

3D fatigue fracture modeling by isogeometric boundary element methods

Xuan Peng, Elena Atroshchenko, Pierre Kerfriden, Stephane Bordas

Cardiff University, UK

April 2016

Outline

- **Motivation**
- **IGABEM formulation for crack modeling**
- **Embedded cracks**
- **Surface breaking cracks and trimmed NURBS**
- **Conclusion**

Motivation

➤ Fatigue Fracture Failure of Structure

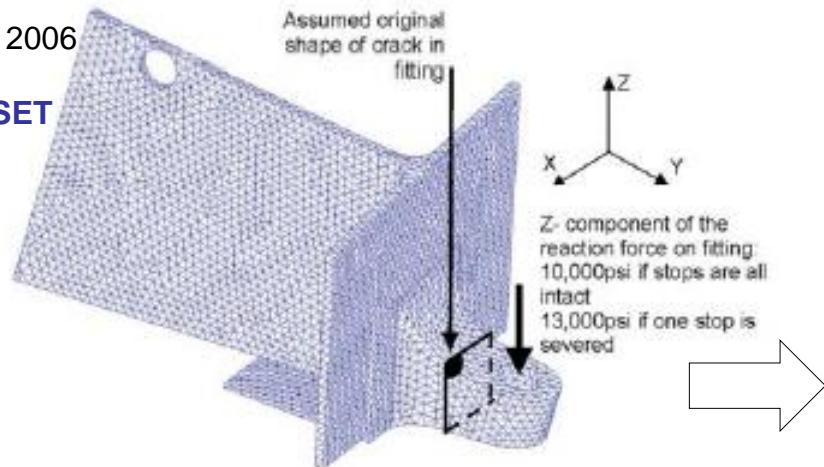
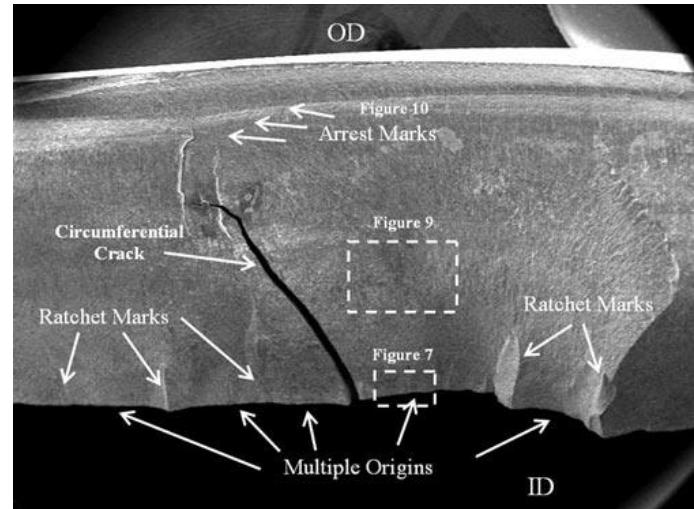
- Initiation: micro defects
- Loading : cyclic stress state (temperature, corrosion)

➤ Numerical methods for crack growth

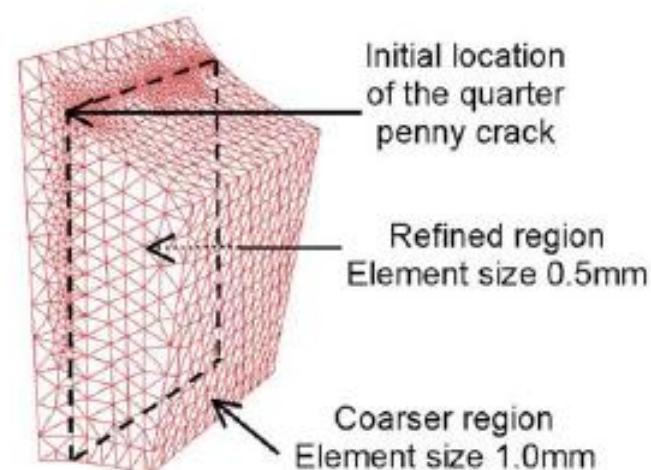
- Volume methods:
FEM, XFEM/GFEM, Meshfree
- Boundary methods: BEM

Bordas & Moran, 2006

XFEM+LEVEL SET



fatigue cracking of nozzle sleeve
<http://met-tech.com/>

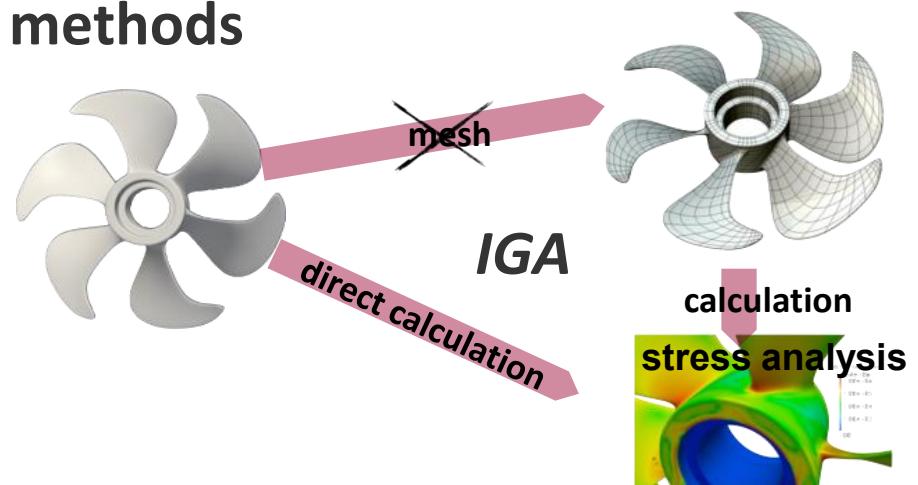
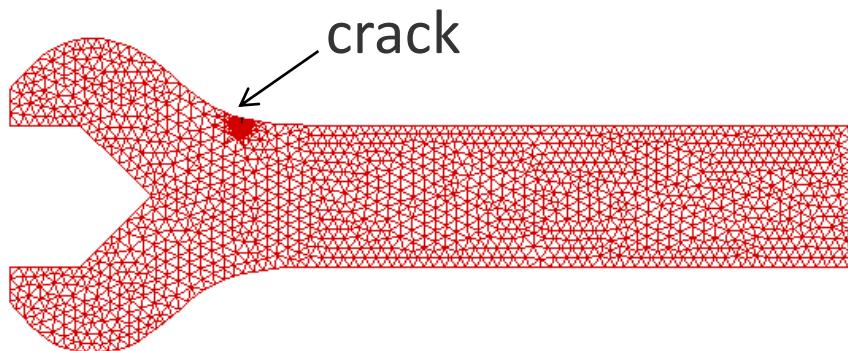


Motivation

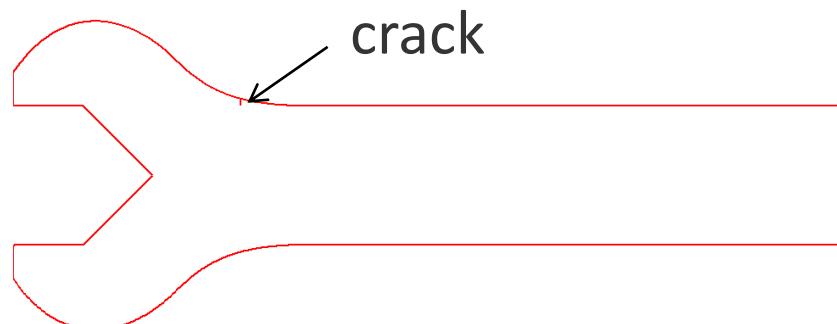
➤ Challenges in volume-based methods

- Remeshing (FEM)
- Local mesh refinement

Efficiency & Accuracy



XFEM



IGABEM

Kelvin fundamental solution

Navier equation: $\mu \nabla^2 \mathbf{u} + (\mu + \lambda) \nabla(\nabla \cdot \mathbf{u}) = \mathbf{f}$

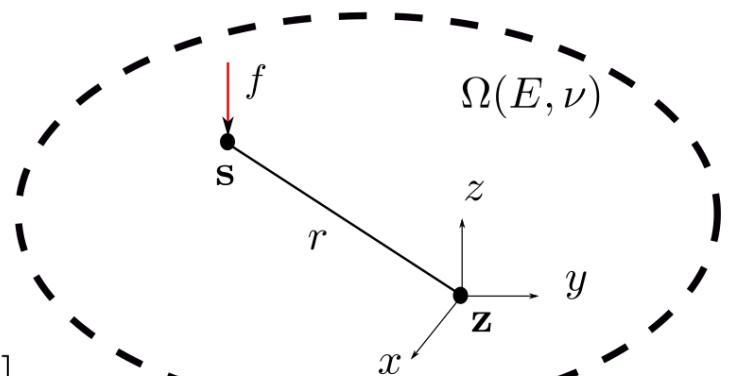
Kelvin solution: assuming a unit concentrated force applied on a point \mathbf{s} in the infinite domain $\mathbf{f}(\mathbf{z}) = \mathbf{e}\delta(\mathbf{s}, \mathbf{z})$, we seek $\mathbf{u}(\mathbf{z})$ and $\mathbf{t}(\mathbf{z})$ for any point \mathbf{z}

$$u_i^* = U_{ij}e_j \quad t_i^* = T_{ij}e_j$$

for 3D problem, the expressions are:

$$U_{ij}(\mathbf{s}, \mathbf{z}) = \frac{1}{16\pi\mu(1-\nu)r} [(3-4\nu)\delta_{ij} + r_{,i}r_{,j}]$$

$$T_{ij}(\mathbf{s}, \mathbf{z}) = -\frac{1}{8\pi(1-\nu)} \left[\frac{\partial r}{\partial n} ((1-2\nu)\delta_{ij} + 3r_{,i}r_{,j}) - (1-2\nu)(n_j r_{,i} - n_i r_{,j}) \right]$$



