping ratio. This follows from 
the fact that a power law is used. The FEM code has difficulties to converge for very high 
damping ratios (ξ > 5 %). But on the other hand, this model is intended for man-made 
vibrations, where the damping is constant and small (ξ < 3 %). 

8.2 Recommendations 

For calculations of the vertical vibration amplitude of an oscillating rigid circular plate, 
Lysmer’s analytical solution may be used. However for a plate with different stiffness or non-
circular shape, the more general, Reissner’s solution together with corresponding and 
unknown displacement functions f1 and f2 should be used. 
 
In order to predict the surface displacements of an oscillating rigid circular plate, an 
improved solution for the vibration predictions can be used. This solution consists of three 
parts: 1) the analytical Lysmer method for the plate displacement amplitude 2) the shape of 
the vertical surface displacements of the elasto-static Boussinesq solution in the near-field 
and 3) the R-wave attenuation law r-0.5 with the exponential material damping law (exp[-km(r-
r ff)]) in the far-field. It is recommended to end the near-field at a distance, equal to about a 
half to one length of the R-wave. This approach gives good predictions, if compared to the 
measurements or FEM calculations. 
 
For future research on vibrating plates, it is recommended to use a bigger shaker than 
described in the thesis. The tests on sites, which are stiffer than the peaty test site, showed 
that the vibration amplitudes are damped very rapidly and cannot be measured after the first 
two meters anymore because the ambient noise becomes higher than the vibrations. However 
using a bigger shaker means also bigger transportation problems, as well as the possibility of 
plastic deformations under the plate. Also a denser grid of measurement points, especially in 
the first meter away from the shaker, should be used. 
 
The frictional damping model is recommended to be used for impulse load problems, but first 
it should be validated with an impulse load test. The model is designed for small strain 
problems where the damping is small and constant. Very close to the load source, close to a 
pile or just under a dropped mass, a soil body might be deformed with much higher shear 
strains. Therefore, close to the source, where the damping is high and not constant, the soil 
should be modelled by using another model, for example the Hardening Soil model for small 
strains. 
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APPENDIX A.  MATLAB code for decomposition of waves 

The wave decomposition technique consists of three files: wave_decomp.m, amplitudes.m 
and constraint.m. The scripts of the files are presented in the following Boxes. 

 
Box A-1. Main calculation file wave_decomp.m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% wave_decomp.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%% PART I - DECOMPOSITION  
% 
clear all ; close all ; clc; 
% 
set(0, 'DefaultFigureWindowStyle' , 'docked' ) 
% 
global  w t kc ks kr r ra ux uy dd       % Introducing global variables  
% 
nu = 0.25;                              % Poisson's ratio  
alfa = sqrt((1-2*nu)/(2-2*nu));         % Ratio between cs and cc  
ro = 20000/9.81;                        % density kg/m3  
% 
% Calculation of the Rayleigh wave speed to Shear w ave speed ratio (cr/cs)  
% 
e33 = 0.000001; 
f33 = 1; 
b33 = (1-nu)/8; 
% 
if  nu > 0.1; 
while  f33>e33; 
    a33=b33; 
    b33=(1-nu)/(8*(1+a33)*(nu+a33)); 
    f33=abs(b33-a33); 
    e33=e33+e33; 
end  
% 
else   
    while  f33>e33; 
        a33=b33; 
        b33=sqrt((1-nu)/(8*(1+a33)*(1+nu/a33))); 
        f33=abs(b33-a33); 
        e33=e33+e33; 
    end  
end  
% 
beta = 1./sqrt(1+a33);                  % Ratio between cr and cs  
% 
cc = 173.2;                             % Compressional (P) wave velocity  
cs = cc*alfa;                           % Shear (S) wave velocity  
cr = cs*beta;                           % Rayleigh (R) wave velocity  
% 
f = 10;                                 % Frequency  
w = 2*pi*f;                             % Angular frequency  
% 
% Ratio of the R-wave amplitudes on the surface Arx /Ary  
% 
dd = 2*sqrt(1-beta^2)/beta^2 - 2/(sqrt(1-alfa^2*bet a^2)*beta^2) ...  
    + 1/(sqrt(1-alfa^2*beta^2)); 
% 
kc = w/cc;                              % Compressional (P) wave number  
ks = w/cs;                              % Shear (S) wave number  
kr = w/cr;                              % Rayleigh (R) wave number  
% 
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Continuation of Box A-1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

lc = cc/f;                              % Compression wave length  
ls = cs/f;                              % Shear wave length  
lr = cr/f;                              % Rayleigh wave length  
% 
ra = 15:1:24;   % Distance from the centre axis to the measurement points  
rpl = 0.2;      % Radius of the plate  
r = ra-rpl;     % Distance from the edge of the plate to the measur ement p.  
% 
% Reading Plaxis output data from excel file plaxis _output1.xlsx  
% 
for  i=1:10    
 t(:,i) = xlsread( 'plaxis_output1.xlsx' , i, 'K402:K502' );   % time values  
 uxr(:,i) = xlsread( 'plaxis_output1.xlsx' , i, 'L402:L502' ); % horiz. displ.  
 uyr(:,i) = xlsread( 'plaxis_output1.xlsx' , i, 'P402:P502' ); % vert. displ.  
end  
% 
ux=uxr*10^6;    % Converting to micro-meters  
uy=-uyr*10^6;   % Converting to micro-meters and changing the sign of y  
% 
% Decomposing waves by using an optimisation techni que  
% 
options = optimset( 'Display' , 'iter' , 'Algorithm' , 'active-set' ); 
% 
x0 = [0 0 0 0 0 0]; % initial quess for the unknowns  
% 
[x,fval] = fmincon(@amplitudes,x0,[],[],[],[],[],[] ,@constraint,options); 
%   
% Back-Calculation of the superposed wave  
% 
Upx=x(1);           % Horizontal amplitude of the P-wave  
Urx=x(2);           % Horizontal amplitude of the R-wave  
Usy=x(3);           % Vertical amplitude of the S-wave  
Ury=x(2)/(-dd);     % Vertical amplitude of the R-wave  
% 
FyC=x(4);           % Phase shift of the P-wave  
FyS=x(5);           % Phase shift of the S-wave  
FyR=x(6);           % Phase shift of the R-wave  
% 
% Total back-calculated signals  
% 
for  i=1:10 
    uxb(:,i) = Upx*sin(w*t(:,i)-kc*r(i)-FyC)*(ra(1) /ra(i))^1  - ...  
               Urx*cos(w*t(:,i)-kr*r(i)-FyR)*(ra(1) /ra(i))^(1/2); 
    uyb(:,i) = Usy*sin(w*t(:,i)-ks*r(i)-FyS)*(ra(1) /ra(i))^1  + ...  
               Ury*sin(w*t(:,i)-kr*r(i)-FyR)*(ra(1) /ra(i))^(1/2); 
end  
% 
% Back-calculated P-wave  
% 
for  i=1:10 
    uxbp(:,i) = Upx*sin(w*t(:,i)-kc*r(i)-FyC)*(ra(1 )/ra(i))^1; 
end  
% 
% Back-calculated S-wave  
% 
for  i=1:10 
    uybs(:,i) = Usy*sin(w*t(:,i)-ks*r(i)-FyS)*(ra(1 )/ra(i))^1; 
end  
% 
% Back-calculated R-wave  
% 
for  i=1:10 
    uxbr(:,i) = - Urx*cos(w*t(:,i)-kr*r(i)-FyR)*(ra (1)/ra(i))^(1/2); 
    uybr(:,i) =   Ury*sin(w*t(:,i)-kr*r(i)-FyR)*(ra (1)/ra(i))^(1/2); 
end  
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Continuation of Box A-1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

