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Overview
• Model order reduction and POD. 

• The problem with POD for non-linear problems. Assembly of non-linear operators dominates 
solution time. 

• Novel reduced integration POD method. 

• DOLFIN. 

• UFL-based specification of weak forms. 

• SLEPc. 

• Main alternative: Discrete Empirical Interpolation Method [S. Chaturantabut and Sorensen 09].  

• Difference: DEIM selects significant points to evaluate strong form, our method selects 
significant regions to evaluate weak forms. 

• Straightforward implementation in any finite element method code. 

• Results.



Model Order Reduction
• Any method that reduces the runtime complexity of 

a model. 

• Why? 

• Interactive rate simulation. 

• Multi-level Monte Carlo methods (Giles, Schwab). 

• Bayesian inference problems (Stuart).



Proper Orthogonal 
Decomposition (POD)

• Find a new set of global basis functions that 
optimally represent the data in a set of snapshots. 

• Dimension of POD basis significantly smaller than 
original FEM basis. 

• Snapshots, POD basis, projections - (a lot of work) 
offline. 

• Small linear system solve - (a tiny bit of work) 
online.



Proper Orthogonal 
Decomposition (POD)

Input: Solution snapshots

Output: POD basis functions.

ui ∈ Vh dim(Vh) = m {u1, u2, u3, ..., ui}

N ≪ m

{�1,�2, . . . ,�N}



Non-linear reaction-diffusion
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POD Basis Functions



Non-linear reaction-diffusion
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Must re-assemble linear form for every timestep

(( 1�t +
c
2)�

TM�+�TK�)ũk+1 = ( 1�t �
c
2)�

TM�ũk +�TL(ũk)

once once once every timestep



Newton System
Linearisation about current solution 

a(m; u ; �u; v) = �F (m; u ; v)

A(u ) �u = b(u )

Newton system

Must re-assemble linear and bilinear operators 
for every Newton step

every Newton step every Newton step



Split of time
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Same observation as [S. Chaturantabut and Sorensen 09] 



Observations

• Observation 1: POD basis function optimally 
represents data in snapshots. 

• Observation 2: Original finite element mesh is not 
optimal for POD basis functions.



Solution
• Construct a new mesh for online assembly of all 

non-linear operators, that is optimal for the POD 
basis functions. 

• Hopefully, this new mesh will have significantly 
fewer cells. 

• Fewer cells means less computational costs during 
assembly of operators associated with non-linear 
part of PDE.



Offline Algorithm
• Greedy algorithm on sequence of POD basis functions. 

• Start with coarse mesh and first POD basis function. 

• Calculate local error indicator. 

• Refine until tolerance met (e.g. 1%, 5%, 10%). 

• Starting with new mesh, take second POD basis function, repeat.

T 1h

{�1,�2, . . . ,�N}

�i =
�
T 1
i (Qn)

|�1| dx �
�
T 1
i (Qn+1)

|�1| dx
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Interpolate modes

Mesh 6



(( 1�t +
c
2)�

TM�+�TK�)ũk+1 = ( 1�t �
c
2)�

TM�ũk +�TL(ũk)

once once once everytime, but faster!

We assemble the operators where the modes are important. 



Speed up against FEM

40 modes: POD: 5x, 1%: 90x, 5%: 220x, 10%: 300x 
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Error against FEM
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40 modes POD: 0.008, 1%: 0.03, 5%: 0.03, 10%: 0.045



Hyperelasticity (Newton)
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Summary
• Simple method to overcome issue of operator construction cost in 

reduced order methods. 

• Four ingredients: 

• Mesh refinement. 

• Error indicators. 

• Projections and interpolations. 

• Linear algebra operations. 

• Key idea: generate optimal meshe for optimal POD basis functions.



Questions?


