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Abstract

We study instantiated abstract argumentation frames of theform
(S,R, I ), where (S,R) is an abstract argumentation frame and where the arguments
x of S are instantiated byI (x) as well formed formulas of a well known logic,
for example as Boolean formulas or as predicate logic formulas or as modal logic
formulas. We use the method of conceptual analysis to derivethe properties of our
proposed system. We seek to define the notion of complete extensions for such
systems and provide algorithms for finding such extensions.We further develop a
theory of instantiation in the abstract, using the framework of Boolean attack for-
mations and of conjunctive and disjunctive attacks. We discuss applications and
compare critically with the existing related literature.

1 Motivation and Orientation

This paper studies semi-instantiated argumentation network of the form (S,R, I ), where
(S,R), R⊆ S×S is an abstract argumentation network andI is an instantiation function,
giving for eachx ∈ S a formulaI (x) of some logicL .

The attack relationR is not instantiated and remains abstract. We are not told, in
terms of the logicL , why there is an attack.

There are several possibilities for such a system to arise.

Option 1. We can view such a system as semi-ASPIC like instantiation. The APPIC
approach (see [32]) will start with a theory∆ in a logic,L define the notion ofL -proofs
for ∆ and will elt S be the set of all possible such proofs and will further define the
attack relationR⊆ S × S in terms of relationships among these proofs. In our case we
just take∆ as the arguments (no proof theory avaiable) and simply tell you abstractly
what is supposed to attack what.
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For example, let∆ = {A,A→ ⊥} (with→ being implication, and⊥ being falsity)
and the attack relation be fromA to A → ⊥ but not from A → ⊥ to A. We are not
explaining why this attack relation is defined so. There are logics, like the Lambek
calculus where modus ponens works from the left but not from right. SoA,A→ B ⊢ B
holds, butA→ B,A 0 B. Thus if X։ Y meansX,Y ⊢ ⊥, then we get thatA։ (A→
⊥) holds (“։” is attack) but (A→ ⊥) does not attackA.

Option 2. Such instantiated systems can also arise from general methodolgoical con-
siderations. Let us ask ourselves a very simple question:

Question. What is the added value of abstract argumentation networks over, say,
classical propositional logic?

Obviously they have the same expressive power. Many papers by various authors
have demonstrated such equivalence. My favourite is my own paper [37], showing that
the attack relation is really the Peirce–Quine dagger connective (x ↓ y = def.¬x ∧
¬y) of classical logic. So, we ask, what is the added value of such networks? My
answer to this is that in these networks we bring some meta-level features into the
object level Dung argumentation networks, expand classical propositional logic with
the meta-predicate “x is false”. When we writez։ x (i.e.,z attacksx) we are saying
z = “ x is false”, orz↔ “ x is false” So the liar paradox becomesx։ x, “I am false”.
So the added value of abstract argumentation networks to classical propositional logic
is the meta-predicate False(x). So the language now has (¬x, x∧ y, x ∨ y, x → y) and
the additional connective False (x).

Now the minute we accept this view we must also allow and address expressions
like

x։ A

whereA is a wff, i.e.,x = “A is false” and we then must also allow

x∧ y։ A

meaning thatx andy together say thatA is false, and now, of course, once we go this
far we must also address

B։ A.

The latter is nothing but the equivalence

B↔ False(A).

If you think about it, once we add to any logic a new connective“C(x)”, we must be
able to addressy↔ C(x), it being just another wff.

Having established some interest in semi-instantiated argumentation networks, let
us now get to business and describe the machinery and problems involved.

Let (S,R) be an abstract argumentation frame. This means thatS is a non-empty
set andR⊆ S × S.

Let L be a logic, with a set of well formed formulas WFF(L ) and letµ be either
semantics or proof theory for this logic. Assume that we havemodels for this logic



which we denote by{m}, and/or theories for this logic which we denote by{∆}. We
assume that a notion
L for this logic is available such that for eachm or ∆ and for
eachΦ ∈ WFF(L ) the relation∆ 
L Φ or m 
L Φ can get 3 answers. Yes (= 1), no
(= 0) or undecided (= 1

2).
As an example of a logic let us take intuitionisitc propositional logicH, with con-

sequence⊢H we can have:

∆ 
H Φ is 1 if ∆ ⊢H Φ holds
∆ 
H Φ is 0 if ∆ ⊢H ¬Φ holds
∆ 
H Φ is 1

2 if neither∆ ⊢H Φ or∆ ⊢H ¬Φ holds

Similarly if m is a propositional Kripke model forH, we can have

m 
H Φ is 1 if m 
 Φ holds
m 
H Φ is 0 if m 
 ¬Φ holds
m 
H Φ is 1

2 if neither holds

Another example is 3-valued classical propositional logicwith the Kleene truth
table for{0, 1

2 , 1}. Call it K . See [19] and DefinitionC.2.
Given a model assignmentm to the atoms, we havem 
K Φ is the value thatm

gives toΦ, denoted bym(Φ). It is a value in{0, 1, 1
2}.

Let (S,R) be a network and letL be a logic with
L . Consider the instantiation
function,I : S 7→WFF(L ).

Consider (S,R, I ). This is an instantiated argumentation network. We seek todefine
the notion of complete extensions for (S,R, I ) and give algoirthms for finding such
extensions.

After performing a conceptual analysis of this problem, we reached the following
definition. A modelm (or a theory∆) of L generates an extension for (S,R, I ) if the
functionλm (or λ∆) defined onS below is a legitimate Caminada labelling giving rise
to a complete extension on (S,R).

The functionλ is:

λm(x) = value of (m 
L I (x))
λ∆(x) = value of (∆ 
L I (x))

The problem is how to identify/compute, using purely argumentation methods, such
extensions for (S,R, I ). This is the task of this paper.1 Note that the emphasis is on

1The reader should note that we are not defining, as a stipulated technical definition, the complete exten-
sions of (S,R, I) as those legitimate Caminada labellings arising from models or theories of the logic. We
are deriving this definition from conceptual analysis of theidea of instantiation.

To make the point absolutely clear, suppose we instantiate the elements ofS by names of Chinese restau-
rants in London. We can define by stipulation extensions for such Chinese systems as those legitimate
Caminada extensionsλ such that if

• λ(x) = in then the Chinese restaurant associated withx made a profit in 2014

• λ(x) = out, then the Chinese restaurant associated withx made a loss in 2014

• λ(x) = undecided, then the Chinese restaurant associated withx came out even in 2014

The above stipulation has nothing to do with a Chinese restaurant attacking another, and is nothing more
than means of restricting the Caminada labellings on (S,R).



using geometric syntactical argumentation methods to find the extensions of (S,R, I ).
What we can do and we do not want to do is to systematically generate all models
m of the logic or all theories∆ of the logic and check whetherλm or λ∆ generate a
legitimate Caminada extension. We want to syntactically transform (S,R, I ) into an
argumentation network. Put differently, we want to identify and use the argumentation
network meaning of the logic.

We consider three main logics.

1. Classical propositional logic based on 3 valued Kleene truth table.

2. Monadic predicate logic without equality based on Kleenetable.

3. Modal logic S5 based on Kleene table.

This paper solves the problem. However, many of the results are technical and are
done in the Appendices.

The methodological schema is simple:
Given (S,R, I ) with I being an instantiation into WFF(L ) we follow the steps below:

Step 1. Rewrite any wff Φ of L into an equivalent formula (inL ) which is argumen-
tation friendly and convenient form.

Finding the right friendly form is not immediate and requires some analysis and
trial and error. Once we find a convenient form for anyΦ ∈WFF(L ) we need to prove
the equivalence. This may involve some technical manipulations and is therefore done
in an appendix.

Step 2. The instantiationI (x) = Φx can now be assumed to be in this special form.
Whenx attacksy in (S,R), we get after instantiation thatΦx attacksΦy. This attack
between formulas ofL , needs to be given a meaning. The two formulas may be con-
sistent inL , so what does it mean that one attacks the other? So we transform anyΦ
of L into an argumentation template called a Boolean attack formation “equivalent” to
Φ which we denote byBF(Φ). Such formations can attack each other because they are
defined as argumentation systems with input output nodes.

Note that wedo notwant to say something like “Φ attacksΨ if {Φ,Ψ} is not con-
sistent inL ” because we do not want to useL . We turnΦ andΨ syntactically into ar-
gumentation networks and remain solidly within the argumentation framework world.

We now haveBF(Φx) attackingBF(Φy) where eachBF is an argumentation network
with input and output nodes.

The attack formation associated withΦ, encodes the logical meaning ofΦ. This has
to be defined and proved. Because of the technical complexityof the transformation
fromΦ to BF(Φ), this is also done in an appendix.

Step 3. We now have the original (S,R) network instantiated by Boolean attack for-
mations. So this is a system of network of networks. Thus steps 1 and 2 reduced the
problem of instantiating a network (S,R) by wffs of a logicL , into the problem of in-
stantiating (S,R) by some special argumentation networks calledBF (Boolean attack



x y

Figure 1:

formations) derived forL . Such a purely argumentation problem is of interest in its own
right. We have a complex system (S,R, I ), where (S,R) is an argumentation network
and for eachx ∈ S, I (x) = (Sx,Rx) is an argumentation network.

We seek to turn this system into one big master argumentationnetwork (SM,RM).
We now want to define the notion of complete extensions for this network (SM,RM).

Remember that this network is not arbitrary but was constructed to do the job of
finding extensions for instantiations of (S,R) into WFF(L ).

We find by conceptual analysis that the traditional notions of extensions for neworks
is not adequate for the job and that we need to develop and motivate our own new no-
tion of extension (which we callnon-toxic truth intervention extensions).

This new notion of extensions is, in fact, a paper in its own right and because of its
complexity it is done in an appendix.

Step 4. We now have (SM,RM) and a new method of finding extensions for it. We
generate these extensions and from the extensions we generate models for the logicL .
The models forL give us extensions for (S,R, I ), with I an instantiation into WFF(L ).

The above step by step workflow schema is quite simple but is rather technical. So
most of the work is done in the appendices so as not to burden the reader.

It would be of value to illustrate the steps of the workflow on an example.
Start with (S,R) being a two point loop{x, y} with x attackingy andy attackingx.

See Figure1.
We have three extensions:

E1 : x = “in”, y = “out”
E2 : x = “out”, y = “in”
E3 : x = y = “undecided”

Instantiate with

I (x) = someone is tall
I (y) = Dov is tall

We get Figure2.
We are looking for (Kleene three valued) predicate models which would give values

to ∃xT(x) andT(d) which will form an extension.
Our knowledge of logic tells us that there is only a model for∃xT(x) ∧ ¬T(d),

e.g. Dov and Lydia, with Dov not tall and Lydia tall. There is no model withT(d) ∧
¬∃xT(x). Thus our knowledge of logic tells us that the above instantiation has only



∃xT(x) T(d)

Figure 2:

Φ Ψ

Figure 3:

one extension in classical two valued monadic logic. In Kleene 3 valued logic, we can
also have a model with∃xT(x) = T(d) = 1

2.
However, we are not supposed to use our knowledge of logic butwe must use an

algorithm to find the model. So as far as the algorithm is concerned we have in this
example a case of the instantiation of Figure3

We turnΦ andΨ into equivalent networks of Boolean attack formation whichwe
draw as in Figure4 and Figure3 becomes Figure5 which is a master network represent-
ing the instantiation. We find extensiosn for the master network and these extensions
will generate models.

The perceptive reader might ask why not look atΦ∧¬Ψ andΨ∧¬Φ and find models
for them? After all, we know the logicL? The answer is that we are not using the logic
at all. The transformationΦ toBF(Φ) is pure syntax. It is the argumentation extensions
which find the models for{I (x)|x ∈ S} which respect the constraints imposed by the
original (S,R).

To continue analysing this example from the argumentation point of view, assume
the universe has only two people, Dov and Lydia. So∃xT(x) becomesT(d) ∨ T(l).

Ψ:
in

out

in

out

Φ Ψ

Φ:

Figure 4:



Ψ

in

out

in

out

Φ

Figure 5:

T(d) ∨ T(l) T(d)

Figure 6:

Figure2 becomes Figure6.
The reader can see now the logic behind this instantiation. We have to define cor-

rectly what it means to attack a disjunction and what it meansfor a disjunction to
mount an attack. Once we do that (this is done later in tis paper) we get that Figure6
is equivalent to Figure7

The only extensions are

1. T(l) = in, T(d) = out (corresponding to∃xT(x) ∧ ¬T(d)) and

2. T(l) = T(d) = undecided (corresponding to∃xT(x) = T(d) = 1
2).

Note that we can use the above as an argumentation theorem prover to check the
consistency ofΦ ∧ ¬Ψ and¬Φ ∧ Ψ.2

Let us conclude this preliminary orientation by saying a fewwords about our deduc-
tive and expositional approach. Our approach is new. We arrive at our proposed system
through a conceptual analysis (using common sense) of the components needed for an
abstract theory of instantiation in general and for the specific instance of, for example,
predicate and modal argumentation and following this analysis we define our system.
So, as we are writing the present lines, we do not know yet the full details of what kind
of system we will get.

2Existing machines for finding extensions for argumentationnetworks push the problem to logical
provers. So we are not suggesting our reduction as a practical theorem prover for logic but only to high-
light that we are operating purely in the argumentation world.



T(l)

T(d)

Figure 7:

We choose to deal, for the sake of simplicity, with the classical Boolean proposi-
tional calculus and with monadic classical predicate logicwithout equality and with
modal logic S5. See Appendix A. We shall deal with more complex logics in a subse-
quent paper.

There exists in the literature the instantiated approach toargumentation, also known
as ASPIC, see [13, 14, 16]. This approach is related but not the same as our approach.
See Appendix E for full comparison and discussion.

1.1 Structure of our paper

Our program for this paper has the following methodologicalstructure:

Starting point. We assume as our given starting point Dung theory of atomic finite
propositional abstract argumentation frames. Namely frames of the form (S,R), where
S a finite set of atomic arguments,R ⊆ S × S is the attack relation together with the
traditional notion of complete extensionsE ⊆ S (to be recalled and defined in the next
section).

Objective. Extend what is given to classical propositional calculus and to monadic
predicate logic and to modal logic, namely allow the elements of S to be instantiated
as formulas of classical propositional calculus or respectively as formulas of (monadic)
predicate logic or respectively as formulas of modal logic S5 and define the concept of
a complete extensions for this case in a natural and completely syntactical and combi-
natorial way, without using any logical notions.3

3By completely syntactical and combinatorial way we mean we use only the geometry of the graph (S,R)
and possibly a new concepts of attack based on the geometry ofthe graph and on the simple syntactical
structure of the arguments. So we assume a system of the form (S,R, I), whereS is a set of atomic arguments,
R is the attack relation, andI is an instantiation function giving for eachx ∈ S a formulaI(x) of propositional
logic or of predicate logic or resp. modal logic. We look for extensions respecting the instantiationI , but
such extensions are to be defined purely syntactically. So defining ARBiff A = ¬B or B = ¬A is acceptable
but definingARBiff A,B ⊢ ⊥ is not!



Output⇒ ⇒SystemInput

Figure 8:

Methodological approach. To achieve our objective we use the method of common
sense conceputal analysis, a well known method in philosophy circles.

Conclusion. We produce an abstract theory of instantiation of argumentation frame-
works in general and for the specific cases of Boolean, predicate, and modal instantia-
tions, and compare and discuss what we get with systems proposed in the literature.

Let us now begin this rather unusual approach.

1.2 General methodological remarks

1. First, we remark that there are two major approaches to extending any proposi-
tional system to a predicate system, in this case extending propositional abstract
argumentation to predicate or to modal S5 argumentation:

*1. Look at applications areas of the (propositional) system and see its short-
comings and seek to extend it accordingly (to a predicate system or to a
modal system). The needs of the applications will dictate what kind of
generalisation to adopt.

*2. Look formally at the (propositional) system and its components and use
theoretical considerations to extend it by adding quantifiers or modalities.

Personally we believe in the (*1) approach. In our particular case, however,
the (*2) approach is just as good, because adding predicatesand quantifiers or
modalities to a propositional system is universally done for many logics. This is
a well trodden path and it can lead to good extensions which will do well with
applications, as long as our conceputal analysis is done with good common sense
and care!

2. Second, let us recall a general methodological remedy forfixing any system
which does not behave properly.

Suppose we have an input/output system of some kind, as represented in Figure
8.

Suppose the output is problematic and not to our liking. How do we remedy the
situation? There are three pure traditional approaches andmany options using
their various combinations

r1. Restrict the input to make sure the output is acceptable.



r2. Fix the system.

r3. Modify the output to make it acceptable.

To ilustrate, suppose we write a program for adding two numbers x andy, to get
x⊕ y.

{x, y}։ x⊕ y.

Suppose we get the correct answer for

0 ≤ x, y < 100,

but for x ≥ 100 ory ≥ 100 we get the answer

x⊕ y = x+ y+ 1

where “+” is the correct addition.

(r1) says do not use numbers≥ 100.

(r2) says fix the program for⊕

(r3) says subtract 1 from the result for the case that one of the input numbers is
≥ 100 and you will get the correct answer.

1.3 Conceputal analysis for instantiated Boolean or predicate ar-
gumentation

Let us first analyse some characteristics of the propositinal case and list their conceptual
significance.

An abstract argumentation network [15] has the form (S,R), whereS , ∅ is the
set of abstract arguments andR⊆ S × S is the attack relation. (We also writex։ y to
denote (x, y) ∈ R, readingx attacksy, especially in figures.)

The formal machinery associates with each (S,R) several types of extensions. It is
convenient for us in this paper to use the Caminada labellingapproach to extensions.
See Caminada–Gabbay survey paper [11]. The Caminada labelling has the formλ :
S 7→ {1, 0, 1

2} whereλ(x) = 1 meansx is “in”, λ(x) = 0 meansx is “out” andλ(x) = 1
2

meansx is “undecided”.
The exact definitions and background will be given in the nextsection in Definition

2.3. Here, in the orientation section, let us just note that because we regard the elements
of S as atomic symbols, we can also view them as interpreted into any logic with¬, as
atomic propositions of that logic, and the set

Tλ = {q|λ(q) = 1} ∪ {¬q|λ(q) = 0}

is always consistent in any such logic, giving us no logical problems whatsoever.
This fact makes any coherent process giving rise to aλ andTλ an acceptable pro-

cess.
Let us assume we have a process for finding such acceptable functionsλ. Our

theoretical considerations for extending the propositional case to a predicate or modal
extension can follow several tracks.



Track (t1): Substitution. Substitute for elements ofS predicate wffs and apply the
process and see what happens and when in difficulty offer suitable remedies.

Track (t2): Translation. Look at translations of the propositional theory into other
predicate systems (translation into logic programming or into classical logic or into
modal logic) and see the behaviour of the image of the source in the context of the target
and find out how to import predicate logic argumentation or modal argumentation from
the translation.

