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Abstract

Timing common and specific modulators of disease progression is crucial for treatment, but the understanding of the
underlying complex system of interactions is limited. While attempts at elucidating this experimentally have produced
enormous amounts of phenotypic data, tools that are able to visualize and analyze them are scarce and the insight
obtained from the data is often unsatisfactory. Linking and visualizing processes from genes to phenotypes and back,
in a temporal context, remains a challenge in systems biology. We introduce PhenoTimer, a 2D/3D visualization tool
for the mapping of time-resolved phenotypic links in a genetic context. It uses a novel visualization approach for
relations between morphological defects, pathways or diseases, to enable fast pattern discovery and hypothesis
generation. We illustrate its capabilities of tracing dynamic motifs on cell cycle datasets that explore the phenotypic
order of events upon perturbations of the system, transcriptional activity programs and their connection to disease.
By using this tool we are able to fine-grain regulatory programs for individual time points of the cell cycle and better
understand which patterns arise when these programs fail. We also illustrate a way to identify common mechanisms
of misregulation in diseases and drug abuse.
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Introduction

From subcellular to population level, dynamic phenomena
resulting from a combination of genetic and environmental
factors shape diversity in wide arrays of phenotypes. The
connection between the genotype and the phenotype is of
great interest to researchers, as it can give clues into healthy
and perturbed states, eventually leading to the differential
treatment of diseases. Placing this in a temporal context
enables us to better understand developmental features and
triggers of disease onset and progression.

In recent years, the high-throughput sequencing technology
has delivered increasing amounts of data on this type of
studies [1–4]. Along with it, we are also witnessing a deluge of
imaging data originating from large-scale phenotypic screens
[5–8]. Despite the progress made in techniques to collect data
at finer spatial and temporal resolution, a major bottleneck
remains the interpretation of the results. In this respect,
visualization constitutes a good aid in emphasizing important
features of the data. However, in the growing landscape of
large-scale multidimensional phenotypic datasets, visualization
tools can hardly cope with the amount of data delivered by

these methods, especially when the data is temporally
stratified.

Time-focused visualization has been the object of different
tools, like GATE [9], VistaClara [10], BioTapestry [11],
TVNViewer [12], Arena3D [13,14], iPath [15] or iTOL [16].
These tools provide functionality for analyzing gene regulatory,
metabolic, or protein–protein interaction networks that change
with time. They use visual queues like color shifts, dynamic
linking or embedding of heat maps or bar charts to depict these
changes. However, there is limited attempt to compare
phenotypic outcomes timewise, as reflected by genetic factors.
Time thus remains a challenging aspect in this area. With the
increasing amount of large-scale time-resolved genotype-
phenotype data, a new approach to time-resolved phenotypic
visual inspection is needed.

We introduce PhenoTimer, an open source tool for the
visualization of time-driven phenotypic relationships in a
genetic context. By using a novel combination of 2D/3D
temporal projection displays and 2D network visualization, it
enables the dynamic capturing of key points of biological
processes. Temporal gene-phenotype connections can be
analyzed in an interactive manner for link discovery and
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hypothesis generation. PhenoTimer is available for download
as a standalone application from http://phenotimer.org/, along
with the source code, the files used for the examples in this
paper and other sample files for testing.

Materials and Methods

Availability
PhenoTimer was developed using Processing 1.5.1 (http://

processing.org/), a Java-based environment with OpenGL
integration. It runs on Mac OSX, Windows and some Linux
environments (Ubuntu 9.04, limited testing). PhenoTimer is
open source and freely available for academic use under the
GNU GPL v 3.0 license at the following website: http://
phenotimer.org/. The Java Run time Environment version 1.6
or higher (http://www.java.com/) is needed to run the tool. Mac
users should also install the JOGL libraries (http://
opengl.j3d.org/).

Implementation
PhenoTimer uses 2D and 3D temporal projections to track

connections between different phenotypes. These connections
underline common genetic factors through time. The purpose is
to explore the genetic-phenotypic space from a different
perspective: how are two phenotypes similar, how do they
relate to each other and what common genetic mechanisms
govern the two biological processes? It also looks at how
phenotypic traits can evolve successively from previous traits
and how networks come into play in this progression.

The main novelty of this tool consists in visualizing
connections between phenotypes in the form of arcs linking the
respective phenotypes for every time point or for a time
interval. We use 3D, linear 2D and circular 2D projections to
represent these arcs (see Figure 1 and Figure S1A–C). Heat
maps and timeline plots of gene vector values for each
phenotype complement these depictions, as detailed in Figure
S1D and S1E. As such, several view modes are available to
the user: (a) the 3D arc view (default, with connections through
time represented as arcs in three dimensions); (b) the 2D arc
view (a flattened view of the previous representation, for
disambiguation); (c) the circular view (with phenotypes
arranged as segments of a circle); (d) the heat map view; and
(e) the line plot view (the last two both with global and zoomed-
in views at each time point). One can use the view modes
complementarily, depending on the size of the dataset and the
topic addressed. For more details on the comparative strengths
and weaknesses of each view, see Table S1.

