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Abstract

We study instantiated abstract argumentation frames of then
(S,R 1), where 8, R) is an abstract argumentation frame and where the arguments
x of S are instantiated by(x) as well formed formulas of a well known logic,
for example as Boolean formulas or as predicate logic foasiol as modal logic
formulas. We use the method of conceptual analysis to ddrésproperties of our
proposed system. We seek to define the notion of completasates for such
systems and provide algorithms for finding such extensi@vesfurther develop a
theory of instantiation in the abstract, using the framéwafrBoolean attack for-
mations and of conjunctive and disjunctive attacks. Weudisapplications and
compare critically with the existing related literature.

1 Motivation and Orientation

This paper studies semi-instantiated argumentation n&tefahe form S, R, 1), where
(S,R), RC SxSis an abstract argumentation network &mglan instantiation function,
giving for eachx € S a formulal (x) of some logid_.

The attack relatiorR is not instantiated and remains abstract. We are not told, in
terms of the logid_, why there is an attack.

There are several possibilities for such a system to arise.
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Option 1. We can view such a system as semi-ASPIC like instantiatitve. APPIC
approach (seedp]) will start with a theoryA in a logic,L define the notion of -proofs

for A and will elt S be the set of all possible such proofs and will further defiree t
attack relatiorR € S x S in terms of relationships among these proofs. In our case we
just takeA as the arguments (no proof theory avaiable) and simply tellgbstractly
what is supposed to attack what.
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For example, lef = {A,A — 1} (with — being implication, and. being falsity)
and the attack relation be frodto A — L butnotfrom A — L to A. We are not
explaining why this attack relation is defined so. There amgck, like the Lambek
calculus where modus ponens works from the left but not frigimtr SoA,A — B+ B
holds, butA — B, A¥ B. Thus ifX -» Y meansX, Y + L, then we get thaf » (A —
1) holds (“»” is attack) but A — 1) does not attaclA.

Option 2. Such instantiated systems can also arise from general d@twcal con-
siderations. Let us ask ourselves a very simple question:

Question. What is the added value of abstract argumentation netwovies, Gay,
classical propositional logic?

Obviously they have the same expressive power. Many paperaribus authors
have demonstrated such equivalence. My favourite is my apepB7], showing that
the attack relation is really the Peirce—Quine dagger caivee(x | y = def.-x A
-y) of classical logic. So, we ask, what is the added value of swetworks? My
answer to this is that in these networks we bring some metd-features into the
object level Dung argumentation networks, expand clakpr@positional logic with
the meta-predicatex‘is false”. When we write - X (i.e., z attacksx) we are saying
z="xis false”, orz « “xis false” So the liar paradox becomes» x, “| am false”.
So the added value of abstract argumentation networks $sickd propositional logic
is the meta-predicate Fals@( So the language now has}, X Ay, X Vy,x — y) and
the additional connective Falsg)(

Now the minute we accept this view we must also allow and axddegpressions
like

X-» A

whereAis a wf, i.e.,x = “Alis false” and we then must also allow
XAY—>» A

meaning thak andy together say thaA is false, and now, of course, once we go this
far we must also address
B—» A

The latter is nothing but the equivalence
B « Falsef).

If you think about it, once we add to any logic a new connecti®éx)”, we must be
able to addresg <« C(X), it being just another .

Having established some interest in semi-instantiatedraegtation networks, let
us now get to business and describe the machinery and prshbigotved.

Let (S,R) be an abstract argumentation frame. This meansShata non-empty
setandRC Sx S.

LetL be a logic, with a set of well formed formulas WHEF(and letu be either
semantics or proof theory for this logic. Assume that we haeelels for this logic



which we denote bym}, andor theories for this logic which we denote Kk}, We
assume that a notian_ for this logic is available such that for eaalmor A and for
each® € WFF(L) the relationA . ® orm i ® can get 3 answers. Yes (1), no
(= 0) or undecided 1).

As an example of a logic let us take intuitionisitc propasitl logicH, with con-
sequencey we can have:

Ay ®is 1if A +y @ holds
Aty ©is 0if A vy ~® holds
A ry @ is § if neitherA +y @ or A +y =@ holds

Similarly if m is a propositional Kripke model fd#, we can have

miry ®is1if m i ® holds
m kg @ is 0 if m - =@ holds
m iy @ is 3§ if neither holds

Another example is 3-valued classical propositional logith the Kleene truth
table for{0, % 1}. CallitK. See 19 and DefinitionC.2

Given a model assignment to the atoms, we have I @ is the value tham
gives tod, denoted byn(®). Itis a value in{0, 1, %}.

Let (S,R) be a network and let be a logic withi- . Consider the instantiation
function,l : S — WFF(L).

Consider §, R 1). Thisis an instantiated argumentation network. We seekfine
the notion of complete extensions f&, R, ) and give algoirthms for finding such
extensions.

After performing a conceptual analysis of this problem, wached the following
definition. A modelm (or a theoryA) of L generates an extension f@&, R, 1) if the
function Ay, (or 4,) defined onS below is a legitimate Caminada labelling giving rise
to a complete extension 08,(R).

The functiont is:

Am(X) = value of M - (X))
Aa(X) = value of A - 1(X))

The problem is how to identifgompute, using purely argumentation methods, such
extensions for$, R, 1). This is the task of this papérNote that the emphasis is on

1The reader should note that we are not defining, as a stipule¢tnical definition, the complete exten-
sions of §, R, 1) as those legitimate Caminada labellings arising from rteodetheories of the logic. We
are deriving this definition from conceptual analysis ofithea of instantiation.
To make the point absolutely clear, suppose we instantigelements o6 by names of Chinese restau-
rants in London. We can define by stipulation extensions fmhsChinese systems as those legitimate
Caminada extensionssuch that if

e A(X) = in then the Chinese restaurant associated witrade a profit in 2014
e A(X) = out, then the Chinese restaurant associated xvittade a loss in 2014
e A(X) = undecided, then the Chinese restaurant associatedkwéme out even in 2014

The above stipulation has nothing to do with a Chinese remtawattacking another, and is nothing more
than means of restricting the Caminada labellingsS)iy.



using geometric syntactical argumentation methods to fiscektensions of§, R, I).
What we can do and we do not want to do is to systematically rg¢mell models
m of the logic or all theorieg\ of the logic and check whethar, or 1, generate a
legitimate Caminada extension. We want to syntacticaipdform 6, R 1) into an
argumentation network. Putfigrently, we want to identify and use the argumentation
network meaning of the logic.

We consider three main logics.

1. Classical propositional logic based on 3 valued Kleeuih tiable.
2. Monadic predicate logic without equality based on Kletixe.
3. Modal logic S5 based on Kleene table.

This paper solves the problem. However, many of the restétseghnical and are
done in the Appendices.

The methodological schema is simple:

Given (S, R ) with | being an instantiation into WFE] we follow the steps below:

Step 1. Rewrite any vif ® of L into an equivalent formula (ib) which is argumen-
tation friendly and convenient form.

Finding the right friendly form is not immediate and regsisome analysis and
trial and error. Once we find a convenient form for amg WFF(L) we need to prove
the equivalence. This may involve some technical manipratand is therefore done
in an appendix.

Step 2. The instantiatiorl (X) = ®, can now be assumed to be in this special form.
Whenx attacksy in (S, R), we get after instantiation thdt, attacks®y. This attack
between formulas df, needs to be given a meaning. The two formulas may be con-
sistent inL, so what does it mean that one attacks the other? So we tramafty ®

of L into an argumentation template called a Boolean attackdtion “equivalent” to

® which we denote bBF(®). Such formations can attack each other because they are
defined as argumentation systems with input output nodes.

Note that wedo notwant to say something liked attacks¥ if {®, ¥} is not con-
sistent inL” because we do not want to uke We turn® and¥ syntactically into ar-
gumentation networks and remain solidly within the argutaton framework world.

We now haveBF(dy) attackingBF(dy) where eaclBF is an argumentation network
with input and output nodes.

The attack formation associated wibh encodes the logical meaning®df This has
to be defined and proved. Because of the technical complekitye transformation
from @ to BF(®), this is also done in an appendix.

Step 3. We now have the originaly, R) network instantiated by Boolean attack for-
mations. So this is a system of network of networks. Thusssiepnd 2 reduced the
problem of instantiating a networls(R) by wiffs of a logicL, into the problem of in-
stantiating §, R) by some special argumentation networks cali(Boolean attack



N

S

Figure 1:

formations) derived fok . Such a purely argumentation problem is of interest in ita ow
right. We have a complex syster§,R 1), where §, R) is an argumentation network
and for eachx € S, 1(X) = (Sx, Ry) is an argumentation network.

We seek to turn this system into one big master argumentagitmork ™, RM).
We now want to define the notion of complete extensions farrietwork GM, RM).

Remember that this network is not arbitrary but was contdito do the job of
finding extensions for instantiations &,([R) into WFF(L ).

We find by conceptual analysis that the traditional notidrextensions for neworks
is not adequate for the job and that we need to develop anda@tur own new no-
tion of extension (which we cation-toxic truth intervention extensions

This new notion of extensions is, in fact, a paper in its owghtiand because of its
complexity it is done in an appendix.

Step 4. We now have $M, RM) and a new method of finding extensions for it. We
generate these extensions and from the extensions we tgenwrdels for the logit. .
The models foL give us extensions foS( R, 1), with | an instantiation into WFH().

The above step by step workflow schema is quite simple buthgrgechnical. So
most of the work is done in the appendices so as not to bur@eretder.

It would be of value to illustrate the steps of the workflow onexample.

Start with §, R) being a two point loogx, y} with x attackingy andy attackingx.
See Figurd.

We have three extensions:

E; : x="in", y ="out”
E2 : X — “Out”, y — Hin”
Es : x =y ="“undecided”

Instantiate with

[(X) = someone is tall
I(y) = Dov is tall

We get Figure2.

We are looking for (Kleene three valued) predicate modelsfvould give values
to AxT(x) and T (d) which will form an extension.

Our knowledge of logic tells us that there is only a model 3T (x) A =T (d),
e.g. Dov and Lydia, with Dov not tall and Lydia tall. There is model withT(d) A
-3xT(x). Thus our knowledge of logic tells us that the above in&ion has only
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one extension in classical two valued monadic logic. In K&8 valued logic, we can
also have a model witAxT(x) = T(d) = 3.

However, we are not supposed to use our knowledge of logigvbunust use an
algorithm to find the model. So as far as the algorithm is corexdwe have in this
example a case of the instantiation of Fig@re

We turn® andV¥ into equivalent networks of Boolean attack formation whigd
draw as in Figurd and Figure8 becomes FigurBwhich is a master network represent-
ing the instantiation. We find extensiosn for the master ndtvand these extensions
will generate models.

The perceptive reader might ask why not loolat—¥ and¥ A—-® and find models
for them? After all, we know the logic? The answer is that we are not using the logic
at all. The transformatiof to BF(®) is pure syntax. It is the argumentation extensions
which find the models fofl (X)|x € S} which respect the constraints imposed by the
original (S, R).

To continue analysing this example from the argumentat@ntf view, assume
the universe has only two people, Dov and Lydia. &3 (x) becomed (d) v T(1).

Figure 4:



Figure 5:

T(d) v T(l) T(d)

Figure 6:

Figure2 becomes Figuré.

The reader can see now the logic behind this instantiatice h¥ve to define cor-
rectly what it means to attack a disjunction and what it means disjunction to
mount an attack. Once we do that (this is done later in tis pape get that Figuré
is equivalent to Figuré

The only extensions are

1. T() =in, T(d) = out (corresponding taxT(x) A =T(d)) and
2. T(I) = T(d) = undecided (corresponding BixT(x) = T(d) = %).

Note that we can use the above as an argumentation theoreer poocheck the
consistency ofd A =¥ and—® A V.2

Let us conclude this preliminary orientation by saying a¥ewds about our deduc-
tive and expositional approach. Our approach is new. Weeaatiour proposed system
through a conceptual analysis (using common sense) of thea@oeents needed for an
abstract theory of instantiation in general and for the gjpdostance of, for example,
predicate and modal argumentation and following this asislywe define our system.
So, as we are writing the present lines, we do not know yetithdétails of what kind
of system we will get.

2Existing machines for finding extensions for argumentati@iworks push the problem to logical
provers. So we are not suggesting our reduction as a prattimarem prover for logic but only to high-
light that we are operating purely in the argumentation dorl
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We choose to deal, for the sake of simplicity, with the clesisBoolean proposi-
tional calculus and with monadic classical predicate lagithout equality and with
modal logic S5. See Appendix A. We shall deal with more comfagics in a subse-
quent paper.

There exists in the literature the instantiated approaahgomentation, also known
as ASPIC, seell3, 14, 16]. This approach is related but not the same as our approach.
See Appendix E for full comparison and discussion.

1.1 Structure of our paper

Our program for this paper has the following methodologstaicture:

Starting point. We assume as our given starting point Dung theory of atomitefin
propositional abstract argumentation frames. Namely &aof the form §, R), where

S a finite set of atomic argument’,C S x S is the attack relation together with the
traditional notion of complete extensioBsc S (to be recalled and defined in the next
section).

Objective. Extend what is given to classical propositional calculud emmonadic
predicate logic and to modal logic, namely allow the elerma@fiS to be instantiated
as formulas of classical propositional calculus or respelgtas formulas of (monadic)
predicate logic or respectively as formulas of modal logica8d define the concept of
a complete extensions for this case in a natural and confyphatetactical and combi-
natorial way, without using any logical notios.

3By completely syntactical and combinatorial way we mean se&anly the geometry of the grapB R)
and possibly a new concepts of attack based on the geomethe @fraph and on the simple syntactical
structure of the arguments. So we assume a system of the $oRnl{), whereS is a set of atomic arguments,
Ris the attack relation, anidis an instantiation function giving for eache S a formulal (x) of propositional
logic or of predicate logic or resp. modal logic. We look fotensions respecting the instantiatibnbut
such extensions are to be defined purely syntactically. 8oinig ARBiff A =—-B or B = -Ais acceptable
but definingARBIff A, B+ L is not!
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Methodological approach. To achieve our objective we use the method of common
sense conceputal analysis, a well known method in philogopbles.

Conclusion. We produce an abstract theory of instantiation of arguntiem#&ame-
works in general and for the specific cases of Boolean, pagsliand modal instantia-
tions, and compare and discuss what we get with systems gedpo the literature.

Let us now begin this rather unusual approach.

1.2 General methodological remarks

1. First, we remark that there are two major approaches endittg any proposi-
tional system to a predicate system, in this case extendoygpgitional abstract
argumentation to predicate or to modal S5 argumentation:

*1. Look at applications areas of the (propositional) systnd see its short-
comings and seek to extend it accordingly (to a predicattesy®r to a
modal system). The needs of the applications will dictatatvkind of
generalisation to adopt.

*2. Look formally at the (propositional) system and its campnts and use
theoretical considerations to extend it by adding quansgifie modalities.

Personally we believe in the (*1) approach. In our particadlase, however,
the (*2) approach is just as good, because adding prediaateguantifiers or
modalities to a propositional system is universally doneviany logics. This is
a well trodden path and it can lead to good extensions whidrdaiwell with
applications, as long as our conceputal analysis is dofegeibd common sense
and care!

2. Second, let us recall a general methodological remedyixXmg any system
which does not behave properly.

Suppose we have an inpotitput system of some kind, as represented in Figure
8.

Suppose the output is problematic and not to our liking. Howe remedy the
situation? There are three pure traditional approachesreary options using
their various combinations

rl. Restrict the input to make sure the output is acceptable.



r2. Fix the system.
r3. Modify the output to make it acceptable.

To ilustrate, suppose we write a program for adding two nusioandy, to get
X®Yy.
Xyt » xoy.

Suppose we get the correct answer for
0<xy<100
but forx > 100 ory > 100 we get the answer
Xey=x+y+1

where +” is the correct addition.
(r1) says do not use numbersl00.
(r2) says fix the program fa

(r3) says subtract 1 from the result for the case that oneeoirhut numbers is
> 100 and you will get the correct answer.

1.3 Conceputal analysis for instantiated Boolean or predigte ar-
gumentation

Letus first analyse some characteristics of the proposdase and list their conceptual
significance.

An abstract argumentation networkd has the form §, R), whereS # @ is the
set of abstract arguments aRdt S x S is the attack relation. (We also write—» y to
denote &, y) € R, readingx attacksy, especially in figures.)

The formal machinery associates with eaShR) several types of extensions. It is
convenient for us in this paper to use the Caminada labedipgroach to extensions.
See Caminada—Gabbay survey pagddt.[ The Caminada labelling has the forn:

S {1,0, 1} whereA(X) = 1 meanscis “in”, A(x) = 0 meanscis “out” and A(x) = 3
meansx is “undecided”.

The exact definitions and background will be given in the sextion in Definition
2.3 Here, in the orientation section, let us just note that beeave regard the elements
of S as atomic symbols, we can also view them as interpreted imtdogic with -, as
atomic propositions of that logic, and the set

T = {0l4(q) = 1} U {~qlA(q) = 0}

is always consistent in any such logic, giving us no logicabtems whatsoever.