% 
% Figures of the total back-calculated signal vs. t he Plaxis output  
% 
figure 
plot(t(:,1),uyb(:,1),t(:,1),uy(:,1))     % uy for the 1st measurement point  
figure 
plot(t(:,1),uxb(:,1),t(:,1),ux(:,1))     % ux for the 1st measurement point  
figure 
plot(t(:,10),uyb(:,10),t(:,10),uy(:,10)) % uy for the 10th measurement p.  
figure 
plot(t(:,10),uxb(:,10),t(:,10),ux(:,10)) % ux for the 10th measurement p.  
% 
% Calculation of the Correlation coefficients at al l the measurement points  
% 
for  i=1:10 
    uxp = ux(:,i);  % Plaxis ux  
    uyp = uy(:,i);  % Plaxis uy  
    uxbb = uxb(:,i);  % Plaxis ux  
    uybb = uyb(:,i);  % Plaxis uy  
% 
    R2x = 1 - sum((uxp - uxbb).^2) / sum((uxp-mean( uxp)).^2); 
    R2y = 1 - sum((uyp - uybb).^2) / sum((uyp-mean( uyp)).^2); 
% 
    Rx(i) = R2x;    % Correlation at ith measurement point in x directi on 
    Ry(i) = R2y;    % Correlation at ith measurement point in y directi on 
end  
% 
% Figure of the Correlation factors at different di stances  
% 
figure 
plot(ra, Rx, ra, Ry) 
xlabel( 'Distance, [m]' ); 
ylabel( 'Correlation factor, [-]' ); 
legend( 'R^2x' , 'R^2y' ); 
ylim([0 1]); 
% 
% Mean Correlation for all the directions and all p oints  
% 
meanRx = mean(Rx);      % Mean Correlation factors for horizontal direction  
meanRy = mean(Ry);      % Mean Correlation factors for vertical direction  
meanR = mean([Rx Ry]);  % Mean Correlation factors for h. and v. directions  
% 
%% PART II - FUNCTIONS OF AMPLITUDES OF THE WAVES O N ADDITIONAL POINTS  
% 
Upx=x(1)*10^-6;         % Horizontal amplitude of the P-wave in meters  
Urx=x(2)*10^-6;         % Horizontal amplitude of the R-wave in meters  
Usy=x(3)*10^-6;         % Vertical amplitude of the S-wave in meters  
Ury=x(2)/(-dd)*10^-6;   % Vertical amplitude of the R-wave in meters  
% 
FyC=x(4);               % Phase shift of the P-wave  
FyS=x(5);               % Phase shift of the S-wave  
FyR=x(6);               % Phase shift of the R-wave  
% 
r0 = 15;                % Radius of a sphere on which the additional  
                        % points were placed  
% 
q = sqrt(kr^2-w^2/cc^2);    % Coefficient of the R-wave amplitude function  
s = sqrt(kr^2-w^2/cs^2);    % Coefficient of the R-wave amplitude function  
% 
% R-wave relative amplitude function in depth  
% 
depth_hor = @(v) (kr*(-exp(-q*v)+2*q*s/(s^2+kr^2)*e xp(-s*v))) / ...  
                 (kr*(-exp(-q*0)+2*q*s/(s^2+kr^2)*e xp(-s*0))); 
depth_ver = @(v) (q*(-exp(-q*v)+2*kr^2/(s^2+kr^2)*e xp(-s*v))) / ...  
                 (q*( - exp( - q*0)+2*kr^2/(s^2+kr^2)*exp( - s*0)));  



MATLAB code for decomposition of waves 
 

116 
 

Continuation of Box A-1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%             
width = @(h) sqrt(r0./h); 
% 
% Reading the coordinates of the measurement points  on a circle  
% 
h = xlsread( 'plaxis_output2.xlsx' , 21, 'F2:F21' );   % Horizontal distance  
v = xlsread( 'plaxis_output2.xlsx' , 21, 'G2:G21' );   % Vertical distance  
% 
teta=atan(h./v);            % Angle with vertical line of the point  
rad=sqrt(h.^2+v.^2);        % Radial distance of the point  
% 
Arx = depth_hor(v).*Urx;    % R-wave amplitudes x in depth  
Ary = depth_ver(v).*Ury;    % R-wave amplitudes y in depth  
% 
% Time vector which coresponds with time in plaxis_ output2.xlsx  
% 
tt = xlsread( 'plaxis_output2.xlsx' , 1, 'A2:A102' );       
% 
for  j=1:20 
    % R-wave displacements in x axis of "j" point  
    urxt = - Arx(j)*cos(w*tt-kr*h(j)-FyR)*(ra(1)/h( j))^(1/2); 
    % 
    % R-wave displacements in y axis of "j" point  
    uryt =   Ary(j)*sin(w*tt-kr*h(j)-FyR)*(ra(1)/h( j))^(1/2);              
    % 
    % 
    % Plaxis output for "j" point in x axis  
    utotx =  xlsread( 'u_total_15.xlsx' , j, 'B2:B102' );   
    % 
    % Plaxis ouktput for "j" point in y axis  
    utoty = -xlsread( 'u_total_15.xlsx' , j, 'C2:C102' );                      
    % 
    uresx = utotx-urxt; % Residual displ. in x axis (Plaxis ux - R ux)  
    uresy = utoty-uryt; % Residual displ. in y axis (Plaxis uy - R uy)  
    % 
    % Projecting residual displacements into the direct ions of P- and  
    % S-waves  
    % 
    for  i=1:length(tt),   
        u_compr(i,j)=  uresx(i) * sin(teta(j)) + ur esy(i)*cos(teta(j)); 
        u_shear(i,j)= -uresx(i) * cos(teta(j)) + ur esy(i)*sin(teta(j)); 
    end    
 end  
% 
% Calculating the amplitudes of the P- and S-waves on the "j" points  
%  
for  j=1:20 
   amp_c(j) = (max(u_compr(:,j))-min(u_compr(:,j))) /2; 
   amp_s(j) = (max(u_shear(:,j))-min(u_shear(:,j))) /2; 
end  
% 
% Checing the back-calculated P- and S-waves on a " j" point  
% 
j=7; % Selecting a desirable points "j"  
  