The arc representation.  The “connection”, represented as
an arc, can be defined to suit the particular biological question
under investigation. For instance, a “connection” between two
phenotypes can indicate that these phenotypes are the result
of disrupting some genes involved in the same pathway or
process or it can highlight a transition between these two
phenotypes for at least one genetic event (gene suppression,
overexpression etc.). The color of the arcs codes for the
directionality of the connection where needed (like in the case
of transitions from one phenotype to the other), corresponding
to the end phenotype. In case there is no directionality

associated to the link, all connections can be set to a single
color. The height (for 3D) or the width (for 2D) of the arc is
proportional to the number of genes or gene-linked events for
which that connection appears at that particular time point.

The reason for offering three types of depiction for the
phenotypic connections is that, depending on the size and
content of the dataset, one or the other visual representation
may prove more useful in detecting patterns in the data. The
height of arcs in the 3D view is better distinguishable than the
width in the 2D layout in the case of overlapping arcs, thus
acting as a more efficient indicator of the number of genes
involved in the relationship. However, 3D layouts have been
shown to be misleading, major issues referring to occlusion
and perspective distortion [17]. While the zoom, pan and
rotating capabilities partially overcome this, the 2D linear and
circular representations prove more effective in surmounting
these potential pitfalls. The 2D linear layout is adequate in
looking at time traces of connections. The 2D circular layout,
similar to Circos [18] or TVNViewer [12], serves well for
individual time point analysis.

Some of the design choices are similar to the ones described
by 19. In this paper, the authors use 3D links to highlight gene
combinations that may be biologically relevant based on their
expression, on a heat map of microarray values. In contrast,
PhenoTimer looks at connections between phenotypes rather
than single genes, and offers more flexibility in observing
features by switching between 3D and 2D views, while at the
same time allowing for further data integration.

To minimize clutter, we reorder the phenotypic lanes for
optimal viewing of connections. To this purpose, we use an
agglomerative hierarchical clustering algorithm [20] to
maximize the number of links between two adjacent
phenotypes.

Thresholds can be set for phenotypes and the time offset, in
order to filter the dataset for relationships of interest or at
different time intervals (Figure S2C and S2E, respectively).
Importantly, if no thresholds are set for the phenotypes, all
phenotypes will appear interconnected. One must filter for
phenotype-associated values that reflect outstanding gene
behavior (e.g. lowly/highly expressed). For the time offset,
connections between phenotypes from time point t to time point
t+x will be shown, where x∈{0,n} is the time offset, n being the
total number of time points.

Bar charts can be loaded and visualized in the 3D arc mode
in parallel to the phenotypic connections, as shown in Figure
S1A. These usually contain measurements of some parameter
associated to individual time points (e.g. the number of genes
that are expressed at a particular moment). The user can
decide on the data that makes most sense to visualize along
with the phenotypic links.

The 3D arc plot is interactive. One can select individual arcs
to get further information on the genes involved in the specific
connection, along with gene ontology information, if it has been
loaded (Figure 1A). Furthermore, one can filter the dataset for
genes of interest, such that only connections that involve these
genes are displayed.

The heat map representation.  The heat maps of gene-
associated values for each phenotype are generated and
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displayed separately for each time point. The rows and
columns are clustered using agglomerative hierarchical
clustering. The user can choose between single, average or
complete linkage and Euclidean or Manhattan distance.

The line plot representation.  The line plots are timelines
showing the evolution of gene-associated values over time for
every phenotype. The global view depicts the plots for the
entire dataset. Similar to the heat map view, a mouse hovering

event will pop-up a new window for the chosen gene for closer
analysis.

Networks and data integration.  To get insights into the
functionality and properties of the genes associated to
phenotypic changes, gene ontology (GO), protein–protein
interaction, metabolic and other types of networks can be
loaded from a file or from the STRING database [21,22] and
visualized dynamically. Nodes in the network are dynamically
highlighted at each time point to reflect correspondence to

