Reducing non-linear PDEs using a reduced integration proper orthogonal decomposition method

Elisa Schenone, Jack S. Hale, Lars Beex, Stéphane P. A. Bordas

Ongoing work with Davide Baroli
Overview

• Model order reduction and POD.

• The problem with POD for non-linear problems. Assembly of non-linear operators dominates solution time.

• Novel reduced integration POD method.
 • DOLFIN.
 • UFL-based specification of weak forms.
 • SLEPc.

• Main alternative: Discrete Empirical Interpolation Method [S. Chaturantabut and Sorensen 09].
 • Difference: DEIM selects significant points to evaluate strong form, our method selects significant regions to evaluate weak forms.
 • Straightforward implementation in any finite element method code.

• Results.
Model Order Reduction

- Any method that reduces the runtime complexity of a model.

- Why?
 - Interactive rate simulation.
 - Multi-level Monte Carlo methods (Giles, Schwab).
 - Bayesian inference problems (Stuart).
Proper Orthogonal Decomposition (POD)

- Find a new set of *global* basis functions that optimally represent the data in a set of snapshots.
- Dimension of POD basis significantly smaller than original FEM basis.
- Snapshots, POD basis, projections - (a lot of work) offline.
- Small linear system solve - (a tiny bit of work) online.
Proper Orthogonal Decomposition (POD)

Input: Solution snapshots

\[u_i \in V_h \quad dim(V_h) = m \quad \{u_1, u_2, u_3, \ldots, u_i\} \]

Output: POD basis functions.

\[\{\phi_1, \phi_2, \ldots, \phi_N\} \]

\[N \ll m \]
Non-linear reaction-diffusion

\[
\left(\left(\frac{1}{\Delta t} + \frac{c}{2} \right) M + K \right) u^{k+1} = \left(\frac{1}{\Delta t} - \frac{c}{2} \right) Mu^k + L(u^k)
\]
POD Basis Functions
Non-linear reaction-diffusion

\[
\left(\left(\frac{1}{\Delta t} + \frac{c}{2} \right) M + K \right) u^{k+1} = \left(\frac{1}{\Delta t} - \frac{c}{2} \right) M u^k + L(u^k)
\]

\[
\left(\frac{1}{\Delta t} + \frac{c}{2} \right) \Phi^T M \Phi + \Phi^T K \Phi \tilde{u}^{k+1} = \left(\frac{1}{\Delta t} - \frac{c}{2} \right) \Phi^T M \Phi \tilde{u}^k + \Phi^T L(\tilde{u}^k)
\]

Once \(k\) \times \(k\) once \(k\) \times \(k\) once \(k\) \times \(k\) every timestep

Must re-assemble linear form for every timestep
Newton System

Linearisation about current solution

\[a(m; u_; \delta u; v) = -F(m; u_; v) \]

Newton system

\[\mathbf{A}(u_) \delta u = \mathbf{b}(u_) \]

Must re-assemble linear and bilinear operators for every Newton step.
Split of time

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage of total runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard FEM</td>
<td>Same observation as [S. Chaturantabut and Sorensen 09]</td>
</tr>
<tr>
<td>Standard non-linear POD</td>
<td></td>
</tr>
</tbody>
</table>
Observations

• *Observation 1:* POD basis function optimally represents data in snapshots.

• *Observation 2:* Original finite element mesh is *not optimal* for POD basis functions.
Solution

• Construct a new mesh for *online assembly* of all non-linear operators, that is *optimal for the POD basis functions*.

• Hopefully, this new mesh will have significantly fewer cells.

• Fewer cells means less computational costs during assembly of operators associated with non-linear part of PDE.
Offline Algorithm

• Greedy algorithm on sequence of POD basis functions.

\[\{ \phi_1, \phi_2, \ldots, \phi_N \} \]

• Start with coarse mesh and first POD basis function.

\[\mathcal{T}_h^1 \]

• Calculate local error indicator.

\[\eta_i = \int_{\mathcal{T}_h^1(Q_n)} |\phi_1| \, dx - \int_{\mathcal{T}_h^1(Q_{n+1})} |\phi_1| \, dx \]

• Refine until tolerance met (e.g. 1%, 5%, 10%).

• Starting with new mesh, take second POD basis function, repeat.
Interpolate modes

Mesh 6
\begin{equation}
((\frac{1}{\Delta t} + \frac{\epsilon}{2}) \Phi^T M \Phi + \Phi^T K \Phi) \tilde{u}^{k+1} = (\frac{1}{\Delta t} - \frac{\epsilon}{2}) \Phi^T M \Phi \tilde{u}^k + \Phi^T L(\tilde{u}^k) \tag{12}
\end{equation}

We assemble the operators where the modes are important.
Speed up against FEM

Total speed-up

40 modes: POD: 5x, 1%: 90x, 5%: 220x, 10%: 300x
Error against FEM

<table>
<thead>
<tr>
<th>Number of modes</th>
<th>Relative l^2 error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tol = 10%</td>
</tr>
<tr>
<td></td>
<td>tol = 5%</td>
</tr>
<tr>
<td></td>
<td>tol = 1%</td>
</tr>
<tr>
<td>40 modes POD:</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>1%: 0.03</td>
</tr>
<tr>
<td></td>
<td>5%: 0.03</td>
</tr>
<tr>
<td></td>
<td>10%: 0.045</td>
</tr>
</tbody>
</table>
Hyperelasticity (Newton)

FEM

Reduced integration POD

30x speed up over standard POD
Summary

• Simple method to overcome issue of operator construction cost in reduced order methods.

• Four ingredients:
 • Mesh refinement.
 • Error indicators.
 • Projections and interpolations.
 • Linear algebra operations.

• Key idea: generate optimal meshes for optimal POD basis functions.
Questions?