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Abstract— This paper considers coordinated multicast beam-
forming in a multi-cell wireless network. Each multiantenna base
station (BS) serves multiple groups of single antenna usersy
generating a single beam with common data per group. The aim
is to minimize the sum power of BSs while satisfying user-spéic
SINR targets. We propose centralized and distributed multcast
beamforming algorithms for multi-cell multigroup systems. The
NP-hard multicast problem is tackled by approximating it as
a convex problem using the standard semidefinite relaxation
method. The resulting semidefinite program (SDP) can be sobd
via centralized processing if global channel knowledge isvail-
able. To allow a distributed implementation, the primal demmpo-
sition method is used to turn the SDP into two optimization leels.
The higher level is in charge of optimizing inter-cell interference
while the lower level optimizes beamformers for given intercell
interference constraints. The distributed algorithm requires local
channel knowledge at each BS and scalar information exchaeg
between BSs. If the solution has unit rank, it is optimal for
the original problem. Otherwise, the Gaussian randomizain
method is used to find a feasible solution. The superiority othe
proposed algorithms over conventional schemes is demonated
via numerical evaluation.

Index Terms— Distributed optimization, physical layer multi-
group multicasting, multi-cell coordination, primal decomposi-
tion, sum power minimization.

I. INTRODUCTION
Transmit beamforming (or equivalently precoding) is

Centralized algorithms require the knowledge of the chinne
between all BSs and all users in the system, i.e., global CSI.
Distributed approaches rely on the availability of locallCS
i.e., the knowledge of the channels between a BS and all users
in the system. Throughout this paper, the acquired global or
local CSI is assumed to be perfect. In general, decentcalize
schemes are often more practically realizable than the cen-
tralized ones due to possibly reduced signaling overhedd an
lower computational requirements per processing unit.rCoo
dinated beamforming has been extensively studied for uario
system design objectives, such as sum power minimizatipn [2
minimum SINR maximization [3] and sum rate maximization
[4]. In the classical sum power minimization problem [2]eth
goal is to minimize the sum power of the BSs while satisfying
user-specific SINR targets. This system design objectiv is
practical interest for wireless applications which havagent
data rate and delay constraints. In the literature, cenégl
and distributed beamforming algorithms have been proposed
in [2], [5]-[7] and [2], [8]-[11], respectively. These algthms

are either based on standard convex optimization techsique
or exploitation of uplink-downlink duality.

In the hitherto presented literature, independent data is
addressed to each user. This transmission strategy is known
as unicast beamforming. When a symbol is addressed to
more than one user, however, a more elaborate multicasting

signal processing technique that aims at improving theoperf problem arises. Physical layer multicasting has the piatent

mance of a communication system by efficiently exploiting thto efficiently address the nature of future traffic demands,
spatial domain of a wireless multi-antenna channel. Adednce.g., to support demanding video broadcasting applicsitidn
multi-antenna beamforming techniques can increase specphysical layer multicasting problem was originally propds
efficiency significantly, if properly designed. Howevertaut in [12], proven NP-hard and accurately approximated by the
proper interference coordination between neighboringscelsemidefinite relaxation (SDR) and Gaussian randomization
inter-cell interference may limit the system performanice. techniques. In [13], a unified framework was derived for
this respect, coordinated beamforming, where inter-cédiri  physical layer multigroup multicasting, where indepertden
ference coordination is involved in the design of multieemta sets of common data are transmitted to different interferin
techniques, has been recognized as a powerful approachgrtoups of users. Therein, the sum power minimization and the
improve the performance of wireless systems, especially minimum SINR maximization problems, also known as the
cell-edge areas [1]. In coordinated beamforming, each d&aality of Service (QoS) and the max-min fair problems, were
stream is linearly precoded in the spatial domain and trarfermulated, proven NP-hard and accurately approximated fo
mitted from a single base station (BS). To control interfea multicast multigroup system with a sum power constraimt. |
ence, precoded data transmissions are jointly designed@mg{l4], [15], a consolidated solution was derived for the virggl