u_back_c=amp_c(j)*sin(w*tt-kc*rad(j)-FyC);  % Back-calculated P-wave  
u_back_s=amp_s(j)*sin(w*tt-ks*rad(j)-FyS);  % Back-calculated S-wave  
%     
figure     
plot(tt,u_shear(:,j),tt,u_back_s); 
figure 
plot(tt,u_compr(:,j),tt,u_back_c); 
% 
%% PART III - CALCULATION OF THE ENERGY IN WAVES  
% 
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Continuation of Box A-1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pc_Ar=polyfit(teta,amp_c',6);   % 6th order polynomial fit for the P-wave  
pc_At=polyfit(teta,amp_s',6);   % 6th order polynomial fit for the S-wave  
% 
% Functions of the P, S and R-wave on the radius r0  
% 
funC = @(x) ((pc_Ar(1).*x.^6 + pc_Ar(2).*x.^5 + pc_ Ar(3).*x.^4 + ...   
              pc_Ar(4).*x.^3 + pc_Ar(5).*x.^2 + pc_ Ar(6).*x + ...  
              pc_Ar(7))).^2.*sin(x)*r0; 
funS = @(x) ((pc_At(1).*x.^6 + pc_At(2).*x.^5 + pc_ At(3).*x.^4 + ...  
              pc_At(4).*x.^3 + pc_At(5).*x.^2 + pc_ At(6).*x + ...  
              pc_At(7))).^2.*sin(x)*r0; 
funR = @(y) ((kr*(-exp(-q*y)+2*q*s/(s^2+kr^2)*exp(- s*y))) / ...  
             (kr*(-exp(-q*0)+2*q*s/(s^2+kr^2)*exp(- s*0))).*Urx).^2 + ...  
             ((q*(-exp(-q*y)+2*kr^2/(s^2+kr^2)*exp( -s*y))) / ...  
             (q*(-exp(-q*0)+2*kr^2/(s^2+kr^2)*exp(- s*0))).*Ury).^2; 
% 
tta=0:0.01:pi/2;    % Step of the angle  
% 
C=funC(tta);        % P-wave amplitudes  
S=funS(tta);        % S-wave amplitudes  
EC=C.^2;            % P-wave amplitudes^2  
ES=S.^2;            % S-wave amplitudes^2  
% 
[yc,xc] = sph2cart(tta, 0, 15); 
[ys,xs] = sph2cart(tta, 0, 15); 
% 
[cy1,cx1] = sph2cart(tta, 0, 10^12*C+15); 
[sy2,sx2] = sph2cart(tta, 0, 10^12*S+15); 
% 
[ecy1,ecx1] = sph2cart(tta, 0, 10^24*EC+15); 
[esy2,esx2] = sph2cart(tta, 0, 10^24*ES+15); 
% 
plot(xc,-yc,cx1,-cy1); 
xlabel( 'Horizontal distance, [m]' ); 
ylabel( 'Vertical distance, [m]' ); 
legend( '15 m' , 'P-wave |amplitudes| * 10^1^2' ); 
% 
figure 
plot(xs,-ys,sx2,-sy2); 
xlabel( 'Horizontal distance, [m]' ); 
ylabel( 'Vertical distance, [m]' ); 
legend( '15 m' , 'S-wave |amplitudes| * 10^1^2' ); 
% 
figure 
plot(xc,-yc,ecx1,-ecy1); 
xlabel( 'Horizontal distance, [m]' ); 
ylabel( 'Vertical distance, [m]' ); 
legend( '15 m' , 'P-wave |amplitudes|^2 * 10^2^4' ); 
% 
figure 
plot(xs,-ys,esx2,-esy2); 
xlabel( 'Horizontal distance, [m]' ); 
ylabel( 'Vertical distance, [m]' ); 
legend( '15 m' , 'S-wave |amplitudes|^2 * 10^2^4' ); 
% 
% Energy in the basic waves  
% 
Ec = 0.5*ro*w^2*quad(funC,0,(pi/2))*(2*pi*r0*lc);   % P-wave energy  
Es = 0.5*ro*w^2*quad(funS,0,(pi/2))*(2*pi*r0*ls);   % S-wave energy  
Er = 0.5*ro*w^2*quad(funR,0,3*lr)*(2*pi*r0*lr);     % R-wave energy  
%  
E = Er + Es + Ec; % Total energy  
% 
%%%%%%%%%%%%%%%%%%%%%%% End of wave_decomp.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Box A-2. Optimisation function amplitudes.m. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 

Box A-3. Optimisation constrains function constraint.m. 
 
 
 

 
 
 

function  f=amplitudes(x) 
% 
global  w t kc ks kr r ra ux uy dd 
% 
for  i=1:length(t) 
%     
    for  j=1:10 
        ux_c(i,j) = x(1)*sin(w*t(i)-kc*r(j)-x(4))*( ra(1)/ra(j))^1 - ...  
            x(2)*cos(w*t(i)-kr*r(j)-x(6))*(ra(1)/ra (j))^(1/2); 
    end  
%     
    for  j=1:10 
        uy_c(i,j) = x(3)*sin(w*t(i)-ks*r(j)-x(5))*( ra(1)/ra(j))^1 + ...  
            x(2)/(-dd)*sin(w*t(i)-kr*r(j)-x(6))*(ra (1)/ra(j))^(1/2); 
    end  
end   
% 
f=(sum(sum((ux-ux_c).^2)) + sum(sum((uy-uy_c).^2))) ; 
 

function  [c, ceq] = constraint(x) 
% 
ceq = []; 
c = []; 
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APPENDIX B. Technical data of vibrators and geophones 

Two electric 4-poles vibrators (model A10-9.0-4 from Eviro) were used for the shaker. An 
exploded view is presented in the figure below. 
 