Figure 1.  Phenotypic transition patterns in cell populations upon knockdown of genes essential for cell division.  Three arc
representations are shown: (A) 3D; (B) linear 2D; (C) circular 2D. An arc represents a transition from one phenotype to the other at
consecutive time points. The color of the arc corresponds to the phenotype into which the cells transition. The height (3D) and width
(2D), respectively, of arcs indicates the number of genes whose suppression causes the respective phenotypic transition at that
particular moment (at most 5 genes for this dataset). The GO term network in the boxed picture in the upper right corner highlights
(in red) the molecular functions of the genes whose knockdown causes a transition at time point 41. The respective transitions are
shown as arcs in the plot for the particular time point. The size of the nodes in the network is proportional to the number of genes in
the dataset that are enriched for the respective function. The GO network was generated using BiNGO [37] and subsequently
loaded into PhenoTimer.
doi: 10.1371/journal.pone.0072361.g001
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genes underlying the particular phenotypic connections at the
respective time point. A network of genes can also be
automatically generated from the data, where the links indicate
that two genes are involved in the same phenotype. This
network is recalculated and updated for each time point. For
performance and display reasons, only networks with less than
500 nodes will be generated and shown. To optimize the
drawing space, we display the networks using a force-directed
layout. The GO term networks use this non-classical layout too,
as we believe the focus should be on the individual highlighted
terms rather than on how they are connected. Nevertheless,
the networks are interactive, so the layout can be rearranged
by the user. Other network layout options are planned for future
implementation.

Additionally, right-clicking a gene/protein name within the
network will provide links to several databases: UniProt [23],
Ensembl [24], Entrez Gene [25], Entrez Proteins [26] and
KEGG [27]. The query results of searching for this entity in any
of these databases will be opened and displayed in a browser.

Other considerations.  The tool is interactive, with zoom-in,
zoom-out, pan and rotate capabilities. Filters for specific genes
or phenotypes can be set. There are several color schemes
available for use (from http://colorbrewer2.org/), including color-
blind schemes or single color display.

The input consists of a special format space-delimited file, as
described in Table S2. Considering the heterogeneity of
possible input data, a normalization option is not available and
should be performed beforehand if needed. Network files (GO
or other types of networks) can be loaded in the format
described in Table S3. The data employed in the results
presented in this paper is available on the website at http://
phenotimer.org/samplefiles.html. These files can be loaded
directly into PhenoTimer, but, in order to obtain the same
figures, thresholds must be applied to the phenotypic outcomes
as described for each dataset.

More details on the workflow and functionality of the tool can
be found in Figures S2 and S3, and on the website at http://
phenotimer.org/tutorial.html.

Limitations
PhenoTimer performs best on Mac OSX and Windows.

Compatibility issues of Processing in Linux may impair the
performance of PhenoTimer in this environment. For reasons
of CPU load and physical visualization limits, it is
recommended not to visualize datasets that exceed the
following dimensions: a few thousand genes x 50 phenotypes x
100 time points. The main memory usage limitation is the
number of phenotypes.

Results and Discussion

Visualization of large-scale datasets is crucial for the
understanding of key regulatory factors and a better elucidation
of biological processes. Time-resolved data adds an extra
challenge that tools currently available to biologists hardly
meet. In this section, we demonstrate how to use PhenoTimer
on time-resolved multiple-phenotype data for quick pattern
identification and generation of new hypotheses.

Discovering patterns in cell cycle regulation
One of the best examples of highly time-regulated processes

is the cell cycle. Intensely studied, it still poses interesting
questions for biologists, with implications in senescence
processes and disease [28].

Progression dynamics of cell division defects.  We
illustrate an investigation of phenotypic patterns throughout the
cell cycle as they arise from perturbations in the system. The
data comes from a whole-genome siRNA knockdown study on
genes essential for cell division, as described in [29]. Here,
they suppress the function of one selected gene at a time and
follow the cell division process within cell populations. The
genes essential to the cell cycle will cause cell division defects
upon knockdown. These defects fall into seven main
categories, based on morphological feature scoring: “mitotic
delay”, “binuclear”, “polylobed”, “grape”, “large”, “dynamic” and
“apoptosis”. The cells transition through different phenotypic
stages before dying or becoming arrested into a particular
morphology. A succession of phenotypes therefore
characterizes the imaged cell populations.

We use PhenoTimer to visualize how the cell populations
transition from one phenotype to the other upon knockdown of
selected genes (Figure 1).

We only represent transitions to the most prominent
phenotypes at every time point (i.e. maximally scored for the
respective gene knockdown). We apply thresholds to the
phenotypic scores assigned to every suppression event
according to the values mentioned in [29].

We can easily observe patterns, as shown in Figure 1.
Transitions to the “polylobed” (purple) and “apoptosis” (green)
phenotypes are prominent features that arise. “Polylobed” is a
widely recurring morphology that occurs mostly after the
“mitotic delay”, “dynamic” or “binuclear” phenotypes. In fact,
one notices a relatively stable alternation between the
“binuclear” and “polylobed” phenotypes. Both constitute
cytokinesis defects and are likely to succeed each other. The
several transitions to apoptosis are expected, since many of
the knockdowns will perturb the cellular system strongly
enough to kill the cell.