Boundary integral equation: direct method

Betti's theorem

State (1) : auxiliary state, using Kelvin solution

State (2): real state, neglecting body force

$$\int_{\Omega} f_j^{(1)}(\mathbf{z}) u_j^{(2)}(\mathbf{z}) d\Omega(\mathbf{z}) + \int_{\Gamma} t_j^{(1)}(\mathbf{x}) u_j^{(2)}(\mathbf{x}) d\Gamma(\mathbf{x}) = \int_{\Gamma} t_j^{(2)}(\mathbf{x}) u_j^{(1)}(\mathbf{x}) d\Gamma(\mathbf{x}) + \int_{\Omega} f_j^{(2)}(\mathbf{z}) u_j^{(1)}(\mathbf{z}) d\Omega(\mathbf{z})$$

$$f_j^{(1)}(\mathbf{z}) = e_i \delta_{ij} \delta(\mathbf{s}, \mathbf{z}) \quad \downarrow \quad t_j^{(1)}(\mathbf{x}) = T_{ij}(\mathbf{s}, \mathbf{x}) e_i \quad \downarrow \quad u_j^{(1)}(\mathbf{x}) = U_{ij}(\mathbf{s}, \mathbf{x}) e_i$$

$$u_i(\mathbf{s}) + \int_{\Gamma} T_{ij}(\mathbf{s}, \mathbf{x}) u_j(\mathbf{x}) d\Gamma(\mathbf{x}) = \int_{\Gamma} U_{ij}(\mathbf{s}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x})$$

Let source point “s” approach to
the boundary

$$c_{ij}(\mathbf{s}) u_j(\mathbf{s}) + \int_{\Gamma} T_{ij}(\mathbf{s}, \mathbf{x}) u_j(\mathbf{x}) d\Gamma(\mathbf{x}) = \int_{\Gamma} U_{ij}(\mathbf{s}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x})$$

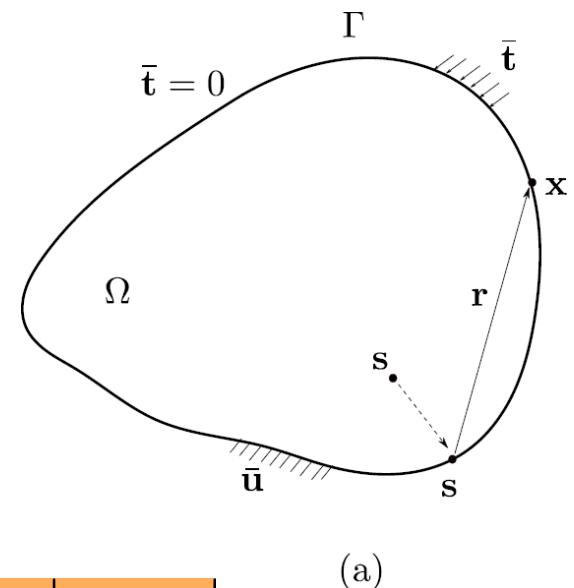
CPV: $T_{ij}(\mathbf{s}, \mathbf{x}) \sim O(1/r^2)$ $U_{ij}(\mathbf{s}, \mathbf{x}) \sim O(1/r)$

Take derivative w.r.t. “s”

$$c_{ij}(\mathbf{s}) t_j(\mathbf{s}) + \int_{\Gamma} S_{ij}(\mathbf{s}, \mathbf{x}) u_j(\mathbf{x}) d\Gamma(\mathbf{x}) = \int_{\Gamma} K_{ij}(\mathbf{s}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x})$$

HFP: $S_{ij}(\mathbf{s}, \mathbf{x}) \sim O(1/r^3)$

$r = |\mathbf{r}| = |\mathbf{x} - \mathbf{s}|$



Boundary integral equations (BIEs) and crack modeling

- **Displacement BIE** $c_{ij}(\mathbf{s})u_j(\mathbf{s}) + \int_{\Gamma} T_{ij}(\mathbf{s}, \mathbf{x})u_j(\mathbf{x})d\Gamma(\mathbf{x}) = \int_{\Gamma} U_{ij}(\mathbf{s}, \mathbf{x})t_j(\mathbf{x})d\Gamma(\mathbf{x})$

- **Traction BIE** $c_{ij}(\mathbf{s})t_j(\mathbf{s}) + \int_{\Gamma} S_{ij}(\mathbf{s}, \mathbf{x})u_j(\mathbf{x})d\Gamma(\mathbf{x}) = \int_{\Gamma} K_{ij}(\mathbf{s}, \mathbf{x})t_j(\mathbf{x})d\Gamma(\mathbf{x})$

- **NURBS approximation**

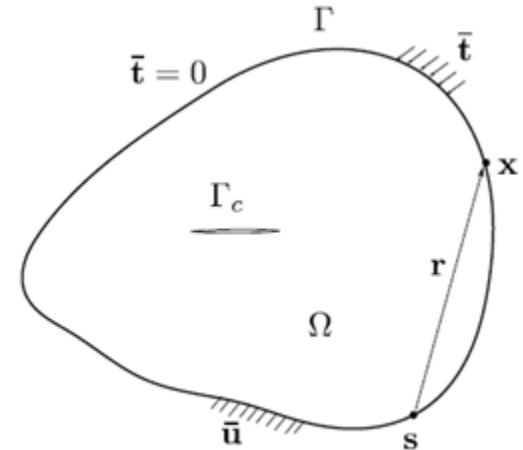
$$u_i(\xi) = \sum_{A=1}^n R_{A,p}(\xi) d_i^A$$

$$t_i(\xi) = \sum_{A=1}^n R_{A,p}(\xi) q_i^A$$

displacement BIE for \mathbf{s}^+



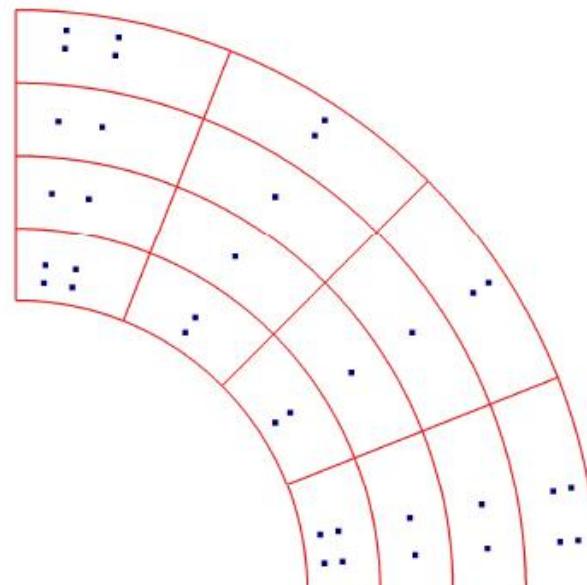
traction BIE for \mathbf{s}^-



- **Collocation: Greville Abscissae**

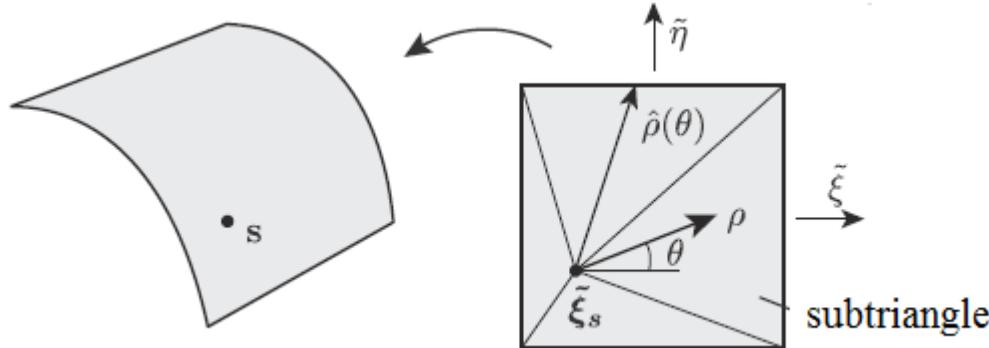
$$\xi_i^s = \frac{\xi_{i+1} + \dots + \xi_{i+p}}{p}$$

$$\left\{ \begin{array}{l} \xi_1^s = \xi_1^s + \alpha(\xi_2^s - \xi_1^s) \\ \xi_n^s = \xi_n^s - \alpha(\xi_n^s - \xi_{n-1}^s) \end{array} \right. \quad \alpha \in [0, 1)$$



Singular integration

•Singularity subtraction technique (SST)



$$I = \lim_{\varepsilon \rightarrow 0} \int_0^{2\pi} \int_{\alpha(\varepsilon, \theta)}^{\hat{\rho}(\theta)} H(\rho, \theta) R(\rho, \theta) \bar{J}(\rho, \theta) \rho d\rho d\theta = \lim_{\varepsilon \rightarrow 0} \int_0^{2\pi} \int_{\alpha(\varepsilon, \theta)}^{\hat{\rho}(\theta)} F(\rho, \theta) d\theta$$