 
 

Figure B-1. Exploded view of A10-90-4 vibrator (eviro.com). 
 
The properties of the vibrator can be found in the following table.  
 

Table B-1. Technical data sheet for A10-9.0-4 vibrator from Eviro. 
 

Technical feature Marking Dimensions Value 

Max. eccentric moment Me [kgcm] 8,32 
Max. centrifugal force F [kN] 1,03 
Rated voltage UN [V] 400 
Power consumption P [kW] 0,18 
Rated current IN [A] 0,34 
Power factor cosφ [-] 0,78 
Ratio starting / Rated current IA/IN [-] 2,3 

Rated mains frequency fN [Hz] 50 

Max. speed (at rated mains frequency) nN [rpm] 1500 
Number of poles - [-] 4 
Total mass M [kg] 8,1 
Motor length X [mm] 281 

 
Seven 3D geophones were used (showed in a) of Figure B-2), which consist of three seismic 
detectors: one DS11-4.5-VT (vertical) and two DS11-4.5-HT (horizontal) (showed in b) of 
Figure B-2). 
 
The technical data of the DS11-4.5 can be found in Table B-2.  Output vs. Frequency respons 
chart is presented in Figure B-3.  
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Figure B-2. a) three dimensional geophone; b) seismic detector GS-11D; (not to scale). 
 
 

 
 

Figure B-3. GS-11D seismic detector response curve. Output vs. frequency chart. 
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Table B-2. Technical data sheet for A10-9.0-4 vibrator from Eviro. 
 

Technical feature Dimensions Value 
Natural frequency [Hz] 4.5 ± 0.75 
Coil Resistance @ 25º C (± 5 %) [Ohm] 380 
Intrinsic Voltage Sensitivity with 380 Ohm Coil ± 10 % [V/cm/s] 0.32 
Normalised Transduction Constant [V/in/s] 0.42 sq. root of Rc 
Open Circuit Damping [-] 0.34 ± 20 % 
Damping Constant with 380 Ohm Coil [-] 762 
Optional Coil Resistances ± 5 % [Ohm] 4000 
Moving Mass ± 5 % [g] 23.6 
Typical Case to Coil Motion P-P [cm] 0.18 
Height [cm] 3.35 
Diameter [cm] 3.18 
Weight [g] 111 
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APPENDIX C. Vibration measurements on peat site 

Hereby the radial and vertical vibrations (from the vibration tests on a peaty site) of every 
geophone are presented. For the first two geophones (1 meter and 2 meters away from the 
shaker respectively) also the measurements of the transversal vibrations are showed. 
  

 
 

Figure C-1. Shaker Vibrations. 
 
 

 
 

Figure C-2. Surface vibrations 1 m away from the shaker. 
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Figure C-3. Surface vibrations 2 m away from the shaker. 
 
 

 
 

Figure C-4. Surface vibrations 3 m away from the shaker. 
 



Vibration measurements on peat site 

125 
 

 
 

Figure C-5. Surface vibrations 4 m away from the shaker. 
 

 
 

Figure C-6. Surface vibrations 5 m away from the shaker. 
 

 
 

Figure C-7. Surface vibrations 6 m away from the shaker. 
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APPENDIX D. Developed vibration prediction method 
comparison with FEM results 

Hereby all forty plots (according to the table below) of the comparison between the vertical 
vibrations obtained by FE modelling and the calculations by the improved prediction method 
are presented.  
 
Table D-1. Matrix of the numerical calculations with numbers of the corresponding figures. 

 
            a0  
     B 

0.179 0.269 0.359 0.449 0.538 0.628 0.718 0.897 1.077 1.346 

0.5 D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9 D-10 
1 D-11 D-12 D-13 D-14 D-15 D-16 D-17 D-18 D-19 D-20 
2 D-21 D-22 D-23 D-24 D-25 D-26 D-27 D-28 D-29 D-30 
5 D-31 D-32 D-33 D-34 D-35 D-36 D-37 D-38 D-39 D-40 

 
Table D-2. Matrix of the average errors in percentages. 

 
            a0  
     B 

0.179 0.269 0.359 0.449 0.538 0.628 0.718 0.897 1.077 1.346 

0.5 4.9 5 4.3 5.6 4.7 5.5 5.9 8.3 14.3 8 
1 4.7 5.8 5 6.7 5.2 6.1 6.2 7.5 9.5 4.7 
2 4.8 5.5 6.2 8.3 6.1 5.3 3.7 5.6 6.6 6 
5 5 6.7 10.9 4.9 13.7 9.8 9.2 5.3 4.7 5.5 

 
Table D-3. Matrix of the maximum errors in percentages. 

 
            a0  
     B 

0.179 0.269 0.359 0.449 0.538 0.628 0.718 0.897 1.077 1.346 

0.5 10.6 10 9.7 12.8 9.6 11 13 19.9 24.1 22.3 
1 10 10.5 10.9 13.6 10.8 14.4 14.6 18.7 20.3 11.9 
2 11.5 9.6 13.9 15.3 11.9 10.8 7.7 12.6 24.1 12.7 
5 10.7 13.3 19.1 9.8 22 19.1 15.9 13.2 14.4 14.4 

 

 
 

Figure D-1. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 0.179). 
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Figure D-2. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 0.269). 

 
 

Figure D-3. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 0.359). 
 

 
 

Figure D-4. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 0.449). 
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Figure D-5. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 0.538). 

 
 

Figure D-6. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 0.628). 
 

 
 

Figure D-7. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 0.718). 
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Figure D-8. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 0.897). 

 
 

Figure D-9. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 1.077). 
 

 
 

Figure D-10. Vertical vibration amplitudes of the surface (B = 0.5, a0 = 1.346). 
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Figure D-11. Vertical vibration amplitudes of the surface (B = 1, a0 = 0.179). 

 
 

Figure D-12. Vertical vibration amplitudes of the surface (B = 1, a0 = 0.269). 
 

 
 

Figure D-13. Vertical vibration amplitudes of the surface (B = 1, a0 = 0.359). 
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Figure D-14. Vertical vibration amplitudes of the surface (B = 1, a0 = 0.449). 