At this point of our deliberations, Track (t2) seems more difficult than Track (t1). Let
us therefore begin with (t1).

1.4 The substitution track

Problems arise when we instantiate the elements ofS and give them internal structure,
such as a wff of predicate logic. The elements ofTλ, when having an internal structure,
may clash with one another and renderTλ inconsistent, in whatever logic we happen
to be using.4 This means that the simplistic approach of allowing propositional or
predicate wffs to be substituted for the atoms inS will most likely be problematic and
may require a remedy. As part of our conceptual analysis we will proceed along this
path and seek to identify possible remedies.

Even the simplest possible instantiation can be problematic. Suppose we take an
argumentation network (S,R) and choose a singley in S and instantiate just this singley
as the propositional constant⊤. What happens?⊤ is always true, so this is equivalent to
saying thaty should always be “in". This means that anyx attackingy should be “out".
This may sounds simple but it is not, because it changes the rules of the game: Firstly
there may not be extensions wherey is “in". So we have to say that we are dealing
with networks which could be without semantics. Secondly the direction of attacks is
no longer only following the arrows, but if there is an arrow leading onto⊤, the attack
is directed opposite the direction of the arrows. Dealing with such instantiation looks
simple but it is not and so we postpone any further discussionto Appendix B.

In this section we want to illustrate our conceptual analysis on a less subtle case, so
we deal with predicate instantiation.

Figures9a and9b present us with a simple network and a predicate instantiation
for it, to serve as a simple example for our conceputal analysis:

The extensionλ for Figure9a isλa(x) = λa(z) = 1 andλa(y) = 0.

4Let
E1
λ = {q|λ(q) = 1}

E0
λ = {q|λ(q) = 0}.

These two sets are disjoint and therefore when we interpret the union of these two sets in a logic via the
special instantiation

I(q) = q, for q ∈ E1
λ

and
I(q) = ¬q, for q ∈ E0

λ

to form Tλ, we get a consistent set in the logic.
However for any other possible interpretation/instantiationI∗, we may get inconsistency in the logic.



(b)

zx y

(a)

A(J) ∃xA(x) A(M)

Figure 9:

ThusTλa = {x,¬y, z}.
Upon instantiation in Figure9b we get

Tλb = {A(J),¬∃xA(x),A(M)}.

This theory is inconsistent. HereA is a unary predicate andJ andM are elements in
the predicate universe.

We now recall the general methodological remedies (r1)–(r3) disucssed in subsec-
tion 1.2.

We have here an input output system

Inputs: Instantiated (S,R) with predicate formulas

Outputs: Predicate extensions

Problem: The output may be inconsistent.

The systems needs a remedy.
The (r1) option would restrict the input, maybe to some fragment of predicate logic.

This is a very simple case, there is nothing to restrict.
The (r2) option would mean that we change the process of finding extensions.
The (r3) option means that we somehow revise the result and render it consistent.
For example we can use an idea of Sanjay Modgil from his PhD thesis and regard

the output predicate theoryTλ as a theory in a defeasible predicate logic. Thus¬∃xA(x)
is a defeasible rule withA(J) andA(M) as exceptions. However, we do wantTλ to be
in classical logic, so (r3) is not an option for us.

It seems the simplest remedy for us is to use (r2). Revise the process.
Seeking a remedy, let us simplify and assume that our predicate universe contains

only two elementsJ and M and see whether this simplifications helps us get some
ideas. Thus we have

• ∃xA(x) ≡ A(J) ∨ A(M)

• ∀xA(x) ≡ A(J) ∧ A(M).

Figures9b becomes Figure10
To continue our conceputal analysis we need to deal with, andseek a remedy for,

the problems of Figure10. In other words we need to solve the problem of instantiation
into the classical propositional calculus, whereI (x) can give an arbitrary formula of
classical propositional logic as values forx.



A(J) A(J) ∨ A(M) A(M)

Figure 10:

Well, looking at Figure8, let us give meaning to attacks on disjunctions and a
meaning to disjunctions attacking other elements.

The case ofx attacking the disjunctiony ∨ z is complicated to express and it will
be dealt with in Appendix C. Basically we have to express the Boolean equation¬x↔
(y∨ z), and for this we need disjunctive attacks.

The case of a disjunctiony∨ zattackingx is simple to express.

• y∨ z։ x meansy։ x andz։ x.

The reason being the meaning ofa։ b. It means

• if a = “in”, then b = “out”.

So

• if y∨ z is “in” then x is “out”

is equivalent to

• if [ y is “in” or z is “in”] then x is “out”

which is equivalent to the conjunction of [ify is “in” then x is “out”] and [if z is “in”
thenx is “out”].

Thus Figure10becomes Figure11, which is the same as Figure12

A(M)

A(J) A(M)

A(J)

Figure 11:

The need for attacks from and attacks to conjunctions and disjunctions of atoms
has already been considered by us in 2009 in connection with fibring argumentation
networks. Figure13explains our notation from 2009 (full details are given in Appendix
C).

It appears that we may now have a plan for a remedy of how to dealwith monadic
predicate logic substitutionsI (x) for nodesx in argumentation networks:

1. Eliminate the quantifiers in terms of conjunctions and disjunctions



A(M)A(J)

Figure 12:

yxz

(a) (b)

x y z

(a) x, y jointly attackz. If x = y = 1 thenz= 0.

(b) zdisjunctively attacksx, y. If z= 1 then eitherx = 0 ory = 0 or both equal 0.

Figure 13:

2. Develop a theory of attacks involving disjunctions and conjunctions.

However, the reduction of the quantifiers to disjunctions and conjunctions and the
(yet to be described) argumentation networks with joint anddisjunctive attacks does
not solve our problem. Even for finite models the number of elements is not bounded
and so we cannot replace∃xA(x) by a finite disjunction. We can attempt to say use
a closed world assumption and use all the names mentioned explicitly in the network.
This may work but not easily. We may haveJ1, . . . , Jk as all the names withA(Ji), i =
1, . . . , kbeing “in”, but nevertheless∃xA(x) being out. Worse still, if we allow predicate
formulas for the form∀x∃yΦ(x, y), we may be forced to have an infinite number of
elements. So this is not the way to go, at least not as a first attempt at the problem.

Looking again at Figure9b, we suddenly make a surprising realisation.A(J) is
being essentially attacked by∃xA(x) when∃xA(x) is “out”!

We would expect, as in the case of propositional networks, that when an argument
is out, then it is “dead”. It has no effect. In the case of∃xA(x) when it is out it
has an effect. This means, when taken to its full conclusions, that being “in”, “out”,
“undecided” is not a value but it is astate, from which an argument can mount attacks.
Figure14 illustrates this new point of view.

In fact, to be completely coherent, we must allow for attacksof the form

(a is in stateξ1)։ (b is in stateξ2)

This brings us to the idea of what we callstate argumentation networks, a new



x3

a is in state “in”

a is in state “out”

a is in state “undec”

x1

x2

Figure 14:

A(M) = in

A(J) = in ∃xA(x) = in

∃xA(x) = out

Figure 15:

concept, which once made precise, can help us represent our original goal, that of
predicate argumentation nework. We can possibly transformFigure8b into Figure15.

A reader might say why not use negation as in Figure16?
We can do that, but in general, an argument can have more than two states. State

argumentation networks is a more general concept and we may wish to continue and
develop it in this paper. Let us define it intuitively.

Definition 1.1 Let (S,R) be a network and assume that S= S1 ∪ . . . ∪ Sk with Si , 0
and Si ∩ S j = ∅, i , j. Also assume that for each i and each x, y ∈ Si , such that
x , y we have that xRy hold. Under these conditions we can regard(S,R) as a state

∃xA(x)A(J)

A(M) ¬∃A(x)

Figure 16:



argumentation network, where the elements are{Si} and each x∈ Si is a different state
of Si .

Figure9b can become Figure17. ⊤ is attacking all¬x nodes wherex is not attacked
in the original figure.

S3

A(J)

¬A(J)

∃xA(x)

¬∃xA(x)

A(M)

¬A(M)

⊤

S1 S2

Figure 17:

Definition 1.2 A two state argumentation network has the form

(S ∪ S¬ ∪ {⊤},R)

where S is a set of atoms, S¬ = {¬q|q ∈ S} and⊤ is top. We have

• ¬∃x(xR⊤)

• ∀x(xR¬x)

• ∀x(¬xRx)

Lemma 1.3 Every(S,R) is equivlaent to(S∗,R∗) where S∗ = S ∪ S¬ ∪ {⊤} and R∗ is

R∪ {(⊤,¬x) | x ∈ S} ∪ {(x,¬x), (¬x, x)}.

The extensions E∗ of (S∗,R∗) are exactlly the extension E of(S,R) augmented by{⊤}.

Proof Start with (S,R). CreateS¬ = {¬x|x ∈ S} and assume⊤ < S. Let S∗ =
S ∪ S¬ ∪ {⊤}. Let R∗ be defined asR∗ = R∪ {(x,¬x), (¬x, x)|x ∈ S} ∪ {(⊤,¬x|x ∈ S}.
It is clear that⊤ in S∗ attacks all the new points ofS¬ which we added. Thus any
extensionE of (S,R) becomes the extensionE ∪ {⊤} of (S∗,R∗) and vice versae. �

1.5 Summary of our plan so far for monadic predicate instantia-
tion

We propose, at this stage of our conceptual analysis, the following plan.
We are given an abstract argumentation network (S,R), with an instantiation func-

tion I , giving for eachx ∈ S a formula of monadic predicate logic. We want to deal
with it.



a. First we prove some theorems that the input from predicatelogic can be re-
stricted, without loss of generality, to an argumentation friendly form.

b. Assuming the input is of this form, we use its syntactical form together withR,
to move to a new abstract argumentation network (S∗,R∗, I ∗), with S a subset of
S∗ andRa subset ofR∗.

We take extensionsE∗ for the new network and look atE∗ ∩S. We declare these
as the sought for extensions for the original (S,R, I ).

c. Hopefully we will prove that{I (x) | x ∈ E∗ ∩ S} is consistent.

To achieve this we need some technical results.
The following is the list:

1. Define the notion of a 2-state argumentation network. Showthat such networks
are a special case of abstract argumentation network in the sense that they can be
identified by special properties on the attack relationR.

2. Show that every argumentation network (S,R) can be embedded in a larger 2
state argumentation network (S∗,R∗) in a critical way. This means that (S,R)
preserves all it properties even though it is part of the larger network. Thus we
can say that every argumentation network is equivalent to a 2-state argumentation
network. The equivalence is shown by a linear general transformation.

3. Show that every formulaΦ of monadic predicate logic is classically equivalent
to a formulaΦ̄ in a standard argumentation friendly form, to be defined and to
be convenient for our objective.

4. For every ordinary (S,R), define a 2-state (S∗,R∗) called the associate of (S,R),
by

S∗ = S ∪ S¬ ∪ {⊤}
R∗ = {(x,¬x), (¬x, x) | x ∈ S} ∪ {⊤, y | y not attacked in (S,R)} ∪ R

This is not the embedding described in (2) above.

5. Given an (S,R) form the associate (S∗,R∗). In order to instantiate (S,R) with
predicate formulasx 7→ Φx, for x ∈ S, use instead (S∗,R∗) of (4) above and
instantiate the nodes with standard form formulas,x 7→ Φ̄x and¬x→ ¬Φ̄x.

Let I (z) for z ∈ S∗ be the instantiation function. We look at (S∗,R∗, I ) and rewrite
(transform) the network in an easy and purely syntactical way into a new network
(S∗,R∗∗, I ) and then take extensions. In this way, we hope, the correct consistent
extensions are obtained. Thus the extensionsE∗∗ thus obtained restricted toS
shall be declared as the predicate extensions of (S,R, I ).

It is useful to give an example.

Example 1.4

1. Start with the network(S,R) of Figure9a.



⊤

x y z

¬x ¬y ¬z

Figure 18:

2. Transform it to the equivalent Figure18.

3. Substitute/instantiate:
I (x) = A(J)
I (y) = ∃xA(x)
I (z) = A(M)

and adjust the figure by adding attacks from any¬∃xP(x) onto any P(y) and from
any∀xP(x) onto any¬P(y).

Note that this is done purely syntactically without taking into consideration any
logical meaning of the instantiations formulas. We get Figure 17.

4. Calculate traditional extensions. We get the extensions

{¬A(M),¬∃xA(x)}

We declare these as the extensions of(S,R, I ).

Remark 1.5 The perceptive reader looking at the extensions obtained inExample1.4
for the network of Figure9b might justifiably ask, what is the intuition behind this?
Our answer is that in this case there we should not expect muchintuition. We took an
arbitrary abstract network coming from nowhere and substituted arbitrary predicate
formulas into it. What kind of result would you expect, beyond that it is consistent?
Nevertheless, let us look at the result from an AGM revision point of view. Our original
theory was{A(J),¬∃xA(x),A(M)} and we offer the revision option

{¬A(M),¬∃xA(x)}.

This is a maximal consistent sub-theory, and it makes sense if priority is given to
¬∃xA(x).

The real test for our intuition, however, in the case where wetake a set of arbitrary
predicate formulas, is to regard them as a network (i.e. withthe empty attack domain)
and apply the process to them. Do we get all maximally consistent subsets as the family
of all extensions? This is the real test.



To be more precise, let our starting network(S,R, I ) be with R empty, i.e. no attacks,
and apply our process to it. See what we get. This is the intuitiveness test.5

Discussion and comparison with the literature will follow in the appropriate later
section.

2 Abstract instantiated argumentation frames (AIAF)

This is a more formal section which will deal with several types of argumentation
frames where the abstract arguments are instantiated by formulas of some logic. We
consider classical propositional logic, classical monadic predicate logic without equal-
ity and modal logic S5. We also discuss other possibilititessuch as instantiating with
Boolean Attack Formations (BAFs, see Appendix C2). We examine our options, then
propose a more general theory, and compare with the literature.

2.1 Instantiating with formulas of propositional logic

This sub-section is a case study, leading to to the next subsection 2.2, which will give
concrete definitions.

Definition 2.1 The classical propositional calculus is built up syntactically as follows:

1. A set Q of atomic propositions.

2. The classical connectives{¬,∧,∨,→}, which are used to define the traditional
notion of a formula, (wff).

3. The traditional notion of “the formulaΦ of classical propositional logic is con-
sistent”, defined either semantically or proof-theoretically. We do not care how
it is done. We just need to use it.

Definition 2.2

1. An abstract argumentation frame has the form(S,R), where S is a set of atomic
symbols (we use for S distinct symbols from those we use for Q of Definition
2.1), and R⊆ S × S is the attack relation. We also denote xRy by x։ y.

2. We follow Dung [15] and define the notion of complete extension E⊆ S as a set
satisfying the following:

(a) E isconflict free, namely for no x, y ∈ E do we have xRy.

(b) E protectsits members, where “E protects x” means that∀z(zRx→ ∃y ∈
E(yRz)).

(c) E iscomplete, namely if E protects x then x∈ E, for any x∈ S .

5This type of network (i.e. arbitraryS, empty attack relation and any instantiation into classical proposi-
tional calculus) can be viewed as an Abstract Dialectical Frame of Brewka and Woltran, see [2].



3. It is well known that complete extensions always exist, though they might be
empty.

Definition 2.3 Let (S,R) be an argumentation frame. Letλ : S 7→ {0, 1
2 , 1} be a

labelling function. We sayλ is a legitimate Caminada labelling iff the following holds:

1. If ¬∃y(yRx) thenλ(x) = 1

2. If for all y s.t. yRx we haveλ(y) = 0, thenλ(x) = 1.

3. If for some y such that yRx we haveλ(y) = 1 thenλ(x) = 0.

4. If (a) for all y such that uRx we haveλ(y) < 1 and (b) for some y such that yRx
we haveλ(y) = 1

2 thenλ(x) = 1
2.

Lemma 2.4 Let (S,R) be an argumentation network. Let E be a complete extension
as defined in Definition2.2. LetλE be defined by

λE(x) =



















1 if x ∈ E
0 if ∃y ∈ EyRx
1
2 otherwise

ThenλE is a legitimate Caminada labelling.

Proof

1. If ¬∃y(yRx) thenx is in E and henceλE(x) = 1.

2. If for all y such that (yRx) we haveλE(y) = 0 then for all suchy there is azsuch
thatzRyandz ∈ E. ThusE protectsx, hencex ∈ E, henceλ(x) = 1.

3. If for somey such thatyRxwe haveλE(y) = 1, theny ∈ E and henceλE(x) = 0
by definition.

4. Assume

(a) for ally such thatyRxwe haveλE(y) < 1

(b) for somey0, y0Rxwe haveλE(y0) = 1
2.

We want to show thatλ(x) = 1
2.

From (a) we get that¬∃y ∈ E(yRx). ThusλE(x) , 0.

We show thatλE(x) , 1, i.e.x < E. From (b) above,y0Rxandλ(y0) = 1
2. Hence

¬∃z ∈ E(zRy0). This means thatx is not protected byE and hencex < E.

�

Lemma 2.5 Letλ be a legitimate Caminada labelling and let Eλ = {x|λ(x) = 1}, then
Eλ is a complete extension.

Proof We showEλ is a complete extension:



1. If ¬∃y(xRy) thenλ(x) = 1 and sox ∈ Eλ.

2. Eλ is conflict fee because ifλ(x) = 1 andxRythenλ(y) = 0 andy < Eλ.

3. If λ(x) = 1 andyRxthenλ(y) < 1. We must also have for suchy thatλ(y) = 0
for otherwise we would getλ(x) = 1

2. But λ(y) = 0 for all suchy means that
∀y(yRx→ ∃z(zRy∧ λ(z) = 1). This means thatEλ protects all of its members.

4. SupposeEλ protectsx. This means thatEλ attacks all of the attackers ofx. This
means∀y(yRx→ λ(y) = 0) Thereforeλ(x) = 1 and sox ∈ Eλ.

�

Definition 2.6 Let (Si,Ri) for i = 1, 2 be argumentation frames. Let I1,2 be a function
from S1 to S2. We form the network(S1,2,R1,2) called the abstract instantiation of
(S1,R1) by (S2,R2) usingI1,2 as follows:

S1,2 = {I1,2(x)|x ∈ S1}

R1,2 = {(y, z)|for some a, b ∈ S1, I2,3(a) = y and I1,2(b) = z
and(y, z) ∈ R1} ∪ R2 ↾ S1,2.

Example 2.7

1. Let L be a logical system. LetΦ,Ψ be two wffs of L . Let ρ(Φ,Ψ) mean that
Φ, when “added” toΨ causes “incompatibility”. (We are not saying “{Φ,Ψ} is
inconsistent” because we do not say anything about the logicandρmay not even
be symmetrical. In some logicsΦTΨ is not the same asΨTΦ). Let WFF(L ) be all
the well formed formulas of the logic. We can consider the network (WFF(L ), ρ)).

2. Given(S,R) and a logicL , we can instantiate it by (WFF(L ),ρ) as defined in
Definition2.6. This will include classical logic instantiation.

For logicsL which have a negation symbol¬ (e.g. classical modal, monadic, or
intuitionistic logics) we can require(S,R) to be a 2-state network as in Definition
1.2and require the instantiation function I: S 7→WFF(L ) to satisfy

I (¬x) = ¬I (x).

Definition 2.8

1. An abstract instantiated Boolean argumentation frame(B− AIAF) has the form
(S,R, I ) where(S,R) is an abstract argumentation frame and I is a function,
giving for each x∈ S , a formulaΦx({q1, . . . , qn}) of the classical propositional
calculus.

2. We write
I (x) = Φx({q1, . . . , qm})

indicating that the classical propositional atoms{q1, . . . , qn} are exactly those
that appear in I(x) = Φx.

The symbols{q1, . . . , qn} are distinct from the atomic symbols of S .



We want to view (S,R, I ) as a more general network than (S,R) and would like
to define a sensible notion of complete extensions for it. We begin by explaining our
strategy:

We are given an instantiated system of the form (S,R, I ), whereI is a function asso-
ciating entities of the forme from some spaceE. We assume these entities can interact
among themselves and that as a result of the interaction we can get truth values in, say,
valued in the unit interval [0, 1].
Strategy 1: Regard the attack relationR as stimulating interaction among the instanti-
ated entitiese and use the interaction to obtain values in [0,1] for the nodes ofS.6

Strategy 2: Use the relationships among the entitiesE to change (S,R, I ) into a new
(S∗,R∗, I ∗) and proceed with Strategy 1 for the new system.

There are several options and to explain the differences we need to be very precise.

Definition 2.9

1. Let S be a set of arguments. Let QS be a corresponding set of atomic propositions
of the classical propositional logic of the form

QS = {qx|x ∈ S}

where qx are distinct symbols, i.e., x, y ⇒ qx , qy and S∩ QX = ∅. Note
that when there is no possibility of confusion, we abuse notation and write “x”
in place of “qx”.

2. Let Iid be the function Iid(x) = qx, or, by abuse of notation, I(x) = x.

Our objective is to define the notion of complete extensions for B− AIAFs of the
form (S,R, I ). There are several main views we can take:

View 1: The (E < I ) view. First take a traditional complete extensionE of (S,R) and
then instantiate the element ofE. We get a setTE of classical propositional formulas.
We need this set to be logically consistent.

This is what we did with the system of Figures9a and9b.
We needed the remedies discussed in Section 1, which essentially abandoned this

view in favour of the next view (I < E) which says, first instantiate then take extensions.
We shall discuss this view next.

View 2: The (I < E) view. We follow Strategy 1 here and keep (S,R, I ) intact as
is. We viewR as stimulating interactions among the instantiating entities and try to
extract numbers from the interaction. We use the Equationalapproach to do that. This
view instantiates first and then takes extensions. Obviously we need to make use of
the instantiation when we consider how to define the extensions. Let us explain our
options using our experience with the examples we have from Section 1.

6There are more details in the beginning of appendix E1. See ExampleE.1and the paragraph preceding
it.



y1, . . . , yn are all the attackers ofx.

y1 : I (y1) yn : I (yn), . . . ,

x : I (x)

Figure 19:

Consider (S,R, I ) and consider the situation in Figure19. The nodes{x, y1, . . . , yn}

are all from (S,R), wherey1, . . . , yn are all the attackers ofx. The figure shows also the
instantiationI (x) andI (y1), . . . , I (yn).

We need to give meaning to the statement (♯1)

I (y1), . . . , I (yn) attackI (x) (♯1)

The basic meaning of the atomic statement

y1, . . . , yn attackx (♯1 atomic)

is that

x = 1 (“in”) i ff all y1, . . . , yn are equal 0= (“out”).

We consider several options for understanding such attacks.

View 2 - option 1. The equational approach. We follow Strategy 2 here and rewrite
(S,R) in a more convenient form, using the structure of the instantiated entities. In this
case we simplify/eliminate negation, by moving to a two state networks. This view was
proposed in my paper on the equational approach to contrary to duty obligations [1].
The first section of that paper is general theory and regards Figure19as generating the
Boolean (or real valued [0, 1]) equation

Eq(x) : I (x)↔ [
n
∧

i=1

¬I (yi)].

The system of equations{Eq(x)|x ∈ S} may or may not have a solution in the space
{0, 1

2 , 1}.
Any such solutionf is considered a complete extension for (S,R, I ).
Note that the solutionf gives values to the atoms of the logic, i.e. it is a 3-valued

model of propositional logic. These values can be propagated to the formulas of the
form I (x), x ∈ S, and the value ofI (x) underf can be viewed as the argumentation
value ofx under the complete extensionf.



For example, suppose our network contains Figure19 and that we haveI (yi) = ¬q
andI (x) = q. Then the equation for nodex is q = ¬q and therefore any solutionf to
the overall system of equations (for the network in which Figure19 resides) will have
to give the three valued assignmentq = 1

2 to q. The value of¬q is then (1− 1
2) = 1

2 and
hence the value ofI (x) = 1

2.
Therefore the nodex is considered undecided in (S,R, I ) under the solution (com-

plete extension)f.
This is a sweeping general option. Let us see what it does to Figure10.
We have the following equations:

• A(J) = 1

• A(J) ∨ A(M) = ¬A(J)

• A(M) = ¬(A(J) ∨ A(M))

There is no solution to these equations. We are not surprised. The equational approach
agrees with and generalises the traditional approach and sothe inconsistencies and
problems remain.

We need the remedies hinted at in Section 1.

View 2 - option 2. the two state equational approach. We follow Strategy 2 here
and rewrite (S,R) in a more convenient form, using the structure of the instantiated
entities. In this case we simplify/eliminate negation, by moving to a two state networks.

This is the approach we adopted in Example1.4, executed within the equational
framework. To show what it does, we modify first Figure10into a two-state associated
figure and then use equations. We get Figure20.

¬z : ¬A(M)

x : A(J) y : A(J) ∨ A(M) z : A(M)

¬y : ¬A(J) ∧ ¬A(M)¬x : ¬A(J)

⊤

Figure 20:

The equations are

• ⊤ = 1

• ¬A(J) = ⊥ ∧ ¬A(J)



• A(J) = ¬¬A(J) ∧ ¬(¬A(J) ∧ ¬A(M)).

• ¬A(J) ∧ ¬A(M) = ¬(A(J) ∨ A(M))

• A(J) ∨ A(M) = ¬A(J) ∧ ¬(¬A(J) ∧ ¬A(M))

• A(M) = ¬(A(J) ∨ A(M)) ∧ ¬¬A(M) ∧ ¬(¬A() ∧ ¬A(M)

• ¬A(M = ¬A(M).

There is one solutionA(J) = A(M) = 0.
We need to explain how and why, for example,¬y : ¬A(J) ∧ ¬A(M) is attacking

x : A(J) andz : A(M) and vice versae. We added these attacks. The reason for this
addition should be syntactical, not because we use logic. Formal definitions need to be
given for the syntactical pattern matching.

To explain how this is done, let us do again the analysis of Figure10. This time we
write all wffs in disjunctive normal form. We get Figure21.

x : (A(J) ∧ A(M)) ∨ (A(J) ∧ ¬A(M))

z : (A(J) ∧ A(M)) ∨ (¬A(J) ∧ A(M))

y : (A(J) ∧ A(M)) ∨ (A(J) ∧ ¬A(M)) ∨ (¬A(J) ∧ A(M))

Figure 21:

Rewriting as a two state network we get Figure22

¬z : (A(J) ∧ ¬A(M)) ∨ (¬A(J) ∧ ¬AM))

⊤

x : (A(J) ∧ A(M)) ∨ (A(J) ∧ ¬A(M))

y : (A(J) ∧ A(M)) ∨ (A(J) ∧ ¬A(M)) ∨ (¬A(J) ∧ A(M))

z : (A(J) ∧ A(M)) ∨ (¬A(J) ∧ A(M))

¬y : ¬A(K) ∧ ¬A(M)

¬x : (¬A(J) ∧ A(M)) ∨ (¬A(K)∧ ¬A(M))

Figure 22:

We can now add attacks to Figure22using pattern recognition.

• e1 :
∨

αi attackse2 :
∨

β j if they don’t have anyγ in common, i.e. it is not the
case that for somei, j, γ = αi = β j .

We get Figure23. Note that⊤ is an exception to this rule.



z

⊤

x

y

¬x

¬y

¬z

Figure 23:

The perceptive reader might complain that we are nevertheless using logic, i.e. we
are using resolution theorem proving. The answer is that we are not. Resolution is
a discipline of sequencing various pattern matchings. Justcomparing two disjunctive
normal forms does not, in itself, make a resolution theorem prover.

So the steps in View 2, option 2 are as follows:

1. Start with (S,R, I ).

2. Take the associated (S∗,R∗, I ∗) explained above (formal definitions to come later).

3. Use the equational approach to find the extensions.

View 3. Direct computation approach. In this approach we develop the concept of
semantics and extensions directly on the instantiated network by translating it (with the
help of additional arguments) into traditional Dung networks or into a modified/generalised
such network. This requires as a by product the translation of the entitiesE into abstract
argumentation, either directly, or indirectly.

It also means that we are turning the instantiation problem into a fibring problem
in the sense of [3].

2.2 Concrete classical propositional instantiations

We are going to give a progression of challenges for instantiations from the classical
propositional calculus. Many of these instantiations havebeen dealt with in the Ap-
pendices. Here we summarise the big picture.

Challenge 1: Instantiation with ⊤

This has been defined and given semantics in Appendix B.



zk : Ψzk

x : Ψx

y1 : Ψy1 yn : Ψyn

z1 : Ψz1 . . .

. . .

Figure 24:

Challenge 2: Instantiate with conjunctions of atomic propositions

Given a traditional network (S,R) we instantiate with a functionI defined onS, giving
for eachx ∈ S a conjunctionΨx of atomic propositions of the formΨx =

∧n(x)
i=1 qx

i .
We also writeΨx as a set{qx

1, . . . , q
x
n(x)}. The basic geometrical position we get is as in

Figure24, which should be compared with Figures19and50.
We offer semantics for the instantiated system (S,R, I ) by using instead ofΨz the

BFz of Figure51and Figure59of Appendix C2.
We then implement the instantiation of theBFz (i.e. I ′(z) = BFz, z ∈ S) as proposed

in DefinitionC.10of Appendix C3.
We adopt the semantics of option (iv) of Appendix B as discussed there.

Challenge 3: Instantiating with disjunctions

When we instantiate with wffs containing disjunctions, we get attacks of the form

(A∨ B)։ (C ∨ D)

a disjunction attacking another disjunction. The formA∨B։ z is equivalent toA։ z
and B ։ z. So we need to deal with the case of the formx ։ C ∨ D and try and
eliminate or implement the disjuction. The semantic consition x ։ C ∨ D from the
equational point of view is

C ∨ D ≡ ¬x

or
¬C ∧ ¬D ≡ x

or
¬C ∧ ¬D ≡ ¬(¬x).

This means thatx։ C ∨ D is equivalent to¬x։ ¬C ∧ ¬D.
We already know how to attack conjunctions from Challenge 2.So we need to deal

with negation. Once we do that we will be able to deal with fullBoolean instantiation.



Challenge 4: Instantiating with negated formulas

Let us start with (S,R). We move to (S∗,R∗) as defined in Definition1.2 and for and
for which Lemma1.3holds. (S∗,R∗) is a two state network. For everyx ∈ S∗, there is
a node¬x ∈ S∗, with x։ ¬x and¬x։ x, and where¬¬x is x. Thus any instantiation
I (x) = Φ for x ∈ S becomes the double instantiationI ∗ on S∗ whereI ∗(x) = Φ and
I ∗(¬x) = ¬Φ.

We now have a system (S∗,R∗, I ∗) of instantiated Boolean net. We use Appendices
C2 and C3, ExampleC.8 and DefinitionC.10to replace the wff I (x) for x ∈ S∗ with
a Boolean formulationBFx and then instantiate (S∗,R∗) with x 7→ BFx. The result-
ing system is a⊤-net as discussed in Appendix B and we can calculate option (iv)
extensions for it.

Remark 2.10 Let us summarise how to get and what it means to be extensions when we
instantiate any network(S,R) with formulas from classical propositional logic, using
any of the above challenges (depending on the wffs used in the instantiations).

Let the instantiating function be I: S 7→ wffs, where wffs belong to a language
with atoms Q. We replace I by I∗ giving each x aBFx which basically does the same
job (says the same) as I(x) = Φx. TheseBFs were done in Appendix C.BFx contains
the atoms appearing inΦx (atoms from Q) as well as many auxiliary atoms.

(S,R) is replaced by(S∗,R∗) being a network of instantiatedBFs containing the
propositional atoms of all theΦs {Φx|x ∈ S} (i.e. all the atoms of Q), as well as many
auxiliary atoms. We use appendix B to find extensions for(S∗,R∗). These are functions
λ, giving values in{0, 1, 1

2} to all atoms in(S∗,R∗) and thus giving values to all the
atoms Q of the propositional language. Once we have values for the atoms we have a
3-valued propositional model and we get values for all the wffsΦx, x ∈ S . Define an
extensionλ∗ on (S,R) by λ∗(x) = λ(Φx). We need to show that this is an extension in
the sense of Definition2.3. This follows from the way we set up the entire process. It
does require proof but I will not do it now.

We thus got a 3-valued model for the language Q and an extension λ∗ out of the
instantiation I for(S,R).

So given a Boolean instantiation(S,R, I ) what does it mean to have an extension
for it?

It means a 3-valued modelλ for the Boolean instantiation language such that
λ∗(x) = λ(Φx) is an extension of(S,R).

2.3 Instantiating with monadic wffs and modal S5 wffs

Given (S,R) we want to instantiate with wffsΦ of monadic logic. At the first instance
we assume monadic logic with{P1, . . . ,Pn} and we assume thatΦ has no free variables.
We make use of Appendix A.

Let I be an instantiation function giving eachx ∈ S a closed formulaI (x) = Φx of
the monadic predicate logic based on{P1, . . . ,Pn}.

We seek extensions for the instantiated system (S,R, I ).
We use LemmaA.6, which says that every wffΦwithout free variables is a Boolean

combination of “atomic” wffs of the formqε = ∃xαε(x), whereαε(x) has the form
∧n

i=1 Pei
i (x) whereε = (e1, . . . , en) ∈ 2n.



We can thus pretend we are dealing with classical propositional logic with 2n

atomic formulas of the formqε, ε ∈ 2n.
Associate with each closed formulaΦ = Φ(∃xαε(x)) the propositional formula

Φ∗ = Φ(∃xαε(x)/qε).

We now instantiate (S,R) with the formulasΦ∗ instead ofΦ. I.e. we look at
(S,R, I ∗) where I ∗(x) = Φ∗x. Get an extensionλ on the atoms{qε}. From it get an
extensionλ∗ onS. Also since we haveλ values for{qε} we get values for all the pred-
icate “atomic" formulas of the form∃xαε(x), ε ∈ 2n and thus get a 3-valued predicate
model “instantiating” the net (S,R, I ).

The case where the formula has free variables , we regard themas constants and
proceed using RemarkA.7. The case of modal S5 is treated similarly in view of Remark
A.8.

2.4 Beyond predicate instantiation

Our methodological approach, so far as discussed in Section1.2, was to use theoretical
considerations in expanding our argumentation theory to predicate instantiation. We
simply substituted formulas of monadic predicate logic into an abstract argumentation
network (S,R) and asked how can we deal with it on theoretical grounds.

We now want to check what kind of predicate networks are required by day to day
practical applications. We use Example2.11as a starting point. This type of examples
arise in Talmudic logic, see [22].

Example 2.11 At home I have several sinks and 3 toilets. If a sink is blocked, I can
handle it myself. If a toilet is blocked, it is reasonable that I call a plumber. Two
opposing principles come to play here. A plumber costs money(about US$ 100 just to
visit in addition to any other charges depending on the job).So it makes sense for me
to try and do the job myself if I can. So with a simple case like ablocked sink I can do
it myself, but with a blocked toilet I had better call a plumber.

Let us write these rules:

1. B(s)→ ¬∃xP(x, s)

2. B(t)→ ∃P(x, t)

where B(z) reads z is blocked and P(x, z) reads x is called to repair z. The→ is ordinary
implication. Figure25shows these rules in argumentation form.

Now let us check what happens if both the sink and the toilet are blocked. Common
sense dictates, that since I have to call a plumber to do the toilet anyway, I may as well
ask him to do the sink. I am paying the $ 100 for the visit anyway. In comparison,
the strict logical solution to the problem is that I do the sink and the plumber does the
toilet! (This is applying principles (1) and (2).)

Furthermore, if two of my toilets are blocked, the above rules (1) and (2) allow me
to called different plumbers, one for each toilet rather than call the sameplumber to
do all jobs.



∃xP(x, s)

B(s)

¬∃xP(x, t)

B(t)

Figure 25:

¬∃xD(x)

∃xA(x) ¬∃xA(x)

∃xD(x)

Figure 26:

So what we need formally in the predicate network is that if∃xA(x) is “in” because
of x= a, then every other∃xD(x) which is “in” must be instantiated by the same x= a!

So let us forget about plumbers and just look at the network ofFigure26
We require that if one of∃xA(x) or ∃xD(x) is “in”, the other is also “in” and

because of the same element a. (This reflects our analysis that if you have many sinks
and toilets and you need to call a plumber for one of the toilets then you ask this same
plumber to do everything.)

General problem. We are given a predicate network (S,R, I ) and a subsetS0 ⊆ S
such that for alls ∈ S0, I (s) = ∃xDs(x) (with Ds a unary predicate depending ons).
We want to implement the additional constraint

C: If for somes ∈ S0, I (s) is “in” and for somea,Ds(a) = ⊤ then for alls ∈ S0 we
have thatI (s) = “in” and furthermore for that samea, Ds(a) = ⊤.

Implementing that part ofC which says

if I (s1) is “in” then alsoI (s2) is “in”

is not simple. We might think that we can implement that by letting I (s1) attack¬I (s2).
But this is correct only becauseI (s1) andI (s2) are instantiated as existential statements.
So we cannot write the attack in the geometry of (S,R). It must occur/activate after the
instantiation. How do we do that?



¬D(a) ∧ ¬D(b)

A(a) ∨ A(b) ¬A(a) ∧ ¬A(b)

D(a) ∨ D(b)

Figure 27:

¬D(b)

A(a) ¬D(a)

A(b)

Figure 28:

To get a better idea, let us assume that our universe of elements has only two elem-
nts{a, b}. This would allow us to rewrite any∃xE(x) asE(a) ∨ E(b), and so Figure26
becomes Figure27.

We know how to handle full propositional instantiations from Section 2.2. In this
case we have the additional constraints:

1. A(a) = 1 iff D(a) = 1

2. A(b) = 1 iff D(b) = 1
In general we want a condition like

3. ∀x(A(x) = 1 iff D(x) = 1).

This means we add to Figure27also the attacks of Figure28. Even if we could imple-
ment this using various geometrical attacks, we still have two problems:

P1 It all depends on the instantiation.

P2 It applies only to points inS0.

It looks like we need a new fresh breakthrough point of view, otherwise we will have to
restrict the acceptable complete extensions by conditionswritten in the metalevel and
not by the object level properties of the network.



E1(x) E2(x)

α(x) is a constraint onx. Only certain values ofx can attack fromE1 to E2. Thosex
which satisfyα(x).

Figure 29:

Our problems are not over yet. We saw we needed the condition

∀x(A(x) = 1 iff D(x) = 1).

This means in attack terms
∀x(A(x)և։ ¬D(x)).

But how do we implement the general principle like a universal quantification of the
form ∀x(A(x)և։ ¬D(x)?

We will have to add free variable attacks to networks as in Figure29.
This is a new twist in our conceptual analysis of what is happening here.
In Section 2.3 we treated free variables in an argumentationnetworks as constants.

Now we see we need to treat them as parameters, and the attack arrows are annotated
by these parameters.

This is a new game to be properly analysed.
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Appendices

A Classical monadic predicate logic

The purpose of this appendix is to show point 3 of Section 1.3,namely that every
formula of monadic predicate logic is equivalent to a formulas in a (argumentation
friendly) syntactic form, LemmaA.6 below.

Definition A.1

1. The language ofLn, of the classical monadic predicate logic without equalityhas
n unary predicates P1, . . . ,Pn, variables the classical connectives{¬,∧,∨,→}
and the quantifiers{∀,∃} with their usual meaning.

2. A model forLn has the formM = (D,D1, . . . ,Dn), where D is a non-empty
domain and Di ⊆ D is the extension of the predicate Pi .

We define satisfaction in a model in the traditional way, using the traditional abuse of
notation as follows:

• M � Pi(d) iff d ∈ Di

• M � ¬A iffM 2 A

• M � A∧ B iffM � A andM � B

• M � A∨ B iffM � A orM � B

• M � A→ B iffM � A impliesM � B

• M � ∃xA(x) iff for some d∈ D,M � A(d)

• M � ∀xA(x) iff for all d ∈ D,M � A(d).

Lemma A.2 LetM be a model. Then there exists a modelM∗ with at most2n elements
which is equivalent toM.

Proof Define≈ on D by

• x ≈ y iff for all i,Pi(x)↔ Pi(y).

Then≈ is an equivalence relation. We show that

For everyA(x1, . . . , xm), if x j ≈ y j , for j = 1, . . . ,m
thenM � A(x1, . . . , xm)↔ A(y1, . . . , ym).

(∗)



Proof of (*). By induction on the syntactical structure ofA.

Let D∗ be the set of≈ equivalence classes of elements ofD. Similarly letD∗i be the set
of equivalence classes of elements ofDi .

Let x∗ be the equivalence class ofx.
LetM∗ = (D∗,D∗1, . . . ,D

∗
n).

We prove the following.
For anyx j ∈ D,M � A(x j) iffM∗ � A(x∗j ).
Proof is by induction onA. �

M
∗ has at most 2n elements because there are at most 2n possibilities for (±P1(x), . . . ,±Pm(x))

for any singlex.

Definition A.3 Two modelsM andN are said to be equivalent ifM∗ = N∗.

Definition A.4

1. Letε denote a vector of length n of elements ei ∈ {0, 1}. Thus

ε = (e1, . . . , en) ∈ 2n.

ε is called a type.

2. For anyε ∈ 2n, letαε(x) be the wff

αε(x) =
n
∧

i=1

Pei
i (x)

where P0(x) = ¬P(x) and P1(x) = P(x).

This means that x is of typeε.

3. LetΓ be a non-empty set of types, i.e.ε-vectors,Γ ⊆ 2n.

Lemma A.5 LetM be a model of{P1, . . . ,Pn}. ThenM is characterised by a formula
of the form

ΦM =
∧

ε∈Γ
M

∃xαε(x) ∧
∧

ε<Γ
M

¬∃xαε(x).

In words,M is characterised by the types it realises whereΓM is defined as

{ε | for some d∈ M,M � αε(d)}.

Proof

1. ClearlyM � ΦM

2. LetN be a model such thatN � ΦM. SinceΦM says exactly for everyε whether
∃xαε(x) holds or not, we get thatN satisfies the same types asM. Therefore we
haveM∗ = N∗.



�

Lemma A.6 LetΦ be any formula of the language of{P1, . . . ,Pn} without free vari-
ables. ThenΦ is equivalent to a wff of the form

Φ =
∨

j

ΦΓ j

whereΓ j ⊆ 2n andΦΓ j is defined as follows

ΦΓ j =
∧

ε∈Γ j

∃xαε(x) ∧
∧

ε<Γ j

¬∃xαε(x).

Proof By LemmaA.2 it is sufficient to consider models ofΦ of less than 2n elements.
LetM1, . . . ,Mk be all the models ofΦ. then the wff Φ is equivalent to

∨k
j=1ΦM j

which
has the same models asΦ. �

Remark A.7 In case the language contains propositional constants q1, . . . , qm as well
as monadic predicates P1, . . . ,Pm then a modelM for this language is characterised
by a conjunction of the form

ΦM =
∧

ε∈Γ
M

∃xαε(x) ∧
∧

ε<Γ
M

¬∃xαε(x) ∧ βM

whereΓM is as in LemmaA.5and

βM =

m
∧

j=1

q
ej

j

whereηM = (e1, . . . , em) is the vector in2m of the atoms qj or their negations which
hold in the modelM.

Therefore any formulaΦ of the language with the constants{q j} is equivalent to a
disjunction

∨

j

ΦΓ j ∧ β j

whereΦΓ j are as in LemmaA.6andβ j is a formula

β j =
∧

r

qej
r

r

as discussed above.
If Φ is a formula with free variables x1, . . . , xk, we regard the free variables as

constants and regard Pi(x j) i = 1, . . . , n, j = 1, . . . , k as propositional constants qi, j =

Pi(x j).
We thus can construct an equivalent formula as done above formonadic logic with

constants q1, . . . , qm, m= k× n.
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Figure 30:

Remark A.8 The connection between monadic predicate logic with{P1, . . . ,Pn} and
the modal logic S5 based on the atomic propositions{P1, . . . ,Pn} is well known. For
an S5 Kripke model with a set of possible worlds D, let d� Pi be interpreted as Pi(d),
in the monadic theory based on D.

Following this correspondence, letβε, for ε ∈ 2n be♦(
∧

i Pei
i ) nd letβ′ε be

∧

j Pei

whereε = (e1, . . . , en). We get therefore

(*) Every wff of modal logic S5 with atoms{P1, . . . ,Pn} is equivalent to a wff of the
form

∨

j

(β′ε j
∧
∧

ε∈Γ j

βε ∧
∧

ε<Γ j

¬βε)

for someΓ1, . . . , Γk ⊆ 2n and for someβ′ε j
in Γi respectively.

(*) holds because an S5 model is a set of worlds containning the actual world. Each
world is characterised by a conjuction of the form

∧

i Pei
i , whereε = (e1, . . . , en). We

can identify a world withε. A model is characterised by the set of worldsΓ it contains
in conjuction with the set of worlds it does not contain (the complement ofΓ). Thus a
model is a conjuctionβ′εi

∧
∧

ε∈Γ ∧
∧

ε<Γ j
¬βε). A formula is equivalent to several sets

of worlds, i.e. a disjunction of several of the formulas characterising models.

The above observations will allow us to instantiate Dung argumentation frames
with monadic predicate formulas or with S5 modal formulas.

B Instantiating with ⊤

This appendix discusses the subtleties of instantiating a single node in argumentation
network with just⊤. We shall see that new concepts of semantics and extensions are
required for the proper handling of this seemingly innocentsubstitution.

To show that finding extensions for instantiated Boolean network is not that simple
a task, let us start with a very simple example. Consider the network ({x, y}, x ։ y}.
This has the extensionx = ‘in” and y = “out”, i.e. x ∧ ¬y. Let us instantiatey = ⊤.
We get the network of Figure30. Let us refer to any network with atomic argumentsS
which also containns⊤ as⊤-net.
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Figure 31:

So Figure30 is a⊤-net. We have a problem with this network.x is not attacked
and hencex = “in”. But x attacks⊤ and⊤ cannot be “out”, it has to be “in”. So what
shall we do?

Further reflection shows that the problem is more serious than it seems at first sight.
Traditional Dung extensions can be constructed using the geometrical directionality of
the attack. Consider Figure31.

We haveS = S1 ∪ S2 and attacks emanate fromS1 into S2 and there are no
attacks fromS2 into S1. Thus we can find an appropriate inital extensionE1 for S1

and propagate the attacks fromE1 into S2 to complete the extension intoS2 and get a
complete extension forS1 ∪ S2. This is the directionality of the attack. We are always
guaranteed an extension.

The situation we have now is that with⊤ ∈ S2, the directionality no longer exists.
Any attack fromS1 onto⊤ ∈ S2, will force us to reconsider/change the extensionE1

of S1. It is as if there are attacks fromS2 into S1.
So what are our options in dealing with this? Let us go back to the network of

Figure30and try and apply general principles to it giving us several options:

Option (i): Truth intervention view. We can say this network has no extensions.
This position is perfectly acceptable. It is legitimate andreasonable to take a traditional
network (S,R), pick ay ∈ S and demand an extensionE with y ∈ E. This is enforcing
truth ony. We may find that no such extension can be found. So lettingy = ⊤ amounts
to saying that we want only extensions containingy.7

Let us call this option (i), the⊤-intervention approach, because we are intervening
and forcing some nodes to be true= “in”.

Option (ii): Counter attack view. We can say that any attackerzof⊤ is immediately
attacked back by⊤, and so the above Figure30 is actually Figure32. The extension is
⊤ = “in” and x = “out”.

7We mention here reference [24], where they define the notion of constraint argumentation networks.
Given a formulaΦ of propositional logic, and a network (S,R), we accept only those extensionsλ such that
Tλ of Section 1.3, (Tλ = {q|λ(q) = 1} ∪ {¬q|λ(q) = 0}), satisfiesΦ. In our case the formulaΦ is y = ⊤.
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The advantage of this view is that the usual traditional machinery for defining and
finding complete extensions can be used, with the additionalunderstanding that⊤ is
always “in” in any extension.

Option (iii): New concept of extension view. The third option is to give a new
definition of abstract networks with truth constant⊤ as follows:

1. (S,R) is a network with⊤ if ⊤ ∈ S and¬∃y(yR⊤).

2. A Caminada legitimate⊤-labelling for a network with⊤ satisfies the following:

(a) λ(⊤) = 1

(b) λ(x) = 1 if ¬∃y(yRx) and¬xR⊤.

(c) λ(x) = 0 if xR⊤

(d) λ(x) = 1 if for all y such thatyRxwe haveλ(x) = 0 and¬xR⊤

(e) λ(x) = 0 if xR⊤ or if for somey, yRxandλ(y) = 1.

(f) Otherwiseλ(x) = 1
2.

There is the question of whether every⊤-net have an⊤-extension (i.e. a legitimate
Caminada⊤-labelling). The answer is yes, it does. Let (S,R) be a⊤-net. LetT = {y ∈
S|⊤Ry∨ yR⊤}. We know all of these points should be out. Let∗ be a point not inS
and consider

S∗ = S ∪ {∗} − {⊤}
R∗ = (R ↾ S − {⊤}) ∪ {∗} × T

In other words, we take⊤ out and include∗which attacks all points inT. (S∗,R∗) is
an ordinary network and has extensions. LetE be such an extension. Then (E−{∗})∪{⊤}
is an extension of the⊤-net (S,R). So for example the network (S,R) of Figure30
becomes the network withS∗ = {∗, x} with {(∗, x)} = R∗.

Option (iv): The non-toxic truth intervetion view. Let us adopt the option (i) view
for a given⊤-net (i.e. a network (S,R) with a nodey = ⊤ ∈ S) and seek only extensions
containingy = ⊤. However, we shall adopt option (i) not alone on its own but adopt it
in conjunction with another new principle, which we shall call the principle ofmaximal
non-toxic extensions(NTE principlein short).

ExamplesB.1 andB.2 shall explain it.
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Example B.1 Consider Figure33
This figure describes a network with four sub-networks S= S1 ∪ S2 ∪ S3 ∪ S4.

The networks Si are pairwise disjoint and S2 does not attack S1, S4 does not attack S2
nor S3. S2 however, contains⊤. Suppose for some specific extension E1 of S1, it is not
possible to extend E1 to an extension for S2. This makes S2 toxic for E1. S2 forces us
to say that S has no extensions E with E∩ S1 = E1.

However, if we ignore the toxic S2, we may get extensions E⊇ E1 for S1∪S3∪S4. It
makes sense to do that and present E as a maximal non-toxic extension for S containing
E1 for S1.

To motivate the logical sense of doing that, consider a perfectly nice network(S,R)
not containing the letter x nor the symbol⊤. Add to S the letters x and⊤ and augment
R with x։ ⊤ (i.e. add the toxic Figure30 to (S,R)). The resulting network has no
exensions because of the toxic part. It does make sense, however, to say that if we
ignore the toxic part, we can get extensions for(S,R).

The perceptive reader might ask what if we add to(S,R) a disjoint 3-cycle? Can
we similarly ignore it? The anser is that we do not need to, because the three cycle
does have the empty extension (all undecided) an so the traditional machinery works.

Let us give an example from real life. Consider a couple goingthrough a divorce in
the UK. They want to settle the financial part amicably and so they go to an accountant.
By UK law, if the accountant learns in the process of advisingthem of any tax evasion
scheme he/she has to report it to the authorities. So the divorcing couple decide that
some of their business is “toxic” and better not tell the accountant.

Similarly in a court case both prosecutor and defence lawyers may decide to drop
some charges because it is too complicated/toxic for each side to address, each for their
own respective reasons.

Example B.2 Consider the⊤-net of Figure34. We want to examine the semantics for
it according to option (iv), non-toxic truth intervention.

This figure has the form of Figure33 with S1 = {x},S2 = {a, b},S3 = {z, y} and
S4 = {⊤}.

S1 has one extensionλ1
1 with λ1

1(x) = 1. This can be extended to S2 in only one
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way, namelyλ2
1 with λ2

1(a) = 0 andλ2
1(b) = 1.

However, because of⊤ ∈ S4, we cannot haveλ2
1(b) = 1, because it should be

0. Thus S4 = {⊤} is toxic forλ1
1 andλ2

1. So we abandon S4 for this sequence, (i.e.
S1 ։ S2 ։ S4) and get the extensionλ1,2 = λ1

1 ∪ λ
2
1, with λ1,2(x) = 1, λ1,2(a) = 0 and

λ2,1(b) = 1. We ignore⊤.
Now let us look at S3. It has two extensionsλ3

1, λ
3
2 with λ3

1(z) = 1 andλ3
1(y) = 0 and

λ3
2(z) = 0 andλ3

2(y) = 1. The extensionλ3
1 is not possible because z։ ⊤. So we have

only the extensionλ3
2.

The final extension for the⊤-net of Figure34 is λ = λ1
1 ∪ λ

2
1 ∪ λ

3
2 namely

λ(x) = 1, λ(a) = 0, λ(b) = 1, λ(z) = 0 andλ(y) = 1.

Note that we ignore S4 = {⊤} only for the evaluation of the path S1։ S2։ S4.
For the path S3 ։ S4 we do not ignore S4 = {⊤} because there is an extension for

S3 which is OK.
Thus the followingλ′ is notan extension for S1 ∪ S2 ∪ S3:

λ′(x) = 1, λ′(a) = 0, λ′(b) = 1, λ′(z) = 1 andλ′(y) = 0.

We can achieve the same result if we say that we abandon the attack b։ ⊤, rather
than the set{⊤}. This view is better because we are not “touching” the toxic part in
some cases, rather than deleting it.

The next exampleB.3shows how to do this.

Example B.3 Let us do the option (iv) semantics for Figure34 in a different way from
the way done in ExampleB.2.

We proceed as follows:

1. We are given a⊤-net(S,R) with⊤ ∈ S . In this case it is the net of Figure34.

2. Replace every occurrence of⊤ ∈ S by a new node letterτ, and get(Sτ,Rτ),
where

Sτ = (S − {⊤}) ∪ {τ}
Rτ = (R− {(x,⊤), (⊤, y)|(x,⊤), (⊤, y) ∈ R}) ∪ {(x, τ), (τ, y)|(x,⊤), (⊤, y) ∈ R}.



3. (Sτ,Rτ) is a traditional network and so we seek and find all of its complete ex-
tensions (Caminada labelling) of the formλτ for whichλτ(τ) = 1.

If such extensions exist then for eachλτ let λ⊤ be the function on S obtained by

λ⊤(x) = λτ(x), for x , τ
λ⊤(⊤) = 1.

These will be the option (iv) extensions of Figure34.

4. If (Sτ,Rτ) has no exensions inλ in whichλ(τ) = 1, then letλ1, . . . , λk enumerate
all the extensions of(Sτ,Rτ) which giveτ a value, 1.

Such extensions exist because we are dealing with a traditional network. Let us
enumerate these extensions for our example (of Figure34with τ replacing⊤).

We have two such extesions,λ1 andλ2:

λ1 : x = 1, a = 0, b = 1, τ = 0, z= 1, y = 0
λ2 : x = 1, a = 0, b = 1, τ = 0, z= 0, y = 1.

5. We know that the requirement thatλ(τ) = 1 is toxic, because of the attacks b։ τ
and z։ τ. Our remedy is to disconnect some of these attacks in order toget
extensions. If we disconnect them all we certainly get such extensions, but we
want to accommodate the attacks as much as we can.

Our possibilities are the following:

(a) Disconnect z։ τ

(b) Disconnect b։ τ

(c) Disconnect both z։ τ and b։ τ

We give preference to disconnecting attacks emanating frompoints nearer the
bottom (away from the top) of the figure. Thus (b) gets priority over (a).

We also want to minimise the number of changes and so (c) has least priority.

Disconnecting b։ τ gives us the extension

λ : x = 1, a = 0, b = 1, τ = 1, z= 0 and y= 1.

This yields a complete non-toxic extension for Figure34.

6. Note that we may wish to take into account the value of x under λ in our consid-
eration of whether to disconnect an attack of x։ τ. λ(x) can be 1 or1

2 and we
may decide not to fixλ (by disconnecting x։ τ) if λ(x) = 1. If we do indeed
make this decision then we would not disconnect b։ τ in our example and in
such a case the network of Figure34will have no extensions!

Remark B.4 ExampleB.2also shows that the result (semantics) we get for this option
(iv): non-toxic truth intervention, is different from the result we get from option (ii), the
counter attack view. According to option (ii),⊤ counter attacks all its attackers and so
we get the extensionλc

λc(x) = 1, λc(a) = 0, λc(b) = 0, λc(⊤) = 1, λc(z) = 0 andλc(y) = 1.
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Remark B.5 The perceptive reader may ask why are we even considering theidea
of using maximal non-toxic extensions? After all, did we notsay that instantiating
(S,R) for y ∈ S with y= ⊤ amounts to looking for extensions in which y= “in”. So
if there are no such extensions, then the straightforward answer is that there are no
extensions! Why suddenly claim y= ⊤ is toxic and let us ignore it? On the one hand,
we are interested in y and want it “in” and on the other hand when we cannot do that
we throw out of the network with that very same y, calling it toxic!

The answer is that there are cases of networks with y where we are not looking at
the instantiation y= ⊤ as a search for extensions in which y= “in”. We are looking in
such a network at y= ⊤ ∈ S as an instrument of intervention of forcing an “in” value
of some other node z related to y at the object level! Since we have a purpose in this
case, then if our instrument does not work we need to find an alternative way.8

Consider the network(S,R) of Figure35. Let(S′,R′) be the network obtained from
(S,R) by deleting the nodes{e,⊤}. Consider an intervention into(S′,R′) intending
to enforce the node x to be “in". The nodes{e,⊤} added to(S′,R′) with e։ ⊤ are
intended to achieve this purpose, in Figure35.

In this figure, since e attacks⊤ it must be “out”, not because it attacks⊤ but
because some node with value “in” is attacking it. So x must be“in”, because it is the
only the attacker of e. We have used⊤ and e in(S,R) to force x to be ‘in” by the object
level geometry of(S,R). This means that only complete extensions of(S′,R′) with x=
“in" are acceptable. If, because of this intervention, we cannot have an extension, then

8The Thesis [27] and the paper [26], deal with intervention. Suppose we have a network (S,R), and an
elementa in S. We want to intervene and forcea to have valuee ∈ {0, 1

2 , 1}. We can do that by adding to
(S,R) some new pointx with the following attack pattern:

1. For forcinga to be “out”, letx attacka.

2. For forcinga to be “undecided” letx attacka and attack itself.

3. For forcinga to be “in” (if possible), leta attackx and letx attack⊤ (we have to add⊤ as well asx).



we can say that our attempt (intervention) fails, or in our terminology, is toxic, and
consider giving it up, and we need to look for alternatives. Whatever reason we had
for wanting x to be “in", must now be serviced by defining another complete extension
in some other way. The way we define the extension depends on the purpose. Our
purpose in this paper is connected with the soundness of the attack formations to be
presented in Appendix C.2. So our definitions lead towards that purpose.

We are dealing here with a new type of instrument for defining extensions in the
case where the present of⊤ is toxic!

We are going to need to define priority on the set of elements attacking⊤. This
will be done in terms of their distance from the top of the network. To do this we need
to use the notions of Strongly Connected Components. The next series of definitions
(DefinitionB.6 to DefinitionB.8) deals with this.

Definition B.6 Let(S,R) be an argumentation network. We define(S∗,R∗) the network
of strongly connected components(SCC) derived from(S,R), following [20].

1. A subset E⊆ S is an SCC iff the following holds:

(a) S , ∅

(b) For any x, y ∈ S , there exists a sequence z1, . . . , zk+1 such that z1 = x, zk+1 =

y and for1 ≤ i ≤ k we have ziRzi+1 holds.

(c) E is maximal w.r.t. property (b).

2. Let S∗ be the set of all SCC subsets of S . Define E1R∗E2 on S∗ iff for some
x1 ∈ E1 and x2 ∈ E2 we have x1Rx2.

3. For x∈ S , let x∗ be the SCC to which it belongs.

Lemma B.7 Let (S,R) be a network and let(S∗,R∗) be its associated SCC network.
Then

1. Any two distinct SCC sets are disjoint.

2. For any x∈ S , there is a unique x∗ for which it belongs.

3. R∗ is well defined on S∗ and is acyclic.

Proof Easy. See [20]. �

Definition B.8 Let (S,R) be a network and let(S∗,R∗) be its derived SCC network.
Let E∈ S∗. We define the notion of “E is of level(k, n)” as follows:

1. E is of level (1,1) if there does not exist an E′ ∈ S∗ such that E′R∗E. Think of the
level index(k, n) as k is the minimal R∗ distance from the top nodes in(S∗,R∗)
and n is the maximal distance. The top nodes are distance 1.

2. E is of level(k+ 1, n+ 1) if k is the minimal m of the level(m, n) of any E′ such
that E′R∗E, and n is the maximal such n.



3. Since each x∈ S is a member of a unique E, we can define a level(k, n) for each
x ∈ S . It is the level of the E containing it.

Example B.9 Consider Figure34. Then{x} and {z, y} are of level (1,1).{a, b} is of
level (2,2) and{⊤} is also of level (2,3).

Definition B.10 Let (S,R) be a⊤-net, that is(S,R) is an argumentation network with
a special⊤ ∈ S , with⊤ not attacking itself. We want to define the non-toxic truth
intervention semantics for it (option (iv) semantics).

We are going to give the algorithm for finding all complete extensions for(S,R) in
the form of Caminada labellingsλ, λ : S 7→ {0, 1

21}, with λ(⊤) = 1.

Step 1: Let τ be a letter disjoint from⊤. Let (Sτ,Rτ) be (S(⊤/τ),R(⊤/τ)), where
A(x/y) is the result of substituting y in all occurrences of x in A(x), where y is a com-
pletely new letter to A.

Step 2: (Sτ,Rτ) is a traditional argumentation network and has complete extensions.
LetΛ be the set of all such extensions. This set is non-empty. LetΛτ be the subset of
all extensionsλ ∈ Λ such thatλ(τ) = 1. Λτ may be empty.

For eachλ ∈ Λτ, let λ⊤ be defined byλ⊤(x) = λ(x), for x , τ, λ⊤(⊤) = λ(τ) = 1.

Step 3: If Λτ , ∅ then letλ⊤ = {λ⊤|λ ∈ Λτ} be declared as the set of all the extensions
of (S,R). If Λτ = ∅, then proceed to step 4.

Step 4: Let T0 be the set of all x∈ S such that x attacks⊤, i.e. x։ ⊤ is in R. Let T1
be the set of all y∈ S such that⊤։ y ∈ R.

We want to assume that T1 = ∅. This is possible to do because we can move to the
network(S∞,R∞) where S∞ = S ∪ {∞}, where∞ is a new point such that∞ < S and
R∞ = (R− {⊤։ y|y ∈ T1}) ∪ {∞ ։ y|y ∈ T1}.

In other words, we ensure that y∈ T1 ends up “out” because it is attacked by∞
which is “in” (not being attacked by anything) and we disconnect any attacks emanat-
ing from⊤. Any extensionλ found for(S∞,R∞) will yield an extension for(S,R), when
restricted to S .

So we can assume now that⊤ does not attack anything. We now proceed to find
extensions for(S,R). Each such x∈ S has a unique level(k, n) associated with it as
defined in DefinitionB.8.

Define a priority≥ ordering on nodes x, y ∈ S by

• x ≥ y iff nx ≥ ny and if nx = ny then kx ≧ ky

where the level of x is(kx, nx) and the level of y is(ny, ky).

Step 5: We assume that we have(S,R), where⊤ ∈ S,⊤ does not attack anything, and
when we look at(Sτ,Rτ) then all of its extensionsλ ∈ Λ satisfyλ(τ) , 1, i.e.λ(τ) = 1

2
or =1.



Rather than declare that(S,R) has no extnesions, we want to salvage some exten-
sions out ofΛ by declaring the role of⊤ ∈ S in some cases to be toxic!

We can now consider T0. T0 can be divided for eachλ ∈ Λ, into T0 = Tλ

0,
1
2

∪Tλ
0,1∪

Tλ
0,0 where

Tλ

0,
1
2

= {x ∈ T0|λ(x) = 1
2}

Tλ
0,1 = {x ∈ T0|λ(x) = 1}

Tλ
0,0 = {x ∈ T0|λ(x) = 0}

We know for sure that either Tλ0,1 , ∅ or if T λ

0,
1
2

, ∅.

Let us adopt the policy that if for some x attacking⊤ we haveλ(x) = 1 then we give
up onλ.9

So we are considering the case where all attackers x of⊤ have valueλ(x) = 0 or
λ(x) = 1

2.
If we disconnect the attacks emanating from Tλ

0,12

onto⊤ we get an extensionλ for

(S,Rλ) where
Rλ = R− {x։ ⊤|x ∈ Tλ

0,
1
2

}.

Now should we chooseλ as a non-toxic extension for(S,R)? It is a question of priority.
We have a priority relation> on T0. Let us extend it to priority on sets Tλ

0,
1
2

by a

lexicographic ordering first on the number of elements of theset Tλ
0,

1
2

and second on

the max on the value nx of the index(kx, nx) of x ∈ Tλ

0,
1
2

. The winning Tλ
0,

1
2

for this

priority will yield theλs we call the extensions of(S,R).

C

The following sequence of Appendices C.1–C.4 contain technical results supporting
the claims in Remark2.10. The material was postponed to this Appendix because of
its technical complexity.

C.1 Conjunctive and disjunctive attacks

In Section 2.1 we introduced Boolean instantiation of argumentation networks. This
allows for attacks of the form (a∧b)։ (c∧d). The meaning of this is that if (a∧b) = 1
then (c ∧ d) = 0. We can write this as{a, b} ։ {c, d} and the meaning is that if both
a = b = 1 then one ofc or d equals 0.

This requires the study of conjunctive and disjunctive attacks. This is the task of
Appendix C.1.

We recall concepts from [3].

9Note that in examplesB.2 andB.3 we did fix the net of Figure34. According to our present policy, we
would not do that and declare the network of Figure34 as having no extensions. On the other hand, if we
wish to always have complete extensions to any⊤-net (S,R) then we ignoreT

λ,
1
2

and proceed to fixλ.
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Definition C.1

1. A conjunctive-disjunctive argumentation network, (CD-network) has the form
(S,R) where S is a finite set of arguments andR ⊆ 2S × 2S is a relation between
subsets. When XRY holds between X,Y ⊆ S , we say that conjunctive X attacks
Y disjunctively, or X CD-attacks Y. Figure36 (a), (b), (c) shows our graphical
notation for this notion.

We also write X։ Y for XRY,X։ z for XR{z} and w։ Y for {w}RY.

2. We requireR to satisfy: X։ Y and X′ ⊇ X and Y′ ⊇ Y imply X′ ։ Y′.

3. We say a node z∈ S is indirectly attacked by X⊆ S if for some Y XRY and
z ∈ Y.

Definition C.2 (Kleene 3 valued logic)Kleene 3-valued logic has 3 values{0, 1, 1
2}

and has the truth table in Figure37. The language has connectives∧,∨,¬,→ and
atomic propositions. Read the values as 1=“in”, 0 = “out”, and 1

2 = “undecided”, see
[19].

Definition C.3

1. Let (S,R) be a CD network as in DefinitionC.1. Let λ : S 7→ {0, 1, 1
2} be an

assignment of values to the elements of S , pretending these are atomic logic
propositions. Let X⊆ S . Extendλ onto X by lettingλ(X) = λ(

∧

x∈X x).

Thus

λ(X) = 1 if λ(x) = 1 for all x ∈ X
λ(X) = 0 if for some x∈ X, λ(x) = 0
λ(X) = 1

2 , otherwise (i.e.λ(x) > 0 for all x ∈ X and for some x∈ X, λ(x) = 1
2).
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2. A CD-extension for(S,R) is a functionλ : S 7→ {0, 11
2} satisfying the following

conditions:

(a) If {z} is not indirectly attacked by any X thenλ(z) = 1.

(b) If λ(x) = 1 for all x ∈ X and X։ Y holds then for some y∈ Y, λ(y) = 0.
(I.e. if λ(X) = 1 and X։ Y thenλ(Y) = 0.)

(c) Assume Y is such that for every X such that X։ Y there exists an x∈ X
such thatλ(x) = 0. Then for all y∈ Y we haveλ(y) = 1. (I.e. if λ(X) = 0
for all the attackers of Y thenλ(Y) = 1.)

(d) For any Y⊆ S , (d1) and (d2) imply (d3).

(d1) For every X such that X։ Y we have that for some x∈ X, λ(x) < 1.

(d2) For some X such that X։ Y we have that for all x∈ X, λ(x) > 0 and
for some x∈ X, λ(x) = 1

2.

(d3) For some y∈ Y, y = 1
2 and for all y∈ Y, λ(y) > 0.

(I.e. for all the attackers X of Y,λ(X) ∈ {0, 1
2} and for at least one attacker

X0, λ(X0) = 1
2 thenλ(Y) = 1

2.)
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Remark C.4

1. Let (S,R) be a CD-network as in DefinitionC.1. We ask whether there exist
CD-extensions for it. To help us understand the situation, let us look at a figure
which might make us think that the answer is negative. Consider an extension
for the network of Figure38.

Any such extensionλwould require thatλ(x) = 1 and eitherλ(a) = 0 or λ(c) = 0.
But the fact that also a։ a and c։ c forcesλ(a) = λ(b) = 1

2. The values cannot
be in{0, 1}!

The perceptive reader might ask: we are interested in Boolean instantiations of
traditional networks. Can Figure38be obtained as such an instantiation? If not
then the use of CD-networks is an overkill. The answer is yes,see Figure39

If we write the equations for this figure we get

u = 1− u
v = 1− v
y = 1− x
x = 1
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Substituting the instantiation we get

a = 1− a
c = 1− c
a∧ c = 0

There is no solution in{0, 1, 1
2}.

This line of reasoning, however, contains a fallacy. Beforethe instantiation, u
for example, was attacked only by itself, so the equation forit was u = 1 − u.
After the instantiation of u= a and y = a ∧ c, a was attacked both by itslef
and indirectly also by x. Thereofre a new equation should be written for the
new situation of Figure38. We cannot just substitute the instantiation in the old
equations. We are not reading Figure38correctly.

We need to modify our point of view. The following discussionis a conceptual
analysis seeking a new point of view:

We begin with a slightly modified point of view which we call the RCD view (the
restricted CD view). We note that x։ {a, c} actually implies{x, a} ։ c and
{x, c}։ a.

If we understand x։ {a, c} as meaning the conjunction of the above two attacks
then Figure38becomes Figure40.

Since x is not indirectly attacked we haveλ(x) = 1 and since a and c are each
self attacking we getλ(a) = λ(c) = 1

2.

We would also have according to DefinitionC.3 thatλ({x, a}) = λ({x, c}) = 1
2.

2. It seems then, that if we adopt the suggestion in (1) above and understand
x։ {y1, . . . , yk} from the RCD point of view, as the set of attacks{x, y1, . . . , yi−1,
yi+1, . . . , yk} ։ yi for i = 1, . . . , k, then all we need to define is the concept of
attacks of the form X։ z. Attacks of the form X։ Y are reducible to the form
X ։ z. Such joint attacks can be simulated within traditional Dung networks
using auxilliary points, as shown in [3].

The attack formation{x1, . . . , xn} ։ z of Figure36(b) becomes the formation
of Figure 41. The auxilliary points are y1, . . . , yn, y. The reader should note
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that the auxiliary points used must be completely new to the rest of the net-
work and be associated with{x1, . . . , xn, z} only. Any other attack formation, say
{a1, . . . , am}։ b will its own completely new and disjoint auxiliary points.If we
do not observe this restriction and re-use existing points as auxiliary points we
get wrong results, as RemarkC.6shows.

3. The RCD point of view is not the best we can offer. There is a better one, already
mentioned in the 2009 paper [3]. In Section 4.3 of that paper, we discussed what
we call “flow argumentation networks”. To explain it simply for our case, in
Figure 36(c) the node w transmits attacks to all the nodes y1, . . . , ym (the attack
“flow” emanating from w) but expects only at least one of them to succeed. Thus
applying this “flow” view to Figure38 we have that x attacks a and x attacks c
but expects at least one to succeed. Since x= 1 and a = 1

2, a will become 0.
Similarly c will become 0. Thus we get two extensions

x = 1, a = 0, c = 1
2

and
x = 1, a = 1

2 , c = 0

We shall address this point of view, which we call the FCD-view in Appendix C2. More
details in Section 4.3 of [3].

Remark C.5 It would be instructive to compare our RCD disjunctive attack notion
with the attacks notion of Nielsen and Parsons [18] notion of joint and disjunctive
attacks. Call it the NP view. Let us look again at Figure36(c).
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We have
w։ Y = {y1, . . . , ym}.

Let us simplify and consider w։ {a, c}. We do our comparison for this case but before
that let us summarise our options:

We have the following four notions for X։ Y, where

X = {x1, . . . , xn} and Y= {y1, . . . , ym}.

1. Gabbay 2009 [3], CD-view:

If
∧

i λ(xi) = 1 then
∨

i λ(y)i) = 0.

This view allows us to generate networks like in Figure38.

2. The equational view, which is not the same as the CD-view. This view is con-
nected with instantiation networks and may not be able to generate networks
like Figure38. This view will require us to solve the equation(

∧

j)y j)↔ ¬
∧

i xi .

3. Gabbay alternative as in (1) above RCD-view:
w։ {a, c}means{w, a}։ c and{w, c}։ a.

4. Nielsen and Parsons’ 2007 [18], the NP-view:
w։ {a, c}means w։ a or w։ c.

(The Nielsen and Parsons’ definition of X։ Y is that for some y∈ Y,X։ y).

The implementation of the NP-view for w։ {a, c} is in Figure42.
We need a semantics which will not allow for{y2, y4} to be both undecided.
To complete our full comparison of the above four approaches, consider Figure43.
This figure says that{a, b}։ {a, b}.
The CD approach and the equational approach offer no stable{0, 1} extensions.

The RCD approach reduces{a, b}։ {a, b} into

a∧ b։ a



∨
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Figure 43:

and
a∧ b։ b

and has no stable{0, 1} extensions either.
However, the NP approach has two stable{0, 1} extensions

a = 1, b = 0

and
a = 0, b = 1

This is because if b։ a or a ։ b then{a, b} ։ {a, b} holds. There is more
discussion of the NP-approach in [3].

Remark C.6 If the joint attacks are done in two state networks, as definedand dis-
cussed in Definition1.2and Lemma1.3, then we might think that it is much simpler to
reduce joint attacks to single attacks by using existing points as auxiliary points. The
attack

a∧ b։ c

can be reduced to the two attacks

¬a։ ¬c
¬b։ ¬c.

The reason for that equivalence can be seen by looking at the attack equationally.
a ∧ b ։ c means that c≡ ¬(a ∧ b). Therefore¬c ≡ a ∧ b or equivalently¬c ≡
¬(¬a) ∧ ¬(¬b) which is the same equation for¬a։ ¬c and¬b։ ¬c.

In a network where for each x,¬x is also present with xև։ ¬x (as we have in a
2-state network) then Figures44and45are equivalent.

Notice the similarity between Figure45 and Figure41. If we let y1 = ¬x1, . . . ,
yn = ¬xn and y = ¬z and change the attacks xi ։ yi into y և։ z, the two figures
become the same. Note that change the atatcks “։” in Figure 41 into bidirectional
attacks “և։’́ does not affect the job that Figure41 does. We still have the same
input/output relation between

∧

i xi and z, namely
∧

xi ։ z.
So we reduce the above attack∧xi ։ z to the single attacks¬xi ։ ¬z, i = 1, . . . , n.
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To do this, however, by utilising the existing points{¬xi , z} as auxiliary points is a
mistake. We must use only new, disjoint set of auxiliary points. Otherwise we get the
wrong results.

Consider Figure46. In this figure⊤ is “in”, ¬a = ¬b = “out”, ¬g = “out” and
since{a, b} jointly attack g, g must also be out. This contradicts the notation implying
that at least one of{x,¬x} must be in. If we ignore this restriction, we get that both g
and¬g are “out”. In this case think of¬x as just another x′.

Figure 47 eliminates the joint attack{a, b} ։ g by using¬a,¬b,¬g as auxiliary
points, instead of using copletely new points. What we get isthe wrong result.

What we get is⊤ = “in”, ¬a = “out” = ¬b = ¬g. a= b = g = in.
Figure 47 eliminates the joint attacks using auxiliary points which are completely

new, as shown in Figure41.
We get the correct result, same as in Figure46. We hae⊤ = a = b = “in”. so

x = y = “out”. So z = “in” and so g = “out”.
We note that it is for this reason that we introduce in ApendixC for the Boolean

attack formations. These encapsulate the new auxiliary points inside the formation.
Note also that the presence of the{w,¬w} pairs can allow us to possibly economise

and use less auxiliary points, as Figure49shows. We economise by letting¬x = a and
¬y = b.

There is no advantage, however, in economising. what is important is that joint
attacks can be eliminated in a systematic way.

C.2 Boolean attack formations (BAF)

In this appendix, we generalise the instantiation sequenceof the form of Figure50
wherexi , y j are atomic arguments andΨ(a1, . . . , an) is a Boolean formula in the ar-
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guments{a1, . . . , an}. What we see in this figure is a substitution of some complex
argumentation entity for the nodez. Traditional abstract argumentation networks know
how to handle attacks on atomic nodesz, they do not know how to deal with attacks on
Boolean formulas. This Appendix C.2, replaces the formulasby attack formations and
defines how to handle them. We thus define the notion of a Boolean Attack Formation
with input and output nodes which can be substituted for nodes z. All attacks onz go
into the input point of the formation and all attacks fromz emanate from the output
point of the formation replacingz.

We begin with the special case of Boolean attack formations designed to represent
conjunction of formulas. Then we define formations to represent negation of formulas.
Since negations and conjunctions can generate any formula of propositional classical
logic, we will have attack formation representation for anyclassical propositional logic
formula. The general definition, therefore, allows for general input/output formations.

Definition C.7 A Boolean attack formationBF has the form

BF = (S1 ∪ S2,R,Ψ(S2))

where S2 = {a1, . . . , an} andΨ(S2) is a Boolean formula of Kleene 3 valued logic in
the variables{a1, . . . , an}. We also writeBF = BF(a1, . . . , an).

The following holds:

1. S1 is a set disjoint from S2 containing two special nodes among other additional
nodes. There arein (an input node) andout (output node). S1 is referred to
as the set of auxiliary nodes. When several attack formationare involved we
always assume that their sets of auxiliary node, including the in and out nodes
are pairwise disjoint.



z is instantiated asI (z) = Ψ.
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Figure 50:

2. We describe(S1 ∪ S2,R,Ψ) schematically in Figure51.

3. Let(S,R) be an argumentation network and assume thatBF(a1, . . . , an) is a sub-
network of(S,R). We say thatBF is legitimately embedded in(S,R) if the fol-
lowing holds:

(a) The only elements ofBF attacked from outsideBF (by elements of S , which
may include the elements ai themeselves as attackers from S ) are a1, . . . , an

andin (ofBF).

(b) out ofBF attacks only elements outsideBF.

The elements ofBF which are not in{a1, . . . , an} appear only inBF (so in and
out are labelledin(BF) andout(BF)).

4. The following must hold forBF(a1, . . . , an) when embedded legitimately in any
(S,R), see Figure52.

Letλ : S 7→ {0, 1, 1
2} be any extension of(S,R). Then

(a) λ(out) = Ψ(λ(a1), . . . , λ(an)).

(b) If none of{a1, . . . , an} are attacked from outsideBF or if all outside at-
tackers z of a1, . . . , an are out, i.e. haveλ(z) = 0, thenλ(in) = Ψ(λ(a1),
. . . , λ(an)).

5. If Ψ(λ(ai)) = 1 thenλ(in) = 1, even if some ai are attacked from outsideBF. It
could be the case, however, that even thoughλ(in) = 1, we haveΨ(λ(ai)) , 1
because of outside attacks on{ai}.

Example C.8 We show that we can find aBF for every formula of classical propo-
sitional logic. We show this by finding aBF for atomic d, for negation¬d and for
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conjunctions a∧ c. TheBF for arbitrary formulas can be done by legitimate substitu-
tions ofBFs.

Consider the network of Figure53.
This network can be replaced by Figure54.
The attack formation of Figure55 is involved where x, y are auxiliary points and

Ψ(d) = d.
TheBF for ¬d can be obtained from theBF of d, (i.e. from Figure54) by deleting

the node x, i.e. allowingin to attack d directly.
The above two cases are simple but consider the more complex case of conjunction

of Figure56.
In this figure,α disjunctively attacks{a, c} and{a, c} conjunctively attacksβ. Figure

56 is the same in meaning as Figure53 instantiated by d= a∧ c, namely Figure57.
In this case it is not so simple to find a Boolean attack formation to do the same

job. Namely we want Figure58to be realised as a traditional network.
The network of Figure59 can do the job. It is a⊤-net. We assume we are dealing

with option (iv) of Appendix B, adopting the non-toxic approach.

Lemma C.9 Figure 59 implements in⊤-net non-toxic approach with auxiliary points
the concept of disjunctive attacks.

Proof We need to show the following for anyλ.

1. If λ(α) = 1, then for somei, λ(ai) = 0 andλ(w) = 0.

2. If λ(α) = 0, then unless attacked from outside the diamond, allλ(ai) = 1 and
λ(w) = 1.

3. If λ(w) = 1
2, thenλ(ai) < 1. They are all 0 or12 and if someai is not successfully

attacked from the outside thenλ(ai) = 1
2. Thusλ(w) = 1

2, unless someλ(ai) = 0
in which caseλ(w) = 0.

Let us examine each case.

Case 1: Assumeλ(α) = 1. Henceλ(ᾱ) = 0 andλ( ¯̄α) = 1. Henceλ(v) = 0 and
λ(x) = 0. We know thatλ(e) must be 0, so one of its attackers must be 1.10 It

10Note that in option (i) for the semantics, an attacker of⊤ must be “out" not by virtue of it attacking⊤
but because it must have an attacker which is “in".
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cannot bex so it must be ¯x. If this is the case thenλ(u) = 0 and then for some
i, λ(āi) = 1.

Note that sinceλ(ᾱ) = 0, the loopai ։ a′i ։ bi ։ b̄i ։ ai is not broken.
So ai is attacked and so either the loop is resolved byλ(ai) = λ(bi) = 1 or by
λ(ai) = λ(bi) = 0.

However, sinceλ(āi) = 1 we must haveλ(ai) = 0. In which caseλ(a′i ) = 1 and
λ(w) = 0.

Case 2: Assumeλ(α) = 0. Thenλ(ᾱ) = 1, λ( ¯̄α) = 0. Henceλ(v) = 0 and also
λ(x) = 1 becauseλ(e) has to be 0. Thereforeλ(x̄) = 0. λ(u) can be anything. It
needs not be 1 or12 becauseλ(x) = 1 forcesλ(x̄) = 0.

Now sinceλ(ᾱ) = 1, we getλ(b̄i) = 0. Thusa1, . . . , an are not attacked from any
point in the inside. So unlessai is attacked from the outside, we haveλ(ai) = 1.
So if all λ(ai) = 1 for all i, we get allλ(a′i ) = 0 for all i and soλ(w) = 1.

Case 3: Assumeλ(α) = 1
2, thenλ(ᾱ) = λ( ¯̄α) = λ(v) = λ(x) = 1

2. Sinceλ(e)
must be 0, we look for an attacker ofe whoseλ value is 1. The two candidates
arex and x̄. λ(x) = 1

2 impliesλ(x̄) , 1. Thus there is no way forward and it is
obvious that the set{⊤} is toxic for the case of the inputλ(α) = 1

2. We need to
ignore it. See Appendix B, especially DefinitionB.10.

In this case we get thatλ(α) = λ(ᾱ) = λ( ¯̄α) = λ(v) = 1
2.

We do not care what values the set{x, x̄, e} gets, for example it can get the values
λ(e) = 1, λ(x) = λ(x̄) = 0. The question is what isλ(u)? It cannot be 1 because
λ(v) = 1

2. Can it be 0? Ifλ(u) = 0, then for somei, λ(āi) = 1. Then in this case
λ(ai) = 0. Thenλ(a′i ) = 1, λ(bi) = 0, but thenλ(b̄i) = 1

2 because it is attacked by
ᾱ andλ(ᾱ) = 1

2. So how canλ(ai) = 1?

So the last possibility isλ(u) = 1
2. Thenλ(āi) = 1

2 or 0 and for at least onei
λ(āi) = 1

2.

If λ(āi) = 0, thenλ(ai) = 1 soλ(a′i ) = 0, λ(bi) = 1 andλ(b̄i) = 0. We know that
for at least onei, we haveλ(āi) = 1

2. Soλ(a′i ) =
1
2.

Thus from the attackers ofw, {a′i }, at least one has value12 and the rest of the
values are1

2 or 0. Soλ(w) = 1
2.

�

C.3 Instantiating with Boolean attack formations

This appendix prepares the technical ground for intantiating with Boolean formulas.
We first turn any such formula into a Boolean attack formation(see ExampleC.8) and
then instantiate with the resulting formations. To achievethat we need to define the
notion of instantiation withBFs.

We need to agree on some diagrammatic conventions. ConsiderFigure60:



a։ b։ a։ b′

Figure 60:

b′

a b

Figure 61:

In this figure the lettera appears twice. Is this a misprint and the seconda should
bea′, or is the intention actually as depicted in Figure61?

The answer is that sometimes figures can be very complex and for the purpose of
simplification, a letter can be repeated. To be on the safe side a repeated letter can be
encircled like in Figure62.

The need for repetition comes from the notion ofBF. In Definition C.7, we see
that anyBF has two types of variables, the auxiliary variblaesSBF1 , unique to theBF

containing it and disjoint from any otherBF′, and the variablesSBF2 , which may be

attacked by otherBFs which may share some of these ariables inSBF
′

2 . Consider, for
example, Figure63.

In this figure,{a, c} mount jointly a disjunctive attack on{a, b, c}. See Appendix
C1. If we do not want repetition of nodes, we write Figure64.

However, if we want to implement Figure64 using Boolean attack formations as
discussed in Appendix C2, we get Figure65, with auxiliary nodesa∗1, c

∗
1, z
∗
1,w

∗
1 and the

auxiliary nodes of Figure59for {a, b, c}.
So be mindful that the following definitions allow for repetions in the figures.

Definition C.10

1. LetBF1 andBF2 be two Boolean attack formations within1 andout1 and in2

andout2. We assume that the auxiliary nodes of these formations are disjoint.
Then Figure66describes the resulting formation for the attack ofBF1 onBF2.

b′a b a

Figure 62:
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2. Let (S,R) be an arumentation network and let I be a function associating with
each x∈ S , a Boolean attack formation I(x) = BFx, with inx, outx,Sx,Rx. As-
sume that all the auxiliary nodes sets ofBFx for x ∈ S are pairwise disjoint and
disjoint from S . Then the result of the instantiation(SI ,RI ) is the following:

SI =
⋃

x∈S Sx

RI =
⋃

x∈S Rx ∪ {outx։ iny|x։ y ∈ R}.

3. The semantics for such instantiation is taken to be option(iv) (the non-toxic truth
intervention) semantics of Appendix B.

C.4 Instantiating with classical propositional wffs using Boolean
attack formations

In this Appendix C.4, we backup the comments made in Remark2.10. We are given
a finite instantiated network (S,R, I ). I is an instantiation into classical propositional
logic and we can assume that all wffs involved are built up from the set of atoms
Q = {q1, . . . , qn} using∧ and¬. We want to identify the Caminada extensions for
(S,R), arising from the instantiationI . We know that for eachx ∈ S, the wff I (x) = Φx

is a formula of a logic which has modelsm. We know that if we go through all the
modelsm and define

λm(x) = def. m(Φx)
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then the legitimate Caminada extension of (S,R) among the set{λm} will be the set of
all extensions of (S,R, I ). We can do that, however, we do not want to use the logic, we
want to use purely syntactical means. By the results in Appendix C.2, every formula
Φ of classical propositional logic can be represented by a Boolean attack formation
BF(Φ). We can look at the instantiationI ∗ where I ∗(x) = BF(Φx) for x ∈ S and
consider the network (S∗,R∗) = (S,R, I ∗) as defined according to DefinitionC.10of
Appendix C.3.

The network (S∗,R∗) has extensionsµ (the non-toxic extensions).
These extensions give values in{0, 1

2 , 1} to the atoms ofQ. These define a model
m(µ) to the formulasΦx, x ∈ S. We look at{λm(µ)} and the legitimate Caminada
extensions from among all the extensions of (S,R, I ).

Remark C.11 Note that as a byproduct of our process of Remark2.10and Appendix
C.4, we get argumentation semantics for classical propositioal logic. AnyΦ is repre-
sented byBF(Φ), whose extensions give the models ofΦ.

D Comparing Boolean instantiation with abstract di-
alectical framework (ADF).

We first introduce ADF from the original brilliant paper of Brewka and Woltran [2, 35],
and then analyse ADF and explain why it is not suitable for us.See also [36].



Brewka and Woltran read condition (♯1 atomic) above (i.e the view: “y1, . . . , yn

attackx", see Figure19) not as an attack ofyi on x but as an acceptance condition,
relating the{0, 1} values of theyi to the{0, 1} value ofx. The condition, according to
the ADF view, is

x = 1 iff all yi = 0, (namely we takeI(♯1 atomic)(x) as
∧

¬yi).

This is a brilliant shift in point of view and we now can generalise and put forward dif-
ferent conditions, sayI (x) = Cx(y1, . . . , yn). We can now interpretI (x) as the Brewka–
Woltran condition for the acceptance ofx. To achieve that we must restrict the variables
in I (x) in our network (S,R, I ) to be the setYx of all the attackers in (S,R) of the node
x.

So our networks will look like (S,R, I ), whereI (x) = Φx{Yx}.
Now we can regard our instantiation networks with this additional restriction pos-

sibly as an ADF and we might think that our problems are solved. We have given a
meaning to (S,R, I ), at least for the case of this additional restriction.

The answer is that this is not the meaning we want and need. We cannot get the
general case of instantiations which we are studying, even with this additional restric-
tion. Consider the simple two node network with nodesx andy and withx attacking
y. Sincex is not attacked, ADF can give it a truth value only, say valuet, and sincex
is the only attacker ofy, ADF can give it a wff Φ(x) with x as the only variable ofΦ.
ADF will write the equalities

x = t
y = Φ(x).

While in comparison, we would write the equalities

x = t
Φ(x) = ¬t

Note however, that we can get ADF as a special case of our instatiation if we take an
arbitrary network with nodesS and no attacks whatsoever, i.e.R= ∅.

If we substitute now for eachx in S a wff Φx, we get an ADF.
The fact is that ADF is not doing argumentation but is really doing logic program-

ming. We are departing from the principle (♯1) and we are not regardingI (y1), . . . , I (ym)
as attackingI (x).

If we take the ADF view then we are not doing argumentation anymore. We are
not really instantiatingx to be I (x). We can no longer connect with, e.g., ASPIC+ or
any other instantiation papers. We are playing a different game!

This is not a criticism of ADF; all we are saying is that the ADFapproach is not
compatible with our approach. We think highly enough of ADF to mention it here
and say that we cannot use it. Note for example that with the ADF restriction,R
is redundant. This is a warning sign for us. All we really havein ADF are logic
programming clauses of the form

x if I (x)

and we have
xRyiff y appears inI (x).



Thus in ADFR is not an attack relation but an “occur" relation. Brewka andWoltran
are careful; they call it “link" relation.

Our view about ADF becomes clearer when we consider it in the context of the
equational approach [1, 4, 6, 7, 36].

Given (S,R), we consider the network as generating equations of the form Eqmax:

x = 1−max(Yx)

wherex ∈ S andYx = {y|yRx}.
The solution of these equations in [0, 1] yield all the Dung extensions, where with

eachf we associate a Caminada labellingλ(f ) as follows:

λ(f ) = in, if f (x) = 1
λ(f ) = out, if f (x) = 0
λ(f ) = undecided, if 0< f (x) < 1.

Let us now depart from the above equations in two ways.

1. Let us have possibly different continuous functionshx(Yx) associated with each
x ∈ S.

2. Lethx(Yx) be a Boolean function inYx

The solutionsf of the above system of equation (call itEqB) would yield us a
Boolean ADF. See [35, p. 804] and [36].

The reader should note the generality of the equational approach. We can choose
any family of continuous functions. We can choose T-norms which generalise the
classical connectives and using T-norms study numerical ADF (T-norm). However,
this is not the place to elaborate, but we leave this to a future paper.

Let us at this point quote from paper [35]:

Begin quote from [35].

Definition 1. An abstract dialectical frameworkis a tupleD = (S, L,C)
where

• S is a set of statements (positions, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a set of total functionsCs : 2par(s) → {t, f }, one for
each statements. Cs is called acceptance condition ofS

In many cases it is convenient to represent acceptance conditions as propo-
sitional formulas. For this reason we will frequently use a logical repre-
sentation of ADFs (S, L,C) whereC is a collection{ϕs}s∈S is called accep-
tance condition ofs.

In many cases it is convenient to represent acceptance conditions as propo-
sitional formulas. For this reason we will frequently use a lgoical repre-
sentation of ADFs (S, L,C) whereC is a collection{ϕs}s∈S of propositional
formulas.



Moreover, unless specified differently we will tacitly assume that the ac-
ceptance formulas specify the parents a node depends on implicitly. It is
then not necessary to give the links in the graph explicitly.We thus can
represent an ADFD as a tuple (S,C) whereS andC are as above andL is
implicitly given as (ab) ∈ L iff a appears inϕb.11

The different semantics of ADFs over statementsS are based on the notion
of a model. A two-valued interpretationv — a mapping from statements
to the truth balues true and false — is atwo-valued model(model, if clear
from the context) of an ADF (S,C) whenever for all statementss ∈ S we
havev(s) = v(ϕs), that isv maps exactly those statements to true whose
acceptance conditions are satisfied underv. Our analysis in this paper will
be based on a straightforward generalization of two-valuedinterpretations
for ADFs to Kleene’s strong three-valued logic [19].12 A three-valued
interpretation is a mappingv : S → {t, f , u} that assigns one of he truth
values true (t), falsef) or unknown (u) to each statement. Interpretations
can easily be extended to assign truth values to propositional formulas
over the statements: negation switchest andf, and leavesu unchanged; a
conjunction ist if both conjuncts aret, it is f if some conjunct isf and it
is u otherwise; disjunction is dual. It is also straightforwardto generalize
the notion of a model: a three=valued interpretation is a model whenever
for all statementss ∈ S we havev(s) , u impliesv(s) = v(ϕs).

The three truth values are partially ordered by≤i according to their infor-
mation content: we haveBu<i t andu <i f and no other pair in<i , which
intuitively means that the classical truth valuecontain more information
than the truth value unknown. The pair ({t, f , u} ≤i) forms a complete
meet-semilattice13 with the meet operation⊓. This meet can be read as
consensusand assignst ⊓ t = t, f ⊓ f = f , and returnsu otherwise.

End quote from [35].

Let us conclude this Appendix and quote here from the Brewka–Woltran paper.
They are aware that they are really doing logic programming but, I assume for their own
reasons, they still present their paper as an argumentationpaper. See also [9, 10, 12].
We present three quotations from [2].

Begin quote 1:
Vocabulary for the quotation below:s is a node.Par(s) are its attackers, it
is Ys in our notation.Cs is our I (s).

11When presenting examples we will use a notation where acceptance conditions are written in square
brackets behind nodes, e.g.c[¬(a∧ b)] denotes a nodea which is jointly attacked by nodesa andb, that is,
each attacker alone is insufficient to defeatc.

12A comparable treatment for AFs was given by the labellings of[17]. We use standard notation and
terminology from mathematical logic.

13A complete meet-semilattice is such that every non-empty finite subset has a greatest lower bound, the
meet; and every non-empty directed subset has a least upper bound. A subset is directed if any two of its
elements have an upper bound in the set.



Definition 1. An abstract dialectical framework is a tupleD = (S, L,C)
where

• S is a set of statements (positions, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a set of total functionsCs : 2par(s) → {in, out}, one for
each statements. Cs is called acceptance condition ofs.

Begin quote 2:
Definition 2. LetD = (S, L,C) be an ADF.M ⊆ S is called conflict-free
(in D) if for all s ∈ M we haveCs(M ∩ par(s)) = in. Moreover,M ⊆ S is
a model ofD if M is conflict-free and for eachsinS,Cs(M ∩ par(s)) = in
impliess ∈ M.

In other words,M ⊆ S is a model ofD = (S, L,C) if for all s ∈ S we have
s ∈ M iff Cs(M ∩ par(s)) = in.

We sayM is a minimal model if there is no modelM which is a proper
subset ofM.

Begin quote 3:
It is not difficult to verify that, when the acceptance condition of each
node s is represented as a propositional formulaF(s), a model is just a
propositional model of the set of formulas

{s≡ F(s)|s ∈ S}.

End quotes from [2].

Remark D.1 To further highlight the fact that the idea of Instantiationis different from
and is orthogonal to the ADF idea, let us define the notion of abstract Instantiated
Dialectical Frameworks.

An abstract dialectical framework is a tuple DI= (S, L,C, I ) where

• S is a set of statements (positions, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}, s ∈ S is a set of total functions Cs : 2par(s) → {in, out}, one for each
statement s. Cs is called acceptance condition of s.

• For each s∈ S, I (s) is a wff of classical propositional logic. We consider I(s) as
a function from2par(s)to{in, out}.

Following quote 3 above , we understand by a model of the system any solution to
the equations for s∈ S ,

I (s) = Cs(y/I (y)|y a parent of s).

This system of equations is not guaranteed a solution is the real interval [0, 1],
while the system of Quote 3, does always have a solution in[0, 1], though not always
in {0, 1/2, 1}.



E

E.1 Comparing abstract instantiation with the ASPIC approach

When we talk in this paper about “instantiation in argumentation”, we must compare
what we are doing with the well known school of “instantiatedargumentation net-
works” and the ASPIC movement [13, 31]. What is the connection between what this
paper is doing and ASPIC? The answer is that they are similar but different. We first
explain the difference in principle and then give examples.

1. The abstract instantiation of the current paper. In this paper we start with an
abstract argumentation frame (S,R) and in parallel with a closed logical theory∆.14 It
is important to note that∆ need not be a defeasible theory. In fact our main case studies
are monotonic logics; classical propositional logic, monadic predicate logic and modal
logic S5. We can also use a defeasible theory if we want. We substitute wffs of∆ into
S via a functionI : S 7→ ∆. In this set up the network (S,R) and the attack structure
R of the argumenation frame is primary and it is retained and isinfluenced by the
substitution functionI . Our main task is to give the system (S,R, I ) proper meaning.
This substitution may cause problems and we need to find a theoretical remedy.

For the purpose of comparing with ASPIC and with other instantiation approaches,
such as [8, 28, 29, 30], let us offer another way of looking at the same problem. It
is to say that we have a basic consistent closed theory∆ and in parallel we have an
abstract schema (S,R) of attack relation. By substituting, usingI , formulas from∆ for
the elements ofS, we form an indexed collection of formulasΓ = {I (x)|x ∈ S} of wffs
from ∆ containing an abstract unspecified conflict, as recorded byR. If this abstract
conflict could be expressed in the language of∆ as a theory∆R, then∆∪∆R would have
been a defeasible theory or a monotonic consistent theory ora monotonic inconsistent
theory, all depending on the underlying logic. We ask the question: is it possible to
retain consistency ofΓ and yet satisfy the constraintsR?

To motivate this point of view of constraints, and to be able to have a working case
study to use in comparing with ASPIC, let us give an example.

Example E.1 Let∆ be a theory governing a birthday party. Let S be a set of people
and let I(x) for x ∈ S be “x is invited to the party”. Suppose everything is consistent
together, namely∆ ∪ {I (x)|x ∈ S} is consistent. We can have the party as required by
∆ and invite all the people of S . Bear in mind that∆ may contain requirements which
may affect the people invited.

We now add the constraints R of the form xRy meaning “If you invite x you cannot
invite y”.

OK, our problem now is, whom do we invite and still satisfy theconstraints? In
other words, we are looking for an extension (in fact a maximal preferred extension) of
(S,R, I ).

14By a closed theory we mean a theory containing whatever it proves. This can also be defined not only
for monotonic theories but also for non-monotonic theorieswhich satisfy the restricted monotonicity rule,
namely:

∆|∼Φ and∆ + Φ|∼Ψ ==> ∆|∼Ψ.



2. Instantiated argumentation: ASPIC. In comparison ASPIC does something
different. It will look at all the arguments (proofs) generated by a defeasible theory
∆. Since∆ is defeasible, it might defeasibly prove both anx and its negation¬x.
This can be viewed as giving rise to an attack relation (several possible notions of
attack relations) among the set of all proofs from the theory∆. We need to resolve the
conflict. ASPIC will use argumentation theory andconstructan instantiated network
(S,R) accordingly. Then ASPIC would apply the machinery of finding extensions and
expectthe resulting wffs of the extensions to be consistent in the logic of∆.

When this does not happen, ASPIC offers postulates toforce ∆ to behave as to
ensure that the resulting extensions are consistent.

Thus the ASPIC process has three stages:

1. The Input
Input a defeasible theory∆.

2. The System
Construct an argumentation network (S,R) from∆. Call the process of construc-
tion the ‘ASPIC construction". This is ASPIC’s way of doing it.

3. The Output
Output complete extension of the network (S,R) constructed in 2 and expect
these complete extensions to be consistent in the logic of∆.

When the output 3 does not meet expectations, ASPIC restricts the input by putting
postulates on∆. ASPIC does not try and improve or change the construction inpoint
2. (We shall offer a different way of constructing a network in Appendix E2).

3. Summary comparison. As you can see, although our paper and ASPIC deal with
similar (lego pieces) components, they do not do the same things. Several examples
would be helpful.

Example E.2 We look at Example 6 from the Caminada and Amgoud paper [16].
A defeasible theory∆ is given with strict rulesS and defeasible rulesD where

S = {a, d, g, b∧ c∧ e∧ f → ¬g}
D = {a⇒ b, b⇒ c, e⇒ f , d⇒ e}

and where “→” is strict implication and⇒ is defeasible implication. There are two
modus ponens rules, one for each implication.

Following the ASPIC instantiation idea, we look at all possible proofs of atoms
from∆. These are (notation: [. . . ]):

Π1. [a]

Π2. [d]

Π3. [g]

Π4. [a, a⇒ b], (proving b)



Π5. [d, d⇒ e], (proving e)

Π6. [a, a⇒ b, b⇒ c], (proving c)

Π7. [d, d⇒ e, e⇒ f ], (proving f )

Π8. [4, 5, 6, 7, b∧ c∧ e∧ f → ¬g], (proving¬g)

The paper [16] uses the proofsΠ1–Π7 to construct an argumentation network

S∆ = {Π1,Π2,Π3,Π4,Π5,Π6,Π7}
R∆ = {ΠRΠ′ if Π proves x andΠ′ proves¬x}.

The way [16] defines S∆ it turns out that the proofΠ8 cannot be used and is not a
member of S∆. This is because they string the data without using conjunctions, using
only “linear” sequences of the form x1, x1  x2, x2  x3, . . . , where “ ” is either
“→” or “ ⇒” and where each xi is atomic. This way of constructing(S∆,R∆) causes
problems.

If we collect the atoms proved in the proofs of S∆ and which are in the ground
extension, we getΓ = {a, d, g, b, e, c, f }. Using the logic of∆ and the rule b∧c∧e∧ f →
¬g, we get thatΓ is contradictory. Thus taking extensions may result in inconsistent
sets.

So [16] offers postulates on theories∆, hoping to ensure there will be no problems.
We are not here to evaluate [16] or the ASPIC approach. We are just comparing

their idea of “instantiation” with ours.

• ASPIC starts with∆ and constructs(S∆,R∆).

• We start with(S,R) and substitute proofs from∆.

We could end up with similar difficulties. Suppose we start with

S = {x1, . . . , x8},R= ∅

and I(xi) = Πi. We end up with

SI = {Π1, . . . ,Π8}.

The question is, in our methodology, how do we define RI ? Since we allow for joint
attacks, we can expressΠ8. Let us play the game the ASPIC way. We are given∆,
let us ask, since we have powerful machinery in this paper, ifwe wanted to construct
(S∆,R∆), how would we have done it?15

Our answer is that we would construct a 2-state network with joint attacks. Figure
67 illustrates the network we get.

We need two notions of attack, strict attack x։ y (same as a→ ¬y and defeasible
attack x⇒⇒ y (same as x⇒⇒ ¬y). We have¬¬x = x and¬xև։ x.

We need joint attacks as shown in figure67. We also need to use⊤, ⊤ is truth,
helping us describe the strict facts.
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Figure 68:



Note that in view of RemarkC.6, Figure67 is equivalent to Figure68. This figure
contains node to node attacks only.

We need to say how we compute extensions for the argumentation network of Figure
67arising from the defeasible theory∆. Being a defeasible theory we should be able to
resolve the conflict of the atom g both supported and attackedby its neighbours. Intu-
itively g has a direct strict proof from⊤, but¬g is derived defeasibly using 3 separate
defeasible rules, two of which are chained. So¬g has lower preference “value” than
g and so g is accepted. We need to define the priority values on the atoms x,¬x, y,¬y,
etc., and use these in calculating extensions. Our network has two attack relations and
so the priority values and the extensions must be defined geometrically in terms of the
graphs. This is done in Appendix E2.

Example E.3 Let us look at another example from [16]. This is example 4 from their
paper. The vocabulary is:

wr: John wears a ring
m: John is married
hw: John has a wife
b: John is a bachelor
go: John often goes out until late with friends.

The arguments are obtained from a database with strict rulesS and defeasible
rulesD.

S = {⊤ → wr,⊤ → go, b→ ¬hw,m→ hw}
D = {wr ⇒ m, go⇒ b}.

Caminada and Amgoud form the following arguments from the data (S,D).

A1 : [⊤ → wr]
A2 : [⊤ → go]
A3 : [A1⇒ m]
A4 : [A2⇒ b]
A5 : [A3→ hw]
A6 : [A4→ ¬hw]

We form (in our notation) the following network of Figure69.
The correspondence in this case between the arguments of Caminada and Amgoud

and the arguments in Figure69 is to paths in this figure as follows:

A1 : (⊤ → wr)
A2 : (⊤ → go)
A3 : (⊤ → w f ⇒ m)
A4 : (⊤ → go⇒ b)
A5 : (⊤ → wr ⇒ m→ hw)
A6 : (⊤ → go⇒ b→ ¬hw)

15Recall the discussion in Section 1.2. ASPIC restricts the input, i.e. using (r1). We are going to change
the system, the way we construct the network, i.e. we are using (r2).
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Figure 69: Representation of Caminada and Amgoud example

In the above set of arguments, only A5 and A6 attack each other and so we get the
extension{A1,A2,A3,A4}. Theoutputof this extension are the argument heads, namely
{wr, go,m, b}.

Caminada and Amgoud’s approach corresponds to our considering the network of
Figure 69, with attack relation։, and we thus get the extension{wr, go,m, b}. Cam-
inada and Amgoud proceed to close this extenson under the strict rules and they get
inconsistency. They consider this a problem and offer to remedy the problem by sys-
tematically adding, with every strict rule x→ y, its contrapositive rule¬y → ¬x.
This allows them essentially to also have that m attacks b andb attacks m, and so the
extension becomes only{wr, go}, which is consistenly closed under the strict rules.

We translate Figure69 into Figure70, and so have no problems with it..

E.2 Defining complete extensions for two-state two-attacksabstract
argumentation networks

Definition E.4 A 2-state bipolar 2-attack network has the form(S ∪ Sq ∪ {⊤},R1,R2)
where S is a set of atomic letters, Sq = {¬x|x ∈ S}, ⊤ < S and R1 and R2 are subsets
of (S ∪ Sq ∪ {⊤})2. We write x։ y for (x, y) ∈ R1 and x⇒⇒ y for (x, y) ∈ R2.

We consider the elements of Sq as negations of the elements of S .⊤ is truth.
The following holds (compare with Definition1.2):

• ¬∃x(x։ ⊤ or x⇒⇒ ⊤)

• ∀x(x։ ¬x and¬x։ x).

R1 is called the strict attacks and R2 is called the defeasible attacks.
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Example E.5 Consider the network of Figure68. This is a 2-state two-attack bipolar
network. We need to define a process for finding extensions forit. The difficult part in
the definition of such a notion is to deal with cases where the attacks “։” and “ ⇒⇒”
disagree. By calling “։” strict and “⇒⇒” defeasible we are giving “։” priority over
“⇒⇒”. But we may have cases where “⇒⇒” attacks both x and¬x. We might give
priority to either x or¬x depending on the geometrical location of x,¬x relative to
their attacking “⇒⇒” ancestors.

Let us see how to calculate the ground extension by propagating the attacks from⊤.
We record a defeasible indexD(x) for every node x, by counting the maximal number
of “⇒” participating in the chain of attacks leading up to it.

The following is the progression, step by step. 1= “in”, 0 = “out”, 1
2=“undecided”.

1. ⊤ = 1 D(⊤ = 0)

2. ¬g = 0, g = 1, from 1
D(g) = D(¬g) = 0

3. ¬d = 0, d = 1, from 1
D(d) = D(¬d) = 0

4. ¬a = 0, a = 1, from 1
D(a) = D(¬a) = 0.

5. ¬e= 0, e= 1, from 3
D(e) = D(¬e) = 1

6. ¬b = 0, b = 1, from 4
D(b) = D(¬b) = 1

7. ¬c = 0c = 1, from 6
D(c) = D(¬c) = 2



8. ¬ f = 0. f = 1 from 5
D( f ) = D(¬ f ) = 2

9. ¬g = 1, g = 0 from 5, 6, 7, 8
D(g) = D(¬g) = 2.

We see that 2 contradicts 9. Since theD index of 2 is lower than that of 9, it wins.
Therefore our ground extension for the network of Figure67 is

{⊤, g, d, a, e, b, c, f }.

The reader can see that by associating with a theory∆ the network of Figure67 we
have none of the problem mentioned by the ASPIC group [16].

Furthermore, if one does not want to deal with joint attacks (see [3] and see [18]
for arguments in favour of joint attacks), one can use additional auxiliary points and
eliminate them as in Figure68.

Example E.6 Let us calculate the ground extension of Figure70 in steps:

1. ⊤ = 1. D(⊤) = 0

2. ¬go= 0, go= 1,D(¬go) = D(go) = 0, from 1.

3. ¬wr = 0,wr = 1,D(¬wr) = D(wr) = 0, from 1.

4. ¬m= 0,m= 1,D(¬m) = D(m) = 1, from 3.

5. ¬b = 0, b = 1,D(¬b) = D(b) = 1, from 2

6. ¬hw= 0. D(¬hw) = 1, from 4.

7. hw= 0,D(hw) = 1, from 5.

If we insist on the sum of the values of any{w,¬w} to be 1 we need to give hw and¬hw
values1

2.

Example E.7 We want to discuss options for defining the indexD(x) for index x. Con-
sider the network in Figure71.

The node c is supported by several chains. For example

1. ⊤ ⇒ a⇒ c

2. ⊤ ⇒ a⇒ b⇒ a⇒ c

3. ⊤ ⇒ d⇒ c

4. ⊤ ⇒ e⇒ c

5. ⊤ ⇒ c

We can also loop and get

(6, k) ⊤ ⇒ a⇒ b⇒ a, . . . , loop k times⇒ a⇒ b⇒ a⇒ c.
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length number of paths
2 1
3 3
5 1
7 1
9 1
11 1
13 1
15 1

Figure 72:

Questions. What index do we give to c?
The first question is what to do with (6,k). We have an infinite number of paths

leading from⊤ to c. The second question is that we can get to c using several parallel
paths through a, d and e. Does this increase its priority over f ?

The thrid question is how do we record the totality of inidices/paths which charac-
terise c?

We think it is reasonable to do the following:

1. Limit the paths with loops to n number of repetitions, where n is the number of
elements in the network. Recall that we are dealing with finite networks. Thus
(6, k) becomes(6, 1), . . . , (6, 6).

2. Record for each x the number of different paths of each length. Thus the index of
node c becomes the table in Figure72.

We leave it to the defeasible logical theory to decide which xwith tableD(x) is
preferable to which y with tableD(y). For example we can take the number of shortest
paths to be the index.

Definition E.8 Let (S ∪ Sq ∪ {⊤},R1,R2} be a finite 2-state 2-attack bipolar network.
Let k be the number of elements in the network.

1. By a legitimate path from x to⊤ we mean a sequence

Πx = (x1 = x, x2, . . . , xn = ⊤)
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such that for each1 < i ≤ n we have xiRxi−1, where R is either R1 = ։ or
R2 = ⇒⇒ and such that no node y appears inΠx more than k times.

2. The defeasible value ofΠx (denoted byD(Πx)) is the number of points xi , 1 < i ≤
n such that xi ⇒⇒ xi−1.

3. The defeasible value of x denoted byD(x) is the pair(D1(x),D2(x)) whereD1(x) =
min{D(Πx)} andD2(x) = the number of pathsΠx such thatD(Πx) = D1(x).

4. Order the nodes x according to the lexicographic orderingof D(x). We get three
possibilities for two nodes x, y.

(a) D1(x) < D1(y)

(b) D1(x) = D1(y) andD2(x) > D2(y)

(c) D1(x) = D1(y) andD2(x) = D(y).

Possibilities (a) and (b) are considered x> y (x is stronger than y). Possibility
(c) is considered x≈ y (x is indifferent to y).

Definition E.9 Let (S∪Sq ∪ {⊤},։,⇒⇒) be a finite 2-state, 2-attack bipolar network.
Assume that each node x already has an indexD(x) defined and that a priority ordering
x > y and x ≈ y have been defined. We define the notion of a Caminada-Gabbay
labelling function

λ : S ∪ Sq ∪ {⊤} 7→ {0, 1
2 , 1}

being a legitimate complete extension for the network.
λ is defined relative to the relations> and≈.
λ must satisfy the following

1. λ(⊤) = 1.

2. Each pair{x,¬x} in the network is part of the following geometrical constellation
of Figure73.

There may be no ai and/or no bj and/or no ci and/or no dj .



We assume that theλ function is known for{as, bs, cs, ds} and we indicate by
case analysis what the valuesλ(¬x) andλ(x) should be.

3. λ(x) + λ(¬x) = 1.

4. It is not the case that for some i and some j,

λ(ai) = λ(c j) = 1

(If this happens thenλ is not legitimate.)

For networks coming from consistent defeasible theories∆, this will not happen
because it means that using strict rules we have ai ⊢ ¬x and cj ⊢ x and both
∆ ⊢ ai and∆ ⊢ c j.

5. If for some i, λ(ai) = 1 and for all j, λ(c j) < 1 thenλ(¬x) = 0 andλ(x) = 1.

6. If for some i, λ(ci) = 1 and for all j, λ(a j) < 1 thenλ(¬x) = 1 andλ(x) = 0.

7. Assume that the valuesλ(a j), λ(ci) are< 1 for all a j and ci . If for at least one of
{a j , ci}, λ gives value1

2 thenλ(x) = λ(¬x) = 1
2.

8. Assumeλ gives value 0 to all{ai , c j}, and assume that x> ¬x, then

(a) If for some dj , λ(d j) = 1 thenλ(x) = 0 andλ(¬x) = 1.

(b) If for all d j , λ(d j) < 1 and for some dj λ(d j) = 1
2 thenλ(x) = λ(¬x) = 1

2.

9. Assume for all{as, cs, ds}λ gives value 0 and x> ¬x then

(a) If for some bj , λ(b j) = 1 thenλ(¬x) = 0 andλ(x) = 1.

(b) If for all b j , λ(b j) < 1 and for some bj, λ(b j) = 1
2 thenλ(x) = λ(¬x) = 1

2.

(c) If for all j, λ(b j) = 0 (i.e. the case is that none of¬x, x is attacked in any
way) thenλ(x) = λ(¬x) = 1

2.

10. The mirror case of (7)–(8) for¬x > x. Take the mirror case analysis.

11. If x≈ ¬x and allλ(as) = λ(cs) = 0 andλ(b j) = 1 for some j and allλ(ds) < 1
thenλ(¬x) = 0 andλ(x) = 1.

12. If all λ(as) = λ(cs) = 0 and all λ(bs) < 1 and someλ(ds) = 1 thenλ(¬x) = 1
andλ(x) = 0.

13. If all λ(as) = λ(cs) = 0 and either for some bj and di λ(b j) = λ(di) = 1 or all
λ(bs), λ(ds)< 1 thenλ(¬x) = λ(x) = 1

2.

Definition E.10 Consider a rule of the formα = [
∧

i xi  z] where “ ” is either
“։” or “ ⇒⇒”, and xi and z are literals of the form either b or¬b, with b atomic. We
agree that “¬¬b” is “b”.

We translateα into an attack formation∆α in the language of 2-state 2-attack
networks as in Figure41. We use the auxiliary points Sα = {y1(α), . . . , yn(α), y(α)}

∆α = {xi  → ¬yk(α)|i = 1, . . . , n} ∪ {yi(α) → ¬y(α), y(α) → ¬z}.



Where “ →” is “ ։” if “  ” is “ →” and “ →” is “ ⇒⇒” if “  ” is “ ⇒”.
The auxiliary points of Sα,Sβ are all pairwise disjoint forα different fromβ and

disjoint from the literals of∆.

Definition E.11 Let∆ be a defeasible theory based on the set of atoms S , containing
the literals S∪ Sq with Sq = {¬x|x ∈ S}, with⊥,⊤ < S ∪ Sq.

LetD be the set of defeasible rules andS be the set of strict rules. Assume the
language of∆ has strict implication→ and defeasible implication⇒. The rules of∆
have the form

∧

i

xi → y

or
∧

j

y j ⇒ z

where{xi , yi , y, z} are literals, i.e. have the form b or¬b, b atomic letter.
We allow for rules of the form→ y or⇒ z meaning y or z are assumptions.
We define the associated network N(∆) for ∆ as follows:

1. The set of nodes of N(∆) is S∪ Sq ∪ {⊤} ∪
⋃

α(Sα ∪ Sqα) whereα runs over all
rules of the form

∧k
i=1 xi  z with k≥ 2. (I.e. joint rules) and “ ” is either

“→” or “ ⇒”.

The attack relation of N(∆) is as follows:

{bև։ ¬b|b atom of N(∆} ∪ {⊤։ ¬b|c։ b in∆} ∪ {⊤ ⇒⇒ ¬b|c⇒ b in∆} ∪
⋃

α

∆α ∪ {x → ¬y|x y in ∆}

whereα runs over all joint rulesα in ∆.

Note that N(∆) satisfies that for every b, ⊤ either b or¬b is attacked (using
 →) by some node.

F Discussion of papers of Arieli and Strasser [28, 29]
and the book of Besnard and Hunter [30]

Our purpose here is to compare our work with that of Besnard and Hunter and in
parallel, with that of Arieli and Strasser. We first want to make two comments:

1. To set the scene for the comarison we need to start with my 1999 paper [32],
which contains the relevant machinery.

2. Whatever criticism I have here of Arieli and Strasser [28, 29], it must be borne
in mind that these papers are preliminary conference papersand not definitive
versions, like, e.g. Besnard and Hunter [30].

So let us start. My paper [32] and the later chapter 7 of our mootgraph [33] dealt
with what I calledcompromise revisionof databases. We explain by example.



Example F.1 This example continues ExampleE.1, with a view of illustrating the idea
of compromise revision.

Let ∆ be a theory governing a birthday party. Add to∆ the following additional
statements (t1)–(t5)

(t1) a= invite Agnes

(t2) b= invite Bertha

(t3) a→ ¬b

(t4) b→ ¬a

(t5) a∧ b→ invite Caterina (let c= invite Caterina).

Then our database isΓ:

Γ = ∆ ∪ {a, b, a→ ¬b, b→ ¬a, a∧ b→ c}.

Γ is not consistent, but each of its items makes initial sense.Agnes and Bertha may
be old aunties who do not talk to each other because of something that happened 30
years ago. Caterina may be an old friend of each one of them whose presence might
“mitigate” the friction. After some deliberation a decision was made not to risk inviting
these two warring aunties. This means that we regardΓ as an inconsistent theory in
need of belief revision. The obvious revision is to delete either (t1) or (t2), i.e. not invite
one of the aunties. If we do that then we need not invite Caterina (i.e. c would not be
provable).

The compromise revision problem is the following:

• Given an inconsistentΓ and X∈ Γ such thatΓ − X is consistent, and given a Z
such thatΓ ⊢ Z butΓ − X 0 Z, then compromise revision would like to include Z
in the revised theory in case the revised theory isΓ − X.

The problem is that ifΓ is inconsistent, thenΓ can prove everything, including

V = invite Vladimir Putin

So we need to be careful and “control” whatΓ exactly proves. For that we use the
discipline of labelled deductive systems [34]. We label every step in the syntactic proof
of any wff Z.

The LDS rule of Modus Ponens is

β : A; γ : A→ B
(γ, β) : B

Thus we have thatΓ proves
(t1, t2, t5) : c

If we can prove V, it will be by some labelα, α : V which can be recognised.
So to prove V by virtue ofΓ being inconsistent, we will need to first prove some

x ∧ ¬x and then use the axiom x∧ ¬x → V. This will all be recorded inα and we
can recognise it and not include V in the revised theory, i.e.invite Vladimir Putin. By
comparison, if for example Putin is a relative of Agnes and∆ says something about
relatives, we may have a more direct labelled proof of V.
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Figure 74:

The background considerations in ExampleF.1 show that we have precise LDS
machinery to trace proofs. Thus the Besnard and Hunter notion of argument of the
form (∆,A) where∆ is a minimal theory such that∆ ⊢ A, can be refined to bet∆ : A
wheret is a label showing howA is proved from∆. There may be several such proofs
in which case there would be several such labels. So given an inconsistent theoryΓ, we
can look at all labelled proofsti : Ai from Γ and define an attack relation among them
in a much refined way, taking into account exactly how each formula is proved.

Arieli and Strasser use a Gentzen formulation of the logic and use progressions of
Gentzen sequents as their attacking elements. I have reservations about the very idea
of using Gentzen systems as the machinery for attack in the context of argumentation
networks. I think that Arieli and Strasser’s impressive system is more at home with
meta-level theories of belief revision, rather than abstract argumentation. However,
this is not the place to to discuss and evaluate their system,especially since, the current
publication is at a conference and we yet to wait for the Journal expanded version. It is
enough to say that for the purpose of comparison with the current paper, given (S,R)
then if we consider instantiations of the form (S,R, I ), whereI is an instantiation into
labelled formulas of some labelled deductive system, i.e.I : S 7→ LDS, then such
a system would generalise and include both approaches; the Arieli–Strasser approach
and the Besnard–Hunter approach. This, however, is the subject for a new paper.

We concldue by looking at Figure74, which explains the situation of ExampleF.1.
The preferred extensions for this figure are the following

1. ¬b = ¬a = 0, a = 1, b = 0,¬c = 1, c = 0

2. ¬b = ¬a = 0, a = 1, b = 0,¬c = 0, c = 1

3. Same as (1), witha = 0, b = 1



4. Same as (2), witha = 0, b = 1.

Example F.2 Let us do Example 17 from Arieli and Strasser [29]. This is to show
how simple the labelled approach is compared with the Gentzen formulation. Gentzen
systems were invented to prove the consistency of arithmetic. It is risky to take off
the shelf tool designed for one purpose and apply it to another purpose; such a move
requires proper justification.

The data of this example is:

(t1) m

(t2) a

(t3) m→ ©¬ f

(t4) m∧ a→ © f .

The meaning of the normative© f and©¬ f is not important here. It is sufficient
to note that they attack each other. We can derive:

1. (t3, t1) : ©¬ f

2. (t1, t2) : m∧ a

3. (t3, (t1, t2)) : © f

(1) and (3) attack each other. They have labels telling us howthey were proved and
one can define an attack relation sensitive of the labels. In LDS we call this “flatten-
ing”. See [34].16

In fact, the attack relation can be a relation R on labels. So Scan be the labels and
R⊆ S×S . This is OK since the labels contain the information of the proofs, including
the proved formulas. In fact, in my book on LDS [34], I use many times the formulas
themselves as their own labels. So©¬ f is labelled by (1∗) and© f by (3∗), where

(1∗) (m→ ©¬ f ,m) : ©¬ f

(3∗) (m∧ a→ © f , (m, a)) : © f

Now compare this with the Gentzen formulation in Figure 3 of [29]. We reproduce
it as Figure75(the horseshoe is classical implication and the double arrow is the main
symbol for the Gentzen sequent).

The problem is not so much the complexity of the representation. The problem
is that proofs in a Gentzen system do not flow with the implication, while the human
argument does follow the implication. Arieli and Strasser are just using Gentzen as a
meta-level deductive machine!

Figure 76 gives the argumentation network the way we build it. We simplified
m∧ a → © f as (m, a) → © f , so we avoid conjunction. There is nothing special to
this move.

You can see that paths indicate chains of implications, veryintuitive the way we
think of it!

16We may have in LDS that we can proveti : X and alsosj : ¬X, yielding multiple bilateral attacks
betweenX and¬X from different proofs. The Flattening process decides, based on{ti , sj } whetherX or ¬X
has the upper hand.
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Â = m⊃ ©¬ f ⇒ m⊃ ©¬ f
B̂ = m⇒ m
Ĉ = a⇒ a
D̂ = (m∧ a) ⊃ © f ⇒ (m∧ a) ⊃ © f
Ê = m,m⊃ ©¬ f ⇒ ©¬ f
F̂ = m, a⇒ m∧ a
Ĝ = m, a, (m∧ a) ⊃ © f ⇒ © f
Ĥ = m, a, (m∧ a) ⊃ © f ⇒ ¬(m⊃ ©¬ f )
Î = m, a,m⊃ ©¬ f , (m∧ a) ⊃ © f ⇒ ©⊥.

Figure 75:
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We conclude this Appendix by quoting a response from C. Strasser and O. Arieli.

Begin quote.

Thanks for referring to our work in the above-mentioned paper. Below are
some comments and a response to several issues.

1. First, since Besnard and Hunter’s (BH) formalism is mentioned in
the same appendix, let us emphasize the differences between our ap-
proach and theirs. According to BH, an argument is a pair〈Γ, ψ〉,
whereΓ is a subset-minimal consistent set of propositional formulas
that entails according to classical logic the propositional formulaψ.
In our approach none of these is assumed: languages other than the
propositional one may be used,Γ need not be consistent nor minimal,
and the underlying logic need not be classical logic. Another differ-
ence is that we enhance the calculus of the base logic by elimination
rules (see Item 3 below).

2. The general view on arguments, as indicated in the previous item,
may serve as a justification for our choice to incorporate sequents
in our framework: once an underlying logicL is fixed, an argument
〈Γ, ψ〉 in our sense is an indication that logically follows, according to
L, fromΓ. If a sound and complete sequent calculusC exists forL it
serves as a syntactical tool for constructing complex arguments from
simpler ones. Such a mechanism must accompany, either implicitly
or explicitly, any structural (logic-based) argumentation system, so
we are not sure that we follow the criticism in this case. Moreover,
to some extent (we still have to check this more carefully), and in
the notations of your paper, a labeled formulat∆ : ψ may be asso-
ciated with the sequent∆ ⇒ ψ (the way we encode arguments in
COMMA’14), or with a concrete proof of a sequent∆⇒ ψ (the way
we encode arguments in DEON’14 — see also Item 6 below).

3. We do not agree with the claim that our use of sequent-basedGentzen-
style systems is purely a ‘meta-level deductive machine’, as in addi-
tion to deductions, aimed at systematically constructing arguments,
we also have sequent-based rules foreliminatingarguments. Thus,
sequents are not only meta-leveled deducible objects, but they are
syntactical entities that may be retracted as well. This hastwo impli-
cations. First, the (enhanced) calculus does not only produce the ar-
guments for the argumentation framework but also the attacks. Sec-
ond, this tighter link between the calculus of the base logicand argu-
mentation frameworks (as compared to the BH-approach) allows to
define a machinery for automated deduction on the basis of dynamic
proofs (see our COMMA’14 paper and the literature on adaptive log-
ics). It follows that derivations are more complicated structures than
‘ordinary’ proofs in Gentzen-type systems, which also allow for non-
monotonic reasoning.



4. Example F.1: It is noted that ‘the obvious revision is to delete either
(t1) or (t2)’. One may argue that eliminating both (t3) and (t4), thus
inviting both aunties as well as Caterina, is also a plausible revision.
This view, which is more in-line with a paraconsistent view of 1 the
state of affairs, in which all the assertions in a theory are treated
uniformly, may be supported by our setting, depending on thepre-
defined logic and the attack rules.

5. We are not sure that we understand what do you mean by ‘flowing
with implication’. Whatever this property may be, undesirable prop-
erties may be lifted by modifying the corresponding proof system
(and maybe also by changing the underlying logic). As we indicated
before, this is fully supported by our approach.

6. Please note that in the DEON’14 paper an argument is the whole
proof ofψ fromΓ (and so attacks may be on subproofs). This is simi-
lar to the way the ASPIC system views arguments. In the COMMA’14
paper we adopted a simpler view, in which an argument is simply a
sequent (or, alternatively, only the ‘top sequent’ of a proof). Both
representations of arguments seem to be different than the way that
argument are encoded in your Dunglike digraphs, where vertices are
propositions. In view of this it is also difficult to directly compare the
two approaches in terms of representational complexity/transparency
as you seem to do at the end of appendix.

End quote.


	1 Motivation and Orientation
	1.1 Structure of our paper
	1.2 General methodological remarks
	1.3 Conceputal analysis for instantiated Boolean or predicate argumentation
	1.4 The substitution track
	1.5 Summary of our plan so far for monadic predicate instantiation

	2 Abstract instantiated argumentation frames (AIAF)
	2.1 Instantiating with formulas of propositional logic
	2.2 Concrete classical propositional instantiations
	2.3 Instantiating with monadic wffs and modal S5 wffs
	2.4 Beyond predicate instantiation

	A Classical monadic predicate logic
	B Instantiating with 
	C 
	C.1 Conjunctive and disjunctive attacks
	C.2 Boolean attack formations (BAF)
	C.3 Instantiating with Boolean attack formations
	C.4 Instantiating with classical propositional wffs using Boolean attack formations

	D Comparing Boolean instantiation with abstract dialectical framework (ADF).
	E 
	E.1 Comparing abstract instantiation with the ASPIC approach
	E.2 Defining complete extensions for two-state two-attacks abstract argumentation networks

	F Discussion of papers of Arieli and Strasser 509-26,509-27 and the book of Besnard and Hunter 509-29