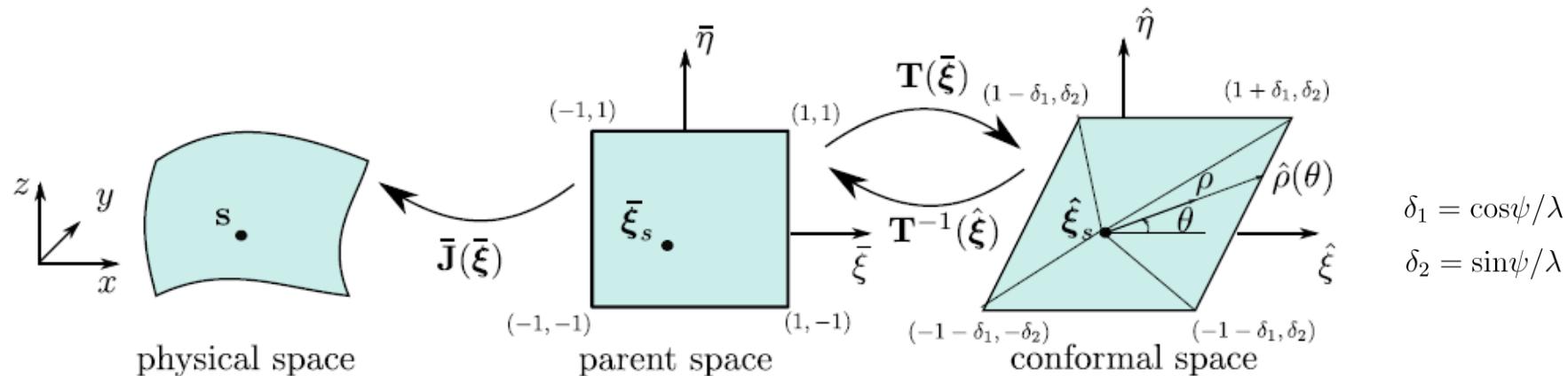
$$F(\rho, \theta) = \frac{F_{-2}(\theta)}{\rho^2} + \frac{F_{-1}(\theta)}{\rho} + F_0(\theta) + F_1(\theta)\rho + F_2(\theta)\rho^2 + \dots$$

$$I_1 = \int_0^{2\pi} \int_0^{\hat{\rho}(\theta)} \left(F(\rho, \theta) - \frac{F_{-2}(\theta)}{\rho^2} - \frac{F_{-1}(\theta)}{\rho} \right) d\rho d\theta$$

$$I = I_1 + \text{semi-analytical}$$

Singular integration

- Conformal mapping for SST



curve-linear basis vectors at s $\hat{\mathbf{m}}_1^s \cdot \hat{\mathbf{m}}_2^s = 0, |\hat{\mathbf{m}}_1^s| = |\hat{\mathbf{m}}_2^s|$

$$\mathbf{T} = \hat{\boldsymbol{\xi}} = \mathbf{T}\bar{\boldsymbol{\xi}}, \text{ and } \begin{bmatrix} 1 & \cos\psi/\lambda \\ 0 & \sin\psi/\lambda \end{bmatrix}$$

$$\begin{bmatrix} \hat{\mathbf{m}}_1^s & \hat{\mathbf{m}}_2^s \end{bmatrix} = \begin{bmatrix} \mathbf{m}_1^s & \mathbf{m}_2^s \end{bmatrix} \mathbf{T}^{-1} = \begin{bmatrix} \mathbf{m}_1^s & -(1/\tan\psi)\mathbf{m}_1^s + (\lambda/\sin\psi)\mathbf{m}_2^s \end{bmatrix}$$

$$\begin{aligned} \lambda &= |\mathbf{m}_1^s|/|\mathbf{m}_2^s|, \\ \cos\psi &= \mathbf{m}_1^s \cdot \mathbf{m}_2^s/|\mathbf{m}_1^s||\mathbf{m}_2^s|, \end{aligned}$$

- Rong et al 2014, EAWBE

Evaluation of stress intensity factors (SIFs)

- **Virtual crack closure integrals (VCCI)**

$$G_I = \frac{1}{2R} \int_0^R \sigma_{yy}(x) [u_y(R-x)] dx$$

$$G_{II} = \frac{1}{2R} \int_0^R \sigma_{xy}(x) [u_x(R-x)] dx$$

$$G_{III} = \frac{1}{2R} \int_0^R \sigma_{yz}(x) [u_z(R-x)] dx$$

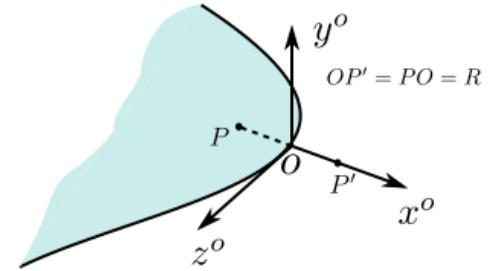


Figure: Crack tip coordinate system

- **M integral**

$$J_k := \lim_{\Gamma_\epsilon \rightarrow 0} \int_{\Gamma_\epsilon} (W\delta_{jk} - \sigma_{ij}u_{i,k})n_j d\Gamma$$

$$M^{(1,2)} = \int_{\Gamma_\epsilon} \left[W^{(1,2)}\delta_{1j} - \sigma_{ij}^{(1)} \frac{\partial u_i^{(2)}}{\partial x_1} - \sigma_{ij}^{(2)} \frac{\partial u_i^{(1)}}{\partial x_1} \right] n_j d\Gamma$$

$$M^{(1,2)} = \frac{2(1-\nu^2)}{E} (K_I^{(1)}K_I^{(2)} + K_{II}^{(1)}K_{II}^{(2)}) + \frac{1}{\mu} K_{III}^{(1)}K_{III}^{(2)}$$

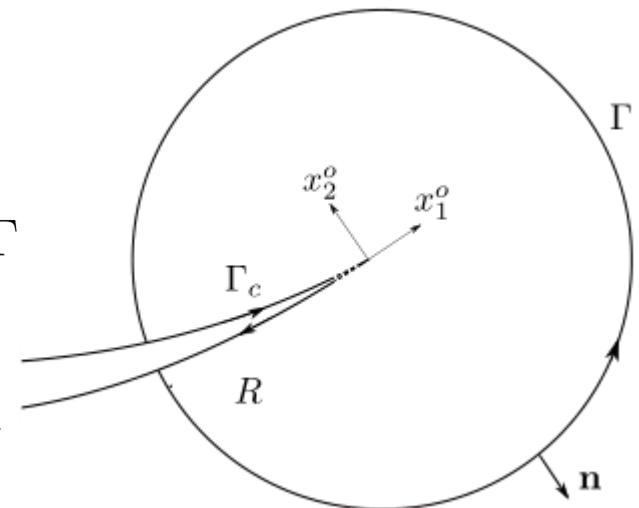
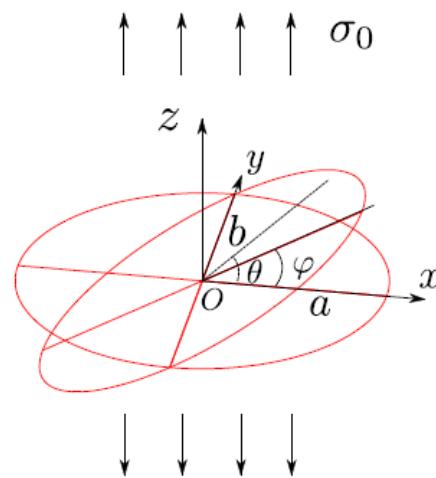
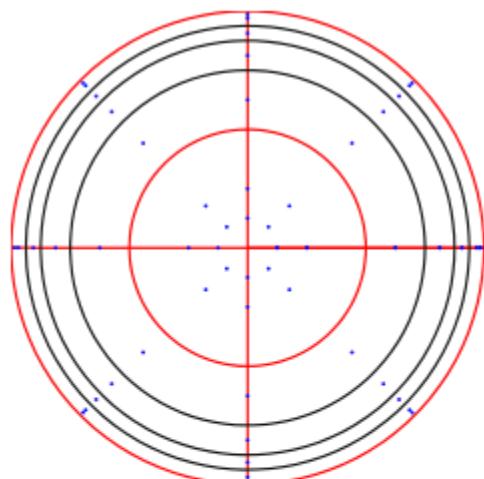


Figure: Path definition for J integral

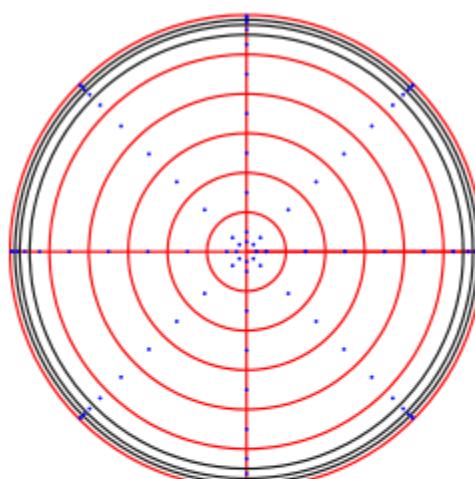
Penny-shaped crack under remote tension (embedded crack)



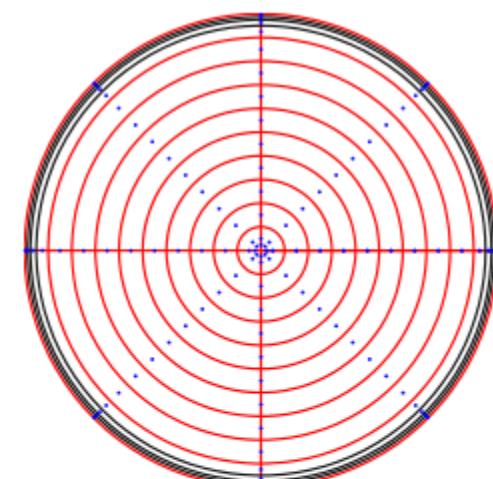
$$u_z(r, \theta, 0) = \frac{2(1-\nu)\sigma_0}{\pi\mu} \sqrt{a^2 - r^2}, \quad r \leq a$$
$$K_I = \frac{2}{\pi} \sigma_0 \sqrt{a\pi} \cos^2 \varphi,$$
$$K_{II} = \frac{4}{\pi(2-\nu)} \sigma_0 \sqrt{a\pi} \cos \varphi \sin \varphi \cos \theta,$$
$$K_{III} = \frac{4(1-\nu)}{\pi(2-\nu)} \sigma_0 \sqrt{a\pi} \cos \varphi \sin \varphi \sin \theta.$$



mesh 1



mesh 3



mesh 5

Figure 9: NURBS represented crack surface meshes with 1, 5, and 9 uniformed refinement in radial direction, followed by graded refined elements (with black edges) close to crack front. The blue dots are collocation points.