BSs such that a practical network design target is achievedx-min fair multigroup multicast beamforming under per-
while predetermined constraints imposed on users and BS#enna power constraints. This work was extended for the
are satisfied. The performance of coordinated beamformiggm rate maximization problem in [16]. In [17], a distribdite
schemes rests on the availability of channel state infdomat algorithm was proposed for a multi-cell multicast systerthwi
(CSI) at the BSs. Coordinated beamforming techniques candsingle group per cell. Both QoS and max-min fair problems
implemented either in a centralized or a decentralized mannvere studied. The energy efficiency maximization problem
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was recently considered in [18] for a multi-cell multigroumare disjoint, i.e.l; NU; = @, Vi, j € G,i # j. The received
case, and a centralized algorithm was derived. In the titega signal at usew is given by

however, there is a lack of generic centralized and diditu desired signal _ intra-cell interference
algorithms for the sum power minimization problem in a m -
multi-cell multicast system with multiple groups per cell. Yu = hy,Wwesg+ Z hy ,w;s;
In the present contribution, in contrast to existing works, i€Gy\{g}
centralizeql and dist_ributed beamforming designs are m@_cﬂ)o + Z Z hll;'tuWkSk +N,
for a multi-cell multigroup multicast system. The targetas JEB\{b} k€T,
J

minimize the total transmission power of the system while
providing the guaranteed minimum SINRs for active users.
This non-convex problem is first approximated as a convex one
via the SDR. The resulting semidefinite program (SDP) can béereh;, € C* is the channel vector from B8 to user
efficiently solved via centralized processing, requiringbgl u, w, € €4 is the transmit beamforming vector of group
channel knowledge. In order to obtain a distributed implemeg, s, € C is the corresponding normalized data symbol and
tation, the primal decomposition method is used to refoateul n,, ~ CA(0,?2) is the complex white Gaussian noise sample
the one-level SDP into two optimization levels. In the highewith zero mean and varianeg’.

level, upper bounding constraints for inter-cell inteeigce  The system optimization objective is to minimize the total
powers are optimized while the lower level is in charge of ogransmission power of all BSs while guaranteeing minimum
timizing the beamformers for a given set of interference @owWSINR target for each active user. The mathematical expmessi
constraints. Distributed processing requires only local @ of the problem is given by

each BS and the exchange of scalar information with other BSs

inter-cell interference

Vb € B,Vg € Gy, Vu € U, Q)

via low-rate backhaul links. With rank-one solution, the D (Wb Z Tr (wyw})

is optimal for the original problem. Otherwise, the Gaussia 9€9 hH 9

randomization method is utilized to provide a sub-optimal, s. t. [, W > vy 2)
but feasible, beamforming solution. The effectivenesshef t o2+ > > w2 T

proposed centralized and distributed beamforming schésnes b ;;Skegfg{gé y
demonstrated via numerical examples. €5,V €O, Vu €Uy

The paper is organized as follows. In Secfidn II, the multwherey, is the minimum SINR target for user. Problem
cell multicast system is introduced, and the corresponstimg (@) can be infeasible in some channel conditions and system
power minimization problem is formulated. In sectién$ Iida Settings, e.g., the predetermined SINR targets and/oruhe n
V] the centralized and distributed beamforming algorighmper of active users are too high. In general, it is the duty
are derived, respectively. The performance of the proposeddadmission control to handle infeasible cases by relaxing
algorithms are examined in Sectioh V via numerical exampldbe system requirements, i.e., by decreasing the SINRttarge
Finally, conclusions are drawn in Sectién]VI. The followand/or reducing the number of users [19]. Feasibility was
ing notation is used. Bold face lower case and upper ca@igcussed for unicast and multicast beamforming systems in
characters denote column vectors and matrices, resplgctive’] and [17], respectively. In the rest of this papdrd (2) is
The operators(.)H and Tr(.) correspond to the Conjugateassumed to be feasible. Probleih (2) is non-convex and NP-
transpose and the trace of a matrﬂ&f+ denotes the set of hard since it is a more generic version of an NP-hard single-
N-dimensional positive real vectors, whi®" represents the cell multicast problem [12]. Thus[](2) cannot be solved & it
set of M -dimensional complex vectors. current form.