 
 

Figure D-15. Vertical vibration amplitudes of the surface (B = 1, a0 = 0.538). 
 

 
 

Figure D-16. Vertical vibration amplitudes of the surface (B = 1, a0 = 0.628). 
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Figure D-17. Vertical vibration amplitudes of the surface (B = 1, a0 = 0.718). 

 
 

Figure D-18. Vertical vibration amplitudes of the surface (B = 1, a0 = 0.897). 
 

 
 

Figure D-19. Vertical vibration amplitudes of the surface (B = 1, a0 = 1.077). 
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Figure D-20. Vertical vibration amplitudes of the surface (B = 1, a0 = 1.346). 

 
 

Figure D-21. Vertical vibration amplitudes of the surface (B = 2, a0 = 0.179). 
 

 
 

Figure D-22. Vertical vibration amplitudes of the surface (B = 2, a0 = 0.269). 
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Figure D-23. Vertical vibration amplitudes of the surface (B = 2, a0 = 0.359). 

 
 

Figure D-24. Vertical vibration amplitudes of the surface (B = 2, a0 = 0.449). 
 

 
 

Figure D-25. Vertical vibration amplitudes of the surface (B = 2, a0 = 0.538). 
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Figure D-26. Vertical vibration amplitudes of the surface (B = 2, a0 = 0.628). 

 
 

Figure D-27. Vertical vibration amplitudes of the surface (B = 2, a0 = 0.718). 
 

 
 

Figure D-28. Vertical vibration amplitudes of the surface (B = 2, a0 = 0.897). 
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Figure D-29. Vertical vibration amplitudes of the surface (B = 2, a0 = 1.077). 

 
 

Figure D-30. Vertical vibration amplitudes of the surface (B = 2, a0 = 1.346). 
 

 
 

Figure D-31. Vertical vibration amplitudes of the surface (B = 5, a0 = 0.179). 
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Figure D-32. Vertical vibration amplitudes of the surface (B = 5, a0 = 0.269). 

 
 

Figure D-33. Vertical vibration amplitudes of the surface (B = 5, a0 = 0.359). 
 

 
 

Figure D-34. Vertical vibration amplitudes of the surface (B = 5, a0 = 0.449). 
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Figure D-35. Vertical vibration amplitudes of the surface (B = 5, a0 = 0.538). 

 
 

Figure D-36. Vertical vibration amplitudes of the surface (B = 5, a0 = 0.628). 
 

 
 

Figure D-37. Vertical vibration amplitudes of the surface (B = 5, a0 = 0.718). 
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Figure D-38. Vertical vibration amplitudes of the surface (B = 5, a0 = 0.897). 
 

 
 

Figure D-39. Vertical vibration amplitudes of the surface (B = 5, a0 = 1.077). 
 

 
 

Figure D-40. Vertical vibration amplitudes of the surface (B = 5, a0 = 1.346). 
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APPENDIX E. Pascal code for UDSM of Frictional damping 
model 

Hereby a Pascal code is provided, which can be used in order to generate a DLL file. The file 
is made to be used as a User Defined Soil Model in Plaxis software. Free Pascal Lazarus 
(v. 1.2.6) was used for programming the DLL file and Plaxis 2D v9.02 was used for soil 
vibration calculations. 
 

Box E-1. Pascal Code for UDSM of Shear damping. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

library FricDamp; 
 
// Two Soil models: 
// 
// 1. Linear Elastic Soil Model 
// 2. Shear Damping Soil Model 
// 
 
{$mode Delphi}{$H+} 
{$calling stdcall} 
 
 
uses 
  //ShareMem, 
  SysUtils, 
  Classes, 
  Math; 
 
const  NumbVar = 48; 
       incr = 1e-10; 
type   vector = array[1..6] of double;   // Sigma 
       epsvector = array[1..12] of double;  //dEps 
       mediumvector = array[1..20] of double; //Sig 0 
       matrix = array[1..6,1..6] of double;    //D 
       longvector = array[1..50] of double;   //Pro ps 
       statevector = array[1..NumbVar] of double;  //StatVar  { from 1 to 

NumbVar } 
var    Xd,G,v,E,Fac,Term1,Term2,Term3,K,dz:double; // Parameters(Props,iMod); 
       EpsVol:double;                        // Cal cGamma 
       Gamma:vector;                      // CalcGa mma; 
       Eps,GammaHist,GammaMax,GammaMin,TauHist,TauM ax,TauMin,DirHist:vector; 

//CallHistory(StVar0,dEps) 
       Dir:vector;      // CalcDir 
       Tau:vector;             // CalcTau 
 
{$R *.res} 
 
procedure GetModelCount(var C:longint);stdcall;expo rt; 
begin 
  C := 2; 
end; 
 
procedure GetModelName(var iModel:longint; 
                       var Name:shortstring);stdcal l;export; 
begin 
  case iModel of 
    1 : Name := 'Linear Elastic'; 
    2 : Name := 'Shear Damping'; 
  else 
    Name := ''; 
  end ; 
end;  
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procedure GetParamCount(var iModel:longint; 
                        var C:longint);stdcall;expo rt; 
begin 
  case iModel of 
    1 : C := 2; 
    2 : C := 4; 
  else 
    C := 0; 
  end ; 
end; 
 
procedure GetParamName(var iModel,iParam:longint; 
                       var Name:shortstring);stdcal l;export; 
begin 
  case iModel of 
    1 : case iParam of 
           1 : Name := 'E'; 
           2 : Name := '@n'; 
        else 
          Name := ''; 
        end; 
    2 : case iParam of 
           1 : Name := '@x'; 
           2 : Name := 'G_mod#'; 
           3 : Name := 'K'; 
           4 : Name := '@z'; 
        end; 
  else 
        Name := ''; 
  end; 
end; 
 
procedure GetParamUnit(var iModel,iParam:longint; 
                       var Units:shortstring);stdca ll;export; 
begin 
  case iModel of 
    1: case iParam of 
         1 : Units := '[F/L^2#]'; 
         2 : Units := '[-]'; 
       else 
             Units := ''; 
       end; 
    2: case iParam of 
         1 : Units := '[%]'; 
         2 : Units := '[F/L^2#]'; 
         3 : Units := '[F/L^2#]'; 
         4 : Units := '[-]'; 
       else 
             Units := ''; 
       end; 
  else 
    Units := ''; 
  end; 
end; 
 