This fact makes any coherent process giving rise icaad T, an acceptable pro-
cess.

Let us assume we have a process for finding such acceptatdgofumt. Our
theoretical considerations for extending the proposé#i@ase to a predicate or modal
extension can follow several tracks.



Track (t1): Substitution. Substitute for elements & predicate fs and apply the
process and see what happens and whenfiircdlity offer suitable remedies.

Track (t2): Translation. Look at translations of the propositional theory into other
predicate systems (translation into logic programmingnto classical logic or into
modal logic) and see the behaviour of the image of the soarteicontext of the target
and find out how to import predicate logic argumentation odai@argumentation from
the translation.

At this point of our deliberations, Track (t2) seems mor@dlilt than Track (t1). Let
us therefore begin with (t1).

1.4 The substitution track

Problems arise when we instantiate the elemen&afid give them internal structure,
such as a W of predicate logic. The elementsBf, when having an internal structure,
may clash with one another and rendgrinconsistent, in whatever logic we happen
to be using" This means that the simplistic approach of allowing projpmsal or
predicate \fs to be substituted for the atomsSnwill most likely be problematic and
may require a remedy. As part of our conceptual analysis igovgceed along this
path and seek to identify possible remedies.

Even the simplest possible instantiation can be problem&iuppose we take an
argumentation networls, R) and choose a singlen S and instantiate just this singye
as the propositional constant What happens? is always true, so this is equivalentto
saying thay should always be “in". This means that axgttackingy should be “out".
This may sounds simple but it is not, because it changes tee ofithe game: Firstly
there may not be extensions wherés “in". So we have to say that we are dealing
with networks which could be without semantics. Secondéydhrection of attacks is
no longer only following the arrows, but if there is an arr@adling ontor, the attack
is directed opposite the direction of the arrows. Dealinthwuch instantiation looks
simple but it is not and so we postpone any further discugsidwppendix B.

In this section we want to illustrate our conceptual analgsi a less subtle case, so
we deal with predicate instantiation.

Figures9a and9b present us with a simple network and a predicate instémiat
for it, to serve as a simple example for our conceputal aiglys

The extension for Figure9a is15(X) = 15(2) = 1 andA,(y) = 0.

‘Let
E} = {d(q) = 1)
E? = {gl4(@) = 0}.
These two sets are disjoint and therefore when we interpestibion of these two sets in a logic via the
special instantiation
I(@ =q, forqe EX
and
I(@) = —q, forq e EY
to formT,, we get a consistent set in the logic.
However for any other possible interpretafiostantiationl*, we may get inconsistency in the logic.



X —= y — 7 A(J) —==IxA(X) —== A(M)

(@) (b)

Figure 9:

ThusT,, = {x, -y, z.
Upon instantiation in Figuréb we get

T,, = {A(J), ~IXA(X), A(M)}.

This theory is inconsistent. Hergis a unary predicate andland M are elements in
the predicate universe.

We now recall the general methodological remedies (r1)-€i@icssed in subsec-
tion 1.2.

We have here an input output system

Inputs: Instantiated $, R) with predicate formulas
Outputs: Predicate extensions

Problem: The output may be inconsistent.

The systems needs a remedy.

The (rl) option would restrict the input, maybe to some fragtof predicate logic.
This is a very simple case, there is nothing to restrict.

The (r2) option would mean that we change the process of finehtensions.

The (r3) option means that we somehow revise the result amterét consistent.

For example we can use an idea of Sanjay Modgil from his PhBidtend regard
the output predicate theotly, as a theory in a defeasible predicate logic. TRHZA(X)
is a defeasible rule with(J) andA(M) as exceptions. However, we do wantto be
in classical logic, so (r3) is not an option for us.

It seems the simplest remedy for us is to use (r2). Revisertheeps.

Seeking a remedy, let us simplify and assume that our predicaverse contains
only two elements] and M and see whether this simplifications helps us get some
ideas. Thus we have

e IXAX) = A(J) v A(M)
o VXA(X) = A(J) A A(M).

Figures9b becomes Figur&0

To continue our conceputal analysis we need to deal with sae#t a remedy for,
the problems of Figur&0. In other words we need to solve the problem of instantiation
into the classical propositional calculus, whé(®) can give an arbitrary formula of
classical propositional logic as values for



AJ) —== A[J)VAM) —== A(M)

Figure 10:

Well, looking at Figure8, let us give meaning to attacks on disjunctions and a
meaning to disjunctions attacking other elements.

The case ok attacking the disjunctiog v z is complicated to express and it will
be dealt with in Appendix C. Basically we have to express thel&an equatiofx <
(y Vv 2), and for this we need disjunctive attacks.

The case of a disjunctionv z attackingx is simple to express.

e YV zZ-»xmeans -» xandz -» X.

The reason being the meaningaof» b. It means
e if a="in", thenb ="out".
So
e if yV zis*“in”then xis “out”
is equivalent to
e if[yis“in” or zis “in"] then xis “out”

which is equivalent to the conjunction of [§fis “in” then x is “out”] and [if zis “in”
thenx s “out”].
Thus FigurelObecomes Figurél, which is the same as Figuie

AJ)

T

AQ) AM)

e

Figure 11:

The need for attacks from and attacks to conjunctions arjdrdisons of atoms
has already been considered by us in 2009 in connection \kitimdi argumentation
networks. Figurd 3explains our notation from 2009 (full details are given inp&pdix
Q).

It appears that we may now have a plan for a remedy of how tovd#aimonadic
predicate logic substitutiorigx) for nodesx in argumentation networks:

1. Eliminate the quantifiers in terms of conjunctions angudistions
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(a) x,yjointly attackz If x =y =1thenz=0.

(b) zdisjunctively attacks, y. If z= 1 then eithex = 0 ory = 0 or both equal 0.

Figure 13:

2. Develop a theory of attacks involving disjunctions andjaactions.

However, the reduction of the quantifiers to disjunctiond eonjunctions and the
(yet to be described) argumentation networks with joint disjunctive attacks does
not solve our problem. Even for finite models the number aihelsts is not bounded
and so we cannot replacA(x) by a finite disjunction. We can attempt to say use
a closed world assumption and use all the names mentiondidixn the network.
This may work but not easily. We may havg ..., J as all the names witA(J;),i =
1,...,kbeing “in”, but nevertheles3xA(X) being out. Worse still, if we allow predicate
formulas for the formvx3y®(x,y), we may be forced to have an infinite number of
elements. So this is not the way to go, at least not as a fieshattat the problem.

Looking again at Figur®b, we suddenly make a surprising realisatio(J) is
being essentially attacked BixA(X) whendxA(X) is “out™

We would expect, as in the case of propositional networle, when an argument
is out, then it is “dead”. It has noffiect. In the case ofixA(X) when it is out it
has an fect. This means, when taken to its full conclusions, thatdpé&in”, “out”,
“undecided” is not a value but it isstate from which an argument can mount attacks.
Figurel4illustrates this new point of view.

In fact, to be completely coherent, we must allow for attamkitie form

(aisin state£;) - (bis in states)

This brings us to the idea of what we cathte argumentation networka new



ais in state “in” — = X
ais in state “out” — = X
ais in state “undec” — > X3

Figure 14:

Figure 15:

concept, which once made precise, can help us representrigimab goal, that of
predicate argumentation nework. We can possibly transfagure8b into Figurelb.
A reader might say why not use negation as in FigL6?
We can do that, but in general, an argument can have more\tastates. State
argumentation networks is a more general concept and we rigdytevcontinue and
develop it in this paper. Let us define it intuitively.

Definition 1.1 Let(S, R) be a network and assume thatSS; U ... U Sy with S; # 0
and §SNS; = @,i # j. Also assume that for each i and eacly>x S;, such that
X # y we have that xRy hold. Under these conditions we can refai) as a state

AQJ) AXA(X)

A(M) ~3AX)

Figure 16:



argumentation network, where the elements{&and each »x S; is a diferent state
of Si.

Figure9b can become Figurk’. T is attacking alkx nodes where is not attacked
in the original figure.

S S, S3
A J)\ETA(/X)/A(M)
ﬁA(J) -3AXA(X) —|A(§VI)
T
Figure 17:

Definition 1.2 A two state argumentation network has the form
(SUS"U{T},R
where S is a set of atoms;'S {—q|q € S} and T is top. We have
e —IX(XRT)
o VX(XR-X)
o VX(=XRY
Lemma 1.3 Every(S,R) is equivlaent tqS*,R) where S =SuU S~ U{T}and R is
RU{(T,=X) | x € S}U{(X, =X), (=X, X)}.
The extensionsBof (S*, R*) are exactlly the extension E (8, R) augmented byT}.

Proof Start with S,R). CreateS™ = {-x|x € S} and assumg ¢ S. LetS* =
SUSTU{T}. LetR" be defined a&* = RU {(X, —=X), (=X, X)|X € S} U {(T, -X|x € S}.
It is clear thatT in S* attacks all the new points &~ which we added. Thus any
extensiork of (S, R) becomes the extensidu {T} of (S*, R*) and vice versae. m

1.5 Summary of our plan so far for monadic predicate instanta-
tion
We propose, at this stage of our conceptual analysis, thenfiolg plan.
We are given an abstract argumentation netw& IR}, with an instantiation func-

tion I, giving for eachx € S a formula of monadic predicate logic. We want to deal
with it.



a. First we prove some theorems that the input from predicafie can be re-
stricted, without loss of generality, to an argumentatioerfdly form.

b. Assuming the input is of this form, we use its syntacticaihf together withR,
to move to a new abstract argumentation netw&k R, 1 *), with S a subset of
S* andRa subset oR".

We take extensions* for the new network and look &* N S. We declare these
as the sought for extensions for the origiralR, ).

c. Hopefully we will prove thatl(x) | x € E* N S} is consistent.

To achieve this we need some technical results.
The following is the list:

1. Define the notion of a 2-state argumentation network. Sthatvsuch networks
are a special case of abstract argumentation network iretteeghat they can be
identified by special properties on the attack relaton

2. Show that every argumentation netwofk R) can be embedded in a larger 2
state argumentation network’(, R*) in a critical way. This means thaB(R)
preserves all it properties even though it is part of thedargtwork. Thus we
can say that every argumentation network is equivalent tetat® argumentation
network. The equivalence is shown by a linear general toainsdtion.

3. Show that every formulé@ of monadic predicate logic is classically equivalent
to a formulad in a standard argumentation friendly form, to be defined and t
be convenient for our objective.

4. For every ordinary§, R), define a 2-state*, R*) called the associate 06(R),
by

S*=SUSTU{T}
R = {(x, =X), (=%, X) | x € S} U{T,y| ynot attacked in$%,R)} UR

This is not the embedding described in (2) above.

5. Given an §, R) form the associateS(, R*). In order to instantiateS; R) with
predicate formulax — @y, for x € S, use insteadS*, R*) of (4) above and
instantiate the nodes with standard form formulas; ®, and-x — —~®y.

Letl(2) for ze S* be the instantiation function. We look & R, I) and rewrite
(transform) the network in an easy and purely syntacticgliwe a new network
(S*,R™, 1) and then take extensions. In this way, we hope, the coromsistent
extensions are obtained. Thus the extensiBtisthus obtained restricted ®
shall be declared as the predicate extensionS,dR ().

It is useful to give an example.
Example 1.4
1. Start with the networkS, R) of Figure9a.
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Figure 18:

2. Transform it to the equivalent Figufe.

3. Substituténstantiate:

1(x) = AQJ)
1(y) = IXAX)
1(2) = A(M)

and adjust the figure by adding attacks from arfixP(x) onto any Ry) and from
anyVYxP(x) onto any-P(y).

Note that this is done purely syntactically without takintpiconsideration any
logical meaning of the instantiations formulas. We get Féglr.

4. Calculate traditional extensions. We get the extensions
{=A(M), =3IxXAX)}
We declare these as the extension§HR, 1).

Remark 1.5 The perceptive reader looking at the extensions obtainékamplel.4
for the network of Figuréb might justifiably ask, what is the intuition behind this?
Our answer is that in this case there we should not expect nmtghion. We took an
arbitrary abstract network coming from nowhere and substidl arbitrary predicate
formulas into it. What kind of result would you expect, beltrat it is consistent?
Nevertheless, let us look at the result from an AGM revismintof view. Our original
theory wagA(J), ~IxA(X), A(M)} and we gfer the revision option

{=A(M), =3IXA(X)}.

This is a maximal consistent sub-theory, and it makes sdngeority is given to
—AXA(X).

The real test for our intuition, however, in the case wherdake a set of arbitrary
predicate formulas, is to regard them as a network (i.e. withnempty attack domain)
and apply the process to them. Do we get all maximally coersistubsets as the family
of all extensions? This is the real test.



To be more precise, let our starting netwd@8 R, I) be with R empty, i.e. no attacks,
and apply our process to it. See what we get. This is the iméuiess test.

Discussion and comparison with the literature will follomthe appropriate later
section.

2 Abstract instantiated argumentation frames (AIAF)

This is a more formal section which will deal with several égpof argumentation
frames where the abstract arguments are instantiated byfas of some logic. We
consider classical propositional logic, classical moogdédicate logic without equal-
ity and modal logic S5. We also discuss other possibilitiiésh as instantiating with
Boolean Attack Formations (BAFs, see Appendix C2). We exanour options, then
propose a more general theory, and compare with the literatu

2.1 Instantiating with formulas of propositional logic

This sub-section is a case study, leading to to the next stibre2.2, which will give
concrete definitions.

Definition 2.1 The classical propositional calculus is built up syntaatig as follows:
1. A set Q of atomic propositions.

2. The classical connectivés, A, v, —}, which are used to define the traditional
notion of a formula, ().

3. The traditional notion of “the formul& of classical propositional logic is con-
sistent”, defined either semantically or proof-theoreligaWe do not care how
it is done. We just need to use it.

Definition 2.2

1. An abstract argumentation frame has the fq@nR), where S is a set of atomic
symbols (we use for S distinct symbols from those we use fdr@gfmition
2.1, and RC S x S is the attack relation. We also denote xRy by ¥.

2. We follow Dung 15] and define the notion of complete extensiog 5 as a set
satisfying the following:
(a) E isconflict free namely for no xy € E do we have xRy.

(b) E protectsits members, where “E protects x” means tva{(zRx— 1y €
E(YR?).
(c) E iscompletenamely if E protects x then«E, for any xe S.

5This type of network (i.e. arbitrar, empty attack relation and any instantiation into claggicaposi-
tional calculus) can be viewed as an Abstract Dialecticaht& of Brewka and Woltran, se#] [



3. It is well known that complete extensions always existugh they might be
empty.

Definition 2.3 Let (S,R) be an argumentation frame. Lat: S {O,%,l} be a
labelling function. We say is a legitimate Caminada labellingfithe following holds:

1. If =3y(yRX thena(x) = 1

2. Ifforally s.t. yRx we have(y) = 0, theni(x) = 1.

3. If for some y such that yRx we ha\() = 1 thena(x) = 0.
4

. If (a) for all y such that uRx we havy) < 1 and (b) for some y such that yRx
we havel(y) = 1 thena(x) = 1.

Lemma 2.4 Let (S, R) be an argumentation network. Let E be a complete extension
as defined in Definitio.2 LetAg be defined by

lifxeE
Ae(X) =4 Oif Iy € EyRx
1 otherwise

ThenJg is a legitimate Caminada labelling.

Proof
1. If =3y(yRX thenxis in E and hencelg(x) = 1.

2. If for all y such thatyRxX we havelg(y) = 0 then for all sucly there is a such
thatzRyandz € E. ThusE protectsx, hencex € E, hencel(x) = 1.

3. If for somey such thatyRxwe havelg(y) = 1, theny € E and hencelg(x) = 0
by definition.

4. Assume

(a) for ally such thayRxwe havelg(y) < 1
(b) for someyo, yoRxwe havele(yo) = 3.

We want to show that(x) = 1.
From (a) we get thatdy € E(yRX. Thusag(x) # O.

We show thatlg(x) # 1, i.e.x ¢ E. From (b) abovey,RxandA(yo) = % Hence
-1z € E(zRy). This means that is not protected by and hence ¢ E.

Lemma 2.5 Let 2 be a legitimate Caminada labelling and lej E {X|A(X) = 1}, then
E, is a complete extension.

Proof We showE, is a complete extension:



1. If =3y(xRy) thenA(x) = 1 and sox € E,.
2. E, is conflict fee because if(x) = 1 andxRythenA(y) = 0 andy ¢ E,.

3. If A(X) = 1 andyRxthenA(y) < 1. We must also have for sugtthatA(y) = 0
for otherwise we would get(x) = % But A(y) = 0 for all suchy means that

Yy(yRx— Az(zRyA A(2) = 1). This means thd, protects all of its members.