Besides these, one can also identify less common transition
patterns: “mitotic delay” to “dynamic” at large time intervals,
fairly uniformly distributed throughout the time course; “mitotic
delay” to “large”, more frequent towards the end; “mitotic delay”
to “grape”; or “grape” to “large”. By comparing these, we can
quickly identify the more prevalent (polylobed, apoptosis,
binuclear) and the rarer phenotypes (grape, large). We also get
an overview of the timing in the cell cycle when a particular
transition can occur. The rarer transitions occur at longer time
intervals, indicating that they are more likely slow and final
transitions, as opposed to the transitions to polylobed and
apoptosis that are more homogeneous throughout the time
course and thus more frequent and faster (see Figure S4 for
single phenotype plots).

By visualizing the GO network dynamically along the time
course, one can look at the genetic background that explains
the phenotypes. In this way, the user can understand what kind
of functional roles of genes/proteins would lead to certain
phenotypic patterns and how they evolve with time. The timing
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of the phenotypic transitions driven by gene knockdown events
reveals a succession of molecular functions linked to the cell
cycle (box in Figure 1). The enriched functionality is
summarized for the entire time course in Figure S5. Periodic
spikes can be observed for some cell division-, complex
assembly- and metabolic-linked processes. The reconstructed
functionality timeline reflects, to some extent, the expected
chronology of events throughout the cell cycle, e.g. spindle
assembly-related events appear earlier in the time course
compared to events involving genes with roles in the
ubiquitination pathway. This suggests the possibility of a link
between the timing of protein activity within the cell cycle and
the timing of the phenotypic onset upon this protein’s
deregulation.

By identifying the genes that determine the same phenotypic
transitions, one can even infer new functions for unknown
genes. For instance, gene MGC13053 in Figure 1A is of
unknown function, but is involved in the same type of transition
as genes PLCB2, SPATC1 and PKN3. These participate in
ribonucleotide binding processes, e.g. tubulin binding,
centrosomal activity, phosphorylation events (according to
GeneCards [30]). Thus, a valid hypothesis to test might be
whether MGC13053 affects microtubule nucleation dynamics.
As such, it could be involved in defective spindle pole assembly
or chromosome segregation, resulting in cytokinesis arrest, as
the phenotype suggests.

From the phenotypic transition profiles of the cells, we were
able to infer a network of genes that may be synchronously
transcribed or have products involved in the same pathway.
We hypothesize that those genes whose knockdown causes
the same succession of phenotypes in a synchronized manner
should be involved in closely related processes, at least
temporally if not also spatially. 482 such genes were found.
The resulting networks are depicted in Figure S6. The genes
involved in these hypothesized synchronous events have as
first phenotype upon silencing either “binuclear”, “polylobed”,
“apoptosis” or “dynamic”. 62.4% of the interactions have been
validated with GeneMania [31,32]. The respective genes were
mostly involved in mRNA splicing, their products likely
constituting parts of the spliceosome (see Table S4). Examples
for four of the largest gene network modules are shown in
Figure S7. The rest of the interactions are novel and should be
tested experimentally.

K-means clustering of these genes according to their
phenotypic succession profiles places them in four classes,
similar to the classification according to the first resulting
phenotype (Figure S8).

These genes are probably involved in critical points of later
stages of cell division, which are complex and require good
coordination. As such, some of the novel interactions identified
may be of significant interest.

Disease connection discovery.  In this section, we show
how PhenoTimer could facilitate the discovery of potential links
between diseases. We investigated the impact of peak
transcription events throughout the cell cycle on different types
of cancer. For this, we used transcription profiles of 600
essential genes that periodically fire throughout the progression
of the cell cycle [33]. This means that the peak of transcription

for these genes always occurs at the same time point. We map
the transcription peaks only for the genes enriched in cancer
pathways, as obtained from bioCompendium (http://
biocompendium.org/).

Figure 2 illustrates cancer pathways that share at least one
enriched gene that has a periodic peak of transcription at a
certain moment in the cell cycle. Some highly active
transcription events, like those in the beginning of S phase or
middle of G2 phase, are common to almost all types of
cancers. In contrast, some of the others, especially in the M-
phase, prove to be rarer, referring to a gene that is enriched in
only two cancer types (bladder and pancreatic cancer). The
respective gene is VEGFC [ENSG00000150630], a growth
factor active in angiogenesis and endothelial cell growth. The
network it is involved in, derived from STRING, is also shown in
Figure 2A. Figure S9 shows how VEGFC relates to all the other
periodic genes enriched in at least one pathway disrupted in
cancer. It mostly connects through genetic interactions or co-
expression to the rest of the network and is commonly enriched
in cancer pathways with the directly linked partners, E2F2 and
NFκB1, both peaking after the G1 phase. It is possible that the
disruption of the links with VEGFC upon malfunctioning of
either one or the other of these two proteins plays a role as
tumor-triggering factor. This analysis indicates that the
regulation of most cancers might involve very similar
mechanisms for replication of genetic material, but the errors of
cell division leading to disease may be cancer type-specific.