IIl. CENTRALIZED BEAMFORMING DESIGN

Problem [[2) can be approximated as a convex problem,

Consider a multi-cell multigroup multicasting system withyhich can be efficiently solved. In this respect, the SDR
B BSs, G groups andU users. The corresponding sets Ofnethod is applied by replacing,w! with a semidefinite
BSs, groups and users are denotediby- {1,..., B}, G = matrix W,, Vg € G. The relaxation lets the rank aV, be

{1,...,G} andU = {1,...,U}, respectively. Each BS is arpitrary. The resulting convex SDP is expressed as
equipped withA transmit antennas, whereas each user has only

one receive antenna. An independent data stream is traggmit , min. > Tr (W)
€g

Il. SYSTEM MODEL AND PROBLEM FORMULATION

to each group of users from a single serving BS. Thus, there {Waloes
exists inter-group interference between the groups ofarsgr s. t. Tr (Hy, . W) >
I.e., i ' ' i Ty Y T(H,,W, - v ()
BS (i.e., intra-cell interference) and inter-group inézence ou T, . r(H; Wy
between the groups that belong to the different BSs (i.ter+n JEB keG;\{g}
cell interference). The set of groups served bytESgiven b b € B, Vg € Go, Vu € Uy
. e i Do 4 W, =0,Vge g

Gp. The number of groups in sét, is denoted byG,. The set
of users in groupy is denoted by/,, and the correspondingwhereH, ,, = hb,uh';',u- Problem [(B) can be solved in a cen-
number of users is given by,. Since each user belongs taralized way if global CSl is available at a central coniral

only one group, the sets of users belonging to differentjggsouunit or at each BS. An optimal solution @fi (3) is not necedgari



optimal for the original non-convex problefd (2). If the sidm ~ Algorithm 1 Centralized multicast beamforming

is rank-one, i.e., all the optimal transmit covariance mes 1. Compute optimal transmit covariance matridéd’; } ,cg
{W7}4eg have unit ranks, then the solution is also optimal by solving the relaxed problem as an SDP (3).

for the original problem. In this case, the optimal beamfersn 2. Check whether the ranks ¢W7;} ¢ are all one or not.

{w }4ec can be extracted frofiW; } ,cg by using the eigen- If the ranks are one, apply eigenvalue decomposition for
value decomposition. The resulting beamformers are giyen b {W7} ¢ to find optimal beamformergw; } ;g for the

w, = \/Agug, Vg € G, where ), andu, are the principal original problem. Otherwise, apply Gaussian randomiza-
eigenvalue and eigenvector 8V ;. tion with power optimization[{4) to find feasible, but sub-

For specific optimization problems, the SDR provides opti- optimal, beamformergw, } ;<.
mum solutions. The most prominent example of this case is the
optimal unicast beamforming solution in [6]. Neverthe)eise since it decouples the problem at each iteration. This ntetho
to the NP-hardness of the multicast problem, the relaxeld-prean be applied to an optimization problem which has such cou-
lems do not necessarily yield unit rank matrices. Conseifyyenpling constraints that by fixing them, the problem decougtes
one can apply a rank-one approximation over the highthe following, we first reformulate the centralized SDR prob
rank solution. The Gaussian randomization method is redoriem, and then apply primal decomposition. By using primal
to give the highest accuracy in the multicast beamformiriiecomposition, the one-level optimization problem is digd
case [20]. Let the symmetric positive semidefinite matricédto two levels, i.e., the lower level subproblems and tighbr
{W?},4eg constitute a solution of the relaxed problem. Therevel master problem. The solution method for this two-leve
a candidate rank-one beamforming solution to the origin@ptimization is derived. The conditions for the optimali
problem can be generated as a complex Gaussian vedhsr obtained solution with respect to the original problem
with zero mean and covariance equal W, i.e. w, ~ are described. Gaussian randomization method is presented
CN(0,W}), ¥g € G. Next, an intermediate step is requiredn case the solution is not optimal for the original problem.
between generating a Gaussian instance with the statisfidgally, the distributed approach is summarized by a step-b
obtained from the relaxed solution and creating a feasit#tep algorithm, and its practical properties are discussed
candidate instance of the original problem since the fdégib
of the original problem is not guaranteed. In this respewt, a
additionql power minimiza.tion problem needAs to be soIveg.. Reformulation of the centralized relaxed problem
For a given set of candidate beamformee,},cg, the