4. Supposé, protectsx. This means thdg, attacks all of the attackers &f This
means/y(yRx— A(y) = 0) Thereforel(x) = 1 and sax € E,.

Definition 2.6 Let(S;, R) fori = 1,2 be argumentation frames. LetJ be a function
from S; to S;. We form the networkS; 2, R12) called the abstract instantiation of
(S1, Ry) by (S2, Ry) usingly» as follows:

Si2 = {l2(X)Ix e Sy}
Ri2 = {(y.2)lforsome abe Si,123(a) =y and k(b) = z
and(y,2 e RiJURz | Sy2.
Example 2.7

1. LetL be a logical system. Leab,¥ be two w5 ofL. Let p(®,¥) mean that
@, when “added” to¥ causes “incompatibility”. (We are not saying®, ¥} is
inconsistent” because we do not say anything about the lgip may not even
be symmetrical. In some logidV¥ is not the same aBa®). Let WFFL ) be all
the well formed formulas of the logic. We can consider thevagt (WFHL), p)).

2. Given(S,R) and a logicL, we can instantiate it by (WFE(,0) as defined in
Definition2.6. This will include classical logic instantiation.

For logicsL which have a negation symbel(e.g. classical modal, monadic, or
intuitionistic logics) we can requir€S, R) to be a 2-state network as in Definition
1.2and require the instantiation function:IS — WFHL) to satisfy

|(—|X) ==l (X)

Definition 2.8

1. An abstract instantiated Boolean argumentation frg@e AlAF) has the form
(S,R, 1) where(S,R) is an abstract argumentation frame and | is a function,
giving for each xe S, a formulady({qs, . . ., gn}) of the classical propositional
calculus.

2. We write
[(X) = Ox({d1, - - -, Am})

indicating that the classical propositional atorfig, . .., q,} are exactly those
that appear in (x) = @y.

The symbolgqs, . . ., gn} are distinct from the atomic symbols of S.



We want to view §, R 1) as a more general network tha®, R) and would like
to define a sensible notion of complete extensions for it. A&irbby explaining our
strategy:

We are given an instantiated system of the fo8yR, |), wherel is a function asso-

ciating entities of the forne from some spack. We assume these entities can interact
among themselves and that as a result of the interaction mgetaruth values in, say,
valued in the unit interval [AL].
Strategy 1: Regard the attack relatidRas stimulating interaction among the instanti-
ated entitie® and use the interaction to obtain values in [0,1] for the saaf&.5
Strategy 2: Use the relationships among the entitie$o change §, R, I) into a new
(S*, R, 1) and proceed with Strategy 1 for the new system.

There are several options and to explain tHeedénces we need to be very precise.

Definition 2.9

1. LetS be asetofarguments. Lef e a corresponding set of atomic propositions
of the classical propositional logic of the form

Qs = {axx € S}

where g are distinct symbols, i.e., ¥ y = 0x # gy and SN Qx = @. Note
that when there is no possibility of confusion, we abusetmrtand write “x”
in place of “gy”.

2. Let | be the functioni(x) = gx, or, by abuse of notation(X) = x.

Our objective is to define the notion of complete extension®f— AIAFs of the
form (S, R, I). There are several main views we can take:

View 1: The (E < I) view. First take a traditional complete extensignf (S, R) and
then instantiate the element Bf We get a seTg of classical propositional formulas.
We need this set to be logically consistent.

This is what we did with the system of Figurgs andob.

We needed the remedies discussed in Section 1, which edseabandoned this
view in favour of the next viewl(< E) which says, first instantiate then take extensions.
We shall discuss this view next.

View 2: The (I < E) view. We follow Strategy 1 here and keef, R |) intact as
is. We viewR as stimulating interactions among the instantiating iestiand try to
extract numbers from the interaction. We use the Equatiapatoach to do that. This
view instantiates first and then takes extensions. Obwowsl need to make use of
the instantiation when we consider how to define the extessihet us explain our
options using our experience with the examples we have frecti@& 1.

6There are more details in the beginning of appendix E1. SeenleE.1and the paragraph preceding
it.



1 1(y1) Yn o 1(Yn)

X 1(X)
y1,...,Yn are all the attackers of

Figure 19:

Consider §, R, I) and consider the situation in Figut®. The node$x,yi, ..., Yn}
are all from §, R), wherey, . .., y, are all the attackers of The figure shows also the

instantiationl (x) andI (yy), ..., I (yn).
We need to give meaning to the stateméfh) (
[(y1), .- ., I(yn) attackl (X) (#1)

The basic meaning of the atomic statement
Vi,...,Yn attackx (#1 atomic)
is that
x=1¢in")iffallys,...,y,are equal G (“out”).

We consider several options for understanding such attacks

View 2 - option 1. The equational approach. We follow Strategy 2 here and rewrite
(S, R) in a more convenient form, using the structure of the insed entities. In this
case we simplifjeliminate negation, by moving to a two state networks. Theanwas
proposed in my paper on the equational approach to conaaytly obligations I].
The first section of that paper is general theory and regagisé-19 as generating the
Boolean (or real valued [Q]) equation

Eq() : 109 & [\ ~1()].
i=1

The system of equatio&q(x)|x € S} may or may not have a solution in the space
{0.1.1).

Any such solutiorf is considered a complete extension f8rR, I).

Note that the solutiom gives values to the atoms of the logic, i.e. it is a 3-valued
model of propositional logic. These values can be propagat¢he formulas of the
form 1(X), x € S, and the value of(x) underf can be viewed as the argumentation

value ofx under the complete extensifn



For example, suppose our network contains Figigrand that we havé(y;) = —q
andl(x) = g. Then the equation for nodeis q = =g and therefore any solutionto
the overall system of equations (for the network in whichurgdL9 resides) will have
to give the three valued assignment 3 to q. The value of-qis then (1- ) = 1 and
hence the value df(x) = .

Therefore the node is considered undecided i8,(R, 1) under the solution (com-
plete extensioni.

This is a sweeping general option. Let us see what it doesjiar&10.

We have the following equations:

¢ AJ)=1
o A(J)V AM) = =A(J)
o AM) = =(A(J) v A(M))

There is no solution to these equations. We are not surpridezlequational approach
agrees with and generalises the traditional approach aridesmconsistencies and
problems remain.

We need the remedies hinted at in Section 1.

View 2 - option 2. the two state equational approach. We follow Strategy 2 here
and rewrite §,R) in a more convenient form, using the structure of the insied
entities. In this case we simpljfgliminate negation, by moving to a two state networks.

This is the approach we adopted in Exampld executed within the equational
framework. To show what it does, we modify first Figli@into a two-state associated
figure and then use equations. We get Fig20e

X:AQ) ™= vy: AQJ) vV AM) —*=>= z: A(M)

=x:=AJ) =y =AQ) A -AM) =-z: =A(M)

Figure 20:
The equations are
e T = 1

e —A(J) = L A=AQ)



AJ) = ==AQ) A ~(=AJ) A =AM)).
—AQ) A =AM) = =(AQJ) v A(M))

AJ) V AM) = =AQJ) A ~(=AJ) A =A(M))

AM) = =(A(J) vV A(M)) A ==AM) A =(=A() A =A(M)

e =AM = =A(M).

There is one solutioA(J) = A(M) = 0.

We need to explain how and why, for exampts, : =A(J) A =A(M) is attacking
x : A(J) andz : A(M) and vice versae. We added these attacks. The reason for this
addition should be syntactical, not because we use logren&alefinitions need to be
given for the syntactical pattern matching.

To explain how this is done, let us do again the analysis afifei$j0. This time we
write all wffs in disjunctive normal form. We get Figug4.

X (A(J) A A(M)) V (A(J) A =A(M))
y: (AQ) A AM)) v (AQJ) A =A(M)) v (=A) A A(M))

z: (A(J) A A(M)) Vv (=AJ) A A(M))
Figure 21:

Rewriting as a two state network we get Figd

T

/

X2 (A(J) A AM)) V (AQJ) A =AM)) <—ms =X (RA) A AM)) V (=A(K) A =AM))

Y1 (AQ) A AM)) V (A(J) A =AM)) V (-A(J) A A(M)) =2 -y =AK) A —AM)

Z: (A(J) A AM)) V (=AQ) A A(M)) <= —7: (A(J) A =A(M)) V (-A(J) A ~AM))
Figure 22:

We can now add attacks to Figu2& using pattern recognition.

e € : \/ qj attackse, : \/ Bj if they don’t have any in common, i.e. it is not the
case that for some j,y = a;i = ;.

We get Figure23. Note thatT is an exception to this rule.
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Figure 23:

The perceptive reader might complain that we are nevegheising logic, i.e. we
are using resolution theorem proving. The answer is thatneenat. Resolution is
a discipline of sequencing various pattern matchings. dusiparing two disjunctive
normal forms does not, in itself, make a resolution theoreower.

So the steps in View 2, option 2 are as follows:

1. Startwith §,R,1).
2. Take the associate87, R, 1*) explained above (formal definitions to come later).

3. Use the equational approach to find the extensions.

View 3. Direct computation approach. In this approach we develop the concept of
semantics and extensions directly on the instantiatedarktiay translating it (with the
help of additional arguments) into traditional Dung netksoor into a modifietgeneralised
such network. This requires as a by product the translafitireeentitiesE into abstract
argumentation, either directly, or indirectly.

It also means that we are turning the instantiation probleim a fibring problem
in the sense ofd].

2.2 Concrete classical propositional instantiations

We are going to give a progression of challenges for ins#iotis from the classical
propositional calculus. Many of these instantiations hagen dealt with in the Ap-
pendices. Here we summarise the big picture.

Challenge 1: Instantiation with T

This has been defined and given semantics in Appendix B.
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Figure 24:

Challenge 2: Instantiate with conjunctions of atomic propgitions

Given a traditional networkg, R) we instantiate with a functiohdefined ors, giving
for eachx € S a conjunction¥y of atomic propositions of the forn¥y = /\i“:(? ar.
We also write¥y as a setqy, ..., qr’;(x)}. The basic geometrical position we get is as in
Figure24, which should be compared with FigurE8and50.

We ofer semantics for the instantiated syste®nR, |) by using instead o¥, the
BF, of Figure51 and Figureb9 of Appendix C2.

We then implement the instantiation of th&; (i.e.1’(2) = BF,,z€ S) as proposed
in Definition C.100f Appendix C3.

We adopt the semantics of option (iv) of Appendix B as disedgkere.

Challenge 3: Instantiating with disjunctions

When we instantiate with fis containing disjunctions, we get attacks of the form
(AvB)—» (CvD)

a disjunction attacking another disjunction. The fokw B - zis equivalenttoA —» z
andB -» z So we need to deal with the case of the faxm» C v D and try and
eliminate or implement the disjuction. The semantic cémsixk -» C v D from the
equational point of view is

CvD=-x

or
-CA-D=x

or
—|C A D= —|(—|X)

This means that - C v D is equivalent to-x - —=C A =D.
We already know how to attack conjunctions from Challeng8®we need to deal
with negation. Once we do that we will be able to deal with Bdlblean instantiation.



Challenge 4: Instantiating with negated formulas

Let us start with §, R). We move to §*, R*) as defined in Definitiorl.2 and for and
for which Lemmal.3holds. &%, R*) is a two state network. For everye S*, there is
anode-x € S*, with x » —xand-x - X, and where--xis x. Thus any instantiation
I(X) = @ for x € S becomes the double instantiatibhon S* wherel*(x) = ® and
1*(=X) = =®.

We now have a systen${, R, | *) of instantiated Boolean net. We use Appendices
C2 and C3, Exampl€.8 and DefinitionC.10to replace the W I (x) for x € S* with
a Boolean formulatiofBFx and then instantiateS(, R*) with x — BFy. The result-
ing system is ar-net as discussed in Appendix B and we can calculate optign (i
extensions for it.

Remark 2.10 Let us summarise how to get and what it means to be extensiwmswe
instantiate any networkS, R) with formulas from classical propositional logic, using
any of the above challenges (depending on tfis used in the instantiations).

Let the instantiating function be 1 S — w5, where yfs belong to a language
with atoms Q. We replace | by piving each x a@Fy which basically does the same
job (says the same) a¢x) = ®,. TheseBFs were done in Appendix BFy contains
the atoms appearing i« (atoms from Q) as well as many auxiliary atoms.

(S,R) is replaced by(S*, R*) being a network of instantiateBlFs containing the
propositional atoms of all thés {®4|x € S} (i.e. all the atoms of Q), as well as many
auxiliary atoms. We use appendix B to find extensionéSamRR*). These are functions
4, giving values in{0, 1, %} to all atoms in(S*, R*) and thus giving values to all the
atoms Q of the propositional language. Once we have valugbéoatoms we have a
3-valued propositional model and we get values for all thiis @y, x € S. Define an
extension* on (S, R) by 2*(x) = A(®y). We need to show that this is an extension in
the sense of DefinitioR.3 This follows from the way we set up the entire process. It
does require proof but | will not do it now.

We thus got a 3-valued model for the language Q and an extensiout of the
instantiation | for(S, R).

So given a Boolean instantiatid®, R, |) what does it mean to have an extension
for it?

It means a 3-valued modal for the Boolean instantiation language such that
A*(X) = A(Dy) is an extension dfS, R).

2.3 Instantiating with monadic wifs and modal S5 vts

Given (S, R) we want to instantiate with fis ® of monadic logic. At the first instance
we assume monadic logic wifP, . . ., Py} and we assume thdthas no free variables.
We make use of Appendix A.

Let | be an instantiation function giving eaghe S a closed formuld(x) = @ of
the monadic predicate logic based{®h, .. ., Pp}.

We seek extensions for the instantiated syst8nR(l).

We use Lemma.6, which says that everyfiud without free variables is a Boolean
combination of “atomic” vits of the formg, = Axa.(X), wherea.(X) has the form
AL P (X) wheree = (ey, ..., &) € 2.



We can thus pretend we are dealing with classical propaosititbgic with 2!
atomic formulas of the form,, & € 2".
Associate with each closed formuta= ®(Axa.(x)) the propositional formula

0" = O(Ax(X)/qs).

We now instantiate §, R) with the formulas®* instead of®. l.e. we look at
(SR I") wherel*(x) = ®;. Get an extensiord on the atomgq.}. From it get an
extensiom* on S. Also since we hava values for{g.} we get values for all the pred-
icate “atomic" formulas of the formxa.(X), € € 2" and thus get a 3-valued predicate
model “instantiating” the net§, R, ).

The case where the formula has free variables , we regard dsetonstants and
proceed using Rema#kk.7. The case of modal S5 is treated similarly in view of Remark
A.8.

2.4 Beyond predicate instantiation

Our methodological approach, so far as discussed in Settimvas to use theoretical
considerations in expanding our argumentation theory édlipate instantiation. We
simply substituted formulas of monadic predicate logioiah abstract argumentation
network 6, R) and asked how can we deal with it on theoretical grounds.

We now want to check what kind of predicate networks are regily day to day
practical applications. We use Exampgld 1as a starting point. This type of examples
arise in Talmudic logic, se€p].

Example 2.11 At home | have several sinks and 3 toilets. If a sink is blockedn
handle it myself. If a toilet is blocked, it is reasonablettha&all a plumber. Two
opposing principles come to play here. A plumber costs m@teyut US$ 100 just to
visit in addition to any other charges depending on the j&).it makes sense for me
to try and do the job myself if | can. So with a simple case likdogked sink | can do
it myself, but with a blocked toilet | had better call a plumbe

Let us write these rules:

1. B(s) — —3IxP(x, 9)
2. B(t) —» AP(x,t)

where Kz) reads z is blocked and(R, 2) reads x is called to repair z. The is ordinary
implication. Figure25 shows these rules in argumentation form.

Now let us check what happens if both the sink and the toieeblrcked. Common
sense dictates, that since | have to call a plumber to do tifet tmyway, | may as well
ask him to do the sink. | am paying the $ 100 for the visit anywayomparison,
the strict logical solution to the problem is that | do thelsiend the plumber does the
toilet! (This is applying principles (1) and (2).)

Furthermore, if two of my toilets are blocked, the above sytE) and (2) allow me
to called djferent plumbers, one for each toilet rather than call the satuenber to
do all jobs.
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Figure 26:

So what we need formally in the predicate network is thakii(x) is “in” because
of x = a, then every othefixD(x) which is “in” must be instantiated by the same-xa!

So let us forget about plumbers and just look at the netwoHRigfre 26

We require that if one oflxA(x) or AxD(X) is “in”, the other is also “in” and
because of the same element a. (This reflects our analysig tltas have many sinks
and toilets and you need to call a plumber for one of the teilbén you ask this same
plumber to do everything.)

General problem. We are given a predicate networ8, R 1) and a subse$y C S
such that for alls € Sp, I(s) = AxDs(X) (with Ds a unary predicate depending en
We want to implement the additional constraint

C: Iffor somese Sy, I(9) is “in” and for somea, Dg(a) = T then for alls € Sp we
have that (s) = “in” and furthermore for that sam& Ds(a) = T.