This example of mapping transcription events to pathways
involved in cancer provides an idea of how PhenoTimer might
be used for similar studies. While this model was rather naive,
we are confident of the potential of this tool to provide new
insights about common mechanisms for disease regulation and
progression, given a more complex context.

Linking drug abuse phenotypes
Drugs of abuse act on the brain reward system and employ

similar mechanisms to generate addiction. The impact on
human health makes this an intense topic of research.
Elucidating the genes and pathways commonly affected by
several drugs can help us better understand the downstream
effects of drug intake, as well as identify potential side effects
of drug combinations.

We looked at transcriptome alterations in the mouse striatum
upon acute administration of six addictive drugs: nicotine,
ethanol, cocaine, methamphetamine, heroin and morphine. We
used detailed time course profiles of gene expression as
described in [34] to analyze common influences of pairs of
drugs on different gene classes. Transcription levels are
measured at intervals of 1, 2, 4 and 8 hours after drug injection.

From the set of 42 genes identified as drug-responsive in the
paper, we looked at how the genes with transcription values in
the lower and upper quartiles are commonly regulated by pairs
of drugs. We term these genes as relatively “lowly” or “highly
expressed” within the group. Table S5 documents the
thresholds applied for the classification. We use PhenoTimer to
plot connections between drug mechanisms through time.

Figure 3A shows drugs that have similar impact on the
transcription of genes at every time point. If the expression of a
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Figure 2.  Transcription events linking cancer pathways.  (A) Peaks of transcriptional activity for periodic genes within the cell
cycle are shown throughout the cell cycle phases, along with the cancer pathways in which they are enriched. Two cancer pathways
are connected if they share at least one enriched gene at the particular time point. The network neighborhood of the genes involved
in the connections is also shown, as retrieved from STRING. Gene VEGFC is highlighted in red. (B) The genes shared by several
cancer pathways are highlighted through the course of the cell cycle.
doi: 10.1371/journal.pone.0072361.g002
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gene is in the lower (respectively, upper) quartile upon injection
of both drugs A and B at a particular time point, we connect the
two drugs. The thickness of the line corresponds to the number
of genes that are commonly lowly or highly expressed at that
time point between both drug treatments. In parallel to pairwise
evolution of drug connections through time, we show the
networks of genes that are similarly affected by the same
drug(s). The networks are generated automatically from the
data using PhenoTimer. Thus, the figure shows how

connections evolve in time between 1) drugs that affect the
same genes and 2) genes affected by the same drugs. We only
take into account relatively lowly and highly expressed genes in
both cases.

The first observation is that mechanisms of action are very
similar among drugs of abuse. For the genes whose
expression is in the lower quartile, we notice an increase with
time in the number of commonly affected genes by pairs of
drugs. An inverse relation is observed for the upper quartile

Figure 3.  Similar mechanisms of drug-induced gene regulation for up to 8 hours after treatment.  (A) Pair-wise connections
between drugs and networks of genes affected by the same drug are visualized using PhenoTimer for every time point. Two drugs
are connected if they similarly regulate the same gene. Two genes are connected in the network if they respond to the same
drug(s). Thickness of links corresponds to the number of genes, or drugs, respectively, shared by two partners. Only genes with
transcription values in the lower quartile (top) or upper quartile (bottom) are taken into account. The core gene network is depicted
in yellow and the variable gene elements (i.e. that don’t appear at every time point) are highlighted in orange (lower quartile) and
green (upper quartile). Links between drugs are depicted in magenta and pink if they contain the highest number of commonly
regulated genes. The genes specific for that particular link only are circled in the same color in the network below. (B) Heat map of
the gene expression values after 8 hours of drug induction is shown for every drug. The line corresponding to gene Tnfrsf25 is
highlighted and the columns corresponding to ethanol and heroin are also indicated. The graphic of transcription counts throughout
the time course for this gene after heroin induction is shown below. Both images have been generated using PhenoTimer. (C) The
network of human homologs for the relatively lowly and highly expressed genes. The variable genes are highlighted in orange
(lower quartile) and green (upper quartile), along with the time points when their values are in the required quartile range.
doi: 10.1371/journal.pone.0072361.g003
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genes, as there are more of these genes influenced by the
same two drugs in the beginning compared to the end of the
time course. This suggests that drugs of abuse impact many of
the differentially expressed genes by lowering their expression
rather than enhancing it.