transmission powergp, },cg are minimized while satisfying |n order to apply primal decompositior] (3) needs to be
the user-specific SINR targefs;, }.cy. The resulting linear reformulated by adding auxiliary variables. In this regpae
program (LP) is given by separate interference power to intra-cell and inter-etins,
Zp and add auxiliary variables to denote the inter-cell irtehce
g terms. Now, the coupling is transferred from beamformers to
inter-cell interference variables. The reformulated peobis
> > Yu, (4) expressed as

min.
{Pg}geg geg
Py |hb,uwg|2
o2+ > > prlhjuwgl
jeBkeg;\{g}

Vb € B,Yg € Gy, Yu € U,. i D T (Wy)
919 €g

By solving [4), a set of beamformers is defined By, = ‘ Tr (Hp, W)
\VPiWg, Vg € G, wherep; is the optimal power associ- s 1. o2+ > Giu+ Y Tr(H,,Wy) Z Y

ated with fixed candidate beamformér,. The beamform- jEB\{b} keGy\{g}

ers {w,},cg are sub-optimal, but feasible, for the original Vb € B,Vg € Gy,Vu € U,

problem. Finally, after generating a predetermined nunaber > Tr(Hy o W) <0,V € B,VuclU\U,
candidate solutions, the one that yields the lowest oljecti €%

value of the original problem is chosen. The accuracy of Wz 0,VgeG,vbeB )

this approximate solution is measured by the distance of t{%ereeb_u is the inter-cell interference from B&to useru

approximate objective value and the optimal value of tIﬂ'a?nd the vectoé consists of all inter-cell interference variables.

relaxed problem..Thls accuracy Increases with the INANG3SIgince the inequality constraints are met with equality &t th
number of Gaussian randomizations. The proposed Cem“%ptimal solution, [{E) yields the same solution thEh (3).
multicast approach is summarizedAigorithm[Il With global

CSI, Algorithm[l is performed at a central controlling unit or
at BSb, for all b in parallel.

s. t.

B. Two-level optimization via primal decomposition

IV. DISTRIBUTED BEAMFORMING DESIGN By applying primal decomposition](5) is divided into BS-

In this section, a primal decomposition-based distributegpecific subproblems for beamforming design with fixed inter
beamforming approach is proposed. Primal decompositioall interference levels, and a network wide master problem
method can be used to facilitate distributed implememtatién charge of optimizing the interference levels. The rasglt



subproblem for BS is given by Vb € B, is generated as a Gaussian random variable with zero
mean and covarianc® ;. Since the candidate beamformers

{anlgég Z Tr (Wy) may not be feasible to the original problem as such, an
" 9€G Tr (Hy W) additional power optimization problem needs to be solved at
s. t. 5 5 bu 2Ty oW > ., each BS. At BS, powers{p,},cg, are optimized for a given
out _eg\:{b} g ¥ keg;{ }Tr( b W) set of fixed candidate beamforme, } ,cg, While the SINR
Vg € éb,Vu eu, T targets{~y, }ucu, Need to be satisfied. This problem can be
S Tr (Hb,uW%) <Oy, €U\ Uy expressed as the following LP
i€y .
W, = 0,Yg € Gy, min. ) py

(6) {pg}gegb 9€Gy

Problem [(6) can be optimally solved since it is an SDP. Th% Py |hb,uwg|2

o t. »
master problem is given by 2L Y Gut Y me Ihb,uv?/kIQ 2
min. *(0 jeB\{v} k€Gy\{g}
{0v}ven b%;’;’ fb ( b) (7) Vg € Gy, Vu AE Z/Qfg
st OeRY, WbeB > pilhy Wil < 0pu, €U\ Up.
i€y
where f;(8,) denotes the optimal objective value &1 (6) for 9)

given 8. The vectord, with length L is composed of BS After solving [3), BSb can define its beamformers by, —
b specific inter-cell interference terms. The master problewfl?_zwg, Vg G_Qb, wherepy is tAhe optimal power associated
@ can be solved for the inter-cell interference variablg¥ith the candidate beamformetr,. The resulting beamform-