procedure GetStateVarCount(var iModel:longint; 
                           var C:longint);stdcall;e xport; 
begin 
  case iModel of 
     1 : C := 1; 
     2 : C := 48; 
  else 
    C := 0; 
  end; 
end;  
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procedure GetStateVarName(var iModel,iParam:longint ; 
                          var Name:shortstring);std call;export; 
begin 
  case iModel of 
     1: case iParam of 
       1 : Name := 'p'''; 
       else 
           Name := ''; 
       end; 
     2: case iParam of 
       // Current Strains 
       1 : Name := '@e_xx#'; 
       2 : Name := '@e_yy#'; 
       3 : Name := '@e_zz#'; 
       4 : Name := '@e_xy#'; 
       5 : Name := '@e_yz#'; 
       6 : Name := '@e_xz#'; 
        // History of the deviatoric strains 
       7 : Name := '@g_hist.xx#'; 
       8 : Name := '@g_hist.yy#'; 
       9 : Name := '@g_hist.zz#'; 
       10: Name := '@g_hist.xy#'; 
       11: Name := '@g_hist.yz#'; 
       12: Name := '@g_hist.xz#'; 
       // History of the max deviatoric strains 
       13: Name := '@g_max.xx#'; 
       14: Name := '@g_max.yy#'; 
       15: Name := '@g_max.zz#'; 
       16: Name := '@g_max.xy#'; 
       17: Name := '@g_max.yz#'; 
       18: Name := '@g_max.xz#'; 
       // History of the min deviatoric strains 
       19: Name := '@g_min.xx#'; 
       20: Name := '@g_min.yy#'; 
       21: Name := '@g_min.zz#'; 
       22: Name := '@g_min.xy#'; 
       23: Name := '@g_min.yz#'; 
       24: Name := '@g_min.xz#'; 
       // History of the deviatoric stresses 
       25: Name := '@t_hist.xx#'; 
       26: Name := '@t_hist.yy#'; 
       27: Name := '@t_hist.zz#'; 
       28: Name := '@t_hist.xy#'; 
       29: Name := '@t_hist.yz#'; 
       30: Name := '@t_hist.xz#'; 
       // History of the max deviatoric stresses 
       31: Name := '@t_max.xx#'; 
       32: Name := '@t_max.yy#'; 
       33: Name := '@t_max.zz#'; 
       34: Name := '@t_max.xy#'; 
       35: Name := '@t_max.yz#'; 
       36: Name := '@t_max.xz#'; 
       // History of the min deviatoric stresses 
       37: Name := '@t_min.xx#'; 
       38: Name := '@t_min.yy#'; 
       39: Name := '@t_min.zz#'; 
       40: Name := '@t_min.xy#'; 
       41: Name := '@t_min.yz#'; 
       42: Name := '@t_min.xz#'; 
       // History of the deviatoric strains' direct ions 
       43: Name := 'dir_xx#'; 
       44: Name := 'dir_yy#'; 
       45: Name := 'dir_zz#'; 
       46: Name := 'dir_xy#'; 
       47: Name := 'dir_yz#';  



Pascal code for UDSM of Frictional damping model 
 

144 
 

Continuation of Box E-1. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       48: Name := 'dir_xz#'; 
       else 
           Name := ''; 
       end; 
  else 
        Name := ''; 
  end; 
end; 
 
procedure GetStateVarUnit(var iModel,iParam:longint ; 
                          var Units:shortstring);st dcall;export; 
begin 
  case iModel of 
  1: case iParam of 
       1 : Units := 'F/L^2#'; 
       else 
           Units := ''; 
     end; 
  2: case iParam of 
       // Current Strains 
       1 : Units := '[-]'; 
       2 : Units := '[-]'; 
       3 : Units := '[-]'; 
       4 : Units := '[-]'; 
       5 : Units := '[-]'; 
       6 : Units := '[-]'; 
       // History of the deviatoric strains 
       7 : Units := '[-]'; 
       8 : Units := '[-]'; 
       9 : Units := '[-]'; 
       10: Units := '[-]'; 
       11: Units := '[-]'; 
       12: Units := '[-]'; 
       // History of the max deviatoric strains 
       13: Units := '[-]'; 
       14: Units := '[-]'; 
       15: Units := '[-]'; 
       16: Units := '[-]'; 
       17: Units := '[-]'; 
       18: Units := '[-]'; 
       // History of the min deviatoric strains 
       19: Units := '[-]'; 
       20: Units := '[-]'; 
       21: Units := '[-]'; 
       22: Units := '[-]'; 
       23: Units := '[-]'; 
       24: Units := '[-]'; 
       // History of the deviatoric stresses 
       25: Units := '[F/L^2#]'; 
       26: Units := '[F/L^2#]'; 
       27: Units := '[F/L^2#]'; 
       28: Units := '[F/L^2#]'; 
       29: Units := '[F/L^2#]'; 
       30: Units := '[F/L^2#]'; 
       // History of the max deviatoric stresses 
       31: Units := '[F/L^2#]'; 
       32: Units := '[F/L^2#]'; 
       33: Units := '[F/L^2#]'; 
       34: Units := '[F/L^2#]'; 
       35: Units := '[F/L^2#]'; 
       36: Units := '[F/L^2#]'; 
       // History of the min deviatoric stresses 
       37: Units := '[F/L^2#]'; 
       38: Units := '[F/L^2#]'; 
       39: Units := '[F/L^2#]';  
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       40: Units := '[F/L^2#]'; 
       41: Units := '[F/L^2#]'; 
       42: Units := '[F/L^2#]'; 
       // History of the deviatoric strains' direct ions 
       43: Units := '[-]'; 
       44: Units := '[-]'; 
       45: Units := '[-]'; 
       46: Units := '[-]'; 
       47: Units := '[-]'; 
       48: Units := '[-]'; 
     else 
           Units := ''; 
     end; 
  else 
     Units := ''; 
  end; 
end; 
 