Implementing that part of which says
if 1(s1) is “in” then alsol (sy) is “in”

is not simple. We might think that we can implement that bimetl (s;) attack=1(s,).

But this is correct only becaus$és,) andl (s;) are instantiated as existential statements.
So we cannot write the attack in the geometry®fR). It must occufactivate after the
instantiation. How do we do that?
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(

Figure 28:

To get a better idea, let us assume that our universe of eterhas only two elem-
nts{a, b}. This would allow us to rewrite anyIxE(x) asE(a) v E(b), and so Figur@6
becomes Figura?.

We know how to handle full propositional instantiationsrifr&@ection 2.2. In this
case we have the additional constraints:

1. A(@) = 1iff D(a) = 1

2. Alb)=1iff D(b) =1
In general we want a condition like

3. VX(A(X) = 1iff D(X) = 1).

This means we add to Figud also the attacks of Figu@8. Even if we could imple-
ment this using various geometrical attacks, we still haxegroblems:

P1 Itall depends on the instantiation.
P2 It applies only to points i6;.

It looks like we need a new fresh breakthrough point of vieglveowise we will have to
restrict the acceptable complete extensions by conditigiiten in the metalevel and
not by the object level properties of the network.
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a(X) is a constraint orx. Only certain values of can attack fronk; to E,. Thosex
which satisfya(X).

Figure 29:

Our problems are not over yet. We saw we needed the condition
YX(A(X) = 1iff D(x) = 1).

This means in attack terms
YX(A(X) «—>» =D(X)).

But how do we implement the general principle like a univeggentification of the
form Vx(A(X) «—» =D(x)?

We will have to add free variable attacks to networks as inf&g9.

This is a new twist in our conceptual analysis of what is hapughere.

In Section 2.3 we treated free variables in an argumentatbrorks as constants.
Now we see we need to treat them as parameters, and the attawis are annotated
by these parameters.

This is a new game to be properly analysed.
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Appendices

A Classical monadic predicate logic

The purpose of this appendix is to show point 3 of Section danely that every
formula of monadic predicate logic is equivalent to a forasuin a (argumentation
friendly) syntactic form, Lemma.6 below.

Definition A.1

1. The language df,, of the classical monadic predicate logic without equaiiag
n unary predicates B..., P,, variables the classical connectives, A, Vv, —}
and the quantifiergv, 3} with their usual meaning.

2. A model forL, has the formM = (D, Ds,...,Dy), where D is a non-empty
domain and D C D is the extension of the predicate P

We define satisfaction in a model in the traditional way, ggtme traditional abuse of
notation as follows:

e ME Pi(d)iffd e Dj
° MtﬁAW‘MﬁA

MEeEAABIfME AandM E B

MEeAVBifMEeEAOMEB

MEA—- BifME AimpliesM £ B

M e IXA(X) iff for some de D, M £ A(d)

M e VXA(X) iff for alld € D,M £ A(d).

Lemma A.2 LetM be a model. Then there exists a masiglwith at mos2" elements
which is equivalent t/.

Proof Definex~ on D by
o x~yiffforalli, Pi(X) & Pi(y).
Then= is an equivalence relation. We show that

For everyA(Xs, ..., Xm), if X; =yj, forj=1,...,m

thenM £ A(Xy, ..., %Xm) © A1, -- -, Ym)- ()



Proof of (*). By induction on the syntactical structure &f

Let D* be the set ok equivalence classes of elementdofSimilarly letD; be the set
of equivalence classes of element$pf

Let x* be the equivalence class xf

LetM" = (D*,Dj,...,Dp).

We prove the following.

Foranyxj € D,M k A(x;) iff M" & A(x*j‘).

Proof is by induction orA. ]

M* has at most2elements because there are at méstdssibilities for £P1(X), . . ., +Pm(X))
for any singlex.

Definition A.3 Two modeldv andN are said to be equivalentiff* = N*,

Definition A.4

1. Lete denote a vector of length n of elements €0, 1}. Thus

e=(e,...,en) 2"
¢ is called a type.

2. Foranye € 2", leta.(X) be the v
n
() = /\ PR
i=1

where P(x) = =P(x) and P(x) = P(X).
This means that x is of type

3. LetI’ be a non-empty set of types, isevectors' C 2".

Lemma A.5 LetM be a model ofPy, ..., P,}. ThenM is characterised by a formula
of the form

Dy = /\ Axa(X) A /\ —Axa(X).
SEFM sng
In words,M is characterised by the types it realises whEfg is defined as

{e | for some de M, M k a,(d)}.
Proof

1. ClearlyM k dyy

2. LetN be a model such that = dy;. Sincedy says exactly for every whether
Axa.(X) holds or not, we get thaf satisfies the same typesids Therefore we
haveM* = N*.



Lemma A.6 Let ® be any formula of the language (1, ..., P,} without free vari-
ables. Thenb is equivalent to a W of the form

o=\/or,
j

wherel'; € 2" andor, is defined as follows

Or, = /\ Axa(X) A /\ —Axa(X).

&€l &4l

Proof By LemmaA.2 it is sufficient to consider models df of less than 2 elements.
LetMsy, ..., My be all the models ab. then the vif @ is equivalent to\/'j‘:l CDM; which
has the same models @s [

Remark A.7 In case the language contains propositional constants.q, gm as well
as monadic predicatesiP. .., P, then a modeM for this language is characterised
by a conjunction of the form

Dy = /\ Axa(X) A /\ —3Axae(X) A By
SEFM SQFM

wherel'y is as in Lemma.5and

wherenyg = (€1, .., €&y is the vector in2™ of the atoms gor their negations which
hold in the modeM.
Therefore any formul@ of the language with the constaritg} is equivalent to a

disjunction
\/ @r, 7By
j
where®r, are as in Lemma.6andg; is a formula
Bi= /\ o
r

as discussed above.

If @ is a formula with free variablesix..., Xk, we regard the free variables as
constants and regard;&;) i = 1,...,n,j = 1,...,k as propositional constants =
Pi(Xj).

We thus can construct an equivalent formula as done abovadoadic logic with
constants g, ..., Qm, m=kxn.
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Figure 30:

Remark A.8 The connection between monadic predicate logic ). .., Py} and
the modal logic S5 based on the atomic propositifs. . ., Py} is well known. For
an S5 Kripke model with a set of possible worlds D, letlé, be interpreted as {#d),
in the monadic theory based on D.

Following this correspondence, Igt, for £ € 2" be o(A; P") nd lets, be A ; P®
wheree = (e, ..., €,). We get therefore

(*) Every wf of modal logic S5 with atom{$s, ..., Py} is equivalent to a W of the

form
\ @B, A N\ Be A )\ Be)
i

SEFi séri
for somel', ..., I'ck € 2" and for somcgsjgj in Tj respectively.

(*) holds because an S5 model is a set of worlds containniagtiual world. Each
world is characterised by a conjuction of the foyty P{, wheree = (e, ..., &,). We
can identify a world witke. A model is characterised by the set of woddi$ contains

in conjuction with the set of worlds it does not contain (teenplement of). Thus a
model is a conjuctiol; A Ager A \eer; =Be). A formula is equivalent to several sets
of worlds, i.e. a disjunction of several of the formulas @werising models.

The above observations will allow us to instantiate Dunguargntation frames
with monadic predicate formulas or with S5 modal formulas.

B Instantiating with T

This appendix discusses the subtleties of instantiatiigglesnode in argumentation
network with justT. We shall see that new concepts of semantics and extensiens a
required for the proper handling of this seemingly innocitdstitution.

To show that finding extensions for instantiated Booleawasgk is not that simple
a task, let us start with a very simple example. Consider gteark (X, y}, X - y}.
This has the extensiox = ‘in” and y = “out”, i.e. X A =y. Let us instantiate = T.
We get the network of Figur@0Q. Let us refer to any network with atomic argumests
which also containng asT-net.



Figure 31:

So Figure30is a T-net. We have a problem with this network.is not attacked
and hencex = “in”. But x attacksT andT cannot be “out”, it has to be “in”. So what
shall we do?

Further reflection shows that the problem is more seriousitisems at first sight.
Traditional Dung extensions can be constructed using tbengé&rical directionality of
the attack. Consider FiguBd.

We haveS = S; U S, and attacks emanate froBy into S, and there are no
attacks fromS; into S;. Thus we can find an appropriate inital extensi®nfor Sy
and propagate the attacks frdfa into S, to complete the extension infey and get a
complete extension fd; U S,. This is the directionality of the attack. We are always
guaranteed an extension.

The situation we have now is that with e S, the directionality no longer exists.
Any attack fromS; onto T € Sy, will force us to reconsid¢change the extenside,
of S;. Itis as if there are attacks fro8p into S;.

So what are our options in dealing with this? Let us go backhertetwork of
Figure30and try and apply general principles to it giving us sevepdians:

Option (i): Truth intervention view. We can say this network has no extensions.
This position is perfectly acceptable. It is legitimate asasonable to take a traditional
network 6, R), pick ay € S and demand an extensi@with y € E. This is enforcing
truth ony. We may find that no such extension can be found. So leytiagr amounts
to saying that we want only extensions containytig

Let us call this option (i), the-intervention approach, because we are intervening
and forcing some nodes to be traéin”.

Option (ii): Counter attack view. We can say that any attackesf T is immediately
attacked back by, and so the above FiguB®is actually Figure32. The extension is
T ="in"and x = “out”.

"We mention here referenc@4], where they define the notion of constraint argumentatietwarks.
Given a formulad of propositional logic, and a networls(R), we accept only those extensiomnsuch that
T, of Section 1.3, T, = {ql4(q) = 1} U {—=glA(q) = O}), satisfiesb. In our case the formul@ isy = T.
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The advantage of this view is that the usual traditional riveety for defining and
finding complete extensions can be used, with the additiondérstanding that is
always “in” in any extension.

Option (iii): New concept of extension view. The third option is to give a new
definition of abstract networks with truth constanas follows:

1. (S,R) is a network withT if T € S and-3Ay(yRT).
2. A Caminada legitimate-labelling for a network withr satisfies the following:

@ am=1

(b) A(X) = 1if =3y(yR¥ and-xRT.

(c) A(x) =0if xRT

(d) A(X) = 1if for all y such thayRxwe havei(x) = 0 and-xRT
(e) A(x) = 0 if xRT or if for somey, yRxandA(y) = 1.

(f) Otherwisei(x) = 3.

There is the question of whether everynet have arr-extension (i.e. a legitimate
Caminadar-labelling). The answer is yes, it does. L8 R) be aT-net. LetT = {y e
SITRyV yRT}. We know all of these points should be out. kdbe a point not irS
and consider

S* =S U {x}—{T}
R=RIS—{THU}xT

In other words, we tak& out and include: which attacks all pointsiit. (S*, R*) is
an ordinary network and has extensions. Eéfe such an extension. TheB{{+})U{T}
is an extension of the-net (S, R). So for example the networlS(R) of Figure 30
becomes the network with* = {x, x} with {(x, X)} = R".

Option (iv): The non-toxic truth intervetion view. Let us adopt the option (i) view
for a givenT-net (i.e. a network$, R) with a nodey = T € S) and seek only extensions
containingy = T. However, we shall adopt option (i) not alone on its own buddt
in conjunction with another new principle, which we shall d@e principle ofmaximal
non-toxic extension@NTE principlein short).

ExamplesB.1 andB.2 shall explain it.
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Example B.1 Consider Figure33

This figure describes a network with four sub-networks $; U S, U S3 U Sy.
The networks Sare pairwise disjoint and $does not attack § S, does not attack
nor Sz. S; however, containg. Suppose for some specific extensiQroESy, it is not
possible to extend Ho an extension for & This makes $toxic for E;. S, forces us
to say that S has no extensions E witmB5; = E;.

However, if we ignore the toxic,Swe may get extensionsEE; for S;US3US,. It
makes sense to do that and present E as a maximal non-togitséom for S containing
E. for S,.

To motivate the logical sense of doing that, consider a jgéyf@ice networkS, R)
not containing the letter x nor the symbnl Add to S the letters x ard and augment
R with x » T (i.e. add the toxic Figurg0to (S,R)). The resulting network has no
exensions because of the toxic part. It does make senseyéipuee say that if we
ignore the toxic part, we can get extensions(®rR).

The perceptive reader might ask what if we adq3oR) a disjoint 3-cycle? Can
we similarly ignore it? The anser is that we do not need toabse the three cycle
does have the empty extension (all undecided) an so thditmaali machinery works.

Let us give an example from real life. Consider a couple gthingugh a divorce in
the UK. They want to settle the financial part amicably and®y go to an accountant.
By UK law, if the accountant learns in the process of advisirgm of any tax evasion
scheme hshe has to report it to the authorities. So the divorcing dewgecide that
some of their business is “toxic” and better not tell the agotant.

Similarly in a court case both prosecutor and defence lawyeay decide to drop
some charges because it is too complicatedc for each side to address, each for their
own respective reasons.

Example B.2 Consider ther-net of Figure34. We want to examine the semantics for
it according to option (iv), non-toxic truth intervention.

This figure has the form of Figui@3 with S; = {x},S, = {a,b},S3 = {zy} and
Sy ={T}

S has one extensio; with 11(X) = 1. This can be extended to, $ only one
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way, namelyl? with A3(a) = 0 and A%(b) = 1.

However, because of € Sy, we cannot havelf(b) = 1, because it should be
0. Thus § = {T} is toxic for/l} and A2. So we abandon Sfor this sequence, (i.e.
S; » S, » Sy) and get the extensiotillv2 = A1 U A2, with 2%2(x) = 1,4%%(a) = 0and
A21(b) = 1. We ignoreT.

Now let us look at & It has two extensions, A3 with 23(2) = 1andA3(y) = Oand
A3(2) = 0andA3(y) = 1. The extension? is not possible because-# T. So we have
only the extension3.

The final extension for the-net of Figure34is A = A} U A2 U A3 namely

A(X) = 1,4(8) = 0, A(b) = 1, A(2) = 0 andA(y) = 1.

Note that we ignore $= {T} only for the evaluation of the pathyS» S; » Sg.

For the path § - S, we do notignore $= {T} because there is an extension for
Sz which is OK.

Thus the followingl” is notan extension for U S, U Ss:

X(X)=1,2() =0,2(b) =1,2(2) = Land'(y) = 0.

We can achieve the same result if we say that we abandon #ukatt» T, rather
than the se{T}. This view is better because we are not “touching” the toxactpn
some cases, rather than deleting it.

The next examplB.3shows how to do this.

Example B.3 Let us do the option (iv) semantics for Figu8éin a different way from
the way done in Exampg.2
We proceed as follows:

1. We are given a-net(S,R) with T € S. In this case it is the net of Figus.

2. Replace every occurrence of € S by a new node letter, and get(S;, R,),
where
S = (S-{Thufx
R‘r = (R_ {(X, T)’(T’ y)|(X, T)’(T’ y) € R}) U {(X’T)’(T’ y)|(X, T)’(T’ y) € R}



3. (S;, Ry) is a traditional network and so we seek and find all of its catgkx-
tensions (Caminada labelling) of the forip for whichA.(7) = 1.

If such extensions exist then for eatHet A+ be the function on S obtained by
A+(X) = A(X), forx # 1
AT(T) = 1.
These will be the option (iv) extensions of Fig@re
4. If (S;, R;) has no exensions ihin whichA(7) = 1, then letdy, ..., 4 enumerate
all the extensions dfS;, R;) which giver a value+ 1.

Such extensions exist because we are dealing with a traditioetwork. Let us
enumerate these extensions for our example (of Fig4msith = replacingT).

We have two such extesions,and A;:

A1 x=1a=0b=17r=0z=1y=0
A2 x=1a=0b=17r=0,z=0,y=1

5. We know that the requirement thet) = 1is toxic, because of the attacksh v
and z—» 7. Our remedy is to disconnect some of these attacks in ordgeto
extensions. If we disconnect them all we certainly get sutgmsions, but we
want to accommodate the attacks as much as we can.

Our possibilities are the following:

(a) Disconnect z»

(b) Disconnect b»

(c) Disconnectbothz» randb-» r
We give preference to disconnecting attacks emanating froimts nearer the
bottom (away from the top) of the figure. Thus (b) gets prariter (a).
We also want to minimise the number of changes and so (c) asispeority.
Disconnecting b» 7 gives us the extension

A: x=1a=0b=1r=1z=0andy=1.

This yields a complete non-toxic extension for Figd4e

6. Note that we may wish to take into account the value of xrubhdeour consid-
eration of whether to disconnect an attack obxr. A(x) can be 1 or% and we
may decide not to fix (by disconnecting ¥» 1) if A(x) = 1. If we do indeed
make this decision then we would not disconneet kr in our example and in
such a case the network of Figusd will have no extensions!

Remark B.4 ExampleB.2also shows that the result (semantics) we get for this option
(iv): non-toxic truth intervention, is gierent from the result we get from option (ii), the
counter attack view. According to option (iij, counter attacks all its attackers and so
we get the extensioh,

26(X) = 1, 2(a) = 0, 2¢(b) = 0, 1(T) = 1, 1e(2) = 0 and Ae(y) = 1.