Penny crack under remote tension (embedded crack)

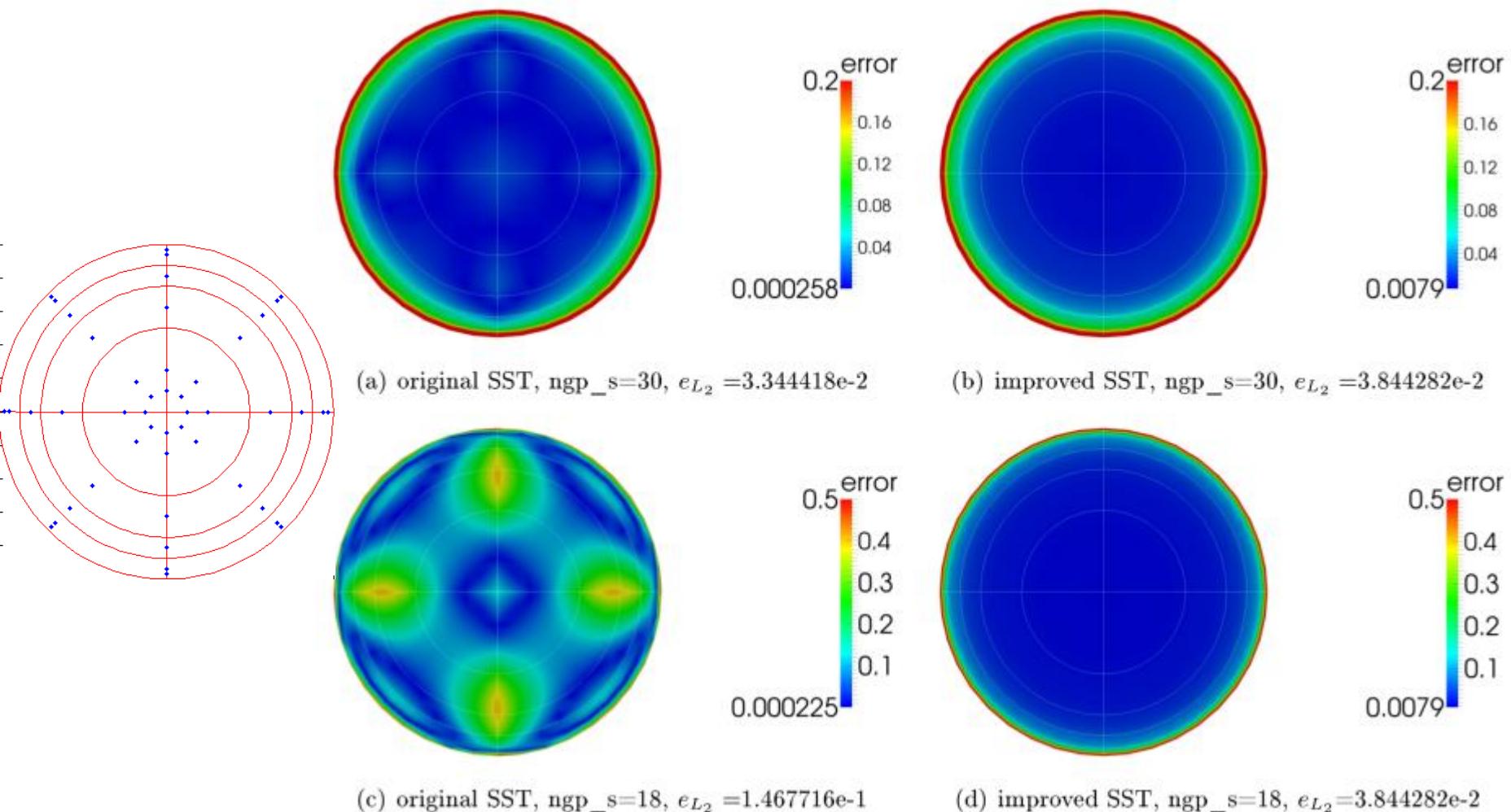


Figure 7: Error in crack opening displacement for penny crack. ‘ngp_s’ denotes the number of Gauss points in angular direction in each sub-triangle. Knot vectors: angular direction $\xi=[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1]$, radial direction $\eta=[0,0,0,0.5,0.75,0.875,1,1,1]$

Penny crack under remote tension (embedded crack)

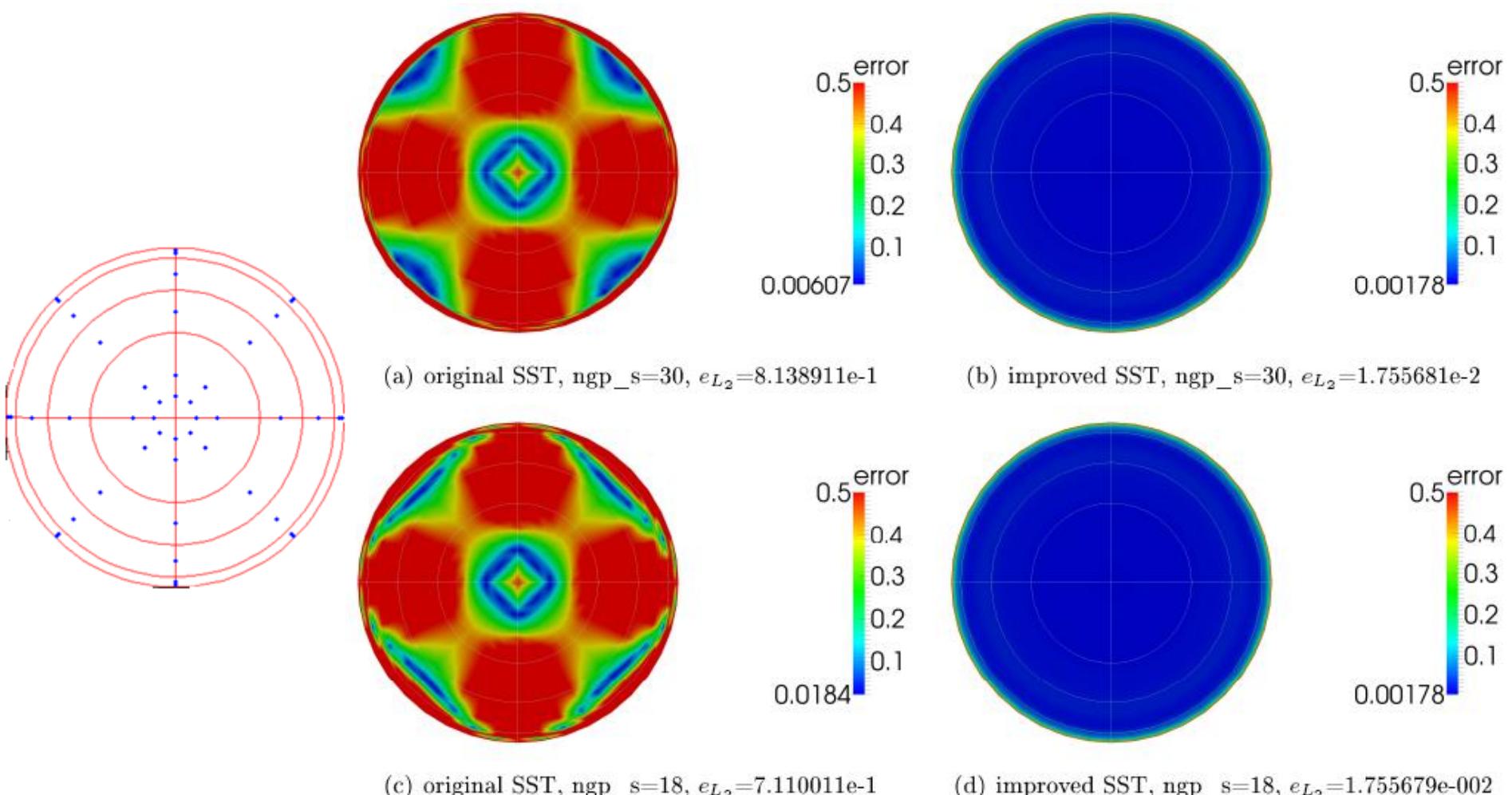
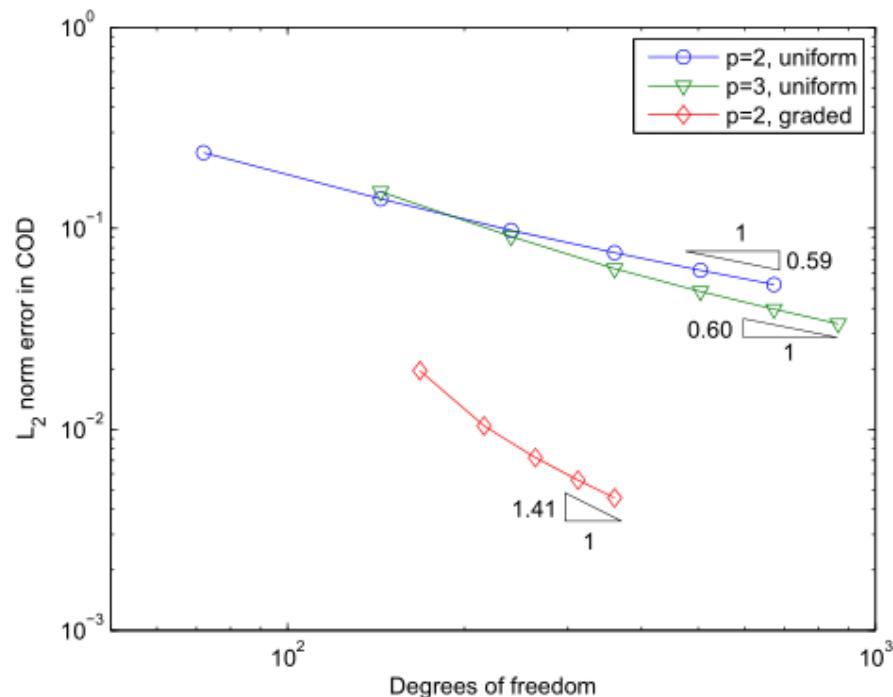
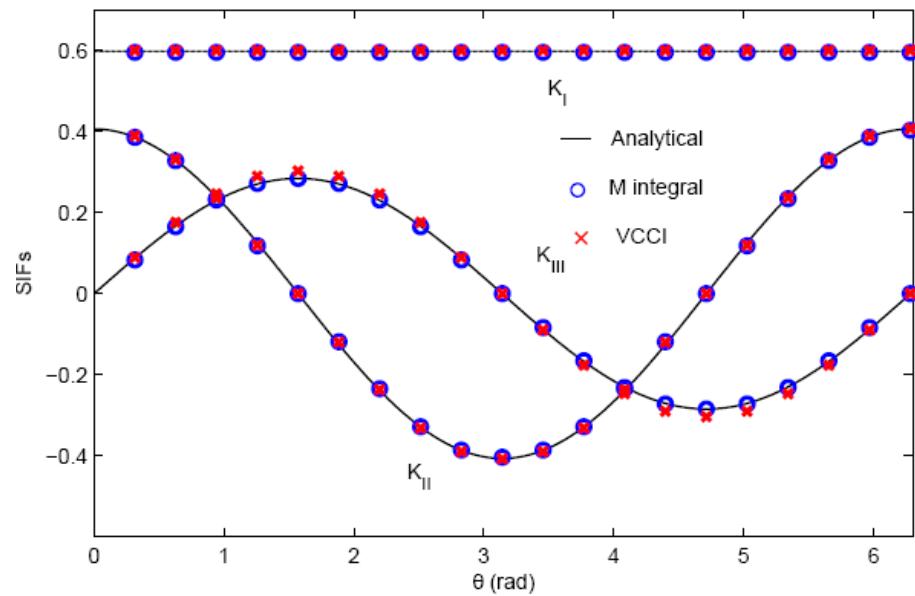