procedure Parameters(var Props:longvector; 
                     var iMod:longint); 
var DP:double; 
begin 
  case iMod of 
       1:begin 
            if Props[1] < 0 then Props[1] := -Props [1]; // E 
            E := max(Props[1],incr); 
            if Props[2] < 0 then Props[2] := -Props [2]; // v 
            v := min(Props[2],0.495); 
            G := 0.5*E/(1.0+v); 
            Fac := 2*G/(1.0-2*v); 
            Term1 := Fac*(1-v); 
            Term2 := Fac*v; 
       end; 
       2:begin 
            if Props[1] < 0 then Props[1] := -Props [1]; // D [%] 
            DP := max(Props[1],0); 
            Xd := (8-4*pi*(DP/100)) / (8+4*pi*(DP/1 00)); // Xd [-] 
            if Props[2] < 0 then Props[2] := -Props [2]; // Gmod 
            G := max(Props[2],incr); 
            if Props[3] < 0 then Props[3] := -Props [3]; // K 
            K := max(Props[3],incr); 
            if Props[4] <= 0 then Props[4] := 1; //  dz 
            dz := max(Props[4],1); 
            v := (3*K - 2*G) / (2*(3*K+G)); 
            E := 2*G*(1+v); 
            Fac := 2*G/(1.0-2*v); 
            Term1 := Fac*(1-v); 
            Term2 := Fac*v; 
       end; 
  end; 
end; 
 
procedure makeD(var D:matrix); 
begin 
  D[1,1] := Term1; 
  D[1,2] := Term2; 
  D[1,3] := Term2; 
  D[2,1] := Term2; 
  D[2,2] := Term1; 
  D[2,3] := Term2; 
  D[3,1] := Term2; 
  D[3,2] := Term2; 
  D[3,3] := Term1; 
  D[4,4] := G; 
  D[5,5] := G;  
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  D[6,6] := G; 
end; 
 
procedure makeDStiffer(var D:matrix); 
begin 
  D[1,1] := Term1*dz; 
  D[1,2] := Term2*dz; 
  D[1,3] := Term2*dz; 
  D[2,1] := Term2*dz; 
  D[2,2] := Term1*dz; 
  D[2,3] := Term2*dz; 
  D[3,1] := Term2*dz; 
  D[3,2] := Term2*dz; 
  D[3,3] := Term1*dz; 
  D[4,4] := G*dz; 
  D[5,5] := G*dz; 
  D[6,6] := G*dz; 
end; 
 
 
procedure CallHistory(var StVar0:statevector; 
                      var dEps:epsvector); 
var i:longint; 
begin 
  for i := 1 to 6 do 
  begin 
    Eps[i] := StVar0[i] + dEps[i]; //  1..6 
    GammaHist[i] := StVar0[i+6];   //  7..12 
    GammaMax[i] := StVar0[i+12];   // 13..18 
    GammaMin[i] := StVar0[i+18];   // 19..24 
    TauHist[i] := StVar0[i+24];    // 25..30 
    TauMax[i] := StVar0[i+30];     // 31..36 
    TauMin[i] := StVar0[i+36];     // 37..42 
    DirHist[i] := StVar0[i+42];    // 43..48 
  end; 
end; 
 
procedure CalcGamma(); 
begin 
  EpsVol := Eps[1]+Eps[2]+Eps[3]; 
  Gamma[1] := Eps[1] - EpsVol/3; 
  Gamma[2] := Eps[2] - EpsVol/3; 
  Gamma[3] := Eps[3] - EpsVol/3; 
  Gamma[4] := Eps[4]; 
  Gamma[5] := Eps[5]; 
  Gamma[6] := Eps[6]; 
end; 
 
procedure CalcDir(); 
var i:longint; 
begin 
  for i := 1 to 6 do 
  begin 
    if Gamma[i] > GammaHist[i] then      // Going U P 
    Dir[i] := 1 
    else 
        begin 
         if Gamma[i] < GammaHist[i] then // Going D OWN 
         Dir[i] := -1 
         else 
             Dir[i] := 0                          / / Standing 
        end; 
  end; 
end; 
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procedure MinMax(); 
var i:longint; 
    st:longint; 
begin 
  for i := 1 to 6 do 
  begin 
    if Dir[i] = 0 then Dir[i] := DirHist[i]; // Rem ove stopovers 
    if Dir[i] = DirHist[i]                   // Kee ping the same direction or 

keep standing 
    then st := 1 
    else if Dir[i] < DirHist[i] // After going Up, Goes Down 
    then st := 2 
    else if Dir[i] > DirHist[i] // After going Down , Goes Up 
    then st := 3 
    else st := 4; 
    case st of 
         1 : 
           begin 
           TauMax[i] := TauMax[i]; 
           TauMin[i] := TauMin[i]; 
           GammaMax[i] := GammaMax[i]; 
           GammaMin[i] := GammaMin[i]; 
           end; 
         2 : 
           begin 
           TauMax[i] := TauHist[i];         // Maxi mum Stress Reset TauHist[i] 
           TauMin[i] := -TauMax[i]; 
           GammaMax[i] := GammaHist[i];      // Max imum Strain Reset 

GammaHist[i]; 
           GammaMin[i] := -GammaMax[i];      // Min imum Strain Reset acc. to Max 

-GammaHist[i] 
           end; 
         3 : 
           begin 
           TauMin[i] := TauHist[i];          // Min imum Stress Reset TauHist[i] 
           TauMax[i] := -TauMin[i]; 
           GammaMin[i] := GammaHist[i];      // Min imum Strain Reset 

GammaHist[i]; 
           GammaMax[i] := -GammaMin[i];      // Max imum Strain Reset acc. to Min 

-GammaHist[i] 
           end; 
         4: 
           begin 
           TauMax[i] := 999;      // Error 
           TauMin[i] := 999;      // Error 
           GammaMax[i] := 999;    // Error 
           GammaMin[i] := 999;    // Error 
           end; 
    end; 
  end; 
end; 
 
 
 
procedure CalcTau(); 
var i:longint; 
    std:longint; 
begin 
  for i := 1 to 3 do 
  begin 
    if (Dir[i] = 1) and (Gamma[i] > GammaMax[i]) th en 
    std := 1 // Virgin UP 
    else 
        begin if (Dir[i] = -1) and (Gamma[i] < Gamm aMin[i]) then 
            std := 2 // Virgin DOWN  
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        else begin 
         if Dir[i] = 1 then 
                 std := 3 // History UP 
         else begin 
          if Dir[i] = -1 then 
                  std := 4 // History DOWN 
          else    std := 5; // Standing 
          end; 
         end; 
        end; 
 
    case std of 
       1 : if Gamma[i] >= 0 then 
              Tau[i] := (G*power((2*Gamma[i]),Xd)) 
           else 
               Tau[i] := (-1*G*power((-2*Gamma[i]), Xd)); 
       2 : if Gamma[i] >= 0 then 
               Tau[i] := (G*power((2*Gamma[i]),Xd))  
           else 
               Tau[i] := (-1*G*power((-2*Gamma[i]), Xd)); 
       3 : Tau[i] := TauMin[i] + 2*G*power((abs(Gam ma[i] - GammaMin[i])),Xd); 
       4 : Tau[i] := TauMax[i] - 2*G*power((abs(Gam ma[i] - GammaMax[i])),Xd); 
       5 : Tau[i] := TauHist[i]; 
    end; 
  end; 
 