The gene networks allow us to identify the stable and the
variable elements involved in the drug connections. At every
time point, a connection between two genes means that their
expression is influenced by the same drug(s). The thickness of
the link corresponds to the number of common drug influences.
The yellow nodes form the core gene network that stays
constant throughout the time course. Among the lowly
expressed genes, many core components were related to
proliferation; the highly expressed genes, on the other hand,
were preponderantly involved in phosphorylation-mediated
signalling and transcription events (Table S6). This suggests
that common and consistent effects of drug abuse include
reduction of cell proliferation and alteration of transcription and
signalling pathways as a response to stress.

The orange (lower quartile) and green (upper quartile) nodes
are variable elements, i.e. the genes that appear and disappear
in the network at different time points. These include major
regulators of transcription and cell division, as well as genes
involved in hypoxia response (see Table S6). The variability in
the transcriptional response of these genes might be explained
by the fact that they tend to be more robust to perturbations.

Figure 3C displays the human homolog network extracted
from STRING for the entire set of drug-responsive genes. The
lowly and highly expressed genes that are commonly regulated
by drugs are highlighted in the corresponding colors and the
time points of common regulation are depicted. More of the
core network genes tend to be conserved in human compared
to the variable genes.

The gene networks are quite dynamic through time,
underlying small differences in the mechanisms of action of
different drugs. In fact, despite the similarities between drug
connections, their evolution is dynamic as well. The drug links
colored in magenta and pink highlight the pairs of drugs that
act on the highest number of common genes and have at least
one specific gene for the connection (i.e. unique, not
encountered in the other connections). The gene specific only
for that pair of drugs at a time point is circled in the same color
in the network below. For the genes in the lower quartile, we
notice that gene Tnfrsf25, a member of the tumor necrosis
factor receptor superfamily [ENSG00000215788], is uniquely
downregulated only by ethanol and heroin after 8 hours. Heat
map and line plot analysis for this gene shows that the
downregulation is a very slight effect and would have been
difficult to capture otherwise (Figure 3B). The two drugs also
uniquely affect genes Fos and Sgk1, whose transcription
values are in the upper quartile range after 2 and 4 hours,
respectively. Fos is a regulator of cell proliferation and
differentiation and has been associated with apoptotic cell
death [35], while Sgk1 is a serine/threonine-protein kinase with
important roles in cellular stress response [36]. This suggests
there may be some stronger crosstalk between ethanol- and
heroin-regulated pathways, especially those of neuronal death
and tumor development. Hence, the effects of ethanol

consumption might resemble more those of heroin than of the
other drugs.

Other specific genes include Fosb for cocaine and
methamphetamine (both psychostimulants), which share
effects on Egr2 also with nicotine; and Polr3e for ethanol and
methamphetamine. Morphine has the same effects on Sgk1 as
ethanol or heroin after 4 hours.

Differences between drug effects are clearer if we look at the
time evolution of drug and gene connections for stimulants
(cocaine, methamphetamine) and depressants (heroin,
morphine), as depicted in Figure S10. We observe an
accumulation of lowly expressed genes, as well as reduction of
highly expressed genes with time between all pairs of drugs.
Surprisingly, among the upper quartile genes, there are more
commonly affected genes for the pairs cocaine-heroin and
morphine-methamphetamine, even though they link different
drug classes. In this case, the last gene network depicts the
pairs of genes that are most highly and constantly affected by
the same drug, the other variable elements seeming to lower
their expression with time. More and more genes become
relatively lowly expressed, perhaps a consequence of
enhancement of transcription factor control.

The 42 true positive genes found in the study were classified
in the paper into four subclasses according to their gene
expression patterns: A (involved in behavioral sensitization and
reward learning), B1 (reward learning and drug dependence),
B2 (drug dependence) and B3 (anti neurotoxic response) [34].
We look at lowly expressed genes in these subclasses and
how they are commonly affected by pairs of drugs. Figure S11
depicts an even more dynamic connection landscape for these
subclasses, in particular for those belonging to group B1.
Groups A and B3 display contrasting regulation methods: drugs
regulate more genes similarly in the beginning of the treatment
for group A and towards the end of the treatment for group B3.
Connections in group B2 are rather constant. The genes
highlighted in red are affected by pairs of drugs in similar ways.
We notice that, in most cases, the products of these genes are
involved in pathways where the interaction partners are not
affected in a similar manner by the drugs. This suggests that
some compensatory mechanism might arise to account for
these localized alterations of protein content. This should be
further investigated.