Figure 8: Error in crack opening displacement for penny crack. Knot vectors: angular direction $\xi=[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1]$, radial direction $\eta=[0,0,0,0.5,0.75,0.94,1,1,1]$

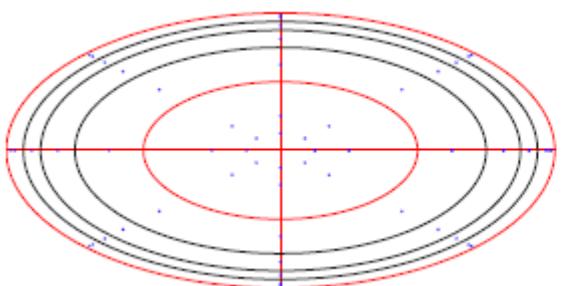
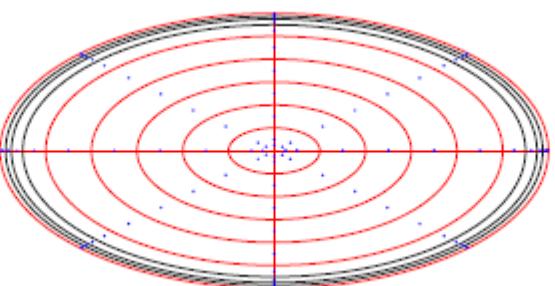
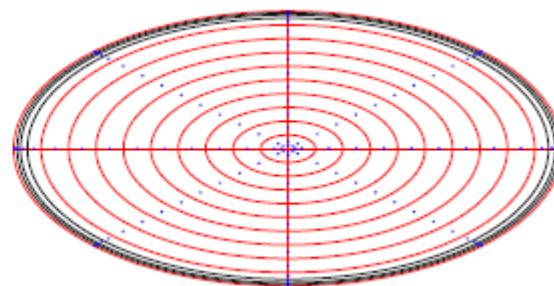
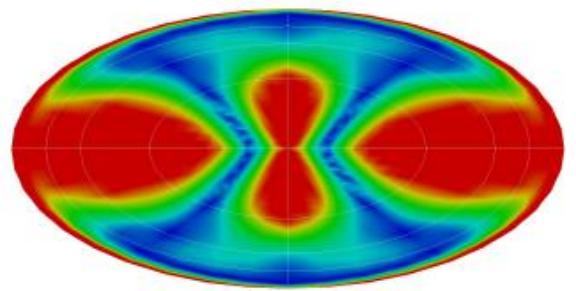
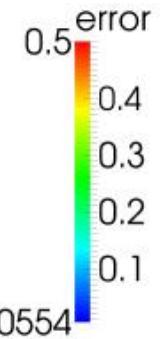
Penny-shaped crack under remote tension



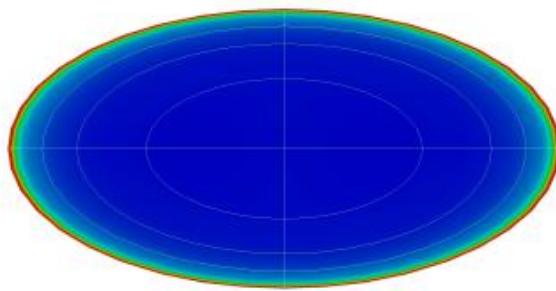
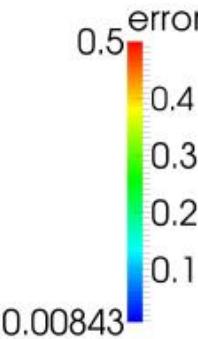
L_2 norm error of COD for penny-shaped crack



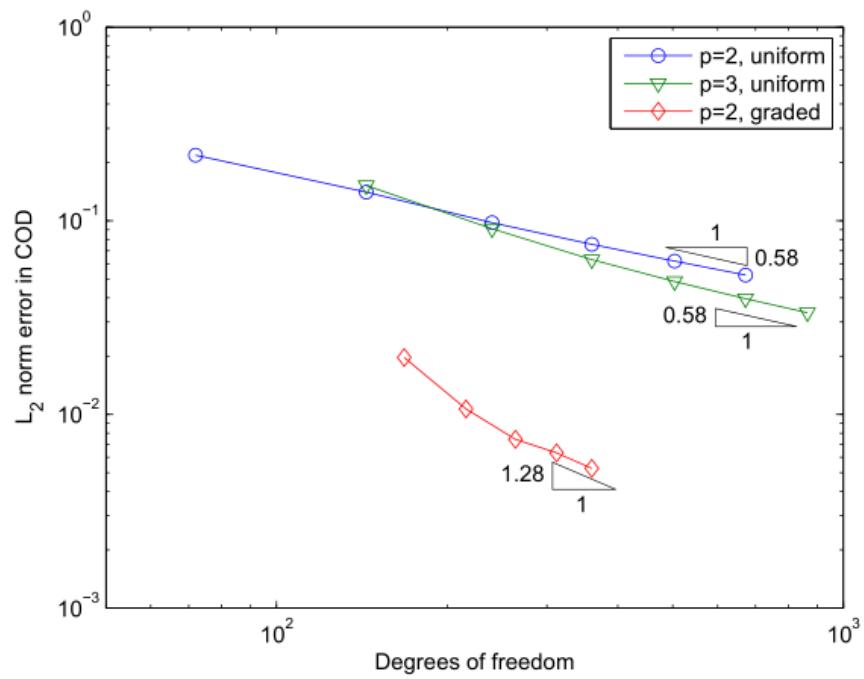
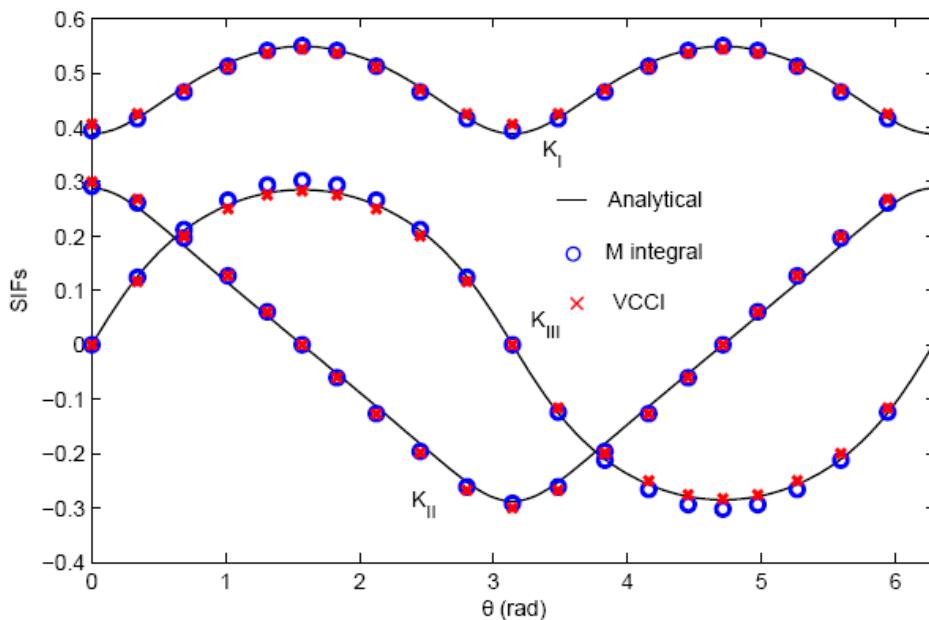
stress intensity factors for penny crack
with $\varphi = \pi/6$