{0b,u}ves.ucru, DY Using the projected subgradient metho@rs are sub-optimal for the original problem. After genierat
a predefined number of candidate solutions, the one thas give

egfj” = P {952 - a<r>s§2} ,beBueld\U, (8) the lowest objective value of the original problem is sedect

_ o ' N _ Solving [@) does not require any information exchange be-
where P is the projection onto a positive orthant,is the tyeen the BSs since the inter-cell interference variabtes a
iteration index (") is the step-size a”@fyz is the subgradient fixed while only the powers are optimized. The fixed values
of (@) at pointegg. Due to the convexity of probleni](5), theare taken from the optimal solution of] (7). An alternative

subgradienkl(fi can be defined via the dual problem of (5) byroblem formulation is possible where both powers and inter
using similar derivation as in [11]. The resulting subgeadi Cell interference variables are optimized simultaneousity
(r) the aid of iterative primal decomposition method. Solvihigpt

at point6.") is given bys.”) = A!") — 145 s whereA!") is the : , .
dual variable associated’wiwf)y in thé SINR constraint of problem requires scalar information exchange among the BSs
s via backhaul.

useru at its serving B9 (i.e., in subproblena) anduﬂ is the

dual variable associated Wiﬂﬁ in the inter-cell interference
constraint of user at the interi‘ering BS (i.e., in subproblem
). Since [®) is convex, the optimal dual variables can be The distributed implementation of the beamforming design
obtained as side information (i.e., a certificate for optityp 1S e_nabled if each BS acquires Iocal_ CSI and sc;alar infor-
by solving [8) using standard SDP solvers. An alternative afhation exchange between the BSs is allowed via low-rate
explicit way to find the dual variables is to formulate andseol Packhaul links. More precisely, the subproblénn () and
the dual problem of({6). the corresponding part of tr_\e master problem [ih (7), i.e.,
The master problem can be optimally solved if the step-si#ée update of,, are solved independently at BS for all
of the projected subgradient method is properly chosen [28] € B in parallel. At subgradient iteration, the backhaul
If local CSlI is available and a small amount of informatiofformation exchange is performed by BSs follows. BSh
exchange is allowed between the BSs, a distributed impRignals the dual variables associated with the SINR cansita
mentation is possible, es explained in SecEonIV-D. If b t i€ {Mv.u}ucw,, to all the interfering BSs. Whereas the dual
optimal covariance matrice§W: } seg, ves have unit ranks, variables associated with the inter-cell interferenceseamts,
then this solution is also optimal for the original problenh€-: {tb.u}ucu\u,, are signaled to the BS of which user
@. In this case, the optimal beamformefs:} e, ses IS being interfered by BS. Assuming a fully connected

are obtained fror{ W },cg, vcs by applying the eigenvalue network and an equal number of users at each cell (i.e.,
decomposition, i.ew* = \/Auy, Yg € Gy, Vb € B U, = U/B, Vb € B), the total amount of the required backhaul
1 nr Vg g g ) .

signaling at each subgradient iteratiois the sum of the real-

_ o valued terms exchanged between the coupled BS pairs. Thus,

C. Gaussian randomization the total number of exchanged scalar values per iteration is
If at least one of W } scg, ves has a rank higher than one given by 2B(B — 1)(U/B). After solving the SDR problem

the solution of the SDR problem is not optimal for the origina[@) via iterative distributed optimization, each BS needs t

problem [2). In this case, feasible, but sub-optimal, ranknow if the covariance matrices of other BSs are all rank-

one beamformers can be found via Gaussian randomizatmre. This is easily handled in a distributed manner by each

method. A candidate beamforming solutien,, Vg € G,, BS sending one-bit feedback to other BSs. If the Gaussian

