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Motivation

*IGABEM formulation for crack modeling

‘Embedded cracks

*Surface breaking cracks and trimmed NURBS

Conclusion



» Fatigue Fracture Failure of Structure
*|nitiation: micro defects
*Loading : cyclic stress state
(temperature, corrosion)
»Numerical methods for crack growth
*VVolume methods:

FEM, XFEM/GFEM, Meshfree
*Boundary methods: BEM
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» Challenges in volume-based methods
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Kelvin fundamental solution

Navier equation: £V u+ (u+A\)V(V-u)=f

Kelvin solution: assuming a unit concentrated force applied on
a point s in the infinite domainf(z) = ed(s,z) , we seek u(z)
and t(z) for any point z

* *
ul = Ugje; t; = Tije;

for 3D problem, the expressions are:

1
3 _ CANS
UZJ (S7 Z) ].67[-”(1 L V)?“ [(3 V)(SZJ + T/LTJ]
1 or
Tij(s,z) = T 5, (L= 20)0i; + 3rar) — (1 = 2v)(nyr; — nz”r,j)}



Boundary integral equation: direct method

Betti’s theorem
State (1) : auxiliary state, using Kelvin solution
State (2): real state, neglecting body force

/ F9(2)ul? (2)d(2) / 9 (x)ul? (x)dD(x) = / ' (x)ul (x)d0(x / £ (z)ulV (2)d0(z
19(2) = ei61,6(5,2) 9 (x) = Ty (s, %)e; @u;wx):%( X)e

wi(s) + f T,5(5, %), ()T (x) = / U (s, %)t (x)dT(x)

Let source point “s” approach to@
the boundary

()0 +

CPV'FT-—(S x) ~ O(1/r?)
Take derivative w.r.t. “s” @
cij(s)t;(s) + 7{ Sij (s, x)u;(x)dl'(x) = ]5 Kij(s, x)t;(x)dI(x)
HFP: S;;(s,x) ~ O(1/r) r=|r| =[x —s]

T3y(5,5u; (T () = [ Uyfo. x)t,()0 (0
Uis(s.%) ~ O(1/r)




Boundary integral equations (BIEs) and crack modeling

*Displacement BIE ¢i;(s)u;(s) +][ﬂj(sax)%(x)dr(x) = /Uij(SaX)fj(X)dF(X)

r r
*Traction BIE cij(s)t;(s) +j€ Sii(s, x)u;(x)dl(x) =
*NURBS approximation
n displacement BIE for s
w(€) = Y Rap(§)d; Lo s
A=1 I, 'nq s
t; (5) — Z RA,p(f)q;l traction BIE for s
A=1
*Collocation: Greville Abscissae
¢ = Siv1 + o+ &ty
7’ p
&= +a(&—&)
a€l0,1)
& =& —al& — &)




Singular integration

Singularity subtraction technique (SST)

o~ Tﬁ'
p(o)
£
po|—>
f
& 71 subtriangle

2w rp(0) B 2T P
[ = lim H(p,0)R(p,0)J(p,0)pdpdd = lim / F(p,0)dd
(£,0)

e—0 0 OZ(E;B) e—0

F(p.6) = = (9) + = (9) + Fo(0) + Fi(0)p+ Fa(0)p" + - -
o  Fu(8)  Fa(9)
I = / / pQ ; )dpd@

I = I + semi-analytical



Singular integration

*Conformal mapping for SST

(1) [ 1}% o) Y bt
, p(o)
4y >~ |z \—1// 51 = costp/ A
3,7 E“". — = T (g) .
T J(€) 19 £ dy = siny /A
':_].'_1)\' l:l:_-l] I: 1 {51 (5,3_] I.r 1 r-lll "52'3
physical space parent space conformal space
curve-linear basis vectors at s ﬁl*i 2 = 0, ‘ml — | 1
, - 1 cosy/ A
T=&=TE, and .
¢ & 0 sing/A

[ m; mj } = [ m; m; ]T_1 — [ m; —(1/tany)m? + (A/siny)m3 }

= || /3. *Rong et al 2014, EAWBE

costp = my - mj /|my|[ms),



Evaluation of stress intensity factors (SIFs)

Virtual crack closure integrals (VCCI)