(a) original SST, ngp_s=18, $e_{L_2}=4.603473e-1$



(b) improved SST, ngp_s=18, $e_{L_2}=3.798002e-2$



NURBS-represented crack growth algorithm

•Fatigue fracture: Paris law

$$\frac{da}{dN} = C(\Delta K)^m$$

$$\Delta a^i = C(\Delta K_{\text{eq}}^i)^m \frac{\Delta a^{\max}}{C(\Delta K_{\text{eq}}^{\max})} = \Delta a^{\max} \left(\frac{\Delta K_{\text{eq}}^i}{\Delta_{\text{eq}}^{\max}} \right)^m$$

Algorithm 1 Crack front updating algorithm

Data: old crack front curve $\mathbb{C}(\xi)$; sample points M_j ; new positions of sample points M'_j

Result: new crack front curve that passes through all M'_j

$t = 0$;

$tol = 1.e - 4$;

$e_{j,0} = \overrightarrow{M_{j,0}M'_j}$;

while $\|\mathbf{e}_t\| > tol$ **do**

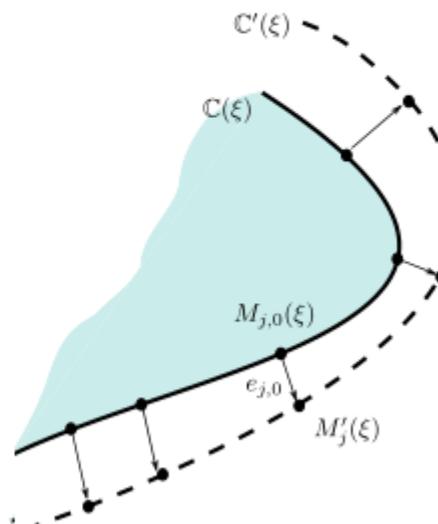
$t = t + 1$;

$m_{i,t} = \frac{1}{N} \sum_{j=0}^{N-1} f_{ij} e_{j,t-1}$;

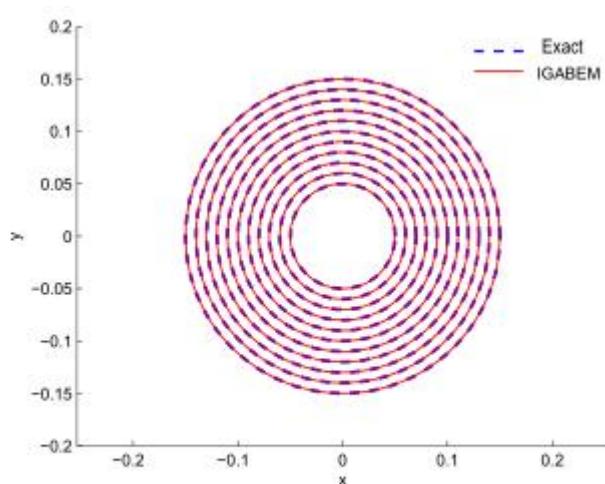
$P_{i,t} = P_{i,t-1} + m_{i,t}$;

$e_{j,t} = e_{j,t-1} - \frac{1}{N} \sum_{k=0}^{N-1} \langle \mathbf{R}_j, \mathbf{f}_k \rangle e_{k,t-1}$;

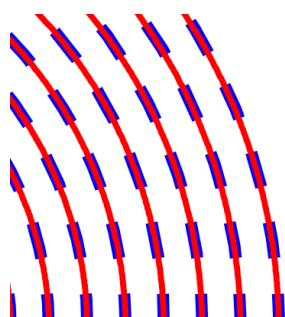
end



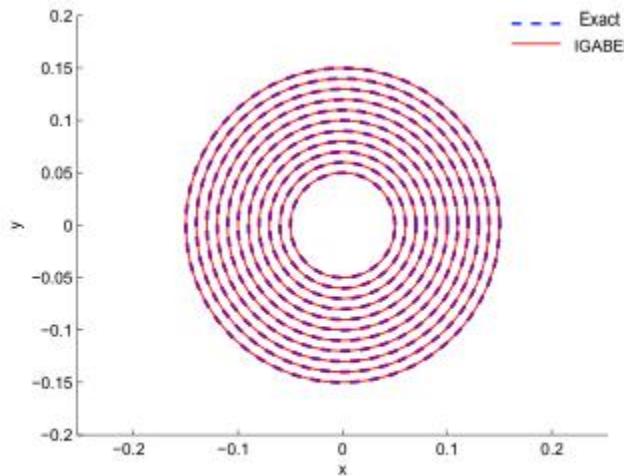
Numerical example of Mode-I penny crack growth (first 10 steps)



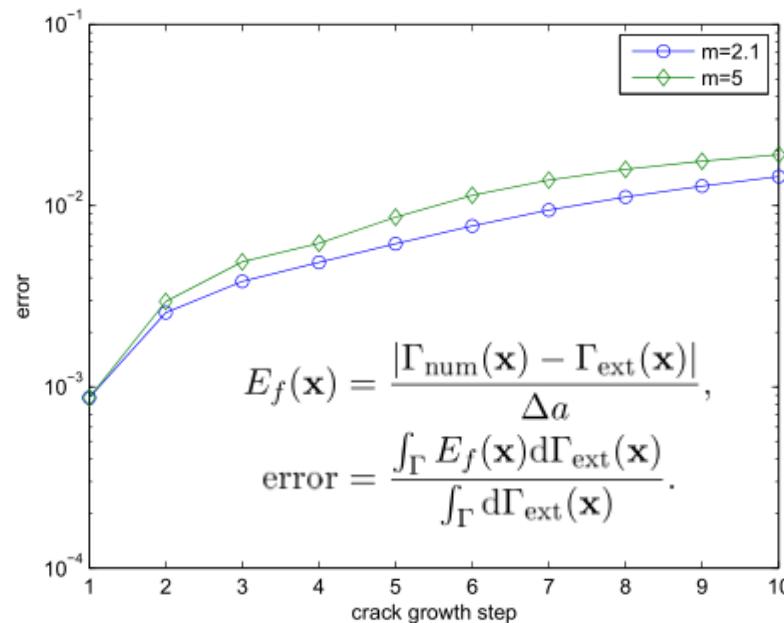
(a) IGABEM, $m = 2.1$



(b) XFEM/FMM, $m = 2.1$, Sukumar *et al*
2003

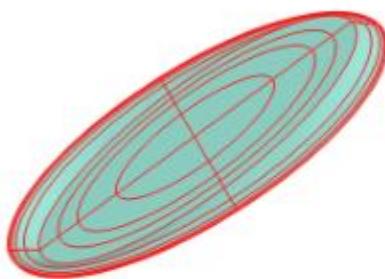


(c) IGABEM, $m = 5$

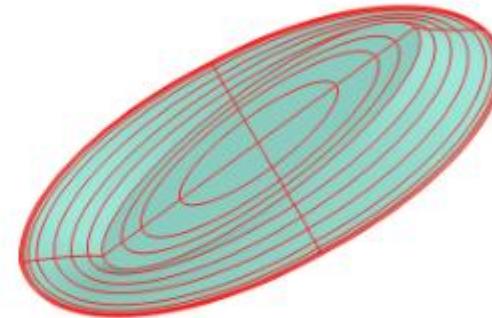


Relative error of the crack front for in each crack growth step by IGABEM

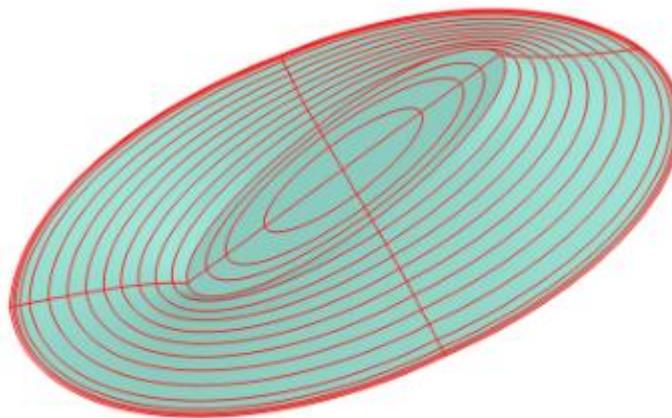
Numerical example of inclined elliptical crack growth (first 10 steps)