D. Distributed implementation



Algorithm 2 Distributed multicast beamforming distributed iteration, compared with the overall signglinad
- Setr — 0. Initialize inter-cell interference poweﬁgo). re_qu_ired by the_centraliz_ed algorithm. One can see that the
repeat distributed algorithm requires notably less amount of hack

3 Compute optimal transmit covariance matrice§ignaling per iteration compared to the centralized apgroa
{W:}lseq, and dual variables {A.}ueu, The difference gets greater with the increasing networ diz

N

{ibu}uctivs, by solving the relaxed subproblemconclusion, backhaul signaling overhead can be significant
b as an SDPL{6). reduced by limiting the number of iterations.
4 Communicate dual variablgsy, . }uces,» {fin.u}uczny, TN distributed approach allows some special case designs
to the coupled BSs via backhaul. where the number of optimization variables is reduced,ifgnd
5. Update inter-cell interference variablégﬂ) via pro- to a lower computational load and even a further decreased
jected subgradient method (8). signaling overhead. These special case designs come at the
6 Setr—=r+1. cost of somewhat decreased performance. Some of the possibl
7. until desired level of convergence special cases are presented below:

8: Check whether the ranks dfW;},cg, are all one or « Common interference constrait;,, = 6,vb € B, Vu €
not. Share this one-bit information among other BSs via U \ Us.
backhaul. If the ranks are one for glle G,,b € B, apply ~ « Fixed interference constraint; , = cp,, Vb € B,Vu €

eigenvalue decomposition fqfW; },cg, to find optimal U\ Uy, wherecy, is a predefined constant. Does not
beamformers(w? },cg, for the original problem. Other- require any backhaul signaling.

wise, apply Gaussian randomization with power optimiza- « Inter-cell interference nulling, i.e.¢,, = 0, Vb €
tion (@) to find feasible, but sub-optimal, beamformers B, Vu € U\ U,. Does not require any backhaul signaling.
{wg}geq,- TABLE |

| | TOTAL BACKHAUL SIGNALING LOAD (PER ITERATION).
randomization procedure needs to be used, extra backhaul

signaling is required. More precisely, the BS-specific pmwve Centralized | Distributed
for each Gaussian randomization instance need to be shared {B,U,A} = {2,8,8} 256 16 (6.3%)

; ; ; B, U, A} = (3,12, 12} 1728 48 (2.9%)
among other BSs in order to select the best one in a distdbute B AT = {116-16) i 96 (L)

manner. The overall distributed approach is summarized in
Algorithm 2 Algorithm 2 is performed at BS, for all b in
parallel. V. SIMULATION RESULTS

In this section, the performance of the proposed centicdlize
and distributed algorithms is evaluated via numerical exam
ples. First, the convergence behavior of the distributgg-al

To acquire optimal performancé/gorithm [ needs to be rithm is examined, and its performance after limited nuntger
run until convergence, and provided that the obtained ¢ovaiterations is compared to the centralized approach. Then, t
ance matrices are all rank-one. However, this is somewhate of coordinated multicast beamforming (i.e., the predos
impractical since the more iterations are run, the higher tentralized algorithm) is justified by showing its supetior
signaling/computational load and the longer the causealydelover conventional transmission schemes. The performahce o
In this respectAlgorithm[2 naturally lends itself to a practical the centralized algorithm is also studied against the lower
design where it can be stopped after a limited number bbund solution under different system settings. Finalhg t
iterations to reduce delay and signaling load. Since ther-inttightness of the SDR method and the properties of the higher
cell interference levels are fixed at each iteration, fdasitrank solutions are also examined. The used simulation model
beamformers can be computed via the eigenvalue decompasisists ofB BSs, each of which is equipped with transmit
tion or the Gaussian randomization procedure, depending amtennas and serveS groups of U single antenna users.
the rank properties of the covariance matrices. Limiting tiThe number of user per each group is given ByG. In
number of iterations comes at the cost of increased sum powhe figures hereafter, the main system parameters are given