I _
Gr= 2R J, Oyy(@)[uy(R — x)]dx
I _ _
G = 5% |, Oy (@) [ug(R — x)]dz
1 [ _
GI[] = ﬁ . O'yz(ﬂf)[_’uz(R—I)Idﬂﬁ

Figure: Crack tip coordinate system

*M integral

Jk = lim (Wéjk — UQ;jUi,k)nde

I'e—0 .
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(12) _ gm0 20U ]
M —/Fe [W 01, 0 9t 0, 9t n;dIl’
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Figure:Path definition for J integral



Penny-shaped crack under remote tension (embedded crack)
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Figure 9: NURBS represented crack surface meshes with 1, 5, and 9 uniformed refinement in
radial direction, followed by graded refined elements (with black edges) close to crack front.
The blue dots are collocation points.



Penny crack under remote tension (embedded crack)
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Figure 7: Error in crack opening displacement for penny crack. ‘ngp s’ denotes the number
of Gauss points in angular direction in each sub-triangle. Knot vectors: angular direction
£-10,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1|, radial direction 5—[0,0,0,0.5,0.75,0.875,1,1,1]



Penny crack under remote tension (embedded crack)
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Penny-shaped crack under remote tension
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L2 norm error in COD
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NURBS-represented crack growth algorithm

*Fatigue fracture: Paris law

da -

AV Aamax(%)m

A’ = C(AKL)" 53 R A

Algorithm 1 Crack front updating algorithm
Data: old crack front curve C(£); sample points M;; new positions of sample points M!

Result: new crack front curve that passes through all M
t=10;
tol = 1.e — 4;

—
E50 = i'L!r_-J.'J_].L"L!r;!
while ||e;| > tol do
t=1+1;
] N—-1
Mit = % =0 fii€jt-1;
Fiy= Piy_1+myg

! . 1 N—-1 ) .
€t = €jt—1 — W 2k—0 ‘B )€k t—1;

end




Numerical example of Mode-I penny crack growth (first 10 steps)

0.2r —— |:I.15:-
| . ik —
o ZA\

) 'u\."\:\'\\ )ﬂ 'v!“; ” FH

.1

o

(b) XFEM/FMM, m = 2.1, Sukumar et al
(a) IGABEM, m = 2.1 2003

0.2 - = EXOCL
IGABEM

|

<
|

=

1072} A _____.--(:""'--_ e

. ’//{//2%%\‘\ ﬁfel“‘"&
l
/

w /f e

\ .
| 7

i) / Fium (%) = Dexi (X)

,//l‘ 10_2/ Ef{X:' — | ( A T[ | ,

-3l — .
N— ,-% J B (x)dT ey (%)

g ——— error =
0.15 .fl-.{].r-n_\;q_{X}

¥
o
—
——
error

-005+

.0{2; A A
-0.2 ~0.1 0 01 02

1 2 3 4 5 6 7 8 9 10
. : crack growth ste

(c) IGABEM, m = 5 , ¢ ) )
Jdelative error ot the crack tront tor in each crack growth step by IGABEM



Numerical example of inclined elliptical crack growth (first 10 steps)




Modeling techniques for surface breaking cracks

*Surface discontinuity

s = isintroduced
() (b) - (‘l‘} |

EEEEEN *Trimmed NURBS

el T T technique
0 ¢ 1 v
(a) (b)
° ° o DS+E
*Crack =2 trimming curve )
*Phantom node method | © .| . " S N
T N s i
u(x) =) R;(x)d;, xeS) | :
\L ] IS"_I
u (x) =Y Ry(x)dp, x€5; (a) (b)



Integration and collocation for trimmed NURBS

T *Beer et al 2015, CMAME
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Convergence study for a cube with cylindrical cutout

1
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Example of surface breaking cracks: edge crack under uniform tension
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Conclusions & Future work

*Dual BIEs are used for NURBS-represented fracture modeling
*Improved numerical singular integration scheme
*Approaches for SIFs evaluation

*Fatigue crack growth algorithm

*|GABEM for trimmed NURBS and surface crack modeling

*Improve the integration and collocation schemes
for trimmed NURBS

*Acceleration algorithm

*T-spline for local refinement
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