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Overview

Model order reduction and POD.

The problem with POD for non-linear problems. Assembly of non-linear operators dominates
solution time.

Novel reduced integration POD method.
* DOLFIN.
 UFL-based specification of weak forms.
« SLEPC.
Main alternative: Discrete Empirical Interpolation Method [S. Chaturantabut and Sorensen 09].

« Difference: DEIM selects significant points to evaluate strong form, our method selects
significant regions to evaluate weak forms.

e Straightforward implementation in any finite element method code.

Results.



Model Order Reduction

Any method that reduces the runtime complexity of
a model.

Why"?
* |[nteractive rate simulation.
* Multi-level Monte Carlo methods (Giles, Schwab).

 Bayesian inference problems (Stuart).



Proper Orthogonal
Decomposition (POD)

Find a new set of global basis functions that
optimally represent the data in a set of snapshots.

Dimension of POD basis signiticantly smaller than
original FEM basis.

Snapshots, POD basis, projections - (a lot of work)
offline.

Small linear system solve - (a tiny bit of work)
online.



Proper Orthogonal
Decomposition (POD)

Input: Solution snapshots

ueVy, dim(Vy)=m {ug, up, us, ..., u;}

Output: POD basis functions.

{¢1. 02, ..., dn )



Non-linear reaction-diffusion

1. 1.
0.8 0.8
0.5 0.5
—go.z —io.z




POD Basis Functions
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Non-linear reaction-diffusion
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once once once every timestep

Must re-assemble linear form for every timestep



Newton System

Linearisation about current solution
alm;u ;ou,v)=—F(m;u;v)
Newton system

A(u ) ou=b(u)

every Newton step every Newton step

Must re-assemble linear and bilinear operators
for every Newton step
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Same observation as [S. Chaturantabut and Sorensen 09]



Observations

 Observation 1: POD basis function optimally
represents data in snapshots.

» Observation 2: Original finite element mesh is not
optimal for POD basis functions.



Solution

e Construct a new mesh for online assembly of all
non-linear operators, that is optimal for the POD
basis functions.

* Hopeftully, this new mesh will have significantly
fewer cells.

* Fewer cells means less computational costs during

assembly of operators associated with non-linear
part of PDE.



Offline Algorithm

Greedy algorithm on sequence of POD basis functions.

{91, 02, ..., ON}

Start with coarse mesh and first POD basis function.
7—1
h
Calculate local error indicator.
N = le_l(Qn) @1 dx — fT,'l(Qn+1) ¢1] dx
Refine until tolerance met (e.g. 1%, 5%, 10%).

Starting with new mesh, take second POD basis function, repeat.






Interpolate modes
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(£ + 5OTMD + dTKD)ii* ! = (L — S)dTMoik + dTL(ii)

once once once everytime, but faster!

We assemble the operators where the modes are important.



Speed up against FEM

Total speed-up
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Number of modes

40 modes: POD: bx, 1%: 90x, 5%: 220x, 10%: 300x



Error against FEM
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Number of modes

40 modes POD: 0.008, 1%: 0.03, 5%: 0.03, 10%: 0.045



Hyperelasticity (Newton)

FEM Reduced integration POD
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30x speed up over standard POD



summary

e Simple method to overcome issue of operator construction cost in
reduced order methods.

e Four ingredients:
 Mesh refinement.
e Error indicators.
* Projections and interpolations.
e Linear algebra operations.

o Key idea: generate optimal meshe for optimal POD basis functions.



Questions?