    for i := 4 to 6 do 
  begin 
    if (Dir[i] = 1) and (Gamma[i] > GammaMax[i]) th en 
    std := 1 // Virgin UP 
    else 
        begin if (Dir[i] = -1) and (Gamma[i] < Gamm aMin[i]) then 
            std := 2 // Virgin DOWN 
        else begin 
         if Dir[i] = 1 then 
                 std := 3 // History UP 
         else begin 
          if Dir[i] = -1 then 
                  std := 4 // History DOWN 
          else    std := 5; // Standing 
          end; 
         end; 
        end; 
 
    case std of 
       1 : if Gamma[i] >= 0 then 
              Tau[i] := (G*power((2*Gamma[i]),Xd))/ 2 
           else 
               Tau[i] := (-1*G*power((-2*Gamma[i]), Xd))/2; 
       2 : if Gamma[i] >= 0 then 
               Tau[i] := (G*power((2*Gamma[i]),Xd)) /2 
           else 
               Tau[i] := (-1*G*power((-2*Gamma[i]), Xd))/2; 
       3 : Tau[i] := TauMin[i] + G*power((abs(Gamma [i] - GammaMin[i])),Xd); 
       4 : Tau[i] := TauMax[i] - G*power((abs(Gamma [i] - GammaMax[i])),Xd); 
       5 : Tau[i] := TauHist[i]; 
    end; 
  end; 
 
end; 
 
procedure CalcDampStress(var Sig:vector); 
var i:longint; 
begin 
  for i := 1 to 3 do  
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begin 
  Sig[i] := Tau[i] + K*EpsVol; 
  Sig[i+3] := Tau[i+3]; 
  end; 
end; 
 
 
procedure SaveHist(var StVar:statevector); 
var i:longint; 
begin 
  for i := 1 to 6 do 
  begin 
  StVar[i] := Eps[i];         //  1..6 
  StVar[i+6] := Gamma[i];     //  7..12 
  StVar[i+12] := GammaMax[i]; // 13..18 
  StVar[i+18] := GammaMin[i]; // 19..24 
  StVar[i+24] := Tau[i];      // 25..30 
  StVar[i+30] := TauMax[i];   // 31..36 
  StVar[i+36] := TauMin[i];   // 37..42 
  StVar[i+42] := Dir[i];      // 43..48 
  end; 
end; 
 
procedure CalcStress(var Sig:vector; 
                     var dEps:epsvector; 
                     var Sig0:mediumvector; 
                     var D: matrix); 
var i,j : longint; 
begin 
  for i := 1 to 6 do 
  begin 
    Sig[i]:= Sig0[i]; 
    for j := 1 to 6 do 
    begin 
      Sig[i] := Sig[i]+D[i,j]*(dEps[j]); 
    end; 
  end; 
end; 
 
procedure User_Mod(var IDTask, 
                       iMod, 
                       IsUndr, 
                       iStep, 
                       iTer, 
                       Iel, 
                       Int:longint; 
                   var X, 
                       Y, 
                       Z:double; 
                   var Time0, 
                       dTime:double; 
                   var Props:longvector; 
                   var Sig0:mediumvector; 
                   var Swp0:double; 
                   var StVar0:statevector; 
                   var dEps:epsvector; 
                   var D:matrix; 
                   var Bulk_W:double; 
                   var Sig:vector; 
                   var Swp:double; 
                   var StVar:statevector; 
                   var ipl, 
                       nStat, 
                       NonSym, 
                       iStrsDep,  
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                       iTimeDep, 
                       iTang, 
                       iPrjDir, 
                       iPrjLen, 
                       iAbort:longint);stdcall;expo rt; 
var pp: double; 
var i,j:longint; 
begin 
  case IDtask of 
  1:begin 
          {initialise state variables StVar0} 
    case iMod of 
    1 : begin 
        {Linear Elastic Model} 
        pp := (Sig0[1] + Sig0[2] + Sig0[3])/3; 
        StVar0[1] := Min(StVar0[1],pp); 
        end; 
    end; {iMod} 
   end; {of IDTask = 1} 
 
 
  2:begin 
      {calc constitutive stresses Sig} 
      case iMod of 
      1: begin 
         Parameters(Props,iMod); 
         makeD(D); 
         CalcStress(Sig,dEps,Sig0,D); 
      end; 
      2: begin 
         Parameters(Props,iMod); 
         CallHistory(StVar0,dEps); 
         CalcGamma; 
         CalcDir; 
         MinMax; 
         CalcTau; 
         CalcDampStress(Sig); 
         SaveHist(StVar); 
         end; 
     end; {of iMod} 
    end;  {of IDTask = 2} 
 
   3:begin 
     case iMod of 
      1: 
        begin 
        Parameters(Props,iMod); 
        makeD(D); 
        end; 
      2: 
        begin 
        Parameters(Props,iMod); 
        makeDStiffer(D); 
        end; 
     end; 
    end;     {of IDTask = 3} 
 
  4:begin 
      {state variables nstat} 
      nStat := 48; 
    end;    {of IDTask = 4} 
 
  5:begin 
      {matrix attributes} 
        case iMod of  
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      1: begin 
         NonSym := 0; 
         iStrsDep := 0; 
         iTimeDep := 0; 
         iTang := 0; 
         end; 
      2: begin 
         NonSym := 1; 
         iStrsDep := 1; 
         iTimeDep := 1; 
         iTang := 0; 
         end; 
      end; {of iMod} 
    end;    {of IDTask = 5} 
 
  6:begin 
      {elastic matrix De} 
    case iMod of 
     1: 
       begin 
       Parameters(Props,iMod); 
       makeD(D); 
       end; 
     2: 
       begin 
       Parameters(Props,iMod); 
       makeDStiffer(D); 
       end; 
    end; 
    end;  {of IDTask = 6} 
  end;{of case} 
end;  {of User_Mod} 
 
exports 
  User_Mod name 'USER_MOD', 
  GetModelCount, 
  GetModelName, 
  GetParamCount, 
  GetParamName, 
  GetParamUnit, 
  GetStateVarCount, 
  GetStateVarName, 
  GetStateVarUnit; 
end.  
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