Figure 35:

Remark B.5 The perceptive reader may ask why are we even consideringlidlae
of using maximal non-toxic extensions? After all, did we s&yt that instantiating
(S,R) fory € S with y= T amounts to looking for extensions in whichk=yin”. So

if there are no such extensions, then the straightforwarsinar is that there are no
extensions! Why suddenly clainx=yT is toxic and let us ignore it? On the one hand,
we are interested in y and want it “in” and on the other hand wivee cannot do that
we throw out of the network with that very same y, callingxi¢b

The answer is that there are cases of networks with y wherereveat looking at
the instantiation y= T as a search for extensions in whick=yin”. We are looking in
such a network at ¥ T € S as an instrument of intervention of forcing an “in” value
of some other node z related to y at the object level! Sinceawve b purpose in this
case, then if our instrument does not work we need to find anrative way?

Consider the networ{S, R) of Figure35. Let(S’, R) be the network obtained from
(S,R) by deleting the noddg, T}. Consider an intervention int@S’, R’) intending
to enforce the node x to be “in". The nodesT} added to(S’,R’) with e » T are
intended to achieve this purpose, in Figa®

In this figure, since e attacks it must be “out”, not because it attacks but
because some node with value “in” is attacking it. So x musiiie because it is the
only the attacker of e. We have usednd e in(S, R) to force x to be ‘in” by the object
level geometry ofS, R). This means that only complete extensionS6fR’) with x =
“in" are acceptable. If, because of this intervention, waat have an extension, then

8The Thesis 27] and the paperd6], deal with intervention. Suppose we have a netw@kR), and an
elementain S. We want to intervene and for@eto have valuee € {0, % 1}. We can do that by adding to
(S, R) some new poink with the following attack pattern:

1. For forcingato be “out”, letx attacka.
2. For forcingato be “undecided” lek attacka and attack itself.
3. For forcingato be “in” (if possible), leta attackx and letx attackT (we have to add™ as well asx).



we can say that our attempt (intervention) fails, or in oumtéology, is toxic, and
consider giving it up, and we need to look for alternativeshatéver reason we had
for wanting x to be “in", must now be serviced by defining aeottomplete extension
in some other way. The way we define the extension dependg @urose. Our
purpose in this paper is connected with the soundness ofttaekeformations to be
presented in Appendix C.2. So our definitions lead towardsghrpose.

We are dealing here with a new type of instrument for definkigresions in the
case where the present ofis toxic!

We are going to need to define priority on the set of elememéskihg T. This
will be done in terms of their distance from the top of the reatw To do this we need
to use the notions of Strongly Connected Components. Theseeies of definitions
(Definition B.6 to DefinitionB.8) deals with this.

Definition B.6 Let(S, R) be an argumentation network. We def{8é, R*) the network
of strongly connected componeii&CC) derived frongS, R), following [20].

1. A subset E£ S is an SCCff the following holds:

(a S+

(b) Forany xy € S, there exists a sequenge.z., z.1 suchthatz = x, z1 =
y and forl < i < k we have Rz, holds.

(c) Eis maximal w.r.t. property (b).

2. Let S be the set of all SCC subsets of S. Defin®1E, on S* iff for some
X1 € E1 and % € E, we have xRx.

3. For xe S, let X be the SCC to which it belongs.

Lemma B.7 Let (S, R) be a network and letS*, R*) be its associated SCC network.
Then

1. Any two distinct SCC sets are disjoint.
2. Forany xe S, there is a unique*Xor which it belongs.

3. R is well defined on Sand is acyclic.
Proof Easy. Seed(]. ]

Definition B.8 Let (S, R) be a network and leS*, R*) be its derived SCC network.
Let E€ S*. We define the notion of “E is of levfk, n)” as follows:

1. Eisoflevel (1,1) if there does not exist ahéES* such that ER*E. Think of the
level index(k, n) as k is the minimal Rdistance from the top nodes {8*, R")
and n is the maximal distance. The top nodes are distance 1.

2. Eisof levelk + 1,n+ 1) if k is the minimal m of the levéin, n) of any E such
that ER'E, and n is the maximal such n.



3. Since each ¥ S is a member of a unique E, we can define a lgyel) for each
x € S. Itis the level of the E containing it.

Example B.9 Consider Figure34. Then{x} and{zy} are of level (1,1).{a, b} is of
level (2,2) and T} is also of level (2,3).

Definition B.10 Let(S,R) be aT-net, that is(S, R) is an argumentation network with
a specialT € S, withT not attacking itself. We want to define the non-toxic truth
intervention semantics for it (option (iv) semantics).

We are going to give the algorithm for finding all completesesions foi(S, R) in
the form of Caminada labellings 1 : S — {0, %1}, with A(T) = L.

Step 1: Lett be a letter disjoint fronr. Let (S,, R.) be (S(T/7), R(T /7)), where
A(x/y) is the result of substituting y in all occurrences of x i(kAwhere y is a com-
pletely new letter to A.

Step 2: (S:, R,) is a traditional argumentation network and has completeesions.
Let A be the set of all such extensions. This set is non-empty\Lbé the subset of
all extensionsl € A such thati(r) = 1. A, may be empty.

For eacha € A;, let A+ be defined byl+(x) = A(X), for x # 7, A+ (T) = A(7) = L.

Step3: If A; # @thenletl+ = {1+|1 € A} be declared as the set of all the extensions
of (S,R). If A; = @, then proceed to step 4.

Step 4: Let Tp be the set of all 6 S such that x attacks, i.e. x—» TisinR. Let
be the set of all ¥ S such thatr » ye R.

We want to assume that E @. This is possible to do because we can move to the
network(Sw, R.) where S, = S U {0}, wherewo is a new point such thab ¢ S and
Ro=(R—{T » ylye T1}) U{co = yly € Tq}.

In other words, we ensure thatey Ty ends up “out” because it is attacked by
which is “in” (not being attacked by anything) and we discecshany attacks emanat-
ing fromT. Any extension found for(S.., R.) will yield an extension fo¢S, R), when
restrictedto S.

So we can assume now thatdoes not attack anything. We now proceed to find
extensions fo(S,R). Each such »x S has a unique levék, n) associated with it as
defined in DefinitiorB.8.

Define a priority> ordering on nodes,y € S by

e X>VYiffny>nyandif n =nythenk =k

where the level of x iy, ny) and the level of y igny, ky).

Step 5: We assume that we ha{® R), whereT € S, T does not attack anything, and
when we look afS;, R;) then all of its extensions € A satisfyi(r) # 1,i.e.A(7) = %
or=1.



Rather than declare thdS, R) has no extnesions, we want to salvage some exten-
sions out ofA by declaring the role ofr € S in some cases to be toxic!
We can now considergT To can be divided for each € A, into Tp = T4 LU Tgl U
ol )
02
A
Too where

TO ={X € TolA(X) =

l
§
>2
To, = (x€Tola(¥) = 1)
T‘ = {x € TolA(X) = 0}

We know for sure that elther"'[ + @ orif Tl 1 * Q.

Let us adopt the policy that if for some x attackingve havel(x) = 1then we give
up ona.°
So we are considering the case where all attackers X bave valuel(x) = 0 or
AX) =3
If we disconnect the attacks emanating frorh, Tonto T we get an extension for
0 =
2

(S, Ry) where
Ri=R—-{x—» TlxeT",}.
03
Now should we chooskas a non-toxic extension f¢8, R)? It is a question of priority.
We have a priority relation- on To. Let us extend it to priority on setsﬂ_’ by a
O =
2

lexicographic ordering first on the number of elements ofstefET” and second on

the max on the value,of the index(ky, ny) of x € T‘ The wmmng T‘ for this

2
priority will yield the As we call the extensions (8, R)

C

The following sequence of Appendices C.1-C.4 contain teethmesults supporting
the claims in RemarR.1Q The material was postponed to this Appendix because of
its technical complexity.

C.1 Conjunctive and disjunctive attacks

In Section 2.1 we introduced Boolean instantiation of argatation networks. This
allows for attacks of the forma(A b) -» (cAd). The meaning of this is that iz b) = 1
then € A d) = 0. We can write this ag, b} - {c,d} and the meaning is that if both
a=b=1thenone ot ord equals 0.

This requires the study of conjunctive and disjunctivecktsa This is the task of
Appendix C.1.

We recall concepts fron8J.

°Note that in exampleB.2 andB.3 we did fix the net of Figur@4. According to our present policy, we
would not do that and declare the network of FigB8reas having no extensions. On the other hand, if we
wish to always have complete extensions to @nget S, R) then we ignore‘l’l 1 and proceed to fix.
13
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Figure 36:
Definition C.1

1. A conjunctive-disjunctive argumentation network, (6&work) has the form
(S,R) where S is a finite set of arguments dd 25 x 25 is a relation between
subsets. WhenRY holds between, X C S, we say that conjunctive X attacks
Y disjunctively, or X CD-attacks Y. Figus (a), (b), (c) shows our graphical
notation for this notion.

We also write X Y for XRY, X = z for XR{z} and w— Y for {WjRY.
2. We requireR to satisfy: X» Yand X2 XandY 2 Y imply X —» Y.

3. We say a node g S is indirectly attacked by X S if for some Y RY and
zeY.

Definition C.2 (Kleene 3 valued logic)Kleene 3-valued logic has 3 valu¢d 1, %}
and has the truth table in Figur87. The language has connectivesv, -, —» and
atomic propositions. Read the values asih”, 0 = “out”, and % = “undecided”, see
[19.

Definition C.3

1. Let(S,R) be a CD network as in Definitio@.1 Letd : S — {0,1, %} be an
assignment of values to the elements of S, pretending thiesat@mic logic
propositions. Let X2 S. Extendl onto X by lettingl(X) = A( A xex X)-

Thus
AX) =1if A(x) =1forall x e X

A(X) = 0if for some xe X, A(x) =0
A(X) = 3, otherwise (i.eA(X) > O for all x € X and for some x X, A(x) = 3).
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2. A CD-extension fofS,R) is a functiond : S — {0, 1%} satisfying the following
conditions:
(a) If {7 is not indirectly attacked by any X thaiz) = 1.

(b) If A(x) = 1for all x € X and X— Y holds then for someg Y, A(y) = 0.
(l.e.ifA(X) = 1and X Y theni(Y) = 0.)

(c) Assume Y is such that for every X such thab»XY there exists an ¥ X
such thati(x) = 0. Then for all ye Y we havel(y) = 1. (l.e.ifA(X) =0
for all the attackers of Y thea(Y) = 1.)

(d) Forany YC S, (d1) and (d2) imply (d3).
(d1) For every X such that %> Y we have that for someexX, A(X) < 1.
(d2) For some X such that % Y we have that for all x X, A1(x) > 0 and

for some xe X, A(X) = 3.

(d3) Forsome ¥ Y,y = 1 and forall ye Y, A(y) > 0.
(I.e. for all the attackers X of YA(X) € {0, %} and for at least one attacker
Xo, A(Xo) = 5 thena(Y) = 1.)
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Remark C.4

1. Let(S,R) be a CD-network as in Definitio€.1 We ask whether there exist
CD-extensions for it. To help us understand the situatienys look at a figure
which might make us think that the answer is negative. Censid extension
for the network of Figur&8.

Any such extensiohwould require thafl(x) = 1 and eitheri(a) = O or A(c) = 0.
But the fact that also a» a and c—» c forcesi(a) = A(b) = % The values cannot
be in{0, 1}!

The perceptive reader might ask: we are interested in Baoviestantiations of
traditional networks. Can Figur88be obtained as such an instantiation? If not
then the use of CD-networks is an overkill. The answer isgasFigure39

If we write the equations for this figure we get

I n
X < c

u=1-
v=1-
y=1-
x=1



Figure 40:

Substituting the instantiation we get

There is no solution if0, 1, 3}.

This line of reasoning, however, contains a fallacy. Betbee instantiation, u
for example, was attacked only by itself, so the equationitfoas u= 1 — u.
After the instantiation of u= a and y= a A ¢, a was attacked both by itslef
and indirectly also by x. Thereofre a new equation should bigem for the
new situation of Figur&8. We cannot just substitute the instantiation in the old
equations. We are not reading Figus8 correctly.

We need to modify our point of view. The following discusgam conceptual
analysis seeking a new point of view:

We begin with a slightly modified point of view which we cadl RCD view (the
restricted CD view). We note that » {a, c} actually implies{x,a} -» ¢ and
{x,c} » a.

If we understand x» {a, c} as meaning the conjunction of the above two attacks
then Figure38 becomes FigurdO.

Since x is not indirectly attacked we hatx) = 1 and since a and c are each
self attacking we get(a) = A(c) = 3.

We would also have according to Definiti@n3 that A({x, a}) = A({x,c}) = %

. It seems then, that if we adopt the suggestion in (1) abovkusmderstand

X -» {y1,..., Yk} from the RCD point of view, as the set of attatks;, . . ., Yi-1,
Vist, .-, Yk} > Y fori = 1,...,k, then all we need to define is the concept of
attacks of the form X» z. Attacks of the form X» Y are reducible to the form
X —» z. Such joint attacks can be simulated within traditionalnDwetworks
using auxilliary points, as shown ir8].

The attack formatiorixy, ..., x,} - z of Figure36(b) becomes the formation
of Figure 41. The auxilliary points are ¥...,¥n Y. The reader should note
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that the auxiliary points used must be completely new to és¢ of the net-
work and be associated wifhy, . . ., Xn, Z} only. Any other attack formation, say
{as,...,am} » b will its own completely new and disjoint auxiliary pointswe
do not observe this restriction and re-use existing poistaaxiliary points we
get wrong results, as Rematk6 shows.

3. The RCD point of view is not the best we cgirro There is a better one, already
mentioned in the 2009 paped][ In Section 4.3 of that paper, we discussed what
we call “flow argumentation networks”. To explain it simplgrfour case, in
Figure 36(c) the node w transmits attacks to all the nodgs y., ym (the attack
“flow” emanating from w) but expects only at least one of theraucceed. Thus
applying this “flow” view to Figure38 we have that x attacks a and x attacks c
but expects at least one to succeed. Sinee kand a= % a will become 0.
Similarly ¢ will become 0. Thus we get two extensions

x=1la=0c=13

and

x=1la=3,c=0

Nl

We shall address this point of view, which we call the FCOwireAppendix C2. More
details in Section 4.3 ofj.

Remark C.5 It would be instructive to compare our RCD disjunctive dttaotion
with the attacks notion of Nielsen and Parsods$][notion of joint and disjunctive
attacks. Call it the NP view. Let us look again at Fig3&c).



Figure 42:

We have
W = Y: {yl,---,Ym}-

Let us simplify and consider w {a, ¢}. We do our comparison for this case but before
that let us summarise our options:
We have the following four notions for% Y, where

X={Xg,.... %} and Y={y1,...,¥Ym}

1. Gabbay 20093], CD-view:
If Ai A(%) = Lthen\/; A(y)i) = 0.
This view allows us to generate networks like in FigB&e

2. The equational view, which is not the same as the CD-vidis Viiew is con-
nected with instantiation networks and may not be able tcege networks
like Figure38. This view will require us to solve the equatigh;)y;) < — A x.

3. Gabbay alternative as in (1) above RCD-view:
w -» {a, c} meangw, a} » c and{w, c} -» a.

4. Nielsen and Parsons’ 20078], the NP-view:
W —» {a, C} means w-» a orw -» C.

(The Nielsen and Parsons’ definition of-X Y is that for some ¢ Y, X - y).

The implementation of the NP-view for-w {a, c} is in Figure42.
We need a semantics which will not allow fgs, y4} to be both undecided.
To complete our full comparison of the above four approact@ssider Figure43.
This figure says thdg, b} - {a, b}.
The CD approach and the equational approagfeono stable{0, 1} extensions.
The RCD approach reducés, b} - {a, b} into

anb-—»a



Figure 43:

and
anb—>Db

and has no stablg, 1} extensions either.
However, the NP approach has two stalflel} extensions

a=1b=0

and
a=0,b=1

This is because if b» a or a » b then{a,b} - {a, b} holds. There is more
discussion of the NP-approach iB][

Remark C.6 If the joint attacks are done in two state networks, as defaradl dis-
cussed in Definitiod.2and Lemmal..3 then we might think that it is much simpler to
reduce joint attacks to single attacks by using existingnfsoas auxiliary points. The
attack

anb-»c

can be reduced to the two attacks

—a -» —C
-b —» —c.

The reason for that equivalence can be seen by looking at ttiaekaequationally.
aAb —» cmeansthat = —-(a A b). Therefore-=c = a A b or equivalently-c =
—-(=a) A =(=b) which is the same equation fea - —c and-b -» —c.

In a network where for each »x is also present with x—» —x (as we have in a
2-state network) then Figuresl and45 are equivalent.