The similarities identified in the action of different drugs
reveal an uneven pattern of regulation within a single drug
class or a gene group, and several similarities between
different classes. This further expands on the complexity of
addiction mechanisms. This example also highlights the
potential of using PhenoTimer to identify synergistic effects of
drugs, which could have implications for designing drug
therapies.

Conclusions

We have shown how PhenoTimer can help with the better
understanding of phenotypic relations by connecting back to
the genetic background and by embedding time information.
The tool has proven to be useful in fast patterning of
phenotypic transition profiles within the cell cycle upon
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perturbation, as well as in the identification of similarities in
drug action and potential novel links between diseases.

Compared to similar software for time-resolved data,
PhenoTimer introduces several new features. To our
knowledge, no other tool is currently available for specifically
mapping connections between phenotypes in the form of arc
projections. Furthermore, these relationships and their genetic
determinants can be tracked dynamically, along with network
and functionality information. The alternation between different
2D and 3D views allows a detailed inspection of the data, and
global patterns can be easily detected. In short, PhenoTimer
enables an interactive exploration of multidimensional
phenotypic screens for global trends and single time point
details, in an adaptable manner that allows the integration of
dynamic network information.

We anticipate that the use of this tool is not limited to the
examples we have shown, but its features are suited to a whole
range of biological data. In general, it is relevant for the
analysis of interesting subsets of high-throughput expression or
imaging screens, as well as other experiments. As application,
PhenoTimer could also be used for the visualization and
analysis of spatiotemporal programs encoded within and
among chromosomes. Identifying common points in the
progression of various diseases could provide new strategies
for combined treatment and drug repurposing. Visualization of
common variations among bacterial populations in the human
gut through time would give us further insight into the dynamics
of the microbiota of the gut. Additionally, it can be used for
quality control of different replicates in an experiment or for
comparison between different tissues. We thus envision
phenotypic patterning of processes from the smallest to the
largest scale, for a global view of time-dependent regulation
and rhythms governing life.

Supporting Information

Figure S1.  The different visualization modes in
PhenoTimer.
(A) 3D arc view. Connections between phenotypes are
represented as arcs, the color encoding directionality (in case it
is not needed, single color depictions can be used). The height
of the arc corresponds to the number of genes involved in the
connection. Bar charts with values for every time point can be
loaded as well. (B) 2D arc view. Connections are represented
as 2-dimensional arcs, with the same color coding as in (A).
The thickness of the arc corresponds in this case to the
number of genes. (C) Circular view. The connections between
phenotypes are visualized in a circular manner for every time
point. (D) Heat map view. The gene-associated values are
visualized for each phenotype in a separate heat map for every
time point. The user can choose the clustering method. The
heat maps are expanded upon hovering and can be individually
analyzed. (E) Line plot view. The gene-associated values are
visualized as timeline plots for every phenotype. The graphs
are expanded upon mouse hovering.
(TIF)

Figure S2.  Details of PhenoTimer graphical user interface.

(A) Part of the canvas where the different 2D/3D graphical
representations are drawn. (B) Part of the canvas where the
different 2D network representations are drawn. (C) Controls
for setting thresholds for phenotypic values. One can set new
value ranges by dragging the sliders. (D) Slider controller for
moving through time. Pressing the key “t” allows switching
between visualizing connections for a single time point and for
all time points up to the current one. (E) Slider that allows
setting the time interval for arc display. (F) Controller for
changing the unit height (in 3D) or width (in 2D) of the arcs, for
better emphasis of visualized data. (G) Slider that allows the
changing of the arc transparency, for optimized visualization
(default is 20%). (H) Pop-up that indicates the action that can
be taken using the corresponding slider.
(TIF)

Figure S3.  PhenoTimer workflow.
The experimental data coming from medium or high-throughput
gene expression or imaging screens for which time-lapse
recordings have been made is formatted into a special input file
similar to the one in the top panel, parsable by PhenoTimer.
This file is then loaded into PhenoTimer for processing. The
tool produces already at this point the visual output, but one
might wish to first set thresholds for gene-associated values for
each phenotype, otherwise all phenotypes might appear
connected. After this step, one is ready to visualize the data in
different view modes and integrate network information (bottom
panel).
(TIF)

Figure S4.  Single phenotype transition plots, as produced
by PhenoTimer.
Each plot visualizes only transitions to and from phenotype
“polylobed” (A), “apoptosis” (B), “grape” (C) and “large” (D),
respectively. Prevalent phenotypes (A and B) are clearly
distinguishable from rarer ones (C and D). This holds even
when considering only transitions towards the phenotype of
interest, depicted in purple (polylobed), green (apoptosis), blue
(grape) or red (large).
(TIF)