(a) Step 2



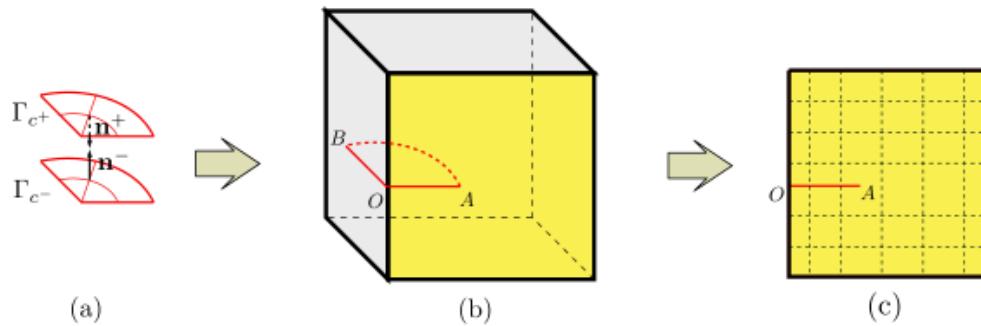
(b) Step 5



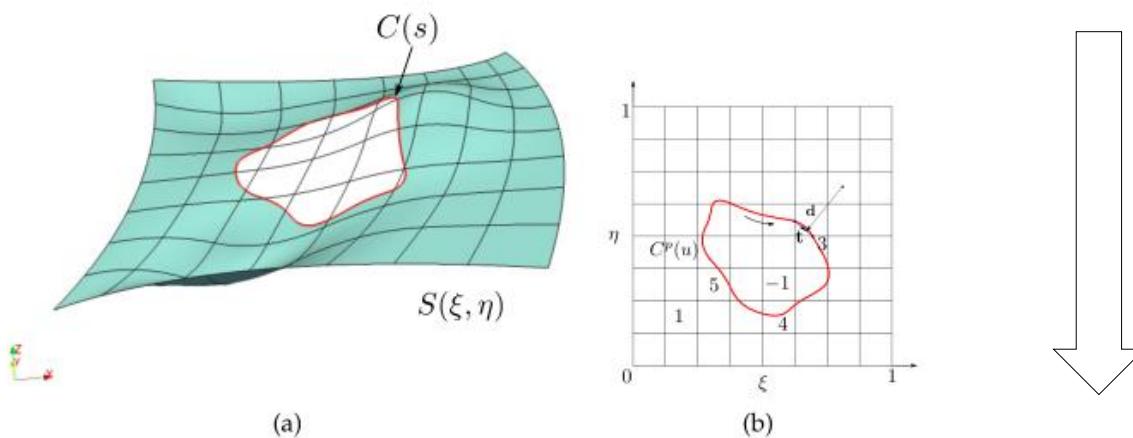
(c) Step 10

Fatigue crack growth simulation of an elliptical crack

Modeling techniques for surface breaking cracks



- Surface discontinuity is introduced



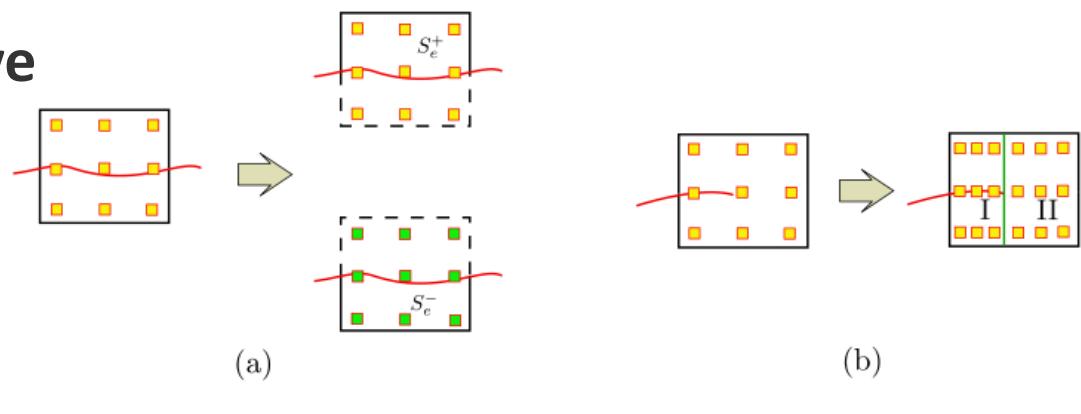
- Trimmed NURBS technique

- Crack \rightarrow trimming curve

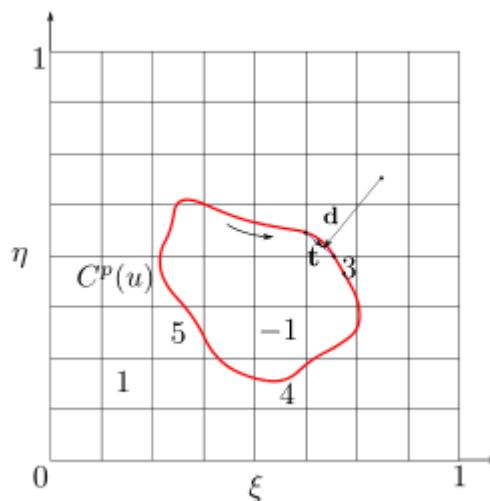
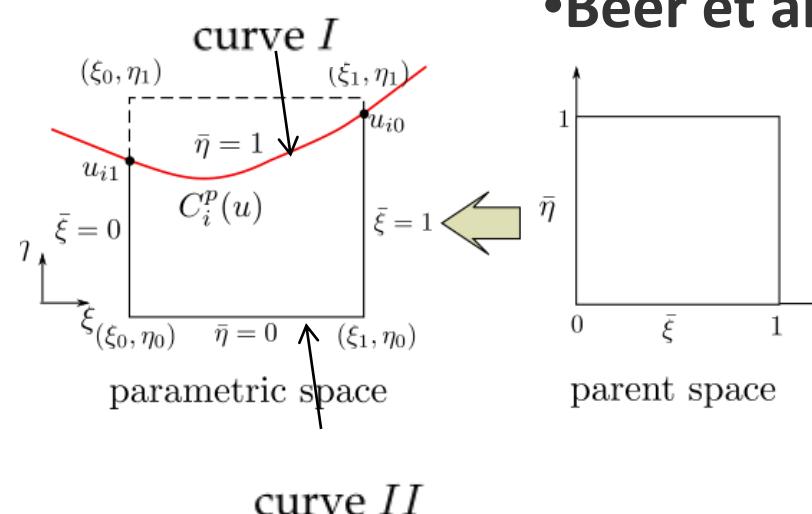
- Phantom node method

$$\mathbf{u}^+(\mathbf{x}) = \sum_j^{N_e} \mathbf{R}_j(\mathbf{x}) \mathbf{d}_j, \quad \mathbf{x} \in S_e^+,$$

$$\mathbf{u}^-(\mathbf{x}) = \sum_k^{N_e} \mathbf{R}_k(\mathbf{x}) \mathbf{d}_k, \quad \mathbf{x} \in S_e^-$$



Integration and collocation for trimmed NURBS



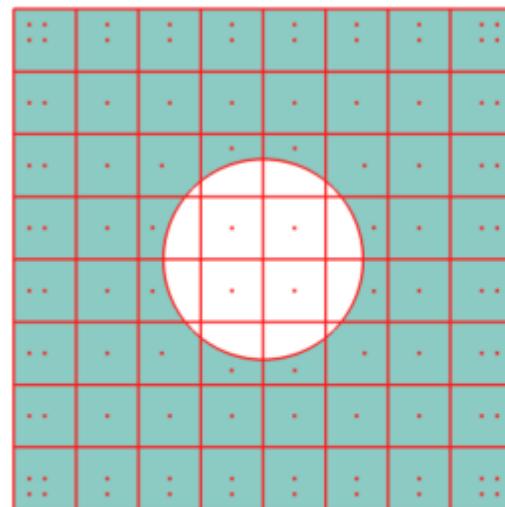
•Beer et al 2015, CMAME

taking $u = \xi$

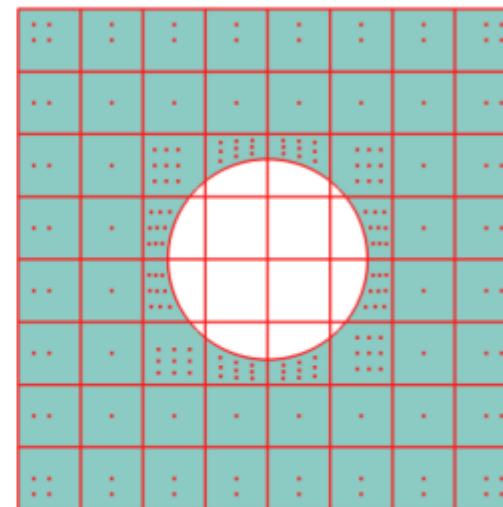
$$\xi^I = \sum_{j=1}^{n_I} R_j^I(\bar{\xi}) \xi_j^I$$

$$\xi = (1 - \bar{\eta})\xi^I + \bar{\eta}\xi^{II},$$

$$\eta = (1 - \bar{\eta})\eta^I + \bar{\eta}\eta^{II}.$$



The Greville Abscissae (GA) collocation
(a)