In Table[l, the backhaul signaling overhead of the centrdly {B,G,U, A}. We assume frequency-flat Rayleigh fad-
ized and distributed algorithms are compared under differéng channel conditions with uncorrelated channel coeffitsie
system settings. In the centralized algorithm, it is assimbetween antennas. The SINR constraints are set equal for
that each BS exchanges its local CSI with all other BSdl users, i.e.,v, = ~, Yu € U. The simulation results
via backhaul links. Thus, global CSI is made available fare achieved by averaging ovéd0 channel realizations. In
each BS. Assuming equal number of users at each cé#fie case of higher rank covariance matricéd) Gaussian
the total backhaul signaling load in terms of scalar-valugdndomizations are generated.
channel coefficients in the centralized system is given byIn Fig.[d, the convergence behavior of the distributed algo-
2AU(B — 1)B. Here, one complex channel coefficient isithm is examined under different system settings. In this e
considered as two real-valued coefficients. For the digeith ample, the speed of convergence is relatively fast. Esibgcia
algorithm, the total backhaul signaling load is presented pthe first few iterations improve the performance signifigant
subgradient iteration. In Tab[é I, the values inside thekets and after10 iterations the algorithms has almost converged.
denote the percentage of the signaling load required darFig.[2, sum power is plotted against independent channel

E. Practical considerations
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Fig. 2. Comparison of centralized and distributed alganih Fig. 4. Sum power versus SINR target.

realizations for the centralized and distributed alganish The
number of iterations is limited for the distributed alghnit.
The main system parameters are given iy, G, U, A} =
{2,4,8,8}. The results demonstrate that the performance of
the distributed algorithm with10 subgradient iterations is
very close to that of the centralized scheme. It can be seen
that performance is relatively good even withteration. For
Figs.[A andR, the SINR target was set GodB. All the
covariance matrices in these results were rank-one.

In Fig. 3, average sum power is illustrated against SINR 4 ‘ ‘ ‘ ‘
target for various transmission schemes under differestesy ! 2 8 4 N 6

. he foll . h d: Number of users per group (U/G)
settings. The following schemes are compared: Fig. 5. Sum power versus the number of users per group.

» Single-cell beamforming with orthogonal access (extefargets. The gain diminishes with the increasing SINR targe
sion of unicast case in [22] to multicast) On the other hand, the superiority against the orthogonal
o Coordinated beamforming with inter-cell interferenc@ccess scheme is greatly emphasized as the SINR target or
nulling (proposed special case design in SedfionlV-E)the number of BSs increases.
« Coordinated beamforming with inter-cell interference op- | Fig.[@, the centralized algorithm is compared to the lower
timization (proposed centralized design in Secfioh Ill) phound solution of the relaxed problem. When the solution
In the orthogonal access scheme, each BS uses indepengerank-one, the SDR is optimal and gives the lower bound.
time or frequency slot to optimize the beamformers for itionOtherwise, the Gaussian randomization process needs to be
users leading to an inter-cell interference free commuioica applied to get a feasible rank-one solution, which is then
scenario. However, the rate target of each user needs # beompared to the lower bound higher rank solution. The result
times higher as in the non-orthogonal multi-cell case ineordimply that the SDR is (usually) optimal when the number of
to guarantee the same SINR targets. The inter-cell intemfer users per group is low (i.el]/G = 2) irrespective of the SINR
nulling scheme forces interference towards other cellgrais target. If the number of users per group is high (L&.G = 6),
to be zero via spatial processing. For simplicity, the rssidr some solutions of the SDR problem have higher rank than one.
coordinated beamforming in Figl 3 were obtained via centrdfience, the Gaussian randomization method needs to be used
ized processing. However, the same results can be achielgatling to a small gap between the feasible rank-one resdlt a
via distributed algorithm if it is let to converge. The numerthe lower bound solution. In Fid. 5, the effect of increasing
ical results show that the proposed coordinated beamfagrmithe number of users per group is further studied. Speciicall
method outperforms the conventional transmission schemssm power is presented against the number of users per group.
Significant performance gains over the interference mgllifFor low number of users, it seems that the SDR is optimal
scheme are witnessed mainly for low and medium SINSince it gives the same solution as the lower bound. However,
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the performance degrades as the number of users increaSE3IGOD, and by the European Commission, H2020, under
and the gap between the approximation method and the lowlee projectSANSA.
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