Notice the similarity between Figu#b and Figure4l If we lety = —xq,...,
Yn = =X, and y = -z and change the attacks »» y; into y «—» z, the two figures
become the same. Note that change the atateks ih Figure 41 into bidirectional
attacks “«—' does not gect the job that Figuretl does. We still have the same
inpufoutput relation betweep; x; and z, namely\ x; -» z.

So we reduce the above attagk; - z to the single attacksx, » -z i=1,...,n.
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To do this, however, by utilising the existing poifits;, z} as auxiliary points is a
mistake. We must use only new, disjoint set of auxiliarytgoi®therwise we get the
wrong results.

Consider Figure46. In this figureT is “in”, -a = =b = “out”, —g = “out” and
since{a, b} jointly attack g, g must also be out. This contradicts theatioh implying
that at least one ofx, —x} must be in. If we ignore this restriction, we get that both g
and-g are “out”. In this case think of-x as just another’x

Figure 47 eliminates the joint attacka, b} - g by using-a, -b, —g as auxiliary
points, instead of using copletely new points. What we géeisvrong result.

What we getist =“in", —a="out” =-b=-g.a=b=g=in.

Figure 47 eliminates the joint attacks using auxiliary points whiale aompletely
new, as shown in Figurél.

We get the correct result, same as in Figd@® We haeT = a=b ="in". so
X =y ="out". Soz="in"and so g = “out”.

We note that it is for this reason that we introduce in Aper@ifor the Boolean
attack formations. These encapsulate the new auxiliargtpanside the formation.

Note also that the presence of tfve —w} pairs can allow us to possibly economise
and use less auxiliary points, as Figu#® shows. We economise by letting = a and
-y =h.

There is no advantage, however, in economising. what is fitapbis that joint
attacks can be eliminated in a systematic way.

C.2 Boolean attack formations (BAF)

In this appendix, we generalise the instantiation sequefitke form of Figure50
wherex;, y; are atomic arguments af#(ay, . .., a,) is a Boolean formula in the ar-
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guments{ay, ..., a,}. What we see in this figure is a substitution of some complex
argumentation entity for the nodeTraditional abstract argumentation networks know
how to handle attacks on atomic nodgethey do not know how to deal with attacks on
Boolean formulas. This Appendix C.2, replaces the formbjaattack formations and
defines how to handle them. We thus define the notion of a Bod\#ack Formation
with input and output nodes which can be substituted for aad@ll attacks onz go
into the input point of the formation and all attacks framemanate from the output
point of the formation replacing

We begin with the special case of Boolean attack formati@ssghed to represent
conjunction of formulas. Then we define formations to repnésegation of formulas.
Since negations and conjunctions can generate any formpleopositional classical
logic, we will have attack formation representation for afgssical propositional logic
formula. The general definition, therefore, allows for gahepuyoutput formations.

Definition C.7 A Boolean attack formatioBF has the form
BF = (S1U S2, R, ¥(S2))

where S = {ay,...,a,} and¥(S,) is a Boolean formula of Kleene 3 valued logic in
the variableday, ..., a,}. We also writeéBF = BF(ay, ..., an).
The following holds:

1. S; is a set disjoint from $containing two special nodes among other additional
nodes. There ar@ (an input node) anaut (output node). $is referred to
as the set of auxiliary nodes. When several attack formaieninvolved we
always assume that their sets of auxiliary node, includirggih and out nodes
are pairwise disjoint.
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2. We describéS; U Sy, R, W) schematically in Figuré1.

3. Let(S, R) be an argumentation network and assume Bigfay, . . ., a,) is a sub-
network of(S,R). We say thaBF is legitimately embedded i, R) if the fol-
lowing holds:

(a) The only elements BfF attacked from outsidBF (by elements of S, which
may include the elementstaemeselves as attackers from S) are a , an
andin (of BF).

(b) out of BF attacks only elements outsitié'.

The elements d&F which are not in{ay, ..., ay} appear only inBF (soin and
out are labelledin(BF) and out(BF)).

4. The following must hold fdBF(a, .. ., a,) when embedded legitimately in any
(S,R), see Figures2.

Leta:S+— {01, %} be any extension @6, R). Then

(@) A(out) = ¥(A(aa), ..., A(an)).

(b) If none of{ay,...,a,} are attacked from outsidBF or if all outside at-
tackers z of @&...,a, are out, i.e. havel(2) = 0, thena(in) = ¥(1(ay),
st A(an))-

5. If ¥(A(&)) = 1thenAa(in) = 1, even if some;are attacked from outsidgF. It
could be the case, however, that even thoa@h) = 1, we have?(1(a)) # 1
because of outside attacks ).

Example C.8 We show that we can find&F for every formula of classical propo-
sitional logic. We show this by findingBF for atomic d, for negatior-d and for
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conjunctions a\ ¢. TheBF for arbitrary formulas can be done by legitimate substitu-
tions of BFs.

Consider the network of Figuie3.

This network can be replaced by Figusé.

The attack formation of Figurg5 is involved where )y are auxiliary points and
Y(d) =d.

TheBF for —d can be obtained from thgF of d, (i.e. from Figureb4) by deleting
the node x, i.e. allowin@ to attack d directly.

The above two cases are simple but consider the more comgde)of conjunction
of Figure56.

In this figure « disjunctively attackga, ¢} and{a, ¢} conjunctively attacks. Figure
56is the same in meaning as Figus8 instantiated by d= a A ¢, namely Figures7.

In this case it is not so simple to find a Boolean attack foromatp do the same
job. Namely we want Figurg8to be realised as a traditional network.

The network of Figur&9 can do the job. It is ar-net. We assume we are dealing
with option (iv) of Appendix B, adopting the non-toxic agmb.

Lemma C.9 Figure 59 implements inr-net non-toxic approach with auxiliary points
the concept of disjunctive attacks.

Proof We need to show the following for any
1. If (@) = 1, then for some, A(g) = 0 anda(w) = 0.
2. If A(@) = 0, then unless attacked from outside the diamondi@l) = 1 and
A(w) = 1.

3. Ifaw) = % theni(a) < 1. They are all 0 o% and if somes is not successfully
attacked from the outside thelfa) = 3. ThusA(w) = 3, unless some(a) = 0
in which caset(w) = 0.

Let us examine each case.

Case 1: Assumel(e) = 1. Hencel(a) = 0 andi(a) = 1. Hencel(v) = 0 and
A(X) = 0. We know thati(e) must be 0, so one of its attackers must b€ 1t

10Note that in option (i) for the semantics, an attackerrahust be “out" not by virtue of it attacking’
but because it must have an attacker which is “in".
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cannot bex so it must bex. If this is the case thea(u) = 0 and then for some
i, (&) = 1.

Note that sincel(@) = 0, the loopa; » a —» b - b - & is not broken.
So g is attacked and so either the loop is resolvedify) = A(b) = 1 or by
Aa) = A(by) = 0.

However, sincel(a)) = 1 we must havel(a) = 0. In which casel(a) = 1 and
A(w) = 0.

Case 2: Assumel(e) = 0. Theni(a) = 1, A(a) = 0. Hencel(v) = 0 and also
A(X) = 1 becausd(e) has to be 0. Therefor&x) = 0. A(u) can be anything. It
needs not be 1 o% becausel(x) = 1 forcesi(x) = 0.

Now sinced(a) = 1, we get/l(b_i) = 0. Thusay, ..., a, are not attacked from any
point in the inside. So unless is attacked from the outside, we hag;) = 1.
So if all A(g) = 1 for alli, we get alli(a)) = O for alli and sai(w) = 1.

Case 3: Assumed(a) = 3, theni(a) = A(a) = A(v) = A(X) = 3. Sincel(e)
must be 0, we look for an attacker efvhoseA value is 1. The two candidates
arex andx. A(x) = % impliesA(X) # 1. Thus there is no way forward and it is
obvious that the sdtr} is toxic for the case of the input(e) = % We need to
ignore it. See Appendix B, especially Definiti@nl10.

In this case we get thal(e) = A(@) = A(a) = A(v) = 3.

We do not care what values the $gtx, e} gets, for example it can get the values
A(e) = L, A(X) = A(X) = 0. The question is what i&u)? It cannot be 1 because
A(V) = % Can it be 0? Ifa(u) = O, then for somé, A(a) = 1. Then in this case
A(&) = 0. ThenA(&) = 1, A(ly) = 0, but them(by) = % because it is attacked by
aandA(a) = 1. So how canm(a) = 1?

So the last possibility isi(u) = 3. ThenA(a) = 3 or 0 and for at least onie
A@) = 3.

If A(&) =0, theni(a) = 1 soA(&) = 0, A(by) = 1 andA(ly) = 0. We know that
for at least one, we havel(a) = 3. SoA(&) = 3.
Thus from the attackers af, {a'}, at least one has vah.%and the rest of the
values are} or 0. SoA(w) = 3.

Instantiating with Boolean attack formations

This appendix prepares the technical ground for intantigéith Boolean formulas.
We first turn any such formula into a Boolean attack formafsee Exampl€.8) and
then instantiate with the resulting formations. To achithet we need to define the
notion of instantiation witfBFs.

We need to agree on some diagrammatic conventions. Corsglee60:
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In this figure the lettea appears twice. Is this a misprint and the secarsthould
bea’, or is the intention actually as depicted in Fig6¥

The answer is that sometimes figures can be very complex arbdegurpose of
simplification, a letter can be repeated. To be on the sateasi@peated letter can be
encircled like in Figures2.

The need for repetition comes from the notion&H. In Definition C.7, we see
that anyBF has two types of variables, the auxiliary variblﬁp, unique to theBF

containing it and disjoint from any oth&F’, and the variableSéEP, which may be

attacked by otheBFs which may share some of these ariableSﬁF. Consider, for
example, Figur&3.

In this figure,{a, ¢} mount jointly a disjunctive attack ofa, b, c}. See Appendix
C1. If we do not want repetition of nodes, we write Fig6re

However, if we want to implement Figu@t using Boolean attack formations as
discussed in Appendix C2, we get Fig® with auxiliary nodes;, c;, z;, w; and the
auxiliary nodes of Figur&9for {a, b, c}.

So be mindful that the following definitions allow for repmtis in the figures.

Definition C.10

1. LetBF; andBF, be two Boolean attack formations with; and out; andin,
andout,. We assume that the auxiliary nodes of these formationsiajeirat.
Then Figure66 describes the resulting formation for the attackBdf, on BF,.

@H» b%»@%»b/

Figure 62:
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2. Let(S,R) be an arumentation network and let | be a function assoaigtiith
each xe S, a Boolean attack formatiorf{) = BFy, with iny, outy, Sy, Rx. As-
sume that all the auxiliary nodes setsk¥ for x € S are pairwise disjoint and
disjoint from S. Then the result of the instantiati@), R) is the following:

S = UxesSx
R Uxes Rc U {outy = iny|x » y € R}

3. The semantics for such instantiation is taken to be oggtigrithe non-toxic truth
intervention) semantics of Appendix B.

C.4 Instantiating with classical propositional wffs using Boolean
attack formations

In this Appendix C.4, we backup the comments made in RerBa® We are given

a finite instantiated networkS(R, 1). | is an instantiation into classical propositional
logic and we can assume that alffevinvolved are built up from the set of atoms
Q = {Q1,...,0n} USINgA and~. We want to identify the Caminada extensions for
(S, R), arising from the instantiation We know that for each € S, the wit I (x) = @y

is a formula of a logic which has modets. We know that if we go through all the

modelsm and define
Am(X) = def. m(Dy)
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Figure 66:

then the legitimate Caminada extension 8fK) among the sefii,} will be the set of
all extensions of$, R, 1). We can do that, however, we do not want to use the logic, we
want to use purely syntactical means. By the results in Agpe@.2, every formula
@ of classical propositional logic can be represented by aldopattack formation
BF(®). We can look at the instantiatiori wherel*(x) = BF(®dy) for x € S and
consider the network*, R) = (S, R, 1*) as defined according to Definitiad.10 of
Appendix C.3.

The network §*, R*) has extensiong (the non-toxic extensions).

These extensions give values{ % 1} to the atoms of). These define a model
m(u) to the formulasdy, x € S. We look at{dm} and the legitimate Caminada
extensions from among all the extensions&fR, I).

Remark C.11 Note that as a byproduct of our process of RentadOand Appendix
C.4, we get argumentation semantics for classical promitogic. Any® is repre-
sented bBF(®), whose extensions give the model®of

D Comparing Boolean instantiation with abstract di-
alectical framework (ADF).

We first introduce ADF from the original brilliant paper of@&vka and Woltrang, 39,
and then analyse ADF and explain why it is not suitable forSee also3f].



Brewka and Woltran read conditiotil( atomic) above (i.e the view:yi, ..., yn
attackx", see Figurel9) not as an attack ofi on x but as an acceptance condition,
relating the{0, 1} values of they; to the{0, 1} value ofx. The condition, according to
the ADF view, is

x=liffally; =0, (hamely we takdam1 atomio(x) as/\ ).

This is a brilliant shift in point of view and we now can genesaand put forward dif-
ferent conditions, sai(x) = Cx(Y1, - .., Yn). We can now interprdt(x) as the Brewka—
Woltran condition for the acceptancexfTo achieve that we must restrict the variables
in 1(x) in our network §, R, I) to be the seYy of all the attackers ing, R) of the node
X.

So our networks will look like $, R, 1), wherel (X) = @y{Yy].

Now we can regard our instantiation networks with this addal restriction pos-
sibly as an ADF and we might think that our problems are sol&@ have given a
meaning to §, R, 1), at least for the case of this additional restriction.

The answer is that this is not the meaning we want and need. aWeot get the
general case of instantiations which we are studying, evtinthis additional restric-
tion. Consider the simple two node network with nodesndy and with x attacking
y. Sincex is not attacked, ADF can give it a truth value only, say vdluend sincex
is the only attacker of, ADF can give it a vif ®(x) with x as the only variable ob.
ADF will write the equalities

X=t
y = O(X).

While in comparison, we would write the equalities

Xx=t
DO(x) = -t

Note however, that we can get ADF as a special case of outiatsta if we take an
arbitrary network with nodeS and no attacks whatsoever, ife= 0.

If we substitute now for eackin S a wif @, we get an ADF.

The fact is that ADF is not doing argumentation but is reatiyng logic program-
ming. We are departing from the principlef and we are not regarditfy,), . . ., | (Ym)
as attackind (x).

If we take the ADF view then we are not doing argumentationraaye. We are
not really instantiating to bel(x). We can no longer connect with, e.g., ASRIGr
any other instantiation papers. We are playingféedént game!

This is not a criticism of ADF; all we are saying is that the ABpproach is not
compatible with our approach. We think highly enough of ARFntention it here
and say that we cannot use it. Note for example that with thé A&striction,R
is redundant. This is a warning sign for us. All we really haweADF are logic
programming clauses of the form

X if 1(X)

and we have
xRyiff y appears in(x).



Thus in ADFRis not an attack relation but an “occur” relation. Brewka ®adtran
are careful; they call it “link" relation.
Our view about ADF becomes clearer when we consider it in trgext of the

equational approachi4, 6, 7, 36].
Given S, R), we consider the network as generating equations of the Exax

X =1-max(Yx)

wherex € S andYy = {ylyRX.
The solution of these equations in [ yield all the Dung extensions, where with
eachf we associate a Caminada labellit(@) as follows:

Af) = in,if f(x) =1
A(f) = out,iff(x) =0
A(f) = undecided, if O< f(x) < 1.

Let us now depart from the above equations in two ways.

1. Let us have possibly fierent continuous functiorts(Yy) associated with each
XeS.

2. Lethy(Yyx) be a Boolean function iy

The solutionsf of the above system of equation (callBigg) would yield us a
Boolean ADF. See35, p. 804] and Bq].

The reader should note the generality of the equationaloagbr We can choose
any family of continuous functions. We can choose T-norméchvigeneralise the
classical connectives and using T-norms study numericaf ADnorm). However,
this is not the place to elaborate, but we leave this to a éypaper.

Let us at this point quote from pap&q:

Begin quote from35].

Definition 1. An abstract dialectical frameworls a tupleD = (S,L,C)
where

e Sis a set of statements (positions, nodes),
e L C SxSisasetoflinks,

e C = {Cq}ss is a set of total function€s : 2P — {t, f}, one for
each statemer#t Cs is called acceptance condition $f

In many cases itis convenientto represent acceptancettmrsias propo-
sitional formulas. For this reason we will frequently usegital repre-
sentation of ADFs$, L, C) whereC is a collection¢s} s is called accep-
tance condition os.

In many cases itis convenientto represent acceptancettmrsias propo-
sitional formulas. For this reason we will frequently useyaital repre-
sentation of ADFs$, L, C) whereC is a collection¢s}ss of propositional
formulas.