Figure S5.  Timeline of molecular functions enriched for
genes essential for cell division.
The gradient highlights the number of genes whose silencing
causes transitions at a particular time point and that are
enriched for the respective molecular function. The plot was
produced in R.
(TIF)

Figure S6.  The hypothesized network of synchronously
activated genes or proteins involved in the same pathway.
The nodes correspond to silenced genes and the genes are
connected if they show the exact same phenotypic succession
events upon knockdown. The genes are colored according to
the first phenotype shown in the cells upon knockdown. Out of
all interactions hypothesized, 62.4% have been validated from
the literature using GeneMania, with the following distribution:
co-expression 64.24%, physical interactions 14.68%, genetic
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interactions 11.16%, co-localization 5.46%, predicted 4.37%,
shared protein domains 0.09%. The networks were visualized
using Cytoscape.
(TIF)

Figure S7.  Connections from the literature between genes
of four hypothesized interactive modules.
The cells where these genes are knocked down adopt a
binuclear phenotype after: (A) 16.5 hours; (B) 15 hours; (C)
15.5 hours; (D) 26 hours. The networks were retrieved from
GeneMania.
(TIF)

Figure S8.  K-means clustering reveals 4 clusters of genes
with similar phenotypic succession profiles.
The clustering for the first two principal components is
displayed. The clustering was performed on the vectors of
phenotypic assignment of most prevalent phenotype at each
time point for every gene. The clustering and plotting were
performed in R.
(TIF)

Figure S9.  The network of genes affected in cancer that
are also periodically transcribed throughout the cell cycle.
The genes that related to more than one type of cancer are
highlighted. Circle colors indicate the different cancer types
where genes are enriched. Genes highlighted in this way are
the ones involved in the connections visualized using
PhenoTimer. In general, genes affected in the same cancer
types interact physically or genetically. The network was
retrieved from GeneMania and further edited in Cytoscape.
(TIF)

Figure S10.  Mechanistic similarities of stimulants
(cocaine, methamphetamine) and depressants (heroin,
morphine).
Action upon genes with transcription profiles in the lower
quartile (top) and upper quartile (bottom) ranges is depicted.
Two drugs are connected if treatment with either of them
results in similar levels of gene expression for at least one
gene. The thickness (2D) or height (3D) of the arcs
corresponds to the number of genes commonly affected by two
drugs. The networks connect genes that respond to the same
drug(s). The thickness of the edges corresponds to the number
of drugs to which the pair of genes is responsive. Orange
nodes (top) and green nodes (bottom) are variable elements,
while yellow nodes correspond to the core gene network that
stays the same throughout the time course. The plots have
been obtained using PhenoTimer and then combined and
annotated to emphasize different aspects of the analysis.
(TIF)

Figure S11.  Drug similarities in action on different gene
subclasses.
Two drugs are connected if they act similarly on at least one
common gene, the thickness of the links indicating how many
genes are influenced by that pair of drugs. To the right, the
networks of the genes corresponding to the different

subclasses have been retrieved from GeneMania. The genes
highlighted in red appear in drug pair connections. The circular
plots have been obtained individually using PhenoTimer and
then combined and annotated to emphasize different aspects
of the analysis.
(TIF)

Table S1.  Comparison of the different view modes of
PhenoTimer.
The table lists the comparative strengths and weaknesses of
the different graphical representations used in PhenoTimer.
(DOC)

Table S2.  Example of an input file loadable into
PhenoTimer.
The first column specifies the gene names, the second column
the phenotypes and the subsequent columns list the gene-
associated values at each time point. The fields must be
separated by white space.
(DOC)

Table S3.  Example of network files loadable into
PhenoTimer.
(a) Input file containing the GO enrichment specifications: the
columns must specify the GO identifiers, the corresponding
descriptions, the p-values of the enrichment and the genes that
are enriched for each category, separated by “|”. (b) Along with
the enrichment file, an interaction file should also be loaded
into PhenoTimer, specifying the interaction partners in the
network, one pair per line. The format is the same for other
types of networks (e.g. PPIs, metabolic etc.). All these are tab-
separated fields.
(DOC)

Table S4.  GO enrichment for the network of hypothesized
synchronous genes.
The table lists the molecular functions of all the genes in the
mitotic progression dataset whose knockdown causes identical
phenotypic successions to at least one other gene.
(DOC)

Table S5.  Quartile calculations for the measured
transcriptional levels upon drug intake.
The table lists the quartiles of the normalized and log2-
transformed mRNA abundance measured for each drug
treatment. The lower (25%) and upper (75%) quartile values
are used as thresholds for subsequent visualization and
analysis.
(DOC)

Table S6.  The functionality description of core network
and variable genes similarly regulated by drugs.
Lowly and highly expressed genes are defined as before. The
descriptions were taken from UniProt.
(DOC)
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