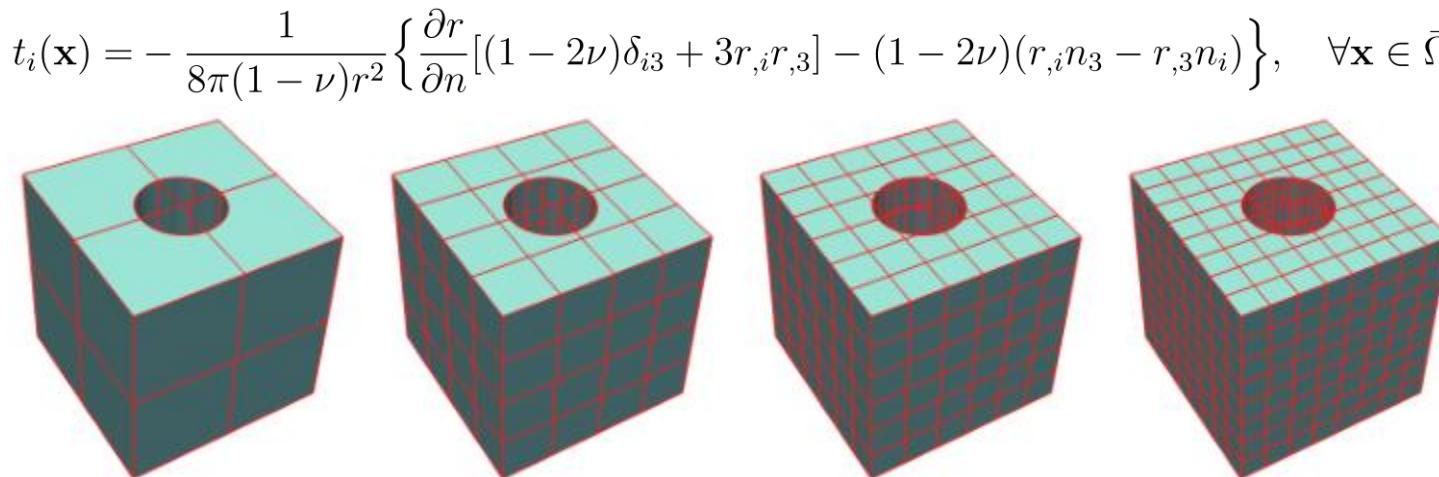
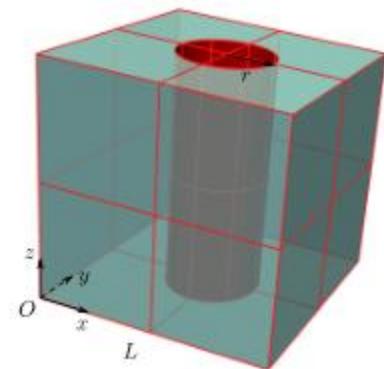
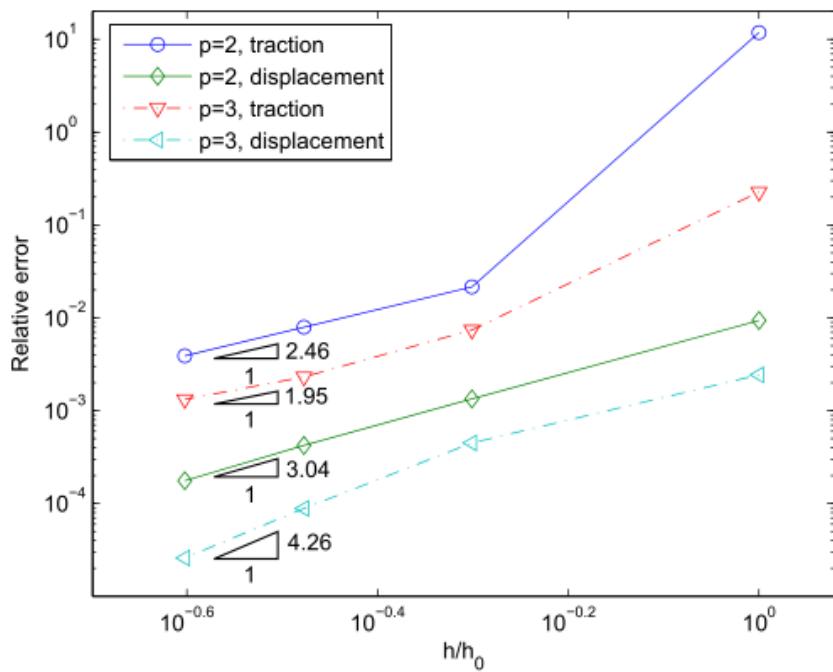
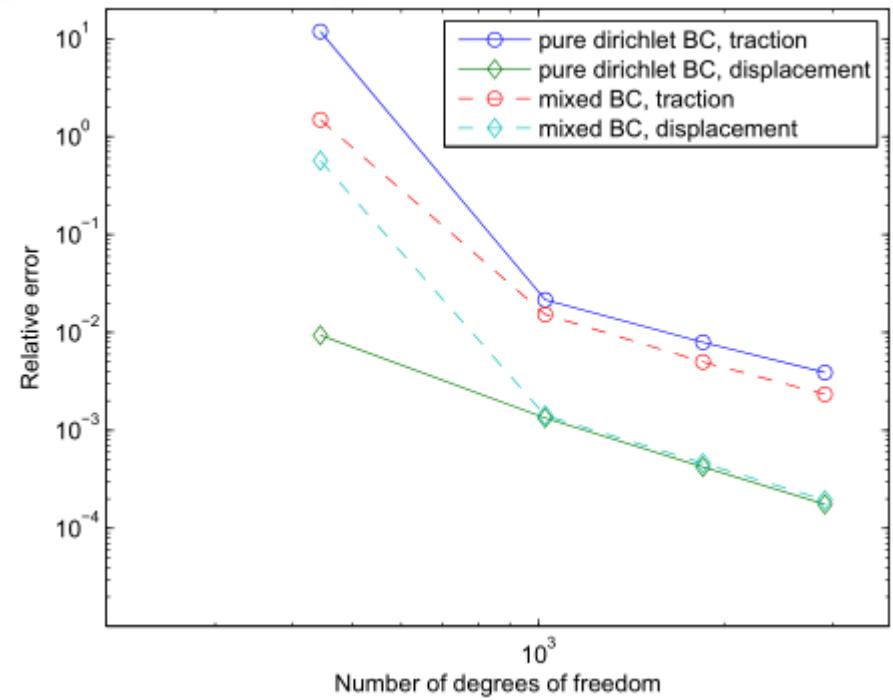
The mixed collocation approach
(b)

Convergence study for a cube with cylindrical cutout

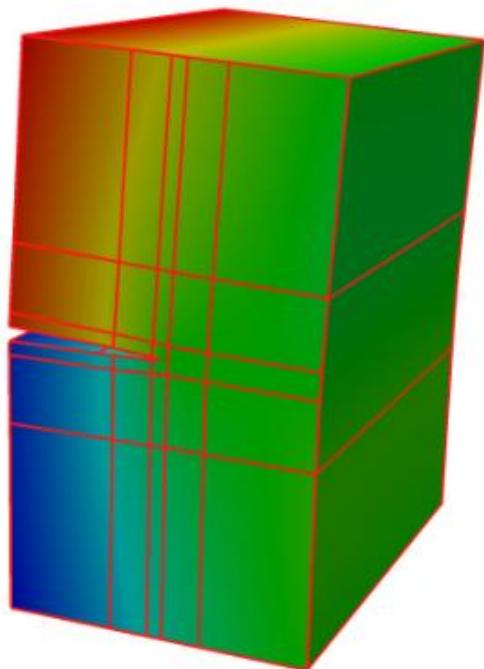
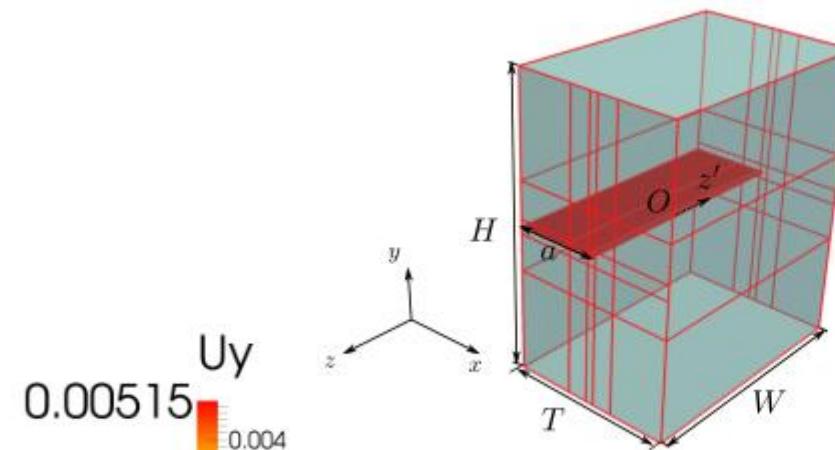
$$u_i(\mathbf{x}) = \frac{1}{16\pi\mu(1-\nu)r} [(3-4\nu)\delta_{i3} + r_{,i}r_{,3}],$$

$$r = |\mathbf{s}_P - \mathbf{x}|$$

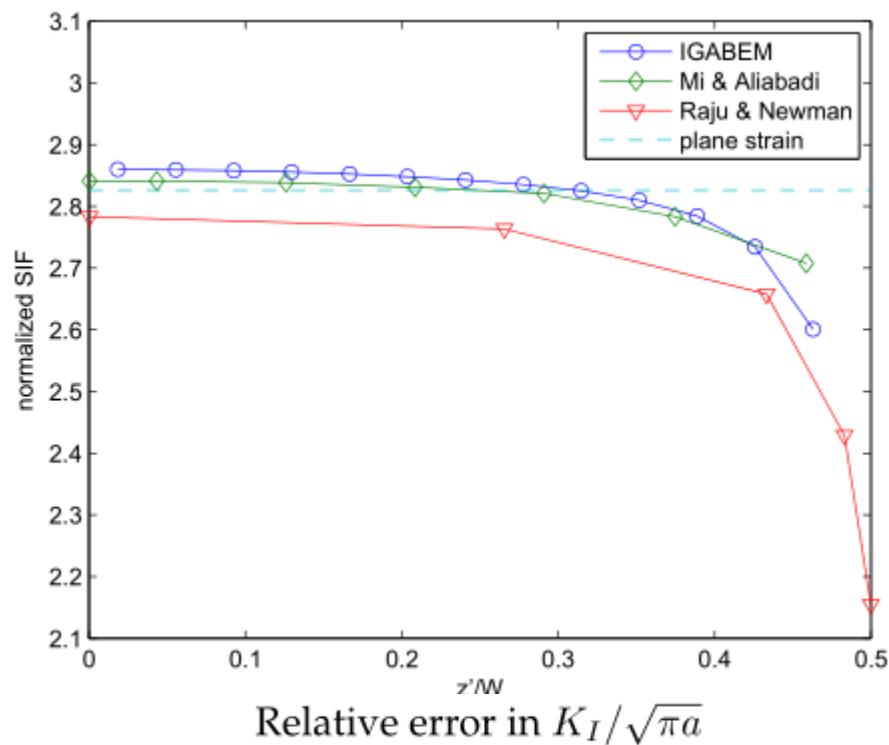
$$L = 1, \mathbf{s}_P(0, 0, 1.5)$$



Example of surface breaking cracks: edge crack under uniform tension



$E = 1.0e3, \nu = 0.3$
top face:
 $t_x = t_z = 0, t_y = 1$
bottom face:
 $t_x = t_z = 0, t_y = -1$
 $T/a = 2$
 $W/a = 3$
 $H/a = 3.5$



Conclusions & Future work

- Dual BIEs are used for NURBS-represented fracture modeling
- Improved numerical singular integration scheme
- Approaches for SIFs evaluation
- Fatigue crack growth algorithm
- IGABEM for trimmed NURBS and surface crack modeling

- Improve the integration and collocation schemes for trimmed NURBS
- Acceleration algorithm
- T-spline for local refinement

The financial support by FP7-ITN under grant No. 289361 "Integrating Numerical Simulation and Geometric Design Technology" is gratefully acknowledged

Many thanks for YOUR attention