Moreover, unless specifiedftBrently we will tacitly assume that the ac-
ceptance formulas specify the parents a node depends oicittgplt is
then not necessary to give the links in the graph explickke thus can
represent an ADIP as a tuple §, C) whereS andC are as above ardis
implicitly given as @b) € L iff a appears inpp.*

The ditferent semantics of ADFs over stateme®itse based on the notion
of a model. A two-valued interpretation— a mapping from statements
to the truth balues true and false — isn-valued modgimode] if clear
from the context) of an ADFS, C) whenever for all statemengse S we
havev(s) = v(ys), that isv maps exactly those statements to true whose
acceptance conditions are satisfied undé&ur analysis in this paper will
be based on a straightforward generalization of two-vaioeuipretations
for ADFs to Kleene’s strong three-valued logit9[.'? A three-valued
interpretation is a mapping: S — {t,f,u} that assigns one of he truth
values truet), falsef) or unknown (1) to each statement. Interpretations
can easily be extended to assign truth values to propoaltimnmulas
over the statements: negation switchesdf, and leaves unchanged; a
conjunction ist if both conjuncts ar¢, it is f if some conjunct i$ and it

is u otherwise; disjunction is dual. It is also straightforwémdyeneralize
the notion of a model: a threwalued interpretation is a model whenever
for all statements € S we havev(s) # u impliesv(s) = V(gs).

The three truth values are partially ordered<yaccording to their infor-
mation content: we havBu <; t andu <; f and no other pair ir;, which
intuitively means that the classical truth valuecontainrenmformation
than the truth value unknown. The palt,f,u} <;) forms a complete
meet-semilattic® with the meet operatior. This meet can be read as
consensuand assignsnt =t,f nf =f, and returnsl otherwise.

End quote from35].

Let us conclude this Appendix and quote here from the BreWNatran paper.
They are aware that they are really doing logic programmirgllassume for their own
reasons, they still present their paper as an argumeniadiper. See als®[ 10, 12].
We present three quotations frog].[

Begin quote 1:
Vocabulary for the quotation belovgis a node Par(s) are its attackers, it
is Ys in our notationCs is ourl(s).

1when presenting examples we will use a notation where amgeptconditions are written in square
brackets behind nodes, edj~(a A b)] denotes a noda which is jointly attacked by nodesandb, that is,
each attacker alone is indigient to defeat.

12A comparable treatment for AFs was given by the labelling§13f. We use standard notation and
terminology from mathematical logic.

13A complete meet-semilattice is such that every non-emptiefsubset has a greatest lower bound, the
meet; and every non-empty directed subset has a least uppedbA subset is directed if any two of its
elements have an upper bound in the set.



Definition 1. An abstract dialectical framework is a tude= (S,L,C)
where

e Sis a set of statements (positions, nodes),
e L CSxSisasetoflinks,

e C = {Cs}ss is a set of total function€s : 2P2(9 — {in, out, one for
each statemer#t Cs is called acceptance condition ef

Begin quote 2:

Definition 2. LetD = (S, L,C) be an ADF.M C S is called conflict-free
(in D) if for all se M we haveC¢(M N par(s)) = in. MoreoverM C S is
a model ofD if M is conflict-free and for eackinS Cs(M N par(s)) = in
impliesse M.

In other wordsM C S is a model oD = (S, L, C) if for all s€ S we have
se Miff C¢(M n par(s)) =in.

We sayM is a minimal model if there is no mod®l which is a proper
subset oM.

Begin quote 3:

It is not difficult to verify that, when the acceptance condition of each
node s is represented as a propositional fornfi(lg), a model is just a
propositional model of the set of formulas

{s= F(9)|se S}.
End quotes fromZ].

Remark D.1 To further highlight the fact that the idea of Instantiatisrdifferent from
and is orthogonal to the ADF idea, let us define the notion dftraet Instantiated
Dialectical Frameworks.

An abstract dialectical framework is a tuple B (S, L, C, I) where

e S is a set of statements (positions, nodes),
e L CSxSisasetoflinks,

e C = {C4},s€ S is a set of total functionsC 2P — {in, out}, one for each
statement s. Cis called acceptance condition of s.

e For each se S, I(s) is a wf of classical propositional logic. We consider I(s) as
a function from2P@®tofin, out}.

Following quote 3 above , we understand by a model of thersyatey solution to
the equationsfor g S,

1(s) = Cs(y/1(y)ly a parent of »

This system of equations is not guaranteed a solution iseaéinterval [0, 1],
while the system of Quote 3, does always have a solutifiy i}, though not always
in {0,1/2,1}.



E

E.1 Comparing abstract instantiation with the ASPIC approach

When we talk in this paper about “instantiation in argumgoté, we must compare
what we are doing with the well known school of “instantiagagumentation net-
works” and the ASPIC movement3, 31]. What is the connection between what this
paper is doing and ASPIC? The answer is that they are similadiferent. We first
explain the diference in principle and then give examples.

1. The abstract instantiation of the current paper. In this paper we start with an
abstract argumentation fram®, R) and in parallel with a closed logical theafy** It

is important to note that need not be a defeasible theory. In fact our main case studies
are monotonic logics; classical propositional logic, miingredicate logic and modal
logic S5. We can also use a defeasible theory if we want. Wetisute wifs of A into

S via a functionl : S — A. In this set up the networks(R) and the attack structure

R of the argumenation frame is primary and it is retained anithflaenced by the
substitution functiod. Our main task is to give the systei®, R |) proper meaning.
This substitution may cause problems and we need to find adtieal remedy.

For the purpose of comparing with ASPIC and with other intsétion approaches,
such as 8, 28, 29, 3(], let us dfer another way of looking at the same problem. It
is to say that we have a basic consistent closed thacapd in parallel we have an
abstract schem&(R) of attack relation. By substituting, usingformulas fromA for
the elements o8, we form an indexed collection of formul@is= {I (X)|x € S} of wifs
from A containing an abstract unspecified conflict, as recordeR. bl this abstract
conflict could be expressed in the languaga @k a theorAg, thenAU Ag would have
been a defeasible theory or a monotonic consistent theayhawnotonic inconsistent
theory, all depending on the underlying logic. We ask thestjar: is it possible to
retain consistency df and yet satisfy the constrairi®®

To motivate this point of view of constraints, and to be ablaave a working case
study to use in comparing with ASPIC, let us give an example.

Example E.1 Let A be a theory governing a birthday party. Let S be a set of people
and let I(x) for x € S be “x is invited to the party”. Suppose everything is caesis
together, namely U {I(X)|x € S} is consistent. We can have the party as required by
A and invite all the people of S. Bear in mind thtatmay contain requirements which
may gfect the people invited.

We now add the constraints R of the form xRy meaning “If yoileinvyou cannot
invite y”.

OK, our problem now is, whom do we invite and still satisfy ¢bastraints? In
other words, we are looking for an extension (in fact a maxipneferred extension) of

(S.R1).

14By a closed theory we mean a theory containing whatever itgsoThis can also be defined not only
for monotonic theories but also for non-monotonic theovigsch satisfy the restricted monotonicity rule,
namely:

AR® andA + ORY ==> ARY.



2. Instantiated argumentation: ASPIC. In comparison ASPIC does something
different. It will look at all the arguments (proofs) generatgdabdefeasible theory
A. SinceA is defeasible, it might defeasibly prove both arand its negatior-x.
This can be viewed as giving rise to an attack relation (sg¢vyaossible notions of
attack relations) among the set of all proofs from the theorWe need to resolve the
conflict. ASPIC will use argumentation theory acainstructan instantiated network
(S,R) accordingly. Then ASPIC would apply the machinery of figdextensions and
expecthe resulting s of the extensions to be consistent in the logia of

When this does not happen, ASPI@ears postulates téorce A to behave as to
ensure that the resulting extensions are consistent.

Thus the ASPIC process has three stages:

1. The Input
Input a defeasible theorj.

2. The System
Construct an argumentation netwof R) from A. Call the process of construc-
tion the ‘ASPIC construction”. This is ASPIC’s way of doirtg i

3. The Output
Output complete extension of the netwo& R) constructed in 2 and expect
these complete extensions to be consistent in the loghc of

When the output 3 does not meet expectations, ASPIC resthetinput by putting
postulates o. ASPIC does not try and improve or change the constructigroint
2. (We shall ¢fer a diferent way of constructing a network in Appendix E2).

3. Summary comparison. As you can see, although our paper and ASPIC deal with
similar (lego pieces) components, they do not do the sanmgshiSeveral examples
would be helpful.

Example E.2 We look at Example 6 from the Caminada and Amgoud pai&r [
A defeasible theorny is given with strict rulesS and defeasible rule® where

S={adgbacarenf - g}
D={a=>bb=ce=f,d=¢

and where “>" is strict implication and= is defeasible implication. There are two
modus ponens rules, one for each implication.

Following the ASPIC instantiation idea, we look at all pdsiproofs of atoms
from A. These are (notation: [...]):

1. [a]
I12. [d]
3. [d]

4. [a,a= b], (proving b)



I15. [d,d = €], (proving €)

116. [a,a= b,b= c], (proving c)
I17. [d,d = e e= f], (proving f)
I18. [4,5,6,7,bAcAen f — —=g], (proving—Q)

The paper 1 6] uses the proof$I1-I17 to construct an argumentation network

Sa = {I11, 112, 113, 114, 15, I16, I17}
Rx = {TIRIT if TT proves x andTl’ proves—x}.

The way [L6] defines § it turns out that the proofI8 cannot be used and is not a
member of 3. This is because they string the data without using conjanst using
only “linear” sequences of the formxx; ~» X, X ~» X3, ..., Where “w” is either
“—"or" =" and where each xis atomic. This way of constructin®a, R,) causes
problems.

If we collect the atoms proved in the proofs of &1d which are in the ground
extension, we gét= {a,d, g, b, e c, f}. Using the logic ofA and the rule lncAreA f —
—-g, we get thal" is contradictory. Thus taking extensions may result in insistent
sets.

So [16] offers postulates on theoriés hoping to ensure there will be no problems.

We are not here to evaluatd ] or the ASPIC approach. We are just comparing
their idea of “instantiation” with ours.

e ASPIC starts with\ and construct$S,, Ra).

e We start with(S, R) and substitute proofs from.
We could end up with similar gliculties. Suppose we start with
S={Xy,....%},R=0
and I(x) = I1i. We end up with
S ={y,..., Mg}

The question is, in our methodology, how do we defifeFnce we allow for joint
attacks, we can expreg%. Let us play the game the ASPIC way. We are gien
let us ask, since we have powerful machinery in this papemrifvanted to construct
(Sa. Ra), how would we have done #?

Our answer is that we would construct a 2-state network vathtjattacks. Figure
67 illustrates the network we get.

We need two notions of attack, strict attacksxy (same as a» -y and defeasible
attack x=> y (same as x» -y). We have-=x = x and-x «» X.

We need joint attacks as shown in fig@® We also need to usg, T is truth,
helping us describe the strict facts.
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Note that in view of Remar®.6, Figure 67 is equivalent to Figuré8. This figure
contains node to node attacks only.

We need to say how we compute extensions for the argumenatiwork of Figure
67 arising from the defeasible theofy Being a defeasible theory we should be able to
resolve the conflict of the atom g both supported and attabiets neighbours. Intu-
itively g has a direct strict proof fron, but—g is derived defeasibly using 3 separate
defeasible rules, two of which are chained. -8phas lower preference “value” than
g and so g is accepted. We need to define the priority valudseoatoms x-x,y, -y,
etc., and use these in calculating extensions. Our netwaskwo attack relations and
so the priority values and the extensions must be definedegeoaily in terms of the
graphs. This is done in Appendix E2.

Example E.3 Let us look at another example frorh€]. This is example 4 from their
paper. The vocabulary is:

wr: John wears a ring

m: John is married

hw: John has a wife

b: John is a bachelor

go: John often goes out until late with friends.

The arguments are obtained from a database with strict rilesnd defeasible
rules?D.
S={T - wr,T—-gob—- -hwm-— hw}
D ={wr = m,go= b}.

Caminada and Amgoud form the following arguments from tha @& D).

A [T - wr]
A [T — go
A3:[A1=>m]
A [A2= b
As: [As — hwi
As i [Ay — =hw]

We form (in our notation) the following network of Figuge.
The correspondence in this case between the arguments oh@daand Amgoud
and the arguments in Figui@9is to paths in this figure as follows:

A (T - wr)

Ay (T — go)

Az (T-wf=m)

Ay (T—>go=b)

As: (T - wr=m- hw)
As: (T - go= b — =hw)

15Recall the discussion in Section 1.2. ASPIC restricts tpetini.e. using (r1). We are going to change
the system, the way we construct the network, i.e. we argus2).
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Figure 69: Representation of Caminada and Amgoud example

In the above set of arguments, only #@d A attack each other and so we get the
extensionAs, Az, Az, A4}. Theoutputof this extension are the argument heads, namely
{wr, go, m, b}.

Caminada and Amgoud’s approach corresponds to our conisigéhne network of
Figure 69, with attack relation», and we thus get the extensipmr, go, m, b}. Cam-
inada and Amgoud proceed to close this extenson under tiog istles and they get
inconsistency. They consider this a problem affdrao remedy the problem by sys-
tematically adding, with every strict rule % vy, its contrapositive ruley — =x.
This allows them essentially to also have that m attacks bbaattiacks m, and so the
extension becomes orlyr, go}, which is consistenly closed under the strict rules.

We translate Figur&9 into Figure 70, and so have no problems with it..

E.2 Defining complete extensions for two-state two-attackabstract
argumentation networks

Definition E.4 A 2-state bipolar 2-attack network has the fo(®wU S" U {T}, Ry, Ry)
where S is a set of atomic letters, S {-x|x € S}, T ¢ S and R and R, are subsets
of (SU ST U {T})% We write x— y for (x,y) € Ry and x=» y for (X, y) € Ry.

We consider the elements of & negations of the elements of Sis truth.

The following holds (compare with Definitidn2):

e —AX(X» T Orx=»T)
e VX(X—» =x and—-x -» X).

R; is called the strict attacks and,Rs called the defeasible attacks.
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Example E.5 Consider the network of Figui@8. This is a 2-state two-attack bipolar
network. We need to define a process for finding extensiorits fiine djficult part in
the definition of such a notion is to deal with cases where ttaelks “»” and * =»"
disagree. By calling “»” strict and “ =»" defeasible we are giving “»” priority over
“=»". But we may have cases where=%" attacks both x and-x. We might give
priority to either x or-x depending on the geometrical location gf-x relative to
their attacking “=»" ancestors.

Let us see how to calculate the ground extension by propagttie attacks fror.
We record a defeasible indéX(x) for every node x, by counting the maximal number

of “=" participating in the chain of attacks leading up to it.

The following is the progression, step by step.“ih”, 0 = “out”, %:“undecided”.

1.7=1 D(T=0)

2. -g=0,g=1, from 1
D(g) = D(-g) = 0

3.-d=0,d=1, from 1
D(d) = D(~d) =0

4. —a=0,a=1, from 1
D(a) = D(-a) = 0.

5. -e=0,e=1, from 3
D(e) =D(-e) =1

6. -b=0b=1, from 4
D(b) = D(=b) =1

7.-c=0c=1, from 6

D(c) = D(-c) =2



8. -f=0f=1 from 5
D(f) =D(-f) =2

9. -g=1,9=0 from5,6,7,8
D(g) = D(-g) = 2.

We see that 2 contradicts 9. Since théndex of 2 is lower than that of 9, it wins.
Therefore our ground extension for the network of Figiras

{T.0.d,a,eDb,c,f}.

The reader can see that by associating with a thebithe network of Figure&67 we
have none of the problem mentioned by the ASPIC graép [

Furthermore, if one does not want to deal with joint attackse B] and see L8]
for arguments in favour of joint attacks), one can use addai auxiliary points and
eliminate them as in Figuré8.

Example E.6 Let us calculate the ground extension of Figidfein steps:
1. T=1D(T)=0
2. =go=0,go=1,D(-go) = D(go) = 0O, from 1.
3. =wr = 0,wr = 1, D(-~wr) = D(wr) = 0, from 1.
4. -m=0,m=1,D(-m) = D(m) = 1, from 3.
5. -b=0,b=1,D(=b) = D(b) = 1, from 2
6. —hw= 0. D(=hw) = 1, from 4.
7. hw= 0,D(hw) = 1, from 5.

If we insist on the sum of the values of gmy-w} to be 1 we need to give hw anthiw
values?.
2

Example E.7 We want to discuss options for defining the inB¢x) for index x. Con-
sider the network in Figur&l.
The node c is supported by several chains. For example

T=a=c
T>a=>b=a=c
T=>d=c¢c

T=€e=¢C

o~ Nk

T=cC
We can also loop and get

6,k T=>a=>b=a..., loopktimesa=b=a=c
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length | number of paths

2 1
3 3
5 1
7 1
9 1
11 1
13 1
15 1

Figure 72:

Questions. What index do we give to c?

The first question is what to do with (6,k). We have an infinitaiper of paths
leading fromT to ¢. The second question is that we can get to ¢ using sevarallgl
paths through ad and e. Does this increase its priority over f?

The thrid question is how do we record the totality of inidipaths which charac-
terise c?

We think it is reasonable to do the following:

1. Limit the paths with loops to n number of repetitions, vehelis the number of
elements in the network. Recall that we are dealing withefingtworks. Thus
(6, k) becomeg6, 1),..., (6, 6).

2. Record for each x the number offdrent paths of each length. Thus the index of
node c becomes the table in Figui2

We leave it to the defeasible logical theory to decide whichith table D(X) is
preferable to which y with tablB(y). For example we can take the number of shortest
paths to be the index.

Definition E.8 Let(SU S’ U {T}, Ry, Ry} be a finite 2-state 2-attack bipolar network.
Let k be the number of elements in the network.

1. By alegitimate path from x to we mean a sequence

Iy = (X1 = X X2,..., %X, = T)



alambl/bk CL,..., G2 di,..., dy
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Figure 73:

such that for eaci < i < n we have )R%_1, where R is either R=  —» or
R, = =» and such that no node y appearsliy more than k times.

2. The defeasible value g, (denoted byD(I1y)) is the number of points XL < i <
n such that x=» xi_1.

3. The defeasible value of x denotedX{x) is the pair(D1(X), D2(X)) whereD1(X) =
min{D(I1x)} andD,(X) = the number of pathE, such thaD(I1y) = D1(X).

4. Order the nodes x according to the lexicographic ordeohB(x). We get three
possibilities for two nodes, x.
(@) D1(x) < Da(y)
(b) D1(x) = Da(y) andD2(X) > Da(y)
(c) D1(X) = Da(y) andDz(x) = D).

Possibilities (a) and (b) are considered>xy (x is stronger than y). Possibility
(c) is considered x y (x is indjferent to y).

Definition E.9 Let(SUS' U{T}, »,=») be afinite 2-state, 2-attack bipolar network.
Assume that each node x already has an iridleg defined and that a priority ordering
X > y and x = y have been defined. We define the notion of a Caminada-Gabbay
labelling function

A:SUS'U{T}~ {0,3.1)

being a legitimate complete extension for the network.
Ais defined relative to the relationsand~.
A must satisfy the following

1. A7) =1

2. Each pair{x, —x} in the network is part of the following geometrical constgtin
of Figure73.

There may be no;andor no by andor no g andor no d;.



10.
11.

12.

13.

We assume that thefunction is known fofas, bs, cs, ds} and we indicate by
case analysis what the valugé-x) and A(x) should be.

A + A(=X) = 1

. Itis not the case that for some i and some |,

A@) = A(c) =1
(If this happens then is not legitimate.)

For networks coming from consistent defeasible theakiethis will not happen
because it means that using strict rules we hayve ax and G + x and both
A+ @ andA + c;.

. If for some jA(a) = 1 and for all j A(c;) < 1thenA(-x) = 0 andA(x) = 1.
. If for some jA(c;) = Land for all | A(a;) < 1thenA(-x) = 1 andA(x) = 0.

. Assume that the valugga;), A(c;) are < 1 for all a; and . If for at least one of

{aj, i}, A gives value} thena(X) = A(-X) = 1.

. Assumel gives value 0 to alla;, c;}, and assume thatx -x, then

(a) Iffor some g, A(dj) = 1thenaA(x) = OandA(-x) = 1.
(b) Iffor alldj, A(dj) < 1 and for some gA(d;) = 5 theni(X) = A(-X) = 1.

. Assume for alfas, cs, ds} gives value 0 and » —x then

(a) Iffor some b, A(bj) = 1thenA(-x) = 0 andA(x) = 1.
(b) Iffor all bj, A(b;) < 1 and for some pA(bj) = 1 thenA(x) = A(-x) = 3.
(c) Ifforall j, A(b;) = O (i.e. the case is that none e, x is attacked in any
way) themi(x) = A(=x) = 3.
The mirror case of (7)—(8) fofx > x. Take the mirror case analysis.

If x~ -x and allA(as) = A(c9) = 0 andA(b;) = 1for some jand ali(ds) < 1
thenA(=x) = 0 andA(x) = 1.

If all A(as) = A(cs) = 0 and all A(bs) < 1 and somel(ds) = 1 thenA(-x) = 1
andA(x) = 0.

If all A(as) = A(cs) = 0 and either for some joand d A(b;) = A(d;)) = 1 or all
A(bs), A(ds) < 1 thenA(=x) = A(X) = %

Definition E.10 Consider a rule of the formr = [A; % ~» Z where “w" is either
“»"or" =»", and x; and z are literals of the form either b eib, with b atomic. We
agree that ==b" is “b”.

We translatex into an attack formatiom\, in the language of 2-state 2-attack
networks as in Figurd1l. We use the auxiliary points,S= {y1(a), . .., Yn(@), y(@)}

Ay = X o ay(@)li = 1., nfU {yi(@) »- =Y(a), (@) ~-> —z)



Where “»-"is“ »”if“ w”is* ="and “ w7 is =" if Y w"is " =7
The auxiliary points of $, Sg are all pairwise disjoint fora different fromg and
disjoint from the literals ofA.

Definition E.11 LetA be a defeasible theory based on the set of atoms S, containing
the literals SUS with S” = {-=x|x € S}, with L, T¢ SUS".
Let D be the set of defeasible rules aiSdbe the set of strict rules. Assume the
language ofA has strict implication— and defeasible implicatioss. The rules ofA
have the form
f\xy

/\yj:Z
j

where{x, Vi, Y, z} are literals, i.e. have the form b ofb, b atomic letter.
We allow for rules of the form» y or = z meaning y or z are assumptions.
We define the associated networfANfor A as follows:

or

1. The set of nodes of(N) is SUS" U {T} U J,(S, US,) wherea runs over all
rules of the l‘orm/\!‘:l X ~» z with k> 2. (l.e. joint rules) and *~" is either
“o"ort =N
The attack relation of ) is as follows:

{b «— —blb atom of NA} U {T —-» =bjc » binA}U{T = -blc= binA}ul/,
Ay U {X m> ay|X ws yin A}
wherea runs over all joint rulesy in A.

Note that NA) satisfies that for every & T either b or=b is attacked (using
~») by some node.

F Discussion of papers of Arieli and Strasser28, 29
and the book of Besnard and Hunter B(]

Our purpose here is to compare our work with that of Besnard Fnter and in
parallel, with that of Arieli and Strasser. We first want toke@&wo comments:

1. To set the scene for the comarison we need to start with a9 p@per 32,
which contains the relevant machinery.

2. Whatever criticism | have here of Arieli and Strass28, P9], it must be borne
in mind that these papers are preliminary conference papetsiot definitive
versions, like, e.g. Besnard and Hunte@][

So let us start. My papeBpP] and the later chapter 7 of our mootgraf33] dealt
with what | calledcompromise revisionf databases. We explain by example.



Example F.1 This example continues Examel, with a view of illustrating the idea
of compromise revision.

Let A be a theory governing a birthday party. Add Aothe following additional
statements (t1)—(t5)

(t1) a=invite Agnes

(t2) b= invite Bertha

(t3) a— -b

(t4) b— -a

(t5) aA b — invite Caterina (let c= invite Caterina).

Then our database E:
I'=Auf{a,ba— -b,b— -a,aArb— c}.

I' is not consistent, but each of its items makes initial seAgmes and Bertha may
be old aunties who do not talk to each other because of sontgethat happened 30
years ago. Caterina may be an old friend of each one of thensa/haesence might
“mitigate” the friction. After some deliberation a decisiavas made not to risk inviting
these two warring aunties. This means that we redaab an inconsistent theory in
need of belief revision. The obvious revision is to deldteeeit1) or (t2), i.e. notinvite

one of the aunties. If we do that then we need not invite Gadiie. ¢ would not be

provable).

The compromise revision problem is the following:

e Given an inconsisterit and X e I' such thafl” — X is consistent, and given a Z
such thafl" + Z butl' — X ¥ Z, then compromise revision would like to include Z
in the revised theory in case the revised theory is X.

The problem is that ifl" is inconsistent, theh can prove everything, including
V = invite Vladimir Putin

So we need to be careful and “control” wh&texactly proves. For that we use the
discipline of labelled deductive systen3dl]. We label every step in the syntactic proof

of any wf Z.
The LDS rule of Modus Ponens is
B:Avy:A—>B
(r.B): B
Thus we have thdt proves
(. to,t5) = C

If we can prove V, it will be by some labela : V which can be recognised.

So to prove V by virtue df being inconsistent, we will need to first prove some
X A =x and then use the axiom/x-x — V. This will all be recorded inx and we
can recognise it and not include V in the revised theory,mate Vladimir Putin. By
comparison, if for example Putin is a relative of Agnes @nsgays something about
relatives, we may have a more direct labelled proof of V.
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The background considerations in Examplé show that we have precise LDS
machinery to trace proofs. Thus the Besnard and Hunter matiargument of the
form (A, A) whereA is a minimal theory such that + A, can be refined to bg : A
wheret is a label showing how is proved fromA. There may be several such proofs
in which case there would be several such labels. So givemcansistent theorl, we
can look at all labelled proofs : A; fromI" and define an attack relation among them
in a much refined way, taking into account exactly how eacinida is proved.

Arieli and Strasser use a Gentzen formulation of the logit @se progressions of
Gentzen sequents as their attacking elements. | have atiesy about the very idea
of using Gentzen systems as the machinery for attack in theexbof argumentation
networks. | think that Arieli and Strasser’s impressivetegsis more at home with
meta-level theories of belief revision, rather than ale$temgumentation. However,
this is not the place to to discuss and evaluate their sysispecially since, the current
publication is at a conference and we yet to wait for the Jalerpanded version. It is
enough to say that for the purpose of comparison with thecatipaper, givens, R)
then if we consider instantiations of the for®, R, 1), wherel is an instantiation into
labelled formulas of some labelled deductive system,li.e.S — LDS, then such
a system would generalise and include both approaches;ribb-/Strasser approach
and the Besnard—Hunter approach. This, however, is thestfioj a new paper.

We concldue by looking at Figui&, which explains the situation of Examiel.

The preferred extensions for this figure are the following

1. -b=-a=0,a=1,b=0,-c=1,¢c=0
2. -b=-a=0,a=1b=0,-c=0,c=1
3. Sameas (1), with=0,b=1



4. Same as (2), with = 0,b = 1.

Example F.2 Let us do Example 17 from Arieli and Strass@@| This is to show
how simple the labelled approach is compared with the Gerftaenulation. Gentzen
systems were invented to prove the consistency of aritbmétis risky to take ¢
the shelf tool designed for one purpose and apply it to arrgibepose; such a move
requires proper justification.

The data of this example is:

(t1) m

(t2) a

(t3) m-— O~f
(t4) maa- Of.

The meaning of the normativef andO—f is not important here. It is gficient
to note that they attack each other. We can derive:

1. (tg, t]_) : Oﬂf
2. (t1,t)) :mAa

3. (t3, (t1, 1)) : Of

(1) and (3) attack each other. They have labels telling us theay were proved and
one can define an attack relation sensitive of the labels.0& we call this “flatten-
ing”. See [34].16

In fact, the attack relation can be a relation R on labels. Sza8 be the labels and
Rc SxS. Thisis OK since the labels contain the information of tlee@fs, including
the proved formulas. In fact, in my book on LDS| | use many times the formulas
themselves as their own labels. Qe f is labelled by 1*) andOf by 3*), where

(1) (m-O-f,m):O-f
(3) (maa- Of,(ma): Of

Now compare this with the Gentzen formulation in Figure 328].[ We reproduce
it as Figure75 (the horseshoe is classical implication and the doublewri®the main
symbol for the Gentzen sequent).

The problem is not so much the complexity of the representatirhe problem
is that proofs in a Gentzen system do not flow with the impdioatvhile the human
argument does follow the implication. Arieli and Strasser st using Gentzen as a
meta-level deductive machine!

Figure 76 gives the argumentation network the way we build it. We siragl
mA a — Of as(ma) - Of, so we avoid conjunction. There is nothing special to
this move.

You can see that paths indicate chains of implications, unjtive the way we
think of it!

18We may have in LDS that we can proye: X and alsosj : =X, yielding multiple bilateral attacks
betweenX and-X from different proofs. The Flattening process decides, basétl, sy} whetherX or =X
has the upper hand.
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We conclude this Appendix by quoting a response from C. S¢rasnd O. Arieli.

Begin quote.

Thanks for referring to our work in the above-mentioned paBelow are
some comments and a response to several issues.

1. First, since Besnard and Hunter’s (BH) formalism is mamed in
the same appendix, let us emphasize tlkeinces between our ap-
proach and theirs. According to BH, an argument is a faiy),
whererl is a subset-minimal consistent set of propositional foaaul
that entails according to classical logic the propositidoanula .

In our approach none of these is assumed: languages otimethina
propositional one may be usddneed not be consistent nor minimal,
and the underlying logic need not be classical logic. Anottiger-
ence is that we enhance the calculus of the base logic byreltron
rules (see Item 3 below).

2. The general view on arguments, as indicated in the previewm,
may serve as a justification for our choice to incorporataisats
in our framework: once an underlying logitis fixed, an argument
(', ) in our sense is an indication that logically follows, acéogdo
L, fromT. If a sound and complete sequent calcufuexists forL it
serves as a syntactical tool for constructing complex aspisfrom
simpler ones. Such a mechanism must accompany, eitherithpli
or explicitly, any structural (logic-based) argumentat&ystem, so
we are not sure that we follow the criticism in this case. Mg,
to some extent (we still have to check this more carefullpy @
the notations of your paper, a labeled formtja ¢ may be asso-
ciated with the sequemt = y (the way we encode arguments in
COMMA'14), or with a concrete proof of a sequent= ¢ (the way
we encode arguments in DEON’14 — see also Item 6 below).

3. We do not agree with the claim that our use of sequent-lasatzen-
style systems is purely a ‘meta-level deductive machireinaddi-
tion to deductions, aimed at systematically constructimggiaents,
we also have sequent-based rulesdtminatingarguments. Thus,
sequents are not only meta-leveled deducible objects,hieyt dre
syntactical entities that may be retracted as well. Thigdwasmpli-
cations. First, the (enhanced) calculus does not only m®the ar-
guments for the argumentation framework but also the adtaSkc-
ond, this tighter link between the calculus of the base lagit¢ argu-
mentation frameworks (as compared to the BH-approachysalto
define a machinery for automated deduction on the basis Grdim
proofs (see our COMMA'14 paper and the literature on adeptig-
ics). It follows that derivations are more complicated staues than
‘ordinary’ proofs in Gentzen-type systems, which alsowaffor non-
monotonic reasoning.



4. Example F.1: Itis noted that ‘the obvious revision is téeteeither
(t1) or (t2)'. One may argue that eliminating both (t3) arnt) (thus
inviting both aunties as well as Caterina, is also a plaasiVision.
This view, which is more in-line with a paraconsistent vieiddhe
state of #airs, in which all the assertions in a theory are treated
uniformly, may be supported by our setting, depending onptiee
defined logic and the attack rules.

5. We are not sure that we understand what do you mean by ‘f(pwin
with implication’. Whatever this property may be, undeblesprop-
erties may be lifted by modifying the corresponding proafteyn
(and maybe also by changing the underlying logic). As wedatdid
before, this is fully supported by our approach.

6. Please note that in the DEON’14 paper an argument is théewho
proof ofy from T (and so attacks may be on subproofs). This is simi-
lar to the way the ASPIC system views arguments. In the COMMA’
paper we adopted a simpler view, in which an argument is sirapl
sequent (or, alternatively, only the ‘top sequent’ of a ffyo®Both
representations of arguments seem to lfkedint than the way that
argument are encoded in your Dunglike digraphs, wherecssrtire
propositions. In view of this it is also ficult to directly compare the
two approaches in terms of representational complgrélysparency
as you seem to do at the end of appendix.

End quote.



	1 Motivation and Orientation
	1.1 Structure of our paper
	1.2 General methodological remarks
	1.3 Conceputal analysis for instantiated Boolean or predicate argumentation
	1.4 The substitution track
	1.5 Summary of our plan so far for monadic predicate instantiation

	2 Abstract instantiated argumentation frames (AIAF)
	2.1 Instantiating with formulas of propositional logic
	2.2 Concrete classical propositional instantiations
	2.3 Instantiating with monadic wffs and modal S5 wffs
	2.4 Beyond predicate instantiation

	A Classical monadic predicate logic
	B Instantiating with 
	C 
	C.1 Conjunctive and disjunctive attacks
	C.2 Boolean attack formations (BAF)
	C.3 Instantiating with Boolean attack formations
	C.4 Instantiating with classical propositional wffs using Boolean attack formations

	D Comparing Boolean instantiation with abstract dialectical framework (ADF).
	E 
	E.1 Comparing abstract instantiation with the ASPIC approach
	E.2 Defining complete extensions for two-state two-attacks abstract argumentation networks

	F Discussion of papers of Arieli and Strasser 509-26,509-27 and the book of Besnard and Hunter 